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ABSTRACT

The intermittent-eddy-viscosity hypothesis is proposed for the

outer layer in a turbulent boundary layer flow, and it assumes an alter-

nate appearance of zero eddy viscosity in the non-turbulent region and

of a constant eddy viscosity in the turbulent region. The equation of

motion is simplified by assuming the velocity defect law and that the

velocity defect is small compared with the free stream velocity. With

these assumptions the distributions of mean velocity and shear stress

in the outer layer of a turbulent boundary layer on a flat plate for con-

stant pressure are obtained using the tntermittency factor measured by

Klebanoff. The calculated results show good agreement with those

measured.



INTRODUCTION

A turbulent boundary layer is divided into two parts, that is, the

wall region and the outer region, the boundary between them being at

about fifteen per cent of the boundary layer thickness from the surface.

It is a physical characteristic of the wall region that the shear stress

is almost constant. The flow adjacent to the wall is, however, laminar,

whereas the flow is entirely turbulent in the layer further than YuL/i--=30,

where the mean velocity distribution is well described with the so-called

logari'.,nic wall law. Thus the wall region or the constant shear layer

is subdivided into three layers, the laminar sublayer, the transition

region and the turbulent region governed by the logarithmic law.

The physical features in the outer region are that the mean velocity

distribution has similarity if it is plotted in the form of velocity defect,

which is the difference from the free stream velocity, instead of velocity

itself. The velocity defect law in the logarithmic form can describe the
velocity profile well into the wall region, but it can describe the velocity

in only a small part of the outer region. The power law for the velocity

profile is purely empirical, though it describes the profile fairly well for

its simplicity. The parabolic distribution proposed by Hama1 describes

the profile all over the outer region. The wake function proposed by

Coles 2 was derived empirically as an expression for the deviation of

the velocity from the logarithmic wall law. As the velocity distribution

by Coles, however, does not go smoothly into the free stream velocity,

an outer wall function has been proposed by Cornish 3 to improve this de-

fect of the Law of Wake. These laws are useful for practical purposes,

although they seem to lack physical foundations.

Assuming that the eddy viscosity is constant in the outer region,

the velocity profile in the form of a co-error function was obtained
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analytically by Townsend 4 and by Hinze 5 . The profile shows appreciable

deviations from the measured values at the outer edge of the boundary

layer. The reason for the discrepancy may be due to the characteristics

of flow changing intermittently from turbulent to non-turbulent flow in

the outermost layer. A velocity profile was derived by the writer 6 taking

the intermittency into account, but it too did not agree well with the

measured results.

The outer region ranges over about eighty-five per cent of the turbu-

lent boundary layer, and it is not affected directly by the shear at the

wall, whereas the mean flow in the wall region is governed by the wall

stress. It is a characteristic of the layer that the eddy viscosity is

nearly constant within a portion about forty-five per cent of the total

thickness from the wall and the intermittency is observed outside of this

region.

In the present paper the mean velocity distribution in the outer

region is derived analytically taking the characteristics of the flow into

account and is compared with experimental results.

In Chapter 1, the Intermittent-Mean-Velocity Hypothesis is pro-

posed, and in connection with this treatment, a new mean velocity dis-

tribution near the center of a turbulent pipe flow is derived by making

use of the mixing length according to Kikuradse 7 .

In Chapter 2, the Intermittent-Eddy-Viscosity Hypothesis is pro-

posed, and the mean velocity distribution is derived in the form of velocity

defect by making use of the intermittency factor according to Klebanoff 8 .

The wake function by Coles and the outer wall function by Cornish

are compared with the results calculated by the present forumla for velocity

distribution. The shape factor, eddy viscosity and mixing length are dis-

cussed.

•• -__ _____________________________ __________,_____ ________________________________________
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NOTATION

A, B Constants in logarithmic velocity defect law (Equation 2-27)

O C,, c Constants in the expression of mixing length in pipe flow
(Equation 1-10)

C Constant in the logarithmic wall law (Equation 1-14)

d, d=6(ALX/4)(d8/dz.), constant in Equation.2-13

H Shape factor

Mixing length

R Pipe radius

fEJj Eddy Reynolds number based on a and Ec,, respectively

U Mean velocity in x-direction

U0  Free stream velocity or velocity at pipe center

Lit Mean velocity in the turbulent region of intermittent, outer layer

U- Friction velocity, UC = • ,

V Mean velocity in y-direction

LL, Turbulent velocity fluctuations in x- and y-directions, respectively

LL " Turbulent shear stress per unit mass

xC Distance measured along surface

Y Distance normal to surface measured from surface

0( Constant in the expression of eddy viscosity by Clauser

Intermittency factor

S Boundary layer thickness

SZ Displacement thickness

Mean eddy viscosity in outer layer, 6 - (6.

6o Eddy viscosity in the turbulent region of outer layer

S-o.37 )
e Momentum thickness

X Constant in the logarithmic wall law, Aquation 1-14
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X Constant in the expression of the center velocity in pipe flow

V Kinematic viscosity

3o Fluid density

'C Shear stress

To Shear stress at wall



CHAPTER 1

THE INTERMITTENT-MEAN-VELOCITY HYPOTHESIS

1-1. Introduction

It was Ghown by Schubauer 9 that the turbulent energy distribution

in a boundary layer divided by the intermittency factor coincides closely

with the distribution in pipe flow. According to Schubauer, such close

agreement could not occur unless the average turbulent energy was dis-

tributed through the turbulent regions of a boundary layer Just as it is

in the fully turbulent section of a pipe flow.

This fact suggests that the mean velocity distribution in the turb-

ulent region in a boundary layer may coincide with that in a fully turbu-

lent pipe flow, because the turbulent energy is taken from the mean-flow

kinetic energy through the turbulent shear stress in that layer. From
careful study of the oscilloscope records of velocity fluctuation, it was

8
noticed by Klebanoff that "the trace has somewhat of a square-wave

appearance in the intermittent region, and that the non-turbulent regions

seem to be at a constant level corresponding to that of the free stream,

while the turbulent regions are seen to be centered about some lower

level. The difference between the velocity of the outside potential

flow and that existing in the turbulent regions seemed to depend on how

far past the measuring position the instantaneous edge of the layer ex-

tended at the particular instant".

If the mean velocity level in the turbulent region may be assumed

to be expressed with the extrapolation to the outer layer of the logarithmic

wall law in the deeper, non-intermittent turbulent region, which is valid

in the fully turbulent pipe flow, the average mean-velocity distribution

in the intermittently turbulent, outer layer will be described by the average
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of the free stream velocity and that of the logarithmic wall law, that is,

U = (/-r)Uo1+ rut (-)

where U , U. and Ut denote the average mean velocity, the

free stream velocity and the mean velocity in the turbulent region accord-

ing to the logarithmic law, respectively, and ýf denotes the intermittency

factor. The expression can be written alternately in the form of velocity

defect, which is known to be appropriate to describe the mean velocity

distribution in the outer region,

Uo- U WO (u.-u•) , (1-2)

The mean velocity distribution was calculated by the writer 6 making use

of the following empirical formulas by Klebanoff for the velocity defect

and for the intermittency factor,

U, - u, S_. 75lop,0 +2.3 (1-3)U'C

"-----(I-erf3)

= - (-zsI -+ 23) (1-4)

where UT denotes the friction velocity V'fo/7 , 'TO the wall shear

stress, J• , density, y the distance from the wall, and o , the

boundary layer thickness. The velocity distribution calculated by

Equation (1-5) shows poor agreement with the experimental results as

shown in Fig. 1.

__



7

Now it is recalled that the turbulent intensity in a boundary

layer divided by i( coincides with that in pipe flow. Then the equa-

tion for (Uo-Ut)/Ur should be presumably that for pipe flow

instead of for boundary layer flow, that is

L,-Ut. ~ 6Uo 6 2 m01o, + 0.,
ULI

which was derived by Hinze 1 0 based on the measurements by Laufer11.

In this case, Uo denotes the maximum velocity at the center of pipe.

The use of this formula does not give good results either. It has been

noticed, however, that for y/& -,, 15 the logarithmic velocity dis-

tribution deviates from the actual velocity distribution. A correction

function for this deviation has been empirically introduced by Millikan 1 2 ,

13 3Hinze , and Cornish

In the present chapter, a new formula is derived analytically

for the mean velocity distribution in a fully turbulent pipe flow, and

the mean velocity distribution in a boundary layer will be calculated

using the new formula.

1-2. The mean velocity distribution in a fully turbulent pipe flow

According to the momentum transfer theory, the turbulent shear

stress can be expressed as

J , (Y7)

where 't and 2 denote shearing stress and mixing length, respec-

tively. As the shearing stress in a pipe flow is distributed linearly,

it is written as
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where I is the radius of a pipe. According to Nikuradse 7 , the mixing

length in a pipe flow is represented by the expression

- 0,14 - O.8(I0 *)-U .o0(I-P%),

Now the mixing length is assumed as

where the numerical constants, 4 , and C are left to be deter-

mined later.

(i) Near the wall, or Y/R <<

In this case, the mixing length is known to be proportional to

the distance from the wall,

Y(i-/,)

where X is a constant. In order to satisfy this condition, the following

relations has to hold between the three constants.

4.Lt-t - ' 9 (-3)

It is well known that the logarithmic wall law,

U -L n YU¶+C(-)
UJr X 1)
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is derived from equations (1-7), (1-8) and (1-11), where -1 is the

kinematic viscosity and C is a constant. This equation cannot give

the value of the maximum velocity at the center when we put v -- R.,
because it has been derived for the flow near the wall, When the de-

viation from the actual value is denoted by / , the maximum velocity

U01 is given by the equation

LIt K 1

Then we obtain the velocity defect from equations (1-14) and (1-15)

as follows:

Uo-U + , for _/•<<I/ (1-16)
U K R r ,

(ii) Near the center of a pipe, or (I-- y/i) <</.

In this case the mixing length is represented approximately by

the following expression

R

From equations (1-7), (1-8) and (1-17) the differential equation

for the mean velocity results in the form

d, U Vl- lR U,
,•~ a Y L • _•RY" R -"
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from which the velocity defect is obtained by integration.

Li. R

Ur

The result is

UT -

for (i /i «

When X <<I,

t ----x+ T + - -4+

therefore,

As the argument of &A- and 4,f/in Equation (1-20) is smaller

than unity, the velocity defect can be expressed approximately by

the equation

uL -U _ (1-2/
_ _ T _ R ) -
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Using another expansion of r

t,4-' -- ' /_n= i, X I I(1-2X +.-

another approximate formula of the velocity defect can be derived.

Uo-U

The four numerical constants 4,?, C and k have to be determined

so that Equation (1-16) for Y/R <« / may be smoothly joined to

Equation (1-20) for (/- IR/) << / at some point.

By equating right-hand sides of these equations and their de-

rivatives, respectively, we have

and

Now we have four equations (1-12), (1-13), (1-23) and (1-24) for

the four unknown constants, provided that the value of X is taken

to be 0.40 as usual. It is seen from Equation (1-24) that the value

of b/a changes rapidly between Y/*.=apnd 0, 3/ when k is
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substituted by Equation (1-13). If the point of y/R 0. 3027

is chosen as the joining point, we obtain the values of constants as

follows:

•~== o,1os

S=0,06,l- )

and

A =o,17T&.

Putting these values into equations (1-10), (1-16), (1-20), (1-21)

and (1-22), the results come as follows:

- o./iL-oo&((/- ) o.o6(/-•r) (/-2)R

ul.-u ,Es10 + O/f s (1-27)

For Y/R <O,3 3 0,

=10. 968f~.t. -] -ko8?T~ (1-2 9)

for Y/R >0.301
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and approximately

UO- • 4[1+0J244(1- (1-2) f

or

SJ }. (1-30)
UT

The expression for mixing length is the same as that of Nikuradse. The

value of A in the equation for velocity distribution near the wall is

smaller than that of Hinze. The classical. formula, which was empirically

deduced by Darcy 1 4 ,

Uo -U- ,o,
U0

being the first approximation, Equation (1-29) maybe regarded as a

second approximation. Equation (1-30) is akin to the universal velocity

distribution deduced from Karman's similarity law.

LJ0-U L/r~7Jil + (1-32)U,

In Fig. 2, Equations (1-27) and (1-28) are plotted to be compared with

the experimental results taken from the date of channel flow1 1 and

1s 16pipe flow by Laufer and of pipe flow by Komatsu . It also contains

the velocity distribution by the Law of Wake deduced by Coles, which

is modified with the outer wall function by Cornish. The experimental

results seem to depend appreciably on Reynolds Number, and there is

a slight difference between the mean velocity in channel flow and that
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in pipe flow. The velocity distribution by Cornish coincides fairly

well with the channel flow, while the present distribution curve passes

through the midst of all measured points.

1-3. The mean velocity distribution in the outer layer of a turbulent

boundary layer

As mentioned in 1-1, if the velocity in the turbulent part of the

intermittently turbulent region is assumed to be expressed by the

formula for a fully turbulent pipe flow, Equation (1-28), the mean velocity

distribution in the outer layer of a turbulent boundary layer may be cal-

culated by equations (1-2) and (1-28). That is,

where •" is the intermittency factor given by Equation (1-4). It can

be seen in Fig. 1 that the velocity distribution was not improved by

Equation (1-33).

Now it appears that the intermittent-mean-velocity hypothesis

is not valid in the outer region of turbulent boundary layer. In the

following chapter, another hypothesis will be proposed.



CHAPTER 2

THE INTERMITTENT-EDDY-VISCOSITY HYPOTHESIS

2-1. Introduction

In the preceding chapter, the shearing stress was assumed to

be given by Equation (1-7) according to the momentum transfer theory,

and to be distributed linearly as shown in Equation (1-8). The assump-

tion is made for a pipe flow, not for a boundary layer flow. Besides,

the concept of the intermittent-mean-velocity hypothesis is not based

on any other sound foundation from the dynamical point of view than

from the phenomenological one. Now we shall start from the fundamental

equations of motion for the -boundary layer flow. Concerning the ex-

pression of shearing stress in terms of mean velocity, there are several

ways as found in textbooks. The first of them is the mixing length

theory, including the momentum transfer theory and the vorticity trans-

fer theory. The second is the mechanical similarity rule by Karman.

Prandtl's new assumption for the eddy viscosity is related to free turb-

ulent flow. The constant eddy viscosity concept by Boussinesq comes

last, though it is the oldest one, because it is newly applied by Townsend

and Hinze. According to the experimental results by Klebanoff, the

eddy viscosity in the turbulent boundary layer is not constant, but it

has a maximum value near the layer of YI/& -0,3 , and it changes

slightly between y/" 0, 2 and 0. S5; whereas outside of the region

it falls rapidly to zero. The assumption of constant eddy viscosity may

be permissible only for the region of VIE < 0. 5" In the region

where the eddy viscosity changes rapidly to zero, the intermittency of

flow pattern can be observed. It is shown by Hinze that the eddy viscosity

divided by the intermittency factor is nearly constant throughout the outer

region, in the same way as it is shown by Schubauer that the turbulent
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energy distribution divided by the intermittency factor shows a fairly

good agreement with in pipe flow. This factor shows a fairly good

agreement with in pipe flow. This fact seems to suggest the intermittent-

eddy-viscosity hypothesis proposed in the following section.

2-2. The intermittent-eddy-viscosity hypothesis

The shearing stress in turbulent flow is given in terms of the

eddy viscosity as follows:

auJ (2-1)

where E denotes the average eddy viscosity in a layer in the outer

region, and not having a constant value, but being a function of .

According to the suggestion mentioned before, it is assumed that the

eddy viscosity has a constant value 4o in the turbulent region, while

it is zero in the non- turbulent region, and the eddy viscosity of 4o
and of zero appears intermittently at a specified point. This is the

intermittent-eddy-viscosity hypothesis and it is written as

(2 -)

where • is the intermittency factor. The same concept as this is

suggested by Hinze. The shearing stress in the outer layer is now

JP (2-3)83U

______________ _______•___
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In a fully turbulent flow, the shearing stress is mainly due to the

turbulent fluctuation and is expressed as

TV(4)

where i and r denote the turbulent velocity fluctuations in X- and

Y-direction, respectively. From equations (2-3) and (2-4) we have

C F 2u _ (2-S)

We can verify this relation by making use of the experimental results

of F-T , J and UI, which were measured independently. The turbu-

lent shear stress is plotted againstthe velocity gradient in Fig. 3.

According to the constant eddy viscosity concept, the shear stress

should be linear to the velocity gradient itself. The relations between

the shear stress and the velocity gradient is shown with small crosses

in Fig. 3. It can be seen in the figure that the assumption of constant

eddy viscosity is valid between y/" 0.2. and 0.5 , but

that the assumption should not be applied beyond y/& -0. ".

When the shear stress is plotted against the velocity gradient multiplied

by the intermittency factor &" , instead of the velocity gradient itself,

which are shown with small circles in the same figure, it appears that

the linearity between them is well confirmed all over the outer region.

Thus the intermittent-eddy-viscosity hypothesis seems to be valid in

the outer layer of turbulent boundary layer flow.

In Fig. 3, the shear stress is given in non-dimensional form

divided by the square of friction velocity, the velocity is given in non-

dimensional form of velocity defect divided by friction velocity, and
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the distance from the surface is divided by the boundary layer thickness.

Therefore, the slope of the straight line gives the eddy viscosity in

non-dimensional form, that is, 6 U. , and the value is 0. 062

for this case.

2-3. The distribution of mean velocity and shear stress in the outer layer

of turbulent boundary layer

The equation of motion is given for the mean velocity in turbulent

boundary layer with zero pressure gradient as follows:

au 3u (2-6)1U -7X + V•-F (2--6)•

or in terms of velocity defect,

oi.(u-u (2-?)

In the outer layer we can assume that

Uo -U<</

and by the order-of-magnitude procedure we arrive at the approximate

equation of (2-7),

o Uo-U y - - (2-8)
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According to the intermittent-eddy-viscosity hypothesis the shear

stress is

(Uo (2-)

Assuming the similarity of velocity defect, we put

U U = (2-10)

where f (•) is the velocity distribution function. If we keep in

mind that

and

we obtain the equation of motion

LJc.dx T~x-d5
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where the prime means differentiation with respect to . Except

near the edge of boundary layer, f and • f are of the same

order of magnitude. As shown in the Appendix,

_ IT<< d

UI d dx

Hence, it is permissible to neglect the first term on the left-hand

side of Equation (2-11), which then becomes

-=orf/). u .s d f,. (2-12)dýC'' - E,, IT-

Since the left-hand side of this equation is a function of alone,

the equation can be correct only if

UOS± = d(2-/3)

that is, a constant, independent of X Integrating Equation (2-12),

we have

From equations (2-9) and (2-10)

60 • f (2-14U)
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and since ' U= J and (- I when -- ,

Hence

Iv(-I'f') /nQ4U.i) 2- d f ~(-S

0

or

AL-~ exp (2-16)
. rf •. 2,

Integrating this equation from infinity to , we obtain the velocity

distribution function as follows:

00f(•) == -'f..L exp[- d of•"d •j (2-17)

since f tends to zero when • goes to infinity. For the shear stress

distribution we have from equations (2-14) and (2-16)

- . - e;[ daf ,d•). (2-18)

In order to determine the values of two constants, L2  and ti-'S/6o

using Equation (2- 15), log (- Tf' is plotted against f¶ /)d
in Fig. 4, when the measured values of T and f by Klebanoff were

used. It can be seen that the plotted points are on a straight line.
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It suggests validity of the relation given by (2-15). Values of the

two constants obtained are:

or ==0.062,

and (2-1')

This value for non-dimensional eddy viscosity, 6o/LJ1 • , is in

good agreement with that obtained before from the shear stress in

Fig. 3. The mean velocity distribution of Equation (2-17) with the

constants of (2-19) is shown in Fig. 1. The calculated values show

an excellent agreement with those measured by Klebanoff. The velocity

distribution by the law of wake modified with the outer wall function

by Cornish is also shown in the same figure. This distribution will

be discussed in the next section.

The shear stress distribution calculated by Equation (2-18) with

the value of dt of (2-19) is shown in Fig. 5, and it is also in good

agreement with that measured by Klebanoff.

2-4. The wake function and the outer wall function

Coles 2 has prc 'osed that the mean velocity distribution may be

written in the form

f( t + MX) W(2-20)

_ I _
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which is now known as the law of wake, and 4/9) is called the

wake function. TT(X) denotes the profile parameter. K is an

empirical constant in the logarithmic law, that is

t(A-r) . IIn .YI5r+ C 1 (2-21)

where is another empirical constant. Coles used the numerical

values of )0-0,40 and C -5.10. The profile parameter T (x) is

given the value of 0.55 for a flow at constant pressure. Then the

velocity profile is written as

UI0S= -)'

U 040 9 0.40

or in the form of velocity defect

U.0 U IIn.y + as',[UT-0-40 S 0.1"f 0

since the wake function is normalized so that it has the value V(/)=2.

From this equation we have

o40Q(zjO 4 +n) (2-22)0.040

By using Equation (2-17) for the velocity defect, the value of Wv(A/J)

can be calculated. The result is shown in Fig. 6 with that of Coles.

The wake function by Coles is seen to be smaller than the present

result. Besides, the calculated wake function has the maximum at

about / 0.9; whereas Coles' wake function has no maximum

value. This leads to the non-zero slope at the edge of boundary
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layer, as was pointed out by Cornish.

The outer wall function has been proposed by Cornish3 to im-

prove Coles' description of the velocity profile, that is,

UrjIL K C , w4(.) + (2-23)

where w(Y/8)is the outer wall function. The velocity defect is written

as

since WO(I)=O. With X=0.40 and TI O.&S , this equation

becomes

Uo-U r .LI•+o•
UrI 040 a40[ I

from which we have

O.5-SM 2- ur-u
& ) In r +(z-24-)

6 0.40 5 L

By using the values of Coles for the wake function and Equation (2-17)

for the velocity defect, the outer wall function can be calculated,

and it is shown in Fig. 7. The difference between the outer wall

function of Cornish and the present result is very small except between

Y/•-=0,6 and 0.8. It should be noted, however, that the values of

constants used by Cornish were )c- 0.4-12. and 2 /K = 2.5,

so that the value of 7T was 0.515. With these values the discrepancy

will be seen to become larger.
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2-5. The shape factor

The shape factor is defined as the ratio of displacement thick-

ness and momentum thickness of boundary layer. Velocity defect

is similar if it is divided by friction velocity, not by free stream

velocity. Accordingly, the shape factor is a function of friction

velocity. The relation between them is written as follows:

I , -O

where

I 2=fU U"JU2d

and (2-26)

9 UO e uO L

In order to estimate the values of Ii and 12 we use the

logarithmic law

Uo-U AIn i-B (2-27)U~r

with A-2.S and B=2,3 from 0= 0 to =O.land the present

formula of equation (2-17) with (2-19) from =0.1 and •==/

and we obta1n4=3.675 ,12-2,50, and l 2 /4 =6. 67. With

this value of 12/r/ , H is plotted against ULT/U. in Fig. 8.

This result is seen to be in a better agreement with the measured

values than that of Hama with the value of I./, =6. 1 . it may
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be noted that if the logarithmic formula (2-27) is used throughout

the boundary layer, the ratio is

12 ZA2+zAB + 8a
IA +8

and the value 12 /I, 6. / is obtained with A -2,andB=2.3.

If we use Equation (2-17) only, we obtain l.iAuin.8 7. With

Cornish's outer wall function, almost the same result as mentioned

above is obtained as shown in Fig. 8.

2-6. Eddy viscosity and mixing length

Clauser noticed that the constant pressure turbulent profile

dropped so abruptly at the wall as to appear to extrapolate to a non-

zero velocity at the wall, and that this characteristic shape of the

turbulent profile came from the circumstances that the laminar sub-

layer next to the wall and the flow adjacent to it had a lower viscosity

than the eddy viscosity prevailing in the main body of the turbulent

flow. He attempted to simulate a turbulent boundary layer profile

to a laminar profile with a slip velocity on the wall and with an

appropriate eddy viscosity, instead of a laminar viscosity.

If the present formula of Equation (2-17) is extrapolated to the

wall, the velocity at the wall or the slip velocity US is obtained,

which is calculated to have a constant value of 9.54 with (2-19).
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As shown in preceding sections, eddy viscosity cannot be

regarded as constant in a turbulent boundary layer, but it is nearly

constant in the turbulent part in the outer layer. The eddy viscosity

in the turbulent part is written from Equation (2-5) as follows:

and o/UJS is 0.062 as mentioned before. From Ur - 1.85 ft/sec.

and 8= 3.0 in. of Klebanoff's data, we have E---0.0287 ft 2/sec.

Since UT&- "4P/Ii, from Equation (2-26) andI,=3.675,

we have another expression of 4,

S= 0.o0168 ULo* (2-29)

From this, we have the eddy Reynolds number

Uo _(2-30)

The eddy viscosity by Clauser is

6 0( U. 8*

and 0( is universally 0.018. Therefore, the eddy Reynolds number

is 54o8/e - S 6 . it is noted that the present results coincide

rather remarkably with those of Clauser in spite of the difference in

definition of 6. and 6
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In definition of eo given by Equation (2-3), the transfer of

mean flow momentum is assumed implicitly to be due to the small

eddy or gradient type of transfer, the large eddy of convective type

of transfer being neglected. From the constancy of C. shown before,

it may be assumed that the turbulent part in the outer layer is com-

posed of small eddies of the same size and of the same strength.

In other words, the motion of a fluid element may be regarded as

random walk of flight velocity V,/ and of flight length 2. Then the

eddy viscosity is written as follows:

where the flight length I corresponds to the mixing length, Accord-

ing to the measurement by Klebanoff, the y-component of turbulent

intensity "/-odivided by the intermittency factor has roughly a con-

stant value between 0.035 and 0.043. If we take the value it/-.aO0,

we have from Equation (2-29)

0. 84-

With Equation (2-26) and the value of It= 3.765 andUt,/14Oo. 037,

the mixing length is obtained in terms of the boundary layer thickness,

that is

-=(417
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It can be seen that the mixing length is small compared with the

boundary layer thickness. This result is consistent with the assump-

tion of gradient type of transfer of the mean flow momentum. The

effect of large eddies is taken Into account through the intermittency

factor.



CONCLUSION

A new formula for the mean velocity distribution of a fully

turbulent pipe flow, which was derived with reference to the mixing

length measured by Nikuradse, agrees well with experimental results.

The mean velocity profile in the outer layer of a turbulent boundary

layer was calculated by the intermittent-mean-velocity hypothesis,

using the new formula for pipe flow, and the result did not agree

with the experiments.

It has been shown by study of measured results by Klebanoff

that the eddy viscosity in turbulent region of outer layer is nearly

constant and that in non-turbulent region is zero, so that the turb-

ulent shear stress is expressed in terms of the average eddy viscosity

which is the product of the constant eddy viscosity and the int -

mittency factor. It is suggested to call this concept the intermittent-

eddy-viscosity hypothesis. The velocity profile and the shear stress
distribution in the outer layer deduced from this concept are in good

agreement with the experimental results.

Coles' wake function should be modified, and for this purpose

Cornish's outer wall function gives a little larger values than those

calculated, though the difference is very small.

The relation between the shape factor and the friction velocity

is well described with the present velocity profile.

The eddy Reynolds number, U.* 0 , has the value of 60,

and the mixing length has a constant value of order of one-tenth of

boundary layer thickness, so that the gradient type transfer of mean

flow momentum can be assumed,
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i
APPENDIX

Assuming that the velocity is a function of UY/VO

and substituting S for 7 , we obtain the freestream velocity Uo)

U0 __ (2)
UIt

Differentiation of Equation (2) with respect to X yields

Id6 [I -V [UP) 2  Lo + (Us•,kU- 0)l 1.o2 ] (3)

where Fidenotes the derivative of F with respect to ULIh/i/ Since

the local skin friction coefficient C-f 2 (U.l/U.)Z, Lh/ULh becomes

very large at large Reynolds numbers. It the velocity is assumed to

have the logarithmic form

U-F ( u.-•)A Inu• +S 8 M

we have the following relation by differentiation

F' Ur.



Strictly speaking, this relation cannot be valid in the outer layer.

However, the order-of-magnitude relation will remain unchanged.

Therefore, Vi/F'ULr S may be of the order of unity, because A

has the value of about 2.5. Accordingly, the second term in the

bracket on the right-hand side of Equation (3) can be neglected. In

other words, it is very small in comparison with the left-hand side.

Z< d)<< . (6)
-uC, L-,

I!

T . . .
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