COLD WELDING IN A VACUUM: AN ANNOTATED BIBLIOGRAPHY

SPECIAL BIBLIOGRAPHY
NOTICE

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT FROM THE ARMED SERVICES TECHNICAL INFORMATION AGENCY (ASTIA). DEPARTMENT OF DEFENSE CONTRACTORS MUST BE ESTABLISHED FOR ASTIA SERVICES. OR HAVE THEIR NEED-TO-KNOW CERTIFIED BY THE MILITARY AGENCY COGNIZANT OF THEIR CONTRACT.

COPIES OF THIS REPORT MAY BE OBTAINED FROM THE OFFICE OF TECHNICAL SERVICES, DEPARTMENT OF COMMERCE, WASHINGTON 25, D.C.

DISTRIBUTION OF THIS REPORT TO OTHERS SHALL NOT BE CONSTRUED AS GRANTING OR IMPLIED A LICENSE TO MAKE, USE, OR SELL ANY INVENTION DESCRIBED HEREIN UPON WHICH A PATENT HAS BEEN GRANTED OR A PATENT APPLICATION FILED BY LOCKHEED AIRCRAFT CORPORATION. NO LIABILITY IS ASSUMED BY LOCKHEED AS TO INFRINGEMENT OF PATENTS OWNED BY OTHERS.

WORK CARRIED OUT AS PART OF THE LOCKHEED INDEPENDENT RESEARCH PROGRAM.
COLD WELDING IN A VACUUM: AN ANNOTATED BIBLIOGRAPHY

Compiled by SCOTT J. BUGINAS

SPECIAL BIBLIOGRAPHY
SB-63-5

MARCH 1963

Lockheed MISSILES & SPACE COMPANY
A GROUP DIVISION OF LOCKHEED AIRCRAFT CORPORATION
SUNNYVALE, CALIFORNIA
NOTICE

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS REPORT FROM THE ARMED SERVICES TECHNICAL INFORMATION AGENCY (ASTIA). DEPARTMENT OF DEFENSE CONTRACTORS MUST BE ESTABLISHED FOR ASTIA SERVICES. OR HAVE THEIR NEED-TO-KNOW CERTIFIED BY THE MILITARY AGENCY COGNIZANT OF THEIR CONTRACT.

COPIES OF THIS REPORT MAY BE OBTAINED FROM THE OFFICE OF TECHNICAL SERVICES. DEPARTMENT OF COMMERCE. WASHINGTON 25. D.C.

DISTRIBUTION OF THIS REPORT TO OTHERS SHALL NOT BE CONSTRUED AS GRANTING OR IMPLYING A LICENSE TO MAKE, USE, OR SELL ANY INVENTION DESCRIBED HEREIN UPON WHICH A PATENT HAS BEEN GRANTED OR A PATENT APPLICATION FILED BY LOCKHEED AIRCRAFT CORPORATION. NO LIABILITY IS ASSUMED BY LOCKHEED AS TO INFRINGEMENT OF PATENTS OWNED BY OTHERS.
ABSTRACT

This bibliography includes references issued primarily during the years 1959–1962. References are in alphabetical order by author's name.

Search completed Dec 1962.
Availability notices and procurement instructions following the citations are direct quotations of such instructions appearing in the source material announcing that report. The compiler is well aware that many of these agencies' names, addresses and office codes will have changed; however, no attempt has been made to update each of these notices individually.

In citing classified reports, (SECRET TITLE) or (CONFIDENTIAL TITLE) as appropriate, has been used when that classification of the title was indicated on the report. (UNVERIFIED TITLE) has been used when the report was not available to the compiler and it was impossible to verify the report's title and the title's security level.

Classification of classified reports is indicated by abbreviation in upper right top line of bibliographic entry. The classification of the report is given in full, e.g., SECRET REPORT, at the conclusion of the bibliographic data for that report entry.

This selective bibliography has been prepared in response to a specific request and is confined to the limits of that request. No claim is made that this is an exhaustive or critical compilation. The inclusion of any reference to material is not to be construed as an endorsement of the information contained in that material.
INTRODUCTION

Basic work in this field dates back to that performed by F. P. Bowden, T. P. Hughes, D. Tabor and J. E. Young reported in the ROYAL SOCIETY PROCEEDINGS beginning in the late thirties. Bibliographies by Abbott (1)*, Hansen (16)*, and Owens (30)* will provide the user with additional and related information.

Very few recent experiments have been reported in the vacuum range $10^{-9}$ Torr and higher. Much of the reported work has been oriented around the aspects of friction, seizing and lubrication rather than cold welding.

*Numbers refer to references cited in this bibliography.
**TABLE OF CONTENTS**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>Citations</td>
<td>1</td>
</tr>
<tr>
<td>Source-Agency Index</td>
<td>13</td>
</tr>
<tr>
<td>Subject Index</td>
<td>14</td>
</tr>
</tbody>
</table>

LOCKHEED MISSILES & SPACE COMPANY
1. Abbott, H. M., Comp.
SPACE ENVIRONMENTAL EFFECTS ON GEARS AND BEARINGS: AN ANNOTATED BIBLIOGRAPHY.
72p. ASTIA AD 269556

An annotated bibliography on gears and bearings, resulting from a general literature search as an aid to the consideration of design factors, temperature, speed effects and wear problems on materials that could give satisfactory service in spacecraft applications.

EFFECTS OF SPACE ENVIRONMENT ON MATERIALS
Wright Air Development Division, WPAFB, Ohio.
66p.

Discusses the effects of radiation and high vacuum on materials. Reviews tests and work being done and proposed at $10^{-9}$ mm Hg and lower.


An experimental study has been made of the seizure of thoroughly degassed metallic surfaces in ultrahigh vacuum. Information compiled from the laboratory investigations and from the literature is presented in this document as an aid to understanding metallic seizure in vacuum. The conditions under which seizure of such surfaces will occur are discussed, and methods of preventing seizure are presented. (Author)
EFFECT OF INERT, REDUCING AND OXIDIZING
ATMOSPHERES ON FRICTION AND WEAR OF
METALS TO 1000°F. Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio. Report no. NASA TN D-1103,
Oct 1961. 26p. (Also digested in METAL PROGRESS
82:144,150, Jul 1962)

The absence of oxides on metal surfaces resulted in excessive wear and high friction
of metals. In certain instances where surfaces were devoid of oxides mass welding
of the specimens occurred. When extremely small quantities of oxygen were present,
in the atmosphere, oxides formed on the metal surface to form adequate protection.

Friction, wear, and evaporation rates of various
materials in vacuum to $10^{-7}$ mm Hg. AMERICAN
SOCIETY OF LUBRICATION ENGINEERS.
TRANSACTIONS 5:8–23, Apr 1962. NASA N62-13625

Evaporation data on soft metals, lubricating inorganic compounds, and various reference
materials are reported for temperatures from 75° to 1000°F in vacuum as low as
$10^{-7}$ mm Hg. Observations on modes of vacuum degradation (e.g., evaporation or
dissociation) and methods of experimentation are related. Friction and wear data are
presented for several unlubricated metals (e.g., type 440-C steel) and metals coated
with inorganic (e.g., MoS2, CaF2), as well as with soft metal films in vacuum at
ambient pressures between $10^{-6}$ and $10^{-7}$ mm Hg. (Author)

Evaluating the behavior of materials under
space conditions. INSTITUTE OF THE
ENVIRONMENTAL SCIENCES, PROCEEDINGS.

Describes some of the research studies at Lockheed and presents some of the data
concerning the problems of materials in space. Areas discussed are; wear and seizure
of rubbing surfaces under high vacuum, temperature control surfaces, stability of
organic adhesives. Some information is given on the operation of bearings in a high
vacuum.
Sliding contacts and friction phenomena in space.

When absorbed or chemisorbed gas films which are present on metallic surfaces in our atmosphere are removed by wear or sublimation in the hard vacuum of outer space, cold welding can occur. Adequate lubrication must be provided.

8. "Cold-welding" in vacuum holds risks and promise.

Strong homogenous joints are formed in copper by surface diffusion at -200°C in vacuum.

9. Colner, W. H.
Space-new environment for materials.
MATERIALS RESEARCH & STANDARDS 2(8):656-660, Aug 1962

Information on a laboratory vacuum system capable of achieving a vacuum of 10^-7 mm Hg.

10. Convair, San Diego, Cal.
INTERCEPTOR SUBSYSTEM RESEARCH FOR BALLISTIC MISSILE DEFENSE. VOLUME III. HIGH-VACUUM FRICTION PHENOMENA.

Evidence was presented that the friction of metal surfaces under low loads in air may not be due largely to the mechanism described by the adhesion theory of friction. Calculations indicate that if the adhesion theory were responsible for the observed friction of metals, then adhesion should be easily measurable, in spite of the effect
of released elastic stresses. It was found that for copper and evaporated copper on metal substrates, adhesion (in the absence of sliding) could only be measured when the specimens were free from contamination by air. It is concluded that it is not the effect of relieved stresses but the presence of a contaminant film, probably oxide, which prevents detection of adhesion for copper in the absence of sliding. Other experiments were performed with copper and gold to determine if there exists the correlation between friction and adhesive forces presumed by the adhesion theory. While there is a definite correlation in air at large coefficients of friction, there is none below a value of approximately one-half. A mechanism was proposed to account for friction in the absence of adhesion. (Author)

11. THE DANGEROUS VACUUM OF SPACE

The effects of the vacuum of space on materials and lubricants are briefly considered.

12. Franklin, W.

13. Freitag, E. H.

The friction of metals, including adhesion theory, plastic and elastic deformation is described. Non-metals, friction at high speeds and at high temperatures are also discussed.
14. Hamm, John L.
INVESTIGATION OF ADHESION AND COHESION OF METALS IN ULTRAHIGH VACUUM.

Apparatus for the measurement of cohesion has been modified and calibrated in preparation for initial tests on O.F.H.C. copper by the fracture-rejoining method proposed.

15. Ham, J. L.
Mechanisms of surface removal from metals in space. AEROSPACE ENGINEERING.

Discusses the oxidation rate in ultrahigh \((10^{-10}\, \text{mm Hg})\) vacuum, loss of surface films, metal evaporation, dissociation and effects on metal properties.

16. Hansen, S., W. Jones, and A. Stephenson

The authors examined the friction characteristics of a large group of materials under conditions of high vacuum \((10^{-5} \text{ to } 10^{-6}\, \text{mm Hg})\). The principal test condition studied was that of the linear motion between two dry, clean, unlubricated, flat surfaces. A bibliography of 71 items is appended.

17. Heilingbrunner, O.
Friction phenomena in vacuum. VAKUUM-TECHNIK 4:133-139, Jan 1956. (In German)

An experimental arrangement and procedure is described which permits assessment of the proportion of elastic collisions between molecules and the wall of a vessel. The results of the measurements are discussed and their significance with regard to the mechanism of friction in a vacuum is investigated.
   Improvements in cold pressure welding.
   ZEITSCHRIFT FUER METALLKUNDE

   Gold and silver are butt welded in a high vacuum. Oxide film effects, specimen
   configuration and deformation are discussed.

19. How metals react in space. STEEL

20. Jaffee, L. D.
   Space vacuum poses design problems.

   Information on evaporation, sublimation and friction reduction is presented. Testing
   in a vacuum is discussed.

   BEHAVIOR OF MATERIALS IN SPACE ENVIRONMENTS
   California Institute of Technology, Jet Propulsion
   Lab., Pasadena, Calif. Technical Report

   Discusses friction and lubrication.

22. Jaffee, Leonard D. and John B. Rittenhouse
   EVAPORATION EFFECTS ON MATERIALS IN
   SPACE. California Institute of Technology,
   Jet Propulsion Laboratory, Pasadena, Calif.
   (NASA Contract NASw-6) NASA 62-12744.

   Sublimation of inorganic materials in the vacuum of space can be predicted accurately
   from knowledge of their vapor pressures and, for compounds, of their free energies.
Among the elements, cadmium, zinc and selenium are readily lost near room temperature and magnesium at elevated temperatures. Selective loss at individual grains and at grain boundaries can produce some surface roughening. Engineering properties are, in general, little affected in vacuum unless appreciable loss of mass occurs. (Author)

23. Jaffee, L. D. and J. B. Rittenhouse
Includes a discussion of wear and seizing of various materials.

24. Johnson, V. R., G. W. Vaughn, and M. T. Lavik
Apparatus for friction studies at high vacuum.
Describes a friction test apparatus employing coupled magnets used for friction studies of dry lubricants under high vacuum.

25. Keller, Douglas V., Jr., and T. Spalvins
NASA N62-13820

26. Kerner, A.
27. Kurzeka, W. J.
BEARING MATERIALS COMPATIBILITY FOR
SPACE NUCLEAR AUXILIARY POWER SYSTEMS.
Atomics International Div. of North American
NAA-SR-6476. 1 Sep 1961. 60p. (Contract
AT-11-1-GEN-8).

A program to evaluate materials for suitability as exposed bearings on nuclear auxiliary
power systems (SNAP Program) for space vehicles is reported. Friction coefficients
of material combinations in a 10^{-6} mm Hg vacuum at 1000°F for 200 hr were measured.
Seven combinations found to have friction coefficients less than 0.50 are: graphite-
Haynes 90; graphite-Stellite No. 3; graphite-Al_{2}O_{3} (sprayed); Al_{2}O_{3} (sprayed)-Cr_{3}C_{2}
sprayed); Al_{2}O_{3} (sprayed)-TiC; Al_{2}O_{3} (solid)-3-F-12; and Al_{2}O_{3} (solid)-3-N-12.
(Author)

28. Ling, F. F.
WELDING ASPECT OF SLIDING FRICTION
BETWEEN UNLUBRICATED SURFACES.
Rensselaer Polytechnic Institute, Troy, N.Y.
ASTIA AD-243 444.

On adhesion under partial vacuums and elevated temperatures: The logarithmic
coefficient of adhesion, \( \sigma \), vs. temperature was plotted for Au-Au and Cu-Cu systems.
The load of 670 grams was applied in 1 hour. The environment was maintained at
760, 10^{-3}, and 10^{-6} mm Hg. For the short range of \( \sigma \), the data were nearly in straight
lines; the apparatus was designed to measure adhesion no larger than 4 times the normal
load. As the pressure decreased, the slope increased, with the Cu-Cu system having
a smaller slope than the Au-Au. At 10^{-6} mm Hg the \( Q'/R \) was 10^{5} degrees K which
is approximately comparable to the activation energies of self diffusion of Au and Cu.
At the same pressure, the variation of \( \sigma \) with respect to loading time at 80°C was
plotted with a load of 670 grams. The data indicate that \( \sigma \) was related to activation
energy of the process and a time exponent, both of which are dependent on the degree
of cleanliness of the surfaces.

8

LOCKHEED MISSILES & SPACE COMPANY
29. Ling, F. F. and E. Saibel

A theory of friction between unlubricated metallic surfaces in sliding contact is proposed. For sliding conditions in which hot or cold welding of asperities is possible, the current weld-junction theory leads to a simple formulation of the friction coefficient under ideal conditions. This result differs from Bowden and Tabor's in that the coefficient of friction is found as the ratio of shear strength to yield pressure multiplied by a factor in which additional effects of load, relative velocity, temperature, and other physical properties appear. In arriving at this factor, the process of welding and fracturing of surface asperities is postulated to be a unimolecular reaction.

30. Owens, G. E., Comp.

Includes references on friction in a high vacuum.


Compatibility of materials with vacuum are investigated.

32. Space vacuum still poses problems.

Brief report of work at Hughes Aircraft. Cold welding occurs in a few days in space conditions because of molecular attraction and the lack of surface films.
33. Spalvins, T. and D. V. Keller
ADHESION BETWEEN ATOMICALLY CLEAN METALLIC SURFACES. PART I, BULK ADHESION.
Syracuse University Research Institute, N.Y.
Report no. S.U.R.I. MET. E. 905-621SA,

Microwelding in an ultrahigh or high vacuum was investigated. Two clean metallic surfaces were brought into touch contact at a near-zero force. Complete adhesion occurred between couples of Fe-Al, Ag-Cu, Ni-Cu, and Ni-Mo. No adhesion occurred between Cu-Mo, Ag-Mo, Ag-Fe, Ag-Ni or Ge-Ge. Results suggest that adhesion depends on the physical chemistry of the surfaces rather than the mechanical aspects of the contact area.

34. Steele, O. P. III
Electric equipment checked for space environment.

A series of tests has been conducted to find bearing materials and an electrical insulation system capable of withstanding high temperatures under vacuum conditions. Twenty combinations of bearing materials were tested for both static and dynamic friction under vacuum at temperature levels of up to 1000°F.


36. Vacuum in space causes cold welding
WELDING DESIGN & FABRICATION. 35:46, Jan 1962.

Vacuum testing of cold rolled steel specimens was performed to determine surface evaporation and atom bonding characteristics of metal in outer space. The use of low pressure greases, molybdenum disulfide and Teflon bearing material and pressures above 10^-6 Torr and temperatures below 100°C were simulated to determine seizure and degassing prevention.
37. Vaidyanath, L. R. and D. R. Milner

Two-ply composites were roll-bonded and their weld strengths determined. Most work was performed on aluminum with a few check tests on copper. Several surface preparations were tried. Scratch-brushed surfaces had the best bond strength. Heating in air and cooling in a desiccator improved the weld strength, particularly of the poorer surfaces. Baking-out in a vacuum was very beneficial. The highest bond strengths were obtained when surfaces were scratch-brushed immediately before roll bonding.


39. Von Vick, G.

A review of experiments and theories dealing with surface friction with the main emphasis on friction in a vacuum.

40. Von Vick, G.
41. Wall, A. J. and D. R. Milner
Wetting and spreading phenomena in vacuum.
INSTITUTE OF METALS, JOURNAL 90(10):394-402,
Jun 1962.

The removal during vacuum brazing of oxide films on high temperature alloys containing aluminum was studied. The wetting of Cu-Al, Ni-Al and Fe-Al by various liquid metals in a vacuum is discussed. The mechanisms of penetration and spreading along the metal-oxide interface and their relationship to the brazing processes are also discussed.

42. Wallace, William B.
Vacuum studies give answer to materials for space. PRODUCT ENGINEERING 33:74-75, 5 Feb 1962.

The effects of vacuum (as high as 10^{-12} Torr) on the vaporization of greases and other lubricants were studied. Seizure and cold welding of degassed steel are discussed.


Copper parts are cold welded in an ultra high vacuum. The adhesion and cohesion were studied, and the tensile strength and electrical properties were determined.

44. Willens, R. H.
Bearings for high vacuum applications.
## SOURCE - AGENCY INDEX

<table>
<thead>
<tr>
<th>Source/Agency</th>
<th>Location</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Army Ballistic Missile Agency</td>
<td>Huntsville, Ala.</td>
<td>31</td>
</tr>
<tr>
<td>Atomics International</td>
<td>Canoga Park, Calif.</td>
<td>27</td>
</tr>
<tr>
<td>Division of Engineering, California Institute of Technology</td>
<td>Pasadena, Calif.</td>
<td>44</td>
</tr>
<tr>
<td>General Dynamics/Convair</td>
<td>San Diego, Calif.</td>
<td>10</td>
</tr>
<tr>
<td>Hughes Aircraft Co., Culver City, Calif.</td>
<td></td>
<td>3, 32</td>
</tr>
<tr>
<td>Jet Propulsion Lab., California Institute of Technology</td>
<td>Pasadena, Calif.</td>
<td>21, 22</td>
</tr>
<tr>
<td>Lewis Research Center, National Aeronautics &amp; Space Administration</td>
<td>Cleveland, Ohio</td>
<td>4</td>
</tr>
<tr>
<td>Lockheed Missiles and Space Div., Sunnyvale, Calif.</td>
<td></td>
<td>1, 6, 7, 30, 40</td>
</tr>
<tr>
<td>National Research Corp., Cambridge, Mass.</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute, Troy, N. Y.</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Space Research Laboratories, Litton Industries, Beverly Hills, Calif.</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Syracuse U., Research Institute, Syracuse, N. Y.</td>
<td></td>
<td>12, 25, 26, 33</td>
</tr>
<tr>
<td>Wright Air Development Div., SPAFB, Ohio</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
# SUBJECT INDEX

| Adhesion | 12, 14, 25, 26, 28, 33, 43 |
| Adhesion theory | 10, 13, 25, 29, 33, 39 |
| Aluminum | 25, 33, 37, 41 |
| Atmospheric effects,  
  Oxidizing | 4, 10, 15, 18 |
<p>| Reducing | 4 |
| Inert | 4, 25 |
| Atomic bonding | |
| Baking-out | |
| Bearings | 1, 6, 27, 34, 44 |
| Bibliography | 1, 16, 30, 40 |
| Bonding characteristics | 36, 37 |
| Bulk adhesion | 33 |
| Butt welding | 18 |
| Cohesion | 14, 43 |
| Copper | 8, 10, 14, 25, 28, 33, 37, 43 |
| Degassing | 3, 4, 36, 37, 42 |
| Dissociation | 15 |
| Elastic stresses | 10, 13 |
| Electric equipment | 34 |
| Evaporation | 5, 15, 20, 22, 35, 36 |
| Experimental methods | 5, 9, 20, 24, 44 |
| Fracture-rejoin method | 14 |
| Fretting | 25 |
| Friction | 4, 5, 10, 16, 17, 20, 21, 24, 25, 27, 28, 29, 30, 34, 39 |
| Friction coefficient | 29 |
| Gears | 1 |</p>
<table>
<thead>
<tr>
<th>Material/Property</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germanium</td>
<td>33</td>
</tr>
<tr>
<td>Gold</td>
<td>10, 18, 28</td>
</tr>
<tr>
<td>Interfacial boundary</td>
<td>25, 26</td>
</tr>
<tr>
<td>Iron</td>
<td>33, 41</td>
</tr>
<tr>
<td>Joints</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>8, 28</td>
</tr>
<tr>
<td>Gold</td>
<td>28</td>
</tr>
<tr>
<td>Molecular attraction</td>
<td>17, 32</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>25, 33</td>
</tr>
<tr>
<td>Nickel</td>
<td>33, 41</td>
</tr>
<tr>
<td>Oxide removal</td>
<td>4, 41</td>
</tr>
<tr>
<td>Plastic flow</td>
<td>13, 25</td>
</tr>
<tr>
<td>Roll Bonding</td>
<td>37</td>
</tr>
<tr>
<td>Scratch brushing</td>
<td>37</td>
</tr>
<tr>
<td>Seizure</td>
<td>3, 4, 6, 23, 36, 42</td>
</tr>
<tr>
<td>Shear strength</td>
<td>29</td>
</tr>
<tr>
<td>Silver</td>
<td>12, 18</td>
</tr>
<tr>
<td>Spreading</td>
<td>41</td>
</tr>
<tr>
<td>Steel,</td>
<td>42</td>
</tr>
<tr>
<td>Cold rolled</td>
<td>36</td>
</tr>
<tr>
<td>Sublimation</td>
<td>7, 20, 22, 38</td>
</tr>
<tr>
<td>Surface,</td>
<td></td>
</tr>
<tr>
<td>Atomically clean</td>
<td>33</td>
</tr>
<tr>
<td>Surface asperities</td>
<td>29</td>
</tr>
<tr>
<td>Surface films</td>
<td>7, 10, 15, 18, 32, 41</td>
</tr>
<tr>
<td>Surface preparation</td>
<td>37</td>
</tr>
<tr>
<td>Surface removal</td>
<td>15</td>
</tr>
<tr>
<td>Surface roughening</td>
<td>22</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>43</td>
</tr>
</tbody>
</table>
Vacuum,
   General effects on materials ...................... 2, 11, 19, 31
   "high" ........................................... 3, 6, 7, 24, 35, 38, 40, 43
   of 10^-3 Torr .................................... 28
   of 10^-5 Torr .................................... 28
   of 10^-6 Torr .................................... 5, 16, 27, 28, 36
   of 10^-7 Torr .................................... 5, 9
   of 10^-9 Torr .................................... 2, 25
   of 10^-10 Torr .................................... 15
   of 10^-12 Torr .................................... 42

Wear .................................................. 1, 5, 6, 7, 23

Weld-junction theory .................................. 29

Wetting .............................................. 41

Yield pressure ...................................... 29