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ABSTRACT

Structural flexibility effects exert a considerable influence upon the stabil-
ity of booster orientation flight control systems. This paper presents a rela-
tively simple method of using root locus techniques to develop the factored
open loop relating function for the system including these flexibility effects,
The analysis procedure is very useful in the design of these control systems
since the solution to the stability problems encountered becomes evident from
the form of the factored open loop relating function.

The particular manner in which the development takes place enables one
to understand the effects of the major design and physical parameters upon
the form of the open loop relating function, and in so doing, bridges the gap
between these parameters and their effect on the performance of the closed
loop system.

Armed with the basic understanding which the analysis procedure provides,
it is possible to interpret the performance of a parameter adjusting adaptive
control system or to formulate rapidly the preliminary design of a fixed para-
meter flight control system.
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SIMPLIFIED ANALYSIS OF FLEXIBLE
BOOSTER FLIGHT CONTROL SYSTEMS

by

Lee Gregor Hofmann and Allen Kezer

INTRODUCTION

Structural flexibility effects have been extremely important in the design
of flight control systems for large ballistic missiles and boosters. As the
size of the vehicles has increased, the lightly damped structural modes of
vibration have moved into the same frequency range that is desired for the
flight control system so that strong coupling effects have resulted. The nature
of these coupling effects has been such that it has been difficult to achieve
adequate stability margins for all flight conditions. The relatively low stability
margins have necessitated complex and detailed analysis of the systems to
insure that the margins do indeed exist and that uncertainties in the knowledge
of vehicle parameters will not lead to system instabilities.

In the process of the development of an adaptive control system to over-
come some of these obstacles, it was necessary to develop simplified analysis
techniques which would lead to a better understanding of the effects of parameters
upon the performance of the system. These simplified analysis techniques are
useful not only in the design of adaptive control systems but also in the prelim-
inary design of a basic control system to which the adaptive features may be
added if necessary.

One of the prime considerations in the design of the flight control systems
is the fact that the sensors which provide the means of closing the feedback
loops (gyros, accelerometers, etc.) sense the local bending at. the sensor
stdtion as well as the motion of the ideal rigid body. In some cases, a very
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significant improvement can be made in the closed loop bending dynamics by
use of proper feedback of the bending information that is sensed by these instru-
ments. This can result in a very significant reduction in the bending motion
and hence in the dynamic loads which are applied to the structure.

In any feedback control system, the feedback signal must have the proper
phase and amplitude. Usual root locus or frequency response methods of analy-
8is which are used to insure the existance of the proper phase and amplitude
require that the open loop poles and zeros of the system transfer function be
known in factored form. This paper employs a relatively simple and systematic
method of obtaining the factored open loop transfer function for a booster con-
trol system using simplified equations of motion and a root locus factorization
technique.

The development illustrates the application of this technique to the case
of a system which controls the orientation of the undeflected centerline of the
booster. In this system the feedback quantities are angular displacement and
rate of angular displacement with respect to inertial space of the flexed center-
line of the booster at one or more locations along the centerline,

The feedback of other quantities, such as normal acceleration, may be
included in the control system by developing an applicable set of equations
using the method of derivation employed in this paper. The simplifying
assumptions which make this systematic analysis possible do not cause any
significant 1oss in accuracy in the description of the physical booster, and
because of the dynamic similarity of the booster modes of motion, the analy-
sis is effective in reducing the apparent complexity of the problem. The
effects of the important booster characteristics and design parameters upon
system performance are quite evident, and parametric studies are greatly
facilitated by this particular method of obtaining the open loop relating function.

ANALYSIS OF THE OPEN LOOP PERFORMANCE FUNCTION
OF THE FLIGHT CONTROL SYSTEM

In order to analyze the effects of parameter variations on the closed loop
performance of the booster flight control system, the open loop relating
function must be known in factored form. To proceed toward this end, a
mathematical description of the control system must be formulated from a
functional description of the system,
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Functional Description of Coatrol System

A functional block diagram of an orientation flight control system is presented
in Fig. 1. This system utilizes feedback of angular orientation information as
sensed by rate and rate integrating gyros. In many cases, the orientation
measurement may be performed by the inertial measurement unit of the guidance
system instead of a separate rate integrating gyro. Angular orientation or
angular rate may be commanded to the system by suitable usage of the orien-
tation measuring instrument. The input and output variables of the system
are different for the different commands, but the loop dynamics and analysis
procedures are unaffected.

The rate and rate integrating gyros may be located at different stations
along the booster body. If necessary, the outputs of several rate (or rate inte-
grating) gyros may be summed in such a way that the rigid body component is
the same as that sensed by a single gyro, while the effective bending mode
slope ''sensed" for each mode may be changed by suitable adjustment of the

contribution made by each gyro.

The introduction of compensation into the control loops provides several
additional system variables which in turn make it possible to use different
approaches for stabilizing the different modes considered in the design. For
generality, compensation units are placed at three locations in the two control
loops of Fig. 1.

In this study, it is assumed that a gimballednozzle is used for the thrust
vector control and that a hydraulic actuator is used to provide the required
nozzle deflection. For clarity, a first order lag approximation is used for
the hydraulic actuator and a second order system for the nozzle dynamics.
Accelerations of the nozzle gimbal point which produce reaction torques on the
nozzle and couple the rigid body and bending modes with the nozzle motion are
neglected, but may be included by mathematical operations which are similar
to those developed in this paper.

Mathematical Description of System Dynamics

The equations of motion which have been developed for the booster air-
frame are quite complex* and use of these complete equations is cumbersome.
To facilitate analysis and interpretation of parametric effects, the equations
may be simplified without any significant loss in accuracy. In Appendix A,

* See Appendix A
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Fig. 1. Functional block diagram of booster flight control system.
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Fig. 2. Block diugrnm.nprountntion of the simplified booster dynamics.
(The effects of three bending modes are included.)
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the complete linearized equations have been simplified to a degree which permits
the relating function for the érg output of the Booster Dynamics functional block
of Fig. 1 to be represented by the block diagram of Fig. 2 when the (rg) notation
is substi.tuted in the subparenthesis of é( ) and A( ) The relating function
for the Gi g output may be represented by the same block diagram using the (ig
notation. This diagram in Fig. 2 is a general representation of the booster
equations from a nozzle deflection (§) to the motion sensed by a single gyro

6 )

The relating function paths of the rate damping and orientation control
loops can be combined into one path for each booster mode. The mathematical
block diagram of the resulting open loop relating function is shown in Fig. 3.
The opening in the control loops depicted in Fig. 3 corresponds to an opening
ahead of the sensitivity adjustment, Soc' in the forward portion of the control
loops of Fig. 1.

The parallel paths shown in Figs. 2 and 3 result from the fact that the gyros
sense a component of angular motion due to the local slope of each bending mode
as well as the angular motion of the rigid body. The factor which represents
the local slope of each bending mode ()«( ).) appears as a separate sensitivity
factor in the mathematical block diagramslof Figs. 2 and 3. The slope of the
ith bending mode at the integrating gyro station is denoted by Aig. and at the
rate gyro station by )«r g In Fig. 3 the parallel paths also contai; the compen-
sation elements which are unique to either the rate damping loop or the orientation

control loop.

The open loop performance function of the booster control system may be
written by inspection of Fig. 3:
(PPlyes =(RF)y(5;87) Soc (PFley [5:;:8.) (PF)alsg8)
open
loop
The parallel paths of the open loop relating function which compose
BE) p (s 6
signal due to nozzle deflection, must be reduced to a single path. Algebraic
reduction of the expressions for these parallel paths to an expression for a
single path results in a ratio of polynomials with a factored denominator and

] and represent the components of the control system feedback



an unfactored numerator. The numerator polynomial must be factored before
proceeding with an analysis of the closed loop control system.

The development of the expressions for obtaining the factors of the
numerator polynomial is based on the algebraic manipulation of the sum of
two polynomials into a familiar unity feedback expression to which root locus
factoring techniques may be applied.

For example:

o Alp)
‘ B(p)

%n + Yut

C
— 58

A, B, C, D, 9y and q
polynomials in p.

out °re functions of p; A, B, C, and D are factored

%ut A, C _AD +CB
%n 8B D 8D
21 BC
*BD {‘D[' *'AD ]}
BC -l
<1 [Ao 1
BD “gg BC
A

It A, B, C, and D are factored polynomials, the quantity of the inner brackets

[ ] may be factored by a root locus where the "'open loop" poles are the factors
of A and D and the "open loop'' zeros are the factors of B and C. Because of the
minus unity exponent on the term in the outer bracket $ % ; the locus of the
poles of the root locus factorization becomes a locus of the numerator zeros

of the qout/ qy,, transfer function.




The determination of the zeros of the relating function of the open loop
booster control system shown in Fig. 3 involves the successive application
of this technique as the parallel path for each bending mode is added to the
- analysis. The equations for the determination of the zeros are presented in

Equation Summary 1 for the case in which the compensation units < and Cq
have transfer functions of unity. * The expressions for including one bending
mode in parallel with the rigid body mode are given by equations 1-3(a), (b),
(c), and 1-4.

The extension of this result to allow the addition of the effects of a
bending mode when an arbitrary number of bending modes have already been
included in parallel with the rigid body mode is given by Eqs. 1-7(a), (b), (c),
and 1-8, '

*The results of a similar development for a more general case in which the
compensation units ¢ and Cqy do not have performance functions of unity is pre-

sented in Appendix B, However, the results there are mainly of academic interest,
since the effects of these compensation unit dynamics may be accurately repre-
sented by simpler means. The simpler method involves defining and calculating
effective values of the local bending mode slopes ''sensed’ by the rate and inte-
grating gyros. These effective values of the slopes are equivalent, in the system
performance sense, to the combination of the actual values of the local bending
mode slopes sensed by the gyros and the effects of the compensation.
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Assuming that che performance functions of the ¢y and ¢3 compensation units are equal to unity, the fol-

lowing expression for (RF)y [ 5;52.) can be developed from the mathematical block diagram of Fig. 3 and the
relating functions listed in Fig. 2

. p2
Ss[s;él(‘ +w7 )
z

R ssg) = (10 (R
p

2 (1-1)
)‘I" Sb[s;“] (1 + -22—)

w A,.
EVRET . (' +p (SR TL )
(1 +.—l p+—p— .l

N4 E) W

The first term in the above expression is the contribution of the rigid body motion to the §¢. sigaal; the

second term is the contribution of the 1st mode motion. Placing the above expression over a common denom-

inator gives

g [y
- 1eed 1+ )(wsn),u)
g,
1 @y 3‘ wy a 2)
2 Moy Sbi3; 4] (‘ +_L2 )(l Ny Mgy p)]
55[5:51 mzl }\l"
Introducing a simplifying notation
Su15;8) (A
= : 1 (p) +Ky By (p))
02 (, Lo, 2 (13
LR ¥
where
2 2 2 .
Ay = (‘ *f,-r,',-"":ET)(' *';")“ *(SR)g 0) (1:30)
8 @ wy

Equation Summary 1 (Page 1 of 4)
Levelopment of the Flexible Booster Relating Fuaction ~
Without Compensation [(PF)" =(PF)c3 =1]

10




2 Moy
By =p2 (1 +_‘.;_ )( “(SR)'“‘_NT p) (1-3b)

w

|

In Eqs.(1-2) and (1-3) the five zeros of the relating function are contained in the bracketed term. One zero
results from the race gyro *‘differentation’’; two from placing the polynomials over a common denominator, and
two ‘‘cail-wags-dog’’ zeros from the inertial reactions of the gimballed nozzle. Care musc be taken not to
confuse the “‘tail-wags-dog’’ zero of the booster which is a factor of (RF)b[S;Sé'] with the *‘tail-wags-dog"’

zero of the ith mode which is a factor of (RF), [ 5, ol

By rearranging the bracketed term of Eq. (1-3), the polynomial summation Ay + Ky By, may be put into the

familiar unicy feedback form, multiplied by a factored polynomial, 1/X By.

Ky ! )
(RFY [ 58] = Sp18;3) ' A 1
i 2 Byl Ky8B 1-
¢ p? (l+:—(Lp+-22—) '|+K‘—A—‘ L (‘)-
197 50 1

The quantity in the inner brackets of Eq. (1-4) is the unity feedback expression which is readily factored

by root locus techniques.

The final factored form of the relating function is obtained by completing the other algebraic operations

that are indicated in Eq. (1-4); noting especially the minus unity exponent of the outer bracketed term.
The effects of additional bending modes can be included in the relating function by similar operations.

In adding the second mode the equations become

}‘lgz 55[5;42] (‘ *;P;_)

A
12 92
= o - (1-5a)
(RF)b[ 5;8:;'] for First (RF)b[ 8521 | for first 2y 22 (‘ +9 (SR)pg M'? )
ond second mode ( * 52 wy P +- 2 )
modes 9 w2

Equation Summary 1 (Page 2 of 4)
Development of the Flexible Booster Relating Function -
Without Compensation [(PF)el =(PF)e3 =1] .
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Examination of the above equation suggests that it is possible to generalize it immediately (o the case where
the nth mode is being added to the expression for the (n-1) mode relating function. Additionally, it can be
seen that it is not. necessarily the mode n which must be added at this point since any of the other (n- 1) modes
might have been used in its place. Therefore, the mode added will be denoted j to indicate that the modes need

not be included in order according to their mode index.

The method for the calculation of the relating function which includes n bending modes when the relating

function which includes (n- 1) modes is known, is derived in the following operations.

o Sbl5q;) (‘ * —)
) S (140 (SRg —:—3’-) (1-5b)

(RF)y [ 5,82 ) =(RF)y [ 5;87)

for n

modes modes

for (n-1) (‘ L 24 251 b+
& w 2
i %
The first term in the above expression is the contribution of the rigid body motion and (n - 1) of the n bending

modes to the 5. signal; the second term is the contribution of the jth mode motion.

Substituting the factored form of (RF), 5. 3! ]I for (n-1) mo ‘"and placing the above expression over a

common denominator gives

Su(5;8)
(RFYy(5;52) -
':::.- p2 f”l (l +=2ip* —E—z-
1 9 @y T i
the (n+1 f 2L
x[( o ) zeros o )(l*fﬁ_l’*222
) (RF)b[S;Sc'] for (n = 1) modes i “j ai wj

(1-6)

Nigi Sbl3iq3) ( p2) ( Mg
- 2 {1+2- 1+(SR),q —L ) X
pv el o M X |

B (1o e 2]

a; w -

Equation Summary 1 (Page 3 of 4)
Development of the Flexible Booster Relating Function —
Without Compensation [{ PF)“ = (PF)c3 =1}
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Introducing simplifying notation

b(5;6)
! RF)[5;52] [forn = 3 [A; (5) +K; B, (5))
e aod 2 p &N, p? .
modes ] ]I1 '(I +‘l w'p+‘l w‘z ) (1-7)
where
2 2
Alp) = (l el R )x
T
X [the (2n + 1) zer0s of (RF)b[S;SQJ for (n=1) modes) (178)
2 )\rg- n-l Z{i 2
Bitp) =p2 (1+2= )(1+(sRyy ——Lp ) w (V47— p+ (1-7b)
01 (2 (10 330) Y (1)
= Nig: bl 5:a:
K: = 9 I:[M,] .
! 55[8;9]

) 2
The 2n + 1 zeros of Eqs. (1-6) and (1-7a) must be expressed in the form (l *-2—:- p+ 2—2) or (1 + ).

Rearraagiag Eq. (1-7) into the familiar uaity feedback form gives .
-1
S 5;6) 1
(RF)y (3,50 - ; .
I 2 2 K; B 18
| modes p25(1+_5.,+_r_2) i B (1-8)

The order of the polynomials Ai (p) and Bi (P)is(2n +3) forn =2, 3, 4, .... The explanation of the origin of

the zeros is the same as before, but in addition, two zeros appear for each bending mode added.

Equation Summary 1 (Page 4 of 4)
Development of the Flexible Booster Relating Fuaction —
Without Compensation [(PF),_.‘ = (PF)ea =1)
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Example Illustrating the Method of Applying the Simplified Analysis

The usefulness of this simplified analysis in qualitative applications cannot be
fully appreciated until one witnesses a demonstration of its power and simplicity
in an actual example, It is the experience of the authors and our associates that
the routine of formal operations indicated in equations 1-4 and 1-8 of Equation
Summary 1 are easily carried out to obtain the factors of the numerator polynomial
of (RF)bla;s";]‘ to wit:

Problem: Find the factors of the numerator polynomial of (RF)b[ 5:6") for a
*Ye

case in which the first and second bending mode effects are included
in the analysis.

Situation: 1, The orientation and rate damping control loops contain the same
compensationwhich is lumped into the c, element of Fig. 1. The <1
and Cy compensation transfer functions are therefore equal to unity,

2. The damping of the bending modes is assumed to be negligible.
Ly =4 ¥0

3. The "tail-wags-dog' frequencies, w , W

, W of the rigid body,
T % %2
first bending, and second bending mode, respectively, are related
by the following inequality. *
w,e > w:l > w,z
4. The first and second bending mode frequencies are such that
@y \/E-I' < a)zz il

* It can be shown that the "tail-wags-dog'' frequencies are almost invariably
related to one another b* the above inequality. The greatest of these frequencies

is slightly less than I Differences between the frequencies in the
n n

inequality are small.

An interesting fact is that the ""tail-wags-dog'' frequencies are relatively
constant during a constant thrust flight profile as opposed to the bending mode
frequencies which may increase over 100% during the flight profile.

** Note that “’1\/31 is the undamped natural frequency of the ith bending mode

when the rocket engine is thrusting; this is also the resonant frequency when the
damping of the ith mode is negligible.

14



and
wq 62 > w‘o

The first bending mode resonant frequency is
less than the lowest ''tail-wags-dog'' frequency,
and the second bending mode frequency is greater

than the highest "'tail-wags-dog'' frequency.

5. The sign of the ratio of the bending mode slope
sensed by the gyros at their respective stations
to the bending mode displacement at the nozzle
gimbal station is given for each mode by:

a) Ki"/d:'". k,“/d’" and ki”/da'z are negative

b) }\,'2/%2 is positive

/¢

€) >‘ig|/¢'9| =)\,' 0

Qualitative Solution:

1

The zeros of (RF)b( 5.6"] including the first bending mode
e

in parallel with the rigid body mode are determined by one
root locus operation. The effects of the second bending
mode in parallel with the combination of the rigid body and
first bending mode are added by a second root locus oper-
ation. The steps of the qualitative solution of the problem
are outlined below. These correspond to the mathematical
operations indicated in Eqs. 1-4 and 1-8 of Equation Sum-
mary 1. Figures 4 (a-d) are graphical representations of
these steps.

1. Since (PF), = (PF)_ = 1, the equations of Equation

c
1 3
Summary 1 are applicable to this problem. The first

bending mode will be added first. Plot the open loop
roots of the term in the inner brackets of Eq. 1-4,
Bl(p) / Al(p) on the complex plane. The poles are
the roots from Eq. 1-3(a) and the zeros are the roots
from Eq. 1-3(b). Since = A ,

9. 1-3( ce Mg [8g = Apg /8

Al(p) and B,(p) contain common factors of | 1+p(SR)rd]
which divide out.

15
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Fig. 4(a). Root locus determination of the flexible booster relating function — steps 1 through 3.
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Fig. 4(b). Root locus determination of the flexible booster relating function — steps 4 ond 5.
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e}

2. Find the roots of{Kl(Bl /Al) / [1+K, (B, / A) ]}
by the root locus technique. Care must be taken
to choose the proper angle criterion for the
locus, The locus criterion for this part of the
problem is 180°. The root locus is easily
sketched by inspection since all of the open

"won

loop roots lie on the imaginiry axis in the 'p
plane. Note that increasing the magnitude of

Aig corresponds to increasing the magni-
1

tude of the open loop gain and therefore causes

A
rg,

the closed loop poles to move away from the
open loop poles along the imaginary axis toward
the zeros.

3. After finding the roots of {Kl (B,/A,) [ [1+K,(B, /A,) 1},
multiply through by the remaining term in the
outer brackets, 1 /KIBI'
open loop zeros occur, and the sensitivity of the

Cancellations with all

outer bracketed term becomes unity.

4. Invert the bracketed function. The minus unity
exponent on the brackets corresponds to changing
the poles remaining after step 3 to zeros. These
zeros are the zeros or factors of the numerator

of the relating function (RF)b[ 5 6 c':'] including the
first bending mode.

5. Multiply the function resulting from step 4 by the
sensitivity and characteristic poles outside of the
outer bracketed function (add these characteristic
poles to the root locus plot). The resulting plot
is now (RF)b[ 5; 6(':'] including the first bending mode.

To add the effects of the second mode, apply the operations of Eq. 1-8
for n=j =2,
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6. Proceed as in step 1 this time plotting le Ay
as the open loop roots of the term in the inner
brackets. Note in Eq. 1-7(a) that the roots
of A2 are the 2n+1(n=2) poles remaining after
the operations of step 3 plus the two roots
which are the characteristic of the bending
mode being added (second bending mode).

In Eq. 1-7(b), B, has roots as follows: 2at
the origin, 2 at the "tail-wags-dog'' fre-
quency of the bending mode being added,
2n-2(n=2) corresponding to the characteristic
roots of the bending modes already included,
and one from the effect of different rate gyro
and rate integrating gyro pickups of the
second bending mode slope component of

A,
g2 f T8y
/)\igzl of B, and [1+p(SR)

angular deflection. Since )\i

[1+p(SI-?)rd Argz rd)

of A2 do not divide out as did the corresponding
factors for the first bending mode. Steps 7
through 10 are similar to steps 2 through 5.

In step 10, however, an additional pair of cht}r-
acteristic poles appear outside of the outer |
bracketed term. These are the characteristic
poles of the second bending mode. The
resulting plot is now (RF)b[ 5.6 (.:.] including

the effects of the first and second bending modes,

Following are several important observations to note as a consequence
of this example; some are directly obvious, the others result from a
bit of qualitative experimentation with the parameters of the system.

1. The open loop singularities used in a locus operation are either
the singularities of the relating functions for the booster modes
listed in Fig. 2, or the roots of the numerator polynomial of
(RF)b[ 5: 6(':'] which were found as a result of the previous locus

operation.
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2. The form of the root locus operation is such that the zeros due
to the inclusion of the ith bending mode proceed from the open

h

loop pole locations of the it bending mode with increasing mag-

nitude of the ith mode slope sensed by the rate gyro, Arg . The
i
parameter Ar g is a design variable because its value is deter-
i
mined by the placement of the rate gyro along the booster body.

3. The direction in which the zeros due to the inclusion of the ith

mode proceed from the ith mode pole locations is determined
by the sign of Arg , the relative value of the ith bending mode
resonant frequency to the ith mode ''tail-wags-dog'' frequency,*

and the value of A, A__ .** The parameter A. is a desi
‘gi/ re; P ig, ' gn
variable because its value is determined by the placement of

the rate integrating gyro along the booster body.

4. If Ar = )«i =g for all the modes included in the analysis, one
i

8; g;
zero ;f (RF‘;b[ 6;6(':‘] occurs on the real axis at -1/(SR) rd- The
rest of the zeros occur in conjugate imaginary pairs, in real
pairs symmetric about the origin, or in complex conjugate
foursomes which are symmetric about the imaginary axis.

5. If Argi = Ai g = Ac'i for all the modes included in the analysis, the
phase of (RF)b[ 5, 6:] /(1 +p(SR) ;] at each resonant frequency
can be easily calculated knowing only the parameters of the modes
and the mode slope sensed by the gyros, g In a similar
fashion the phase or range of phase at each ‘of the zeros is easily
calculated even though the positions of the zeros are only quanta-
tively known.

—

*i, e, wi\/ii less than or greater than w, .
i
**Other parameters assumed constant.
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The assumption that A = A, = A, i8 often useful to make even if
re; g Gy

the statement is not strictly true because of the substantial ''computational"
simplification which is introduced. This assumption does not effect the
position of the zeros relative to the poles in the direction of the imaginary
coordinate. The parameter ratio Ai g / )«r controls the lateral location,
i i
or real coordinate of the zeros with respect to the poles. This control is
usually rather weak except when 1 /(SR) ¢4 tends to zero and /or l)«ig / Arg |
i i

tends to be large with respect to unity. When the control of Aig / Arg is

i i
weak, its effect does not alter the basic nature of the problem, and therefore
the assumption is useful when only qualitative understanding of a problem is

required.

The statement Arg = Aig is strictly true when both rate and rate inte-
i i

grating gyros are placed at the same station along the booster body.

. A figure which emphasizes points 4 and 5 above, follows. This will show
the zero-pole configurations that (RF)b[ 5: 6"] may assume for all possible
combinations of A / ¢g greater or less than zero and wﬂ/ w greater or

1 i
less than unity* when one bending mode is included in the analysm Four

*If the mode slope parameters A __ and A or AG are divided by the ith

rg. ig. :
mode displacement at the gimbal statioxl'n ® g thé resulltmg ratios are independent

of the manner in which the mode shapes are norxgahzed It can be shown that
the sign of this ratio indicates the phase of the ith mode component of mot on
sensed by the gyro relative to the phase of the force being applied to the ith mode.

The expression “’i\/_; greater or less than w, can be non-dimensionalized

by dividing through by w, to produce a neater matt%ematical statement. This

i
ratio indicates the dominance of the transverse component of thrust acting on
the ith mode over the transverse component of the inertial reaction force due
to g' balling the nozzle at the resonant frequency of the ith mode when

/ w, )<1 When (w r / w, )> 1 this ratio indicates that the transverse

inertial ﬁeactxon force is dominant over the trans‘erse component of thrust acting
on the ith mode at the resonant frequency of the ith mode. Note that the transverse
inertial reaction force on the i‘*? mode is 180° out of phase with the transverse
component of the thrust acting on the ith mode when the nozzle is gimballed at an

arbitrary frequency.
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basic combinations are possible; these are shown in Fig. 5(a-d). Alternate
features which can arise in cases 3 and 4 of Figs. 5(a-d) are shown if Figs.
5(e-g). The method by which these figures were constructed exactly parallels
steps 1 through 5 of the previous example which showed the method for obtaining
the zeros of (RF)b[ 6;6(':']‘

Table 1 shows the phase or range of phase at each singularity of
(RF)b[ 5:6") / [ 1+p(SR) rd) for the different cases based on observations of
e

Fig, 5(a-g).

The areas of the complex plane in which the zeros are found for the dif-
ferent cases are compiled in Table 2, This table is also based on observations
of Fig. 5(a-g).

The significance of tables such as 1 and 2 greatly increases when they are
constructed for cases which include more than one bending mode in the analysis.
When several modes are considered, it will be apparent to the control system
designer that this classification procedure is helpful in keeping track of such
things as the possible pole-zero configurations and phase-at-the-singularities
of (RF) b( 6;5:]'

When all possible combinations of the relative values of AG /¢g to zero
i i
and of “’ﬁ’ai / w, to unity for all the modes included in an analysis are quali-
i .

tatively investigated, patterns of zero locations relative to the poles are evident.
These patterns, which are uniquely specified in terms of the relative values of
these parameters, can be translated into tables similar te 1 and 2. Subsequent

use of the tables requires knowledge of A, X g and @iy ’ii [ w ., for the modes
i i i
of the particular booster of interest, but does not require even a qualitative

factorization of (RF)b[ 5;8") gince its approximate pole-zero configuration
‘e
can be reconstituted from the tables once they have been constructed.

In the next section it is shown how particular patterns of pole-zero relation-
ships of the booster relating function directly influence the choice of the ¢, com-
pensation unit for the control system and the closed loop performance of the boostLr
flight control system., Hence reference to these tables aids in making a quick
identification of those areas in which the design of a particular booster flight
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Table 1. -

Tabulation of the phase (or range of phase) of (RF)y( 552 /L1 +p (SR),4] evaluated at its

singularities in the upper half of the complex plone. This is for the cases of'
(RF)y [ 5, 52 illustrated in Fig. 5 a-g.

Conditions Phass g the singularities of (RFYy 5 521/ [1 +p (SRg]
Case (in degrees of lag)
Relstive Valueof | Relative Value of | Rigid Body Polesof the | Higher Frequency Lower F
) VRfw Aoy, P | i Bendiog Mode | or RHP Zaros, o | o1 LHP Zes
b Zows o Real Axis
1 <1 <p oo 900 900 wﬂ
o ”. (]
2 <1 >0 0° 270 or 270
0° and 18¢°
. 90°, or 2709 ot
3 >1 <0 0° 270 180° to 0°, or| 0°¢to-180° or
270" 90°
”0
4 >1 >0 0° o ot 0
» 0" sad 180" %
RHP « right hand haf of the complex piane

LNP = left hand half of the complex piane

Table 2. Tabulotion of the possible locations of the zeros of (RF)y [ 5, 5} /11 +p (SR)4]

in the upper half of the complex plane for the cases illustrated in Fig. 5 a-g.

LOCATION OF THE ZEROS ASSOCIATED LOCATION OF THE “TAIL-WAGS-DOG”
CASE WTH THE ith MODE ZEROS OF THE BOOSTER
1 On the imaginary axis between On the imaginary axis between
w; V&; and 0 wg,, and wg,
2 On the imaginary axis between On the imaginary axis between
wy, and wp VB w, _and @0t on the real axis
i o
3 Both zeros are found on the imaginary axis between «; ‘/i—x and Wg i Of
One zero occurs in the RHP and the other occurs in the LHP between
the greater of w; Vi; and wg and 0; or
Both zeros are found on the imaginary axis between wy and 0.
4 On the imaginary axis between On the imaginary axis between
w; V& and wg, wz, and Bot on the real axis

RHP = right hand half of the complex plane
LHP = joft hand half of the complex plane
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control system may be troublesome and those areas where design will be
straight forward.

RELATION OF CONTROL SYSTEM ANALYSIS TO CONTROL SYSTEM DESIGN

The design process consists of matching the sign of )\r g /¢ g with a
i i

compensation which provides the proper phasing of the ith mode feedback
signal to produce a maximum of artificial phase stabilization for the ith

mode. Alternatively, the compensation may provide sufficient attenuation

of the ith mode feedback signal to insure stability of the mode regardless of

the sign of the i"h bending mode pickup and the phase shifts due to the remainder
of the system. This process is carried out for all the modes which are included
in the analysis. A combination of the above compensation methods may be
employed for stabilization of a mode with success; however, such a system
requires extensive study to insure the preservation of specified stability

margins of both phase and gain.

As previously shown the locations of the zeros of the open loop booster
relating function are influenced by the relative values ofw i \’51/ w, to unity
i

and Ar g /¢ g to zero. The effect of some of these possible locations on
i i

the system dynamics and general design procedure is illustrated by a simple
example considering the rigid booster and one bending mode. The nozzle and
actuator dynamics are represented as a single first order lag; this assumes
that the second order dynamics associated with the nozzle-actuator linkage
are negligible. The rate and rate integrating gyros are located at the same

station along the booster body. ( A\g. *© A = Ai ) The performance functions
1 Tg &

of cy and cg compensation elements are equal to unity. The dynamics of the

forward path compensation, (PF) c.» are used to phase compensate the system
2
used in this example.

The performance function for the closed loop control system can be devel-
oped from Figs. 1 and 3. This is given below.




] Soc {(PPIu15,:51 (PP, |
(PPlocalo8) = Ts,. {PPhntsi 91 RFIb 53] (PF)ez}

The characteristic roots of the booster flight control system are the poles of
(PF) bes[ 6_; 6] These may be determined from the above equation using
: o

root locus techniques.

If the departure and arrival angles for this root locus are calculated for
a case without compensation* (PF’)c =1, the approximate phase angle required
2
of (PF)c at the bending frequency to maximize the negative real coordinate of

2
the closed loop bending poles becomes apparent. A suitable type of compensation

may then be chosen to provide the needed phase shift at the bending frequency
without causing the rigid body response to change by any substantial amount.

Figure 6 presents sketches of the root locus for three cases of the possible
locations of the zeros of (RF)b[ 5:6"] with and without second order low pass
'Tc

compensation to achieve phase shift at the bending frequency. It is obvious
that Figs. 6(a), (d), and (e) represent cases of correctly compensated
systems, and that (b) , (c) and (f) represent cases of incorrectly compensated
systems.

It is quite possible for the booster flight control system to change from
one of the situations illustrated in Fig. 6 to another during the flight of a typical
booster. For instance:

1. If the bending mode resonant frequency becomes greater than
the "tail-wags-dog'' frequency of the mode during the booster

* gee Fig. 6(a), (c), and (e)
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flightX(w ‘/5. / w_ <1 changes to w,./a, /w_ >1) the system
I z; 1Yl zy

changes from the situation illustrated in Fig. 6(d) to that in Fig. -

6(f) .

2. H the rate gyro is located such that the mode slope sensed by the
gyro changes sign during the booster flight™* ( Arg /o g <0 changes
1 1

to )tr g /¢g >0 the system changes from the situation illustrated
1 1

in Fig. 6(a) to that in Fig. 6(c).
If such a change of booster parameters does occur, itis necessary to make
corresponding changes in the flight control system parameters to preserve

the desired performance.

A case considering additional bending modes may be handled in a manner
similar to the example. However, this would impose additional constraints

upon the choice of (PF)c . In the case of modes beingphase stabilized, the
2
approximate phase of (PF)c at the bending mode resonant frequencies would
2

be specified by the choices of the signs for A, / ¢¢ and by the requirement
i i

that the negative real coordinate for each of the closed loop bending poles be

increased. In the case of modes being amplitude stabilized, the maximum

allowable gain of (PF) c. at the bending mode resonant irequencies would be
2

specified.

SUMMARY

This paper has advanced a simplified concept of analysis for a flexible
booster flight control system. The main concern has been the development of
a simplified, factored, open loop relating function for the booster control sys-
tem. This provides the key to the evaluation of system performance. It was
shown in the closing section that once this relating function has been evaluated,
the closed loop system performance can beassessed using straightforward and
familiar techniques. '

*gee first footnote on page 14

**Changes in the sign of a mode slope sensed by a gyro occur due to the wide
variation of the booster mass distribution during the flight profile. This is
very likely to occur when an attempt is made to place a gyro near an antinode
of a particular mode.




This analysis is unique in that it enables this very complicated dynamics
problem to be discussed and interpreted intelligently in qualitative terms. An
engineer thoroughly familiar with this method can, on a moments notice, be
prepared to discuss the control problems involved in the preliminary design
of a particular booster. The knowledge required for discussion involves only
well known quantities such as thrust, moment of inertia, nozzle mass, rough
estimates of the bending mode frequencies, mode shapes, and slopes for the
particular booster.

There are a host of points concerning the booster flight control system
problem which are not suitable for presentation here with the fundamental
principles, but which may be adequately treated by the methods of this analy-
8is. Among these are the effects of: elements of the cy compensation unit in
the rate damping loop which do not appear in the orientation control loop, ele-
ments of the Ca compensation unit in the orientation control loop which do not
appear in the rate damping loop, aerodynamics, propellant sloshing modes,
and the couplings of bending and sloshing modes with the actuator-nozzle
motion.
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APPENDIX A
APPROXIMATE LINEARIZED EQUATIONS OF MOTION
IN A SINGLE PLANE FOR A FLEXIBLE BOOSTER

The perturbation equations of motion of the booster in a single plane
used as the basis of this study are essentially those developed in Reference 2,
These have been restated in a slightly different coordinate system and nota-
tion (standard aircraft body axis coordinate system) in Equation Summary A-1,
The coordinate system definition and the definition of important system phys-
ical constants are shown in Fig. A-1,

These equations can be further simplified while still retaining the essen-
tial dynamic features resulting from the structural degrees of freedom of the
physical system.

The simplifying assumptions are as follows:
1. Aerodynamics are neglected,

2. Cross couplings 'among the bending modes and couplings of
the bending modes with the rigid body modes due to engine
thrust are negligible,

3. Couplings of the bending modes with the nozzle dynamics
are neglected,

The advantages of using thegse assumptions for simplifying the equations
of motion are as follows:

1. The rigid body mode and the individual bending modes of
the booster are decoupled from one another in the approx-
imate equations of motion. This isolates the important
bending effects.

2. The relations between 6 and the § a, a 2 and q; variables
(or their time derivatives) become simple second order dif-
ferential equations. The approximate response of any of
these variables may be examined by cascading a simple
relating function with that describing é for the closed loop

31



booster flight contrnl system. The low frequency response

of these variables is well approximated only when the dynamic
pressure is low. The high frequency response (the major
concern of this report) is unaffected by neglecting the aero-
dynamics.

3. When the nozzle dynamics are considered separately from the
booster body motion, the effects of inertial reaction torques
which couple the rigid body and bending modes with the nozzle
dynamics may be described by a feedback of each of these
simple, second order, uncoupled modes around the second
order nozzle dynamics.

The introduction of these assumptions after elimination of the intermediate
variables v, w, u g and by substitution reduces the equations of motion
to those of Equation Summary A-2,
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EQUATION SUMMARY A-1
FLEXIBLE BOOSTER EQUATIONS OF NOTION

Normal force equation
ma, = [C,,'l qSla-[mgcos Bl0 + [(C,‘a +Cp) aSIw - [Ty, -[T15 (Al-1)
Components of normal acceleration
o, = [Vp+a,da-[Vplo (Al-2)
External moment equstion

(A1-3)
Deflection of center line due to nozzle deflection
mlv = -[¢, m,]8 (Al-4)
Rotation of center line due to nozzle deflection
Mlw = -[Ig)8 (A1-S)
Deflection at the engine gimbal point
ug = (Nv+Tllw+ [¢,'l¢h + (¢,2]q, +ooaalggla (A1-6)
Slope at the engine gimbal point
Vg = Mw =g ay -~ g Tay - . . . - [Ag 1q; (Al-T)

ith bending mode generalized coordinate

mp2 + m¢ WP+ Inu'z]q' - =[T +Cp IIS)A\" lv-[T ¢"]¢. ~ [m, ‘; P2+ T¢'l 13
(A1-8)

Nozzle moment equation

M, p2+21, ¢ 0P+, 0318 = (021,184 - (4, my)a, ~(Ig p2 + L, m, gcos g]6

+ (T + Cp qS1v = [¢, m, p2lug ~ I, p? + (my £,/m) (T + Cp qS)1¥g (A19)
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Notion sensed by the ( ) gyro

6y = P10+ [Plw - T (pa( )14
'
(A1-10)
- (16~ Zlpx il

NOTES: Tbese equations are modified from those of Ref. 2 by a change in the definition of the
coordinate system and a change in the number of nozsles swiveled in a single plane.
The effect of a distributed aerodynamic normal force on the bending has been neglected.
Fuel sloshing effects bave been neglected.

Ingeneral, C"‘l and Cpy are negative.
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Fig. A-1. Coordinate system for analysis of the flexible booster.
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EQUATION SUMMARY A-2
SIMPLIFIED FLEXIBLE BOOSTER EQUATIONS OF MOTION

Normal force equation

1
[m)o, = - [mgcos g]6 -~ [T (‘l - TE')]G
Components of normal acceleration
o, = (Vp+a,Ja-[Vple

Extemal moment equation

p26 - -[ng(ufﬂt—"-)]a

mlg
Generalized coordinate of the ith bending mode

[m (P2 +2¢; o; P+o|2) - T¢,| A,i]ql =

[”' Yo ':‘T”l:_n' Tég (I ":5) -0’ mnti]a

Nozzle moment equation

M ln

[In(p2+2fnwnp+w,z)-IT‘1(]*T“-r;')lE*

_p2 ("‘3:3 R -:E)]a - 11, w215,

Motion sensed by the ( ) gyro
. . Ig
0( ) = 6 - [PT]B - S"-IP)\( )'] q;

- 6 ‘f[”( )
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APPENDIKX B
OBTAINING THE FLEXIBLE BOOSTER RELATING
FUNCTION WHICH INCLUDES COMPENSATION

The method used in Equation Summary 1 to develop the relating function
(RF)b[ ;6" has been extended to include different compensation elements in
e

each of the gyro signal paths. The results are summarized in Equation Sum-
mary B-1,

The compensation used in each gyro path is required to be in factored
form and the numerator and denominator orders must be equal. If the number
of finite poles should exceed the number of finite zeros in the actual compen-
sation being investigated, additional zeros must be carried at infinity to equal-
ize the numerator and denominator orders. The rate path compensation is
given as (PF)cl=Nl(p)/Dl(p), where the order of N, and D1 is p%; and the rate

integrating path compensation is given as (PF)_ -Na(p)/Ds(p). where the
3
order of N, and D,, is pv. The number of zeros associated with (RF) g
3 3 b[ 5;5,]

when written as a rational polynomial is (2n +u +v + 1 + 2). Some of these
zeros may occur at infinity as previously mentioned. The (2n +u + v) zeros
result from placing the polynomials over a common denominator; two ''tail-
wags-dog'' zeros from the inertial reactions of the gimballed nozzle; and one
zero from the rate gyro ''differentiation’. In addition it is required that
NI(O)/DI(O) = N3(0) /D3(0) =1,

This additional generalization increases the complexity of the expression
for (RF)b[ 5 6('!'] quite substantially because of factorizations of (N3D 1 *+ [ const. ]

leD3) which must be performed for each mode included in the analysis. (See
Eqgs. Bl-1, B1-2 and the associated auxiliary equations of Equation Summary
B-1,)
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The equations for (RF) (5. 82) with (PF)c, 414 (PF)c:, are presented below
without derivation. The method of derivation is essentially similar to that of Equation
Summary 1.

The relating function including the 1st bending mode in parallel with the rigid body is

Ky 2 o
Sb5; 8) A |
(RF)b[a; 8:] = 2‘1 v B'. W (Bl-1)
pzo,o,(u_—-p_" > 1ok
heoy @of 1

where

2 2 2
Ay(p) = (N3 D,y +p (SR),g Ny Dy) ('l <l»:i P+ > (l +p—2) (B1-1a)

Qe G el o,
By(5) = 52 (Ny D, 40 (SR)g 22N, D) (142 BI-1b)
P) = p?(NyDy+p(SR),g 3—N, Dy +— (
in “h

~Aigy Sbis; ]
Ky = - Bl-1
! Sbis: 61 (B1-1c)

Equation Summary B-1 (Page 1 of 2)

Equations for the Flexible Booster Relating
Function Which Includes Compensation
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The relating function for n bending modes can be obtained by performing the following

operations on the relating function which includes (n-1) bending modes (n = 2,3, ... ).
The effects of the jtb bending mode will be added.

B, -1
K.
Sbi3; 61 ’Ti! 1
RFYb(3;521 = - T3, o3 5 (K5 (B1-2)
2p,D, I (l P ) 1+K;
Ph e "5 of VR
where
the (2n + u +v + 1) zeros of _z_i p2 -
Ao = {(RF)HG; 82} for (n=1) bending M“f'} (l ' 3; vjp ' g u,’) (L
2(NyD, + p (R 2 N, D) (14 B) R (14255, 21
o0 = (10 azin) () F (i d)
)
(Bl-2b)
"Aigi sb[a; q;]
i B
2
The2n +u +v + 1zerosof Eq.(B1-2a) must be expressed in the form (] +.2.£ P+ L) or
(1 +7p). ® o?

Equation Summary B-1 (Page 2 of 2)

Equations for the Flexible Booster Relating
Function Which Includes Compensation
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GLOSSARY
SYNBOLS

aerodynamic drag coefficient, Cp = 'qu'
aerodynamic normal force coefficient, c"a - iq/gl
aerodynamic drag force

total moment of inertia of booster about the center of mass
Iyemy Ly Lo

moment of inertia of nozzle about gimbal point

non-dimensional *‘open loop gain’* used in the root locus factorization of the numerator
of (RF), [8;52) when the effects of the ith bending mode are being added.

aerodynamic normal force

performance function of component n, relating the measurable output, 4,4, to the
measursble input, q;,

relating function describing the mathematical relationship between the output, qq,
and input, q;,, of component n

reference area

sensitivity of the orientation control loop (Se )
sensitivity of the rate damping loop (S,4)
rate damping sensitivity ratio (SR),q = 5,4/54¢

static sensitivity of the performance function or relating function of component n
relating the output, g4, to the input, q;, '

thruse
booster velocity
modification factor for natural bending characteristics of the ith mode when

the rocket engine is thrustiag G =1- T¢9l Aﬂl
mmf
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Ox, y, 0rz

“)

Or
L)

@ ® -

acceleration of booster center of mass in the positive x, y, or z direction
acceleration of gravity

dimensional form of K;; the form of the open loop gain actually used in performing root
locus factorizations.

In »

=l ¢'I “m 9

mn
distance between the booster center of mass and the nozzle gimbal point
distance between the center of mass of the nozzle and the gimbal point

distance between center of pressure and the center of mass (positive for center of pressure
forward of the center of mass)

total mass of booster

mass of the nozzle

Laplace operator; & complex number p = 0 + jw (0 and w are real numbers, j -\/-'-—l )
dynamic pressure

generalized deflection coordinate of the ith bending mode

time ,
deflection from the undeformed elastic axis at the station identified by the subscript

translation of the rigid body from the x axis in the z direction due to negative nozzle
deflection (T = 0)

rotation of the rigid body centerline from x axis due to negative nozzle deflection (T = 0)
angle of attack - angle from the velocity vector to the undeformed elastic axis
angle from the reference trajectory to the local vertical

nozzle deflection angle from the centerline of booster at the gimbal point to the centerline
of the rocket nozzle

hydraulic actuator output in units of equivalent nozzle deflection

commanded nozzle deflection

damping ratio or effective damping ratio of the mode indicated by the subscript
angle from the reference trajectory to the undeformed elastic axis

aagle from the reference trajectory to the rigid body centerline (nozzle deflected)
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6. = commanded sngle from reference trajectory to undeflected booster centerline
6 ) = angular velocity sensed by a gyro located at station indicated by subscript
X 5 = normalized ith bending mode slope amplitude at station identified by subscript A= %% il( )
#( ),~ normalized ith bending mode deflection amplitude at station identified by subscript

¥( ) = slope of the booster centerline with respect to the undeformed elastic axis at the station in-
dicated by the subscript

@( ) = undamped natural frequency or effective undamped nacural frequency of the mode indicated by
the subscript ’ '

NOTES: (1) Station numbers are distances from a reference point on the undeflected center line. This
reference is usually chosen forward of the nose and is positive in the opposite sense to
the x axis.

(2) All angles are defined as positive for a amall angle vector treatment in which the vector
sense is positive.

SUBSCRIPTS

a = control system actuator or servo
i = i™h bending mode (1 = 1,2, 3, - - )
ig = rate-incegrating gyro
b = booster
bes « booster flight control system including booster
n = nozzle
rg = rate gyro
2o, 2; = “tail-wags-dog zero of rigid body or i'h bending mode
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