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SUMMARY

The static arnd dynamic stability derivatives of a ducted pro-
peller are predicted by theoretical analysis. The analysis is based
on the theory presenced in Reference 1, and the ducted propeller is
initially represented by a short, straight, thin ring surrounding a
uniformly loaded actuator disk. Then the interference effect of the
ring duct on an actual propeller with finite number of blades is
calculated in order to determine the contribution of the propeller
to the stabilit s derivatives of the ducted propeller.

The analysis is applied to the case of a torpedo-like config=-
uration consisting of a body of revolution with a rear-mounted ducted
propeller in axial flow. The natural frequency and damping of the
configuration is cal~ulated, and the individual contributions of
the duct, the propsiler, the hull, and a fin (added for static sta-
bility) are detarmined. It is found that the ducted propeller is
a more effective oscillation damper than is a fin of the same pro-
jected area and that the effectiveness increases with propeller disk
loading. The contrikution of the ducted propeller to the dynamic
stability of the rorpedo is found to be dominated by the static sta-

bility derivative CN of the isolated ducted propeller.
a

The ihenrv for the ducted propeller is compared with available
experimental da-a in novering, steady axial flow, and steady flow
at angle of attack. It is found that the important derivative CN

a
is predicted well for small angles of attack by the present theory.
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The division of thrust between duct and propeller is predicted mod-
erately well for ducts of small chord/diameter ratios with no flow
separation. Experimental data suitable for comparison with experi-
ment are extremely sparse since ficw separation is generally present
at the duct leading edge.

A method for reducing ducted propeller data is presented and

shown to give better agreement with theory than conventional methods.

A qualitative analysis of real slipstream effects is presented, and
an experimental program is outlined for obtaining some badly needed

data on ducted propellers without leading-edge flow separation.
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distance from hull nose to hull center of pressure
(Fig. 5)
disk area of actuator disk or propeller, (m/4)D?
propeller blade chord
number of propeller blades
chord of duct

stability derivative defined in Section 2,

e g C = Cm C = acm = _._B_C.E‘.___
> oTmy da my 5(Dq/V°5 *omy S(Dd/Vo)

(all stability derivatives are evaluated at ¢q = § = 0)

lift curve slope of a propeller blade section,
per radian

pitching moment coefficient, 2M/DAqo

normal force coefficient, N/Al\qo

propeller yawing moment coefficient, 2N§/DAq°
thrust coefficient, T/Aqo

propeller side force coefficient, YP/Aqo

diameter of duct or propeller

complete elliptic integral of second kind,

77'/2

‘/l - X% sin® y ay
o

complex potential function, F(z) = ¢ + iy = F'({),
Equation (A.17)

camber (Sketch A.7, p. A-26)
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V-l
imaginary part

complete elliptic integral of first kind,

1r/2

j’ day

3 Y1 - X% sin®
radius of gyration of hull about pitching axis
through hull centroid and through hull center of
gravity, respectively
length of hull (Fig. 4)

T T
(DP)h (DP)h
P 2pA

figure of merit for hovering flight,
mass of hull

aerodynamic pitching moment (positive clockwise in
Fig. 1) about: midchord diameter of duct for Mp,
propeller diameter for Mp, and centroid of hull

for My

pitching moment about hull centroid due to subscripted
configuration component

pitching moment about vehicle center of gravity due to
subscripted configuration component

propeller rotational speed, revolutions per second

yawing moment on isolated propeller

normal force on subscripted configuration component
(Fig. 1)

normal force on subscripted component for pitching
about the hull centroid

normal force on subscripted component for pitching
about the vehicle center of gravity

static pressure

propeller power, TO
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pitching rate, rad/sec (Fig. 2)

free-stream dynamic pressure (l/2)pV62

radial coordinate (Fig. 1)
D/2

equivalent arm radius in pure pitch = Vd/q (Fig. 2)

length Reynolds number for the hull

local hull radius (Fig. 5)

radial coordinate in jet cross section (Fig. 6)
hull base radius

maximum hull radius (Fig. 5)

time, sec

thrust {(or axial) component of force on subscripted
configuration component (Fig. 1)

XY velocity components induced by complex poten-
tial F at duct surface (Sketch A.l, p. A-3)

axial and radial velocity components induced at duct

surface by a vortex ring of constant strength
(Sketch A.2, p. A-12)

axial and radial velocity components induced by a

vortex ring of variable strength T (Sketch A.4,
p. A-19) o

axial and radial velocity components induced by v
(or actuator disk) (Sketch A.1l)

axial velocity components induced by duct bound
vorticity components Yhe Yo? and Tq?

Equations (42), (50), and (57), respectively
instantaneous value of free-stream velocity (Fig. 1)

jet velocity far downstream in propeller slipstream
(Fig. 1)
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Vol

Vol*

mean free-stream velocity (Fig. 1)

volume of hull

volume of hull includinag
placement thickness

++3 boundary-layer dis-
local swirl velocity ccuponent generated by pro-
peller (Fig. 6)

radial velocity component induced by duct wake at
duct surface (Sketch A.3, p. A-16)

relative local fluid velocity on duct surface
(Fig. 2) and Equation (7)

duct surface velocity components due to F
respectively (Section A.l.3)

and v,

component of velocity W on duct surface due to
actuator disk, angle of attack of free stream, and
pitching motion of duct, respectively (Fig. 2)

component of velocity W on duct surface self induced
by bound vorticity Yn: Yo and v _, respectively
(Fig. 2) o !

mass flow rate through duct

components of w due to duct rotation, translation,

and wake, respectively

value of w( ) averaged over duct chord

i
hull drag force

orthogon?l coordinates of cambered plate (Sketch A.7,
p. A-26

orthogon?l coordinates for flat plate (Sketch A.6,
p. A-24

axial distance ahead of hull centroid (Fig. 5)

axial and radially inward coordinates,
(Fig. 1)

YyY=R-r

side force on isolated propeller
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radius vector in physical plane, Xg + iy (Fig. 1(b))
instantaneous angle of attack, rad (Fig. l(a))

angle of final slipstream or jet relative to duct v
axis, rad (Fig. 6) :

mean free-stream angle of attack, rad (Fig. 1l(a))

propeller blade pitch angle (between blade chord
and plane of rotation)

vorticity shed by actuator disk (Fig. 1l(a))
components of bound vorticity on duct due to actuator
disk, angle of attack of free stream, and pitching

motion of duct, respectively (Fig. 2)

a constant (Fa/bos ¢) given by Equation (A.64)
trailing vortex filament in duct wake (Fig. 2)

components of circulation about duct chord, positive -
in the same sense as Y() in Figure 2,
+C/2

Tey = | Yy %
=c/2

displacement thickness of hull boundary layer

increase in static and total pressure across actuator
disk, TP(D)/ A

duct thickness

radius vector in circle plane (Fig. 1l(b)) and
Equation {A.13)

ratio of damping to critical damping
hovering or compressor efficiency (Eq. (196)) ;
propulsive efficiency (Eqg. (183))

angle in circle plane (Fig. 1(b)), or momentum i
thickness of hull boundary layer :
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DP

D(P)

D(P)—H

D—Pp

propeller advance ratio V,/aD, Vy/nD, or Vg /&R
(depending upon reference cited)

frequency of plunging motion, rad/sec

axial distance from ring vortex (Sketch A.2, p. A-12)

axial d?stance from trailing edge of duct (Sketch A.l,
p. A-3

fluid density, slug/ft®

propeller solidity at three-quarter radius, 4Bb/37D
propellér torque

circumferential duct coordinate (Fig. 1)

velocity potential

argument of elliptic integral,

stream function
propeller rotational speed, rad/sec

natural frequency of flight oscillations, rad/sec

absolute value

Subscripts
axial component
cambered plate
isolated duct
ducted propeller, D(P) + P(D)

duct in the presence of the propeller (represented
by an actuator disk)

interference of ducted propeller on hull

interference of duct on propeller
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»(p)

Qe

Note:

flat plate

isolated fin

for hovering flight condition

isolated hull

interference of hull on ducted propeller
jet or propeller slipstream far downstream
at base of hull

component of moment due to N

far upstream

isolated propeller

propeller in the presence of the duct
due to pitching motion |

radial component

at the duct surface

at the duct trailing edge

component of moment due to T

due to duct wake

due to angle of attack of free stream
due to plunging motion

due to actuator disk

Superscripts
in the circle ({) plane, or running variable
average value as defined for each case
time derivative of ()

@, and g subscripts denote partial differentiation

only when used with stability derivatives (see Section 2).
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1. INTRODUCTION

The benefits to be gained by ducting or shrouding a propeller
for static operation and low-speed flight were demonstrated in 1931
by the experiments of Stipa in Italy. Since that time, and partic-
ularly in recent years when hovering flight and vertical take-off
became feasible for conventional aircraft, ducted propellers have
received considerable attention from numerous investigators. A
vast number of individual experimental programs have been under-
taken, as reviewed in Reference 2, and a number of VTOL (vertical
take-off and landing) vehicles were designed and built employing
ducted propellers.

Because of its complexity, however, the theory of the ducted
propeller has lagged far behind experiment. Only now is a rigorous
self-consistent theory emerging, even for predicting the aerodynamic
forces and moments on ducted propellers in steady axial flow. This
theory (Refs. 3 and 4) is based on the classical method of singu-~
larities in three dimensions and is thus far restricted to small
angles of attack and light propeller loadings (i.e., small pertur-
bations). However, an approximate theory for all angles of attack
has been developed by Burggraf in Reference 1 in which the ducted
propeller is represented by a short, thin, straight duct surrounding
a uniformly loaded actuator disk. This representation permits the
assumption of nearly two-dimensional flow over each chordwise strip
of the duct.

As fof dynamic stability derivatives, the situation is far

worse. At this time, there appear to be neither experimental data

[T
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nor any theoretical analysis for the dynamic stability derivatives
of an isolated ducted propeller. 4

The purpose of the present investigation is to provide a the-
oretical analysis for predicting the forces, moments, and stability
derivatives of an isolated ducted propeller for hovering and for
forward flight at all angles of attack. 1In order to accomplish
this end, we shall first introduce the assumptions made by Burggraf
in Reference 1. We shall then extend his analysis to cover the
cases of pitching and plunging flight, and, finally, ye shall gen-
eralize the analysis to include the interference effect of the
duct on a propeller with finite number of blades. In the course
of the analysis, we shall investigate the approximations made in
Reference 1, particularly the averaging processes used in calculat-
ing certain induced velocities, and we shall investigate the effect
of altering the propeller location within the duct.

The theory developed for the ducted propeller will be applied
herein to a torpedo-like configuration in order to investigate its
dynamic stability and to get some insight into the effectiveness of
the ducted propeller as a stabilizer and oscillation damper. For
this problem, the thrust interference between the hull and the
ducted propeller will also be investigated by approximate methods.

In addition to the basic analysis, a qualitative analysis of
real slipstream effects will be presented, and the latter will be
used in developing a rational method for comparison of theoretical

and experimental results.
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2. APPROACH TO THE DUCTED-PROPELLER ANALYSIS

The primary objective of this study is the prediction of the
stability derivatives of a ducted propeller without restriction on
either angle of attack or propeller disk loading. This is done by
finding the duct derivatives in the presence of the propeller first

and then the propeller derivatives in the presence of the duct.

2.1 The Duct in the Presence of the Propeller

The aerodynamic forces and moments on the duct in the presence
of the propeller are found by representing the propeller as a uni-
formly loaded actuator disk. The net duct reaction is expressed
as a thrust force TD(P)’ a normal force ND(P)’ and a pitching
moment about the midchord diameter MD(P) as shown in Figure 1.

For a given set of design variables c/D and v/V, (or Cop .
P(D)

these three components can be written as dimensionless coefficients

in terms of the flight conditions as follows:

N L]
A, (CN>D(P) <a°’ Vo ' V% )
Ile) . (¢ (a Bg I—"—;‘) (2)
Aq, <T)D(P) o’ Yo " Yo
2 (p) .
DAq, <m)D(P) Yo? Vo ' Vo (3)

Thus there are nine stability derivatives (with respect to Cg s
q, and &) for the duct in the presence of the propeller, since Vo

is assumed constant. The way in which these are defined will be

B i M DS - 2 AL



illustrated now for the three moment derivatives. But since a
is not restricted to small values, an o coefficient will be used
rather than an a derivative. Thus, partial differentiation of

(Cm) D(P) with Vo constant and a = a, = constantl, and then

setting q = & = 0, gives the g and & stability derivatives:

d (c - c
g 22)5 P (C’“CD D(p)(” * “Tp () ’°‘o> (4)

Vo,ao,q'd-o

3 (cp) D (P) - /c €< ¢ a) (5)
7 (“‘a> p(p)<° " sy ‘;

* (%)

Hence, for small rates of pitching g and plunging &, the in-

V,10,s9=a=0

stantaneous duct moment is given by
c -c (¢_,0,0) +24\e + <@-> (6)
™)  "d(p) ° *GOX "Q.n(p) Yo (C“‘a> D (P

The first term is the static moment coefficient. The static coeffi-

cient and the q derivative are found in the present analysis by
considering the ducted propeller in the pure pitch flight condition,
and the @& derivative is estimated independently by use of the
apparent mass concept. For pure pitch, the ducted actuator disk
moves as though it were mounted rigidly to an arm with fixed

radius Réﬁ as shown in Figure 2. The arm rotates at constant

lNote that a differs from oy only for plunging f£light
(See Fig. 1) '
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angular velocity g . Both oy and V° are constant and Vo - qRa.
The method of singularities is used to find the velocity distribu-
tion W over the duct surface as induced by all of the bound and

shed vorticity for the ducted actuator disk shown in Figure 2. The

L e |

moment coefficient for this motion
R Dg
a)om (%0 53 5 0)

is then found by integration of the static pressure (po.Fg.voa,_g_wz)

t

over the duct surface. Then by setting q = 0 (but holding Vo
constant), one obtains (cm)D(P) (ao, 0, 0). By differentiating

(Cp) D (P)

: (Cm;>.D(Pf

The total surface velocity distribution W on the duct

with respect to g as described above, one obtains

during pure pitch is considered to be composed of six parts as

L. shown in Figure 2. That is,

= + +
w Wy + Wy + wq + whi wai wqi (7)

The first component Yy

motion of the duct (i.e., for hovering flight). The second two

is induced by the actuator disk for no

- components are due to the two components of the duct motion: a
translational motion Vo at ao, which produces wa, and a rota-

tional g about the midchord duct diameter which produces wé. The

Yy and wq components include the velocity induced by the duct

wake which is generated in each case.
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It is assumed that the propeller thrust coefficient CT :
P(D)
is sufficiently large to produce a large jet velocity Vj com-

pared with the lateral component of flight speed. That is,

Vj >> V_ sin a (8)

.

" In this case, the jet extends downstream nearly aligned with the
duct axis as shown in Figure 2 for any combination of the duct
motions. Furthermore, the duct motions, their vorticity distribu-
tions, and the reactions which they produce on the duct are all
additive (See Eq. 6). The propeller vorticity v and the duct wake
vortex filaments de both lie on the cylindrical surface' r = D/2
and are mutually perpendicular (Fig. 2).

The duct wake vortex filaments produce a counter rotating
swirl distribution (Fig. 6). There is no swirl generated directly
by the propeller in the present analysis since it is represented
by an ideal actuator disk. However, the effect of real propeller
slipstream effects, including swirl, is considered qualitatively
in Section 4.2.2.

The bound vorticity distributions on the duct corresponding
to hovering,angle of attack, and pitching, are composed of Y
Vo? and Tq? which are calculated with the assumption of two-dimensional
flow over local chordwise strips of the duct for ¢ ¢¢ D. But
since the vorticity is actually distributed on a ring rather than
a flat plate, there are three additional self-induced axial vel-

ocity components w, , w_ , and w. . These are analogous to the
hy" oy qy
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self-induced axial velocity (or propagation speed) of a ring vortex.
Since the self-induced radial velocity distribution is small for

o > D > ¢, it is neglected. 1In order to make the analysis
tractable, it is found necessary-to approximate the three self-
induced components since it is not feasible to express them analyti-
cally (See Appendix D) and to incorporate them into the subsequent
analysis. The approximation cannot be made by simply concentrating
the bound vorticity on the éuct into a single ring filament of
strength Ph + Pa + Pq since such a ring induces an infinitely
large axial velocity upon itself. The method employed here and in
Reference 1 is to: (1) average the bound vorticity over the duct
chord, (2) find the self-induced velocity distribution due to the
averaged vorticity, and (3) then average the self-induced velocity

over the duct chord and use these values, whi, Qdi, and qu, in the
subsequent analysis. The accuracy of this averaging process is
assessed in Appendix D.
2.2 The Propeller in the Presence of the Duct

The stability derivatives for the isolated propeller are de-
fined just as for the duct for the three components of the net
aerodynamic force TP’ NP’ YP’ and for the two components of the
moment MP and N*P which are about propeller diameters. The
interference of the duct on the propeller due to o and gq is

found to produce only pitching moments and M

Mp-p)a (D~P)q"

The thrust interference TDﬂP produced by the duct in steady

axial flight (i.e., for oy = 0) is not predicted here since it is

s Repa e uesee de
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considered to be part of the initial design process. Thus in the
presence of the duct each component of the propeller reaction
( )P(D) is the same as for the isolated propeller ( )P except
for the pitching moment which is given by MP(D) - MP + MD-—P'

The o and q derivatives are obtained from Reference 5 for
the isolated propeller at small a,- The & derivative and the
duct interference will be estimated in the present analysis.
Although the propeller thrust is generally greater than the duct
thrust, the flight-induced forces and moments on the propeller in
the presence of the duct are found to be small compared with those

for the duct for typical conditions except for M There-

(D-+P) _°

q
fore, a more refined analysis of the propeller reactions does not
appear to be warranted except possibly for the duct interference

moment on the propeller due to pitch, M This moment may

(D—P) °
q

be appreciable for isolated ducted propellers, such as in VTOL

applications, but even it is negligible when the ducted propeller

is combined with a long hull, as for a torpedo.
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3. ANALYSIS

3.1 Stability Derivatives of a Duct in the Presence of an
" Actuator Disk

3.1.1 Discussion

The purpose here is to determine the force and moment coef-
ficients and the stability derivatives of a thin duct of uniform
diameter with an actuator disk located in the exit plane (Fig. 1l(a))
as in Reference 1. (The results are actually valid for any actuator
disk location within the duct as shown in Appendix C.) The coef-
ficients and derivatives here pertain to the aerodynamic force and
moment acting on the duct in the presence of the actuator disk.

The initial assumptions are:

(a) . The fluid is inviscid and incompressible, and a velocity
potential represents the actual flow field in which the boundary
layers are negligibly thin and unseparated.

(b) The chord-to-diameter ratio of the duct c¢/D is small
enough so that the flow over each chordwise strip is nearly two
dimensional.

(c) The lateral component of flight speed is much smaller
than the slipstream (or jet) velocity; that is, Vj > vy sin a,
in Figure 2. In this case the slipstream extends nearly axially
downstream as shown.

(d) The propeller is represented by an ideal actuator disk
which produces a uniform loading or pressure rise Ap over the
disk but no swirl.

(e) The diameter of the slipstream is considered constant

and equal to the duct diameter for the purpose of calculating the

presyreprmeesTae PR R R
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duct surface velocity W. This assumption is discussed on page 130
of Reference 6 and in Section 4.2.1.

With the above assumptions, the method of singularities is
used in Appendix A to determine the duct surface velocity distribu-
tion W for the pure-pitch flight condition (Fig. 2). The pres-
sure distribution corresponding to W is integrated over the duct
surface to obtain the net force and moment on the duct in Appendix B.
In the present section, we shall find the resulting force and moment
coefficients for the duct in the presence of the actuator disk both
in steady flight at angle of attack and in hovering. Then we shall
find the pitching (gq) stability derivatives and finally the plunging
(a) derivatives.

3.1.2 static (a) coefficients

Let us find the static (a) coefficients of the duct by the
procedure in Section 2, from the results in Appendix B. These
coefficients give the net aerodynamic reaction on the duct when
g=a=20, that is, for steady flow at angle of attack a,-

There is a normal force ND(P) and a pitching moment (”N)D(P)
which are associated with the nonsingular portion of the pressure
distribution, that is, excluding leading-edge suction. The latter,
in turn, gives rise to a thrust force TD(P) and a pitching moment
(MT>D(P)' We shall now consider these four components in succession.

The general expression for

<°N)D(P) G‘O’ \% ’ o)

el pomng Sl el DN

v
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) corresponding to Equation (1) is given by Equation (B.33) of

PRSP TP S
'

‘- Appendix B, When q = 0, we obtain Equation (B.36). By sub- :
stituting Equations (A.53) and (A.77) for W% and ;; and by

i i
’ dropping terms higher than second order in ¢/D, we find the

static coefficient

c _.
= 8in a
=D~ _©° L
(Cﬁ)D(P)(aO,O,O) e 4T cos a_ + 3 [W
2D °

+§ -—->(21 )fb] (9)

For the special case of a ring wing at small angle of attack (i.e.,
for vy =0 and a, << 1), this result reduces to that of Refer-
. ence 7,
The general expression for (MN)D(P) is given by Equation (B.35)
and when q = 0 by Equationv(B.37). Substituting Equations (A.53)

and (A.77) for W% and UL and then retaining only the lowest

i i
, order terms in ¢/D, we find
|
) ) (a »0,0) = £ <—L+ 2T cos o,°> sin a (10)
i D (P) °

The duct thrust TD(P) is expressed by Equation (B.41l), and

e s Pt Sl Mo 15 o

when q = 0 we obtain the thrust coefficient

|
L ((CT)D(P)(ao’O’O) 3L—- 2c) (ln 16D _ 2) + 4T -'<:31n o :> (11)

i T o R Aty
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The expression for (MT)D(P) is given in Equation (B.42),

and when q = 0, we find

4cy/DV
C (a_,0,0) = ——2 (1 16D _ ;) gin a (12)
(mT>D(P) ° 1+ 22 c ) °

Thus, except for the case of very low disk loading (y/vo- 0), we
find that C in Equation (10) is much smaller (higher order in
c/D) than cmT in Equation (12). Therefore, we shall take the
total pitching moment on the duct to be equal to the component

arising from leading-edge suction, so that

s S L
(C)D (a_,0,0) = fC (a 00)-—DV—°<1nl§-2-2>sina
?
m/D(P) o’ ( mT)D(P) 0’ 1+ IS c o)
2D
(13)
3.1.3 Thrust ratio in hovering flight
For hovering flight, the duct thrust is given by Equation
(B.41) with v, = 0. That is,
cD py2 16D z
e, = P (1n &2 ;) (14)

Also, for hovering flight, application of Bernoulli's equation

far ahead and far behind the propeller disk gives

Y=V . V 28p/p : (15)




=

B ey ey

~-]l3-
Thus, the actuator-disk loading is given by
T .
P(D)

and we find that the thrust ratio for hovering flight is therefore

T

D(P)y  2¢ <j 16D 2
PSS LA b 1n—~.—._2> (17)
TP(D)h D c

3.1.4 Pitching (gq) derivatives

We shall now find the q derivatives of the duct by using
the procedure of Section 2 with the results of Appendix B. Again,
we shall consider in succession the g stability derivatives of

each of the four duct reaction components

Np(p)’ (MN)D(P)’ Tp(p)> 2nd (ﬁT)D(P)

Thus, by differentiating Equation (B.33) with respect to
Dq/Vo, holding a, and VB constant, we obtain Equation (B.38)

for (o . But if only the two lowest order terms in ¢/D
Ng/p(P)

are retained, Equation (B.38) reduces to

16D e
C - 12_.<1n —— . 1) + —— co8 a (18)
( Nﬁ)D(P) VD c D2 o

By the same procedure, Equation (B.35) gives (B.39) and

we get

2
(Cm ) - (12 2) (19)
Nq D(P) 2V°D

Yt L SRS B o 5
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Similarly, if Equation (B.4l) is differentiated with respect
to Dq/V° holding ey and V, constant, and if gq is then set

equal to zero, we obtain

3 s
Sin
O

(ch>D(P) T b2 <1 + lrg)a |

2D

T2c

(20)

Differentiating Equation (B.42) in the same way gives

vycs (l.n'l'--g-2 - 2)

c - -
e
( m'I‘q‘)D(P) 2v_p? (1 + £

is of higher order in c¢/D than (%m ) s
Ng/p(p)

(21)

Now, since

C
<jmTq D(P)

retention of terms only through second order in <¢/D gives for

the q derivative of the pitching moment

: 2
c -/c - (1n 16D _ 3 (22)
( mq)D(P) ( “‘Nq>D(P) . 2v D’ c 2>

3.1.5 plunging (a) derivatives

In order to estimate the plunging (&) derivatives of the duct,
we shall use an approximate analysis which is independent of the
foregoing results for a and g and which is based on the appar-
ent mass concept, as mentioned in Section 2. Again, we shall make
use of the initial assumption that ¢ << D and utilize the flat-
plate formulas for each chordwise strip of the duct.

We shall estimate the a derivatives of the duct normal force

and the duct pitching moment, but not of the thrust force. The
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reason for this is that only the normal force and moment deriva-
tives appear independently in the equations for the natural
frequency and damping of a vehicle at small angle of attack.

The approximate method used to find the duct a derivatives seems
justified by the fact that they are found to represent only about
1 percent of the total damping of a torpedo-like configuration,

to which the static normal-force derivative CN of the duct is
a

actually the major contributor.

The plunging stability derivatives of the isolated duct will
be calculated by considering the flight condition illustrated in
Figure 1l(a) where the duct is situated in a steady free stream at
small angle of attack (a° << 1) and oscillates with a normal

velocity component

v = v sin vt (23)
and a simultaneous axial velocity component

u=u sin vt (24)
The oscillations are assumed to be of small amplitude and of low

frequency. In addition, the oscillations are taken to be normal

to V° with u and v in phase with one another. That is,

u= -v sin ay (25)

so that V=0, and & is given by

. —_— L _ Y
Q= = ¥ - (26)
Vo cos ao V°
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The instantaneous flow condition corresponds to the free
stream V at o as shown in Figure l(a). The distribution of
bound and trailing vorticity from the duct now consists of two
parts:

(a) The steady-state distribution corresponding to the
instantaneous flow condition (V at a in Section 3.1.2) which
is in phase with velocity wv.

(b) A distribution which is in phase with acceleration v.

Within the framework of this analysis, the force and moment
acting on each chordwise strip of the duct correspond with those
on a flat plate in the same orientation performing the same motion.
Now, the force and moment on an oscillating flat plate in a uniform
stream at small angle of attack can be found in Reference 8
(pp. 293-303), and it can be shown that for any combination of
ue and Ve at low amplitude and frequency, there are: (1) a
lift force acting at the quarter chord which corresponds with the
instantaneous flow condition (V at «a) and which is in phase
with the velocity Ves and (2) a force normal to the plate acting
at its midchord and in phase with acceleration Gf. At low fre-
quency the latter force per unit span is approximately given by

the quasi-steady formula

N = - Iﬁ— Vg (27)

and evidently it does not depend upon either the free-stream condi-
tion or the axial component of acceleration (V, a, or ﬁf). The

factor (rc2/4)p is recognized as the apparent mass of a flat
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plate of chord ¢ undergoing normal oscillations 0f. For stream-
wise oscillations ﬁf, the apparent mass is clearly zero.

Applying the above results to each chordwise strip of the
isolated duct and integrating round the duct, one finds a normal

force acting at the midchord diameter, in phase with ¥, which is

given by
2.2 .
22 T<Cc“DV_ap
ND-_II_%_D..P“’-_—_B_L (28)

Thus, the apparent mass of the duct (for V¥ at small ao) is
that of a toroidal volume of fluid with the dimensions shown in

Sketch A.
le— ¢ —

4?

'“Vg‘;‘l

Sketch A.- Apparent mass of a duct for
lateral oscillation (V).
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Now, as described in Section 2, the plunging derivative can be
found by differentiating Equation (28) with respect to Dd/vo

holding Vo constant. This gives, for a, << 1,

(CNG.)D o f;; (29)

It will be assumed further that the propeller interference has no

effect on ND so that when a, K1,

a

C2
(CNd)D(P) ) (CNG.>D ST p? (30)
This seems to be a reasonable approximation since the apparent
mass of the duct is independent of the free stream (Eq. (27)),
and since the corresponding apparent mass of the propeller is
much smaller than that of the duct. Also, since NDa acts at
the midchord diameter, we find that the corresponding moment

vanishes. That is,

(Cma)p(p) = 0 (31)

3.2 Stability Derivatives of an Isolated Propeller

The duct stability derivatives have been calculated in
Section 3.1 by representing the propeller as a uniformly loaded
actuator disk, for which the stability derivatives are all zero.
We expect the actual propeller derivatives to be small compared
with those of the duct, and this will be verified here (with the

exception of Cm ) for a typical example. To calculate the
q
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propeller stability derivatives, we shall first use the analysis

of Reference 5 to calculate the derivatives of a simple paddle-wheel
type of isolated propeller (having constant blade pitch and chord).
Then the duct interference on the propeller will be estimated by
approximating the change in flow due to the duct. These effects
will be added, and finally the resﬁlting propeller derivatives

will be compared with those of the duct.

The analysis of Reference 5 is based upon blade element theory
in which each element operates in a uniform induced flow field
which is found from simple momentum theory. Empirical constants
are introduced such as a "side wash factor" and a "spinner factor,"
and the theory is limited to small angle of attack Q. The theory
gives the a derivatives of either a single or a dual propeller,

and the g derivatives of a single propeller.

3.2.1 static (a) derivatives
The static derivatives of a single isolated propeller at a
small constant angle of attack ey, (p. 11, Ref. 5) give rise to

a normal force NP and a yawing moment NP*. For dual counter-

a a

rotating propellers, NP is increased from 18 to 32 percent for
a

typical aircraft propellers, and NP* is zero. Specific values

a
have been calculated for the following assumed conditions:

= blade section lift curve slope = 27
a

B = blade pitch angle = const

b = blade chord = const

VORI N o W e S PR PN
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v
A= E% = advance ratio = 0.1

o = %Eh propeller solidity (at 3/4 D) = 0.1
™D (where B = number of blades)

C,, = propeller thrust coefficient = 2.17

Tp
The following factors, defined in Reference 5, are used:
= i - = L -
a function of ‘I‘c 0.392 for Tc 8 CTP 0.85
f(a) = function of a = 1.52

side-wash factor = 0.4

b
]

k_ = spinner factor = 1l.14
I, = % T 8in B
For three values of B, the static stability derivatives are given
in Table I for either single or dual propellers (whichever gives
the larger value of the derivative in question).

The approximate values of (CN )P in Table I are from the
following simple equation (p. 15, Ref. 5) which neglects the

effects of induced velocity

(cN )P = f(a)k oI = 0.816 sin B (32)

It can be seen in Table I that this equation gives approximate
values about three times greater than the more refined analysis

for the present case.

3.2.2 Pitching (q) derivatives
Equations for the gq derivatives of a single isolated pro-

peller are given on page 13 of Reference 5. The pitching propeller
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develops a side force Y

the values in Table II for the same conditions assumed in Section 3.2.1

above.

P and a pitching moment Mg, and we obtain

The approximate values in Table II are from Equations {49),

Reference 5, which neglect the effects of induced velocity.

equations can be written as

3
C = - m(l + a)o cos B = - 0.3
CANE:

Cm = - 2(1 + a)o = - 0.28
q /P

where a = 0.85 and ¢ = 0.1, as before. It can be seen in Table II

3 cos B (33)

(34)

that these equations give approximate values about twice as large

as those from the more refined analysis for the present case.

For comparison with Equation (34), the simple blade element

method (used in Ref. 9) was employed to estimate (Cm ) for a
q/P

paddle-wheel type of propeller (B = const, b
This method assumes a very low advance ratio

induced flow effects, and gives

For the previously assumed conditions, we have

g <%if> =1
Vo
so that Equation (35) gives

c - - 0.29
(mq}P

= const, ¢, = 27).

b

(@D >> V), neglects

(35)

(36)

(37)

These
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This result is in good agreement with Equation (34). This latter

method, however, gives no side force.

3.2.3 Plunging (&) derivatives

The (&) derivative of a plunging isolated propeller will be
estimated here by use of the apparent mass method, applying the
flat~plate result given by Equation (27) to each blade element.
Consider one pair of propeller blades, shown in Sketch B, having
constant chord b, constant pitch B, and located at azimuth
angle ¢. If the propeller oscillates laterally (v at low fre-
quency and amplitude) then the component of ¥ normal to the
blade surface is V sin B cos ¢ and there is a force in phase
with Vv acting at the center of each blade surface and normal to

it (Eq. (27)). Thus, the total force on each blade is

4
|
i
lw

£ 4 2 pv sin B sin ¢

AN

) 3
— Bfi\ B v
Z Ne Ng

End views of blades

Sketch B.- Oscillating propeller nomenclature.
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Hence, the net force on the blade pair normal to the duct axis is

simply (Sketch B)
2
N = 2N sin B sin ¢ = - E%rg pv 8in® B sin® ¢ (39)

For B/2 pairs of blades, we have the total normal force on the

propeller (integrated over ¢ to give the time average value)

2 2
Np = 7N 2= - TBRD (5402 p)py (40)

When oy << 1 such that & = - 0/V°, differentiating with respect

to Dd/vo (holding v, constant) gives

(CNG,)P - + 7B (%)2 sin? B (41)

3.3 Interference of Duct on Propeller

Here we shall estimate the aerodynamic force generated by the
duct on the propeller blades. We shall approximate this effect
by first estimating the velocity profiles induced by the duct at
the propeller plane and then estimating the effect produced on
the propeller blade elements. For configurations which include a
long hull, the total propeller reactions including interference
will be relatively unimportant (see Section 3.5). For the isolated
ducted propeller (Section 3.4), the propeller pitching moment due
to pitch M(D-#P) is the only interference effect which is not
small compared with the duct reaction itself. For configurations
where this is significant (e.g., flying platforms and VTOL designs),

the present estimate of M(D-»P) should be considered a first
q

#
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approximation to the first step of an iterative process. That is,
duct interference causes the propgller disk loading to be non-
uniform, which changes the bound vorticity and net reaction on
the duct. This, in turn, changes the propeller disk loading, and
so on. This process is beyond the scope of the present study.

Here the duct interference is considered to be due only to
the axial velocity component induced by the duct at the propeller
location. The effects of the radial and tangential velocity com-
ponents induced by the duct are probably small and are not considered.
The duct interference on the propeller is due to three sources which
will be estimated in succession below: (1) the bound vorticity Yh?
(2) the bound vorticity Yo due to the free stream Vo at angle
of attack do, and (3) the bound vorticity Tq due to the pitching
motion. It can be seen in Figure 2 that the trailing vortex fila-
ments shed from the duct do not directly induce an axial component
of velocity at the propeller, since they are aligned with the duct
axis. However, they do induce an upwash on the duct and thereby
influence the bound vorticity Yo and yq which in turn causes
duct interference upon the propeller.

Interference effects for the plunging (&) motion cannot be
found with the apparent mass method employed here. However, with
a long hull (Section 3.5), the apparent mass of the ducted propeller
is found to give a ﬁegligibly small force and moment on the hull
(Tables V and VI). For lateral (V) oscillations of an isolated
ducted propeller, the apparent mass of the propeller is much smaller
than that of the duct (Section 3.4). Therefore, interference is

probably unimportant here also.
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3.3.1 Velocity profiles induced by Y * Y

Let us consider the axial velocity profiles (th + qy) induced
within the Aduct by Tp + Y. We have already found the axial velocity
at the inner duct surface; it is w, + whi, where Wi is given by
Equations (A.15) plus (A.47) and Wy is given by Equations (D.5)
through (D.7), evaluated on page D-4T

At pointé.away from the duct surface, the elementary velocity
quh induced by the bound vorticity on each ring element of the
duct is given by the results on page 305 of Reference 6. The vor-
ticity on each ring element can be found from Equation (A.50) in
terms of v. Combining these results and summing over the duct
surface, we obtain the following expression for the total velocity

induced (at r, 6) by the duct bound vorticity Yh (at ©0').

T '
<1n 16 g-- 2) tan &- sin ' + (r - 6') sin 6'

Yh 272D W//ng 2
o _— +(£’ + l)
R2 R
K(k) = |1+ —2LBoL) o ggx) } ae (42)
QR /R +(§ - l)
where
eRE c? ?
—— = & (cos? 6 - 2 cos 6 cos 8' + cos® ") (43)
R2 D2 ‘
2,.2
K2 = 4(D°/c“)x/R = (44)

2
cos® 6 - 2 cos 6 cos 6' +c0526'+p—2-<§+1
c
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For various radial locations (r < 0.8R), Equation (42) was evaluated
on the Vidya IBM 1620.

The ratio uy/w for the axial velocity component uY induced
by a vortex cylinder of strength y can be obtained directly from
Table 15 on page 328 of Reference 6. The combined dimensionless
axial velocity profiles (uwh + uy)/y induced by v, + vy as found
by the procedure described above are plotted in Figure 3(a) for
three axial stations in a duct with ¢ = 0.2D and with the pro-
peller in the exit plane. These profiles do not depend upon the
location of the propeller in the duct if it is represented as an
actuator disk (see Appendix C). Therefore, the profiles show the
individual velocity components th and uy = v/2 at three alter-
nate propeller locations within the duct.

The results of this section (Fig. 3(a)) show that v, and v
induce a nearly constant axial velocity at the propeller which
reduces the effective angle of attack of the free stream (ao as
seen by the propeller) and causes the blade pitch £ (or speed w)

to be higher for a fixed thrust coefficient C Only the effect

T .
] P(D)
of Yh is directly due to tne duct since v is shed by the propeller.

However, the effect of both Th and <y are considered here to be a
part of the initial propeller design problem rather than thrust

force interference.

3.3.2 Interference produced by Yo

Let us now consider the axial velocity uy induced by Yo'
( o}
The axial velocity induced at the inner duct surface by Yo ©an

be found from Wo * W, . Thus, Equations (A.66) and (D.12) give
i
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R o S

(u,Ya). = m (22 tan 5 + ln & - G:.) (45)

It can be seen (Eq. (A.64)) that Fa is proportional to cos ¢.

Now, the radial variation of qy will be estimated near the
a
center line of the duct by considering Pa to be concentrated at

a single ring vortex. For small values of ¢/D and r/R, this
approximation yields accurate values of u_,6 . We can therefore

a
write (using pp. 305 to 307 of Ref. 6)

{R' [; - cos(¢ - o' )] + 1 ~-R'f cos ¢' d¢'

= 2mD [ { 3/2

+R'2 « 2R' + 1 + 2R' [l - cos(¢p - ¢')]

(46)
where R' = r/R.

Integration of Equation (46), by use of Equation (A.54) and

the results on page 306, Reference 6, gives

Ta

u, = - ———|(3k%2 - 4)K + (4 - X®)E
Ya 21tDYR' k

- R (Js;) G—:—J::- E - 2x>] (47)

In the plane of the vortex ring (QR = 0), we obtain

i ARG YR S BN 11

ke.__ﬁ&:__

(48)
(R* + 1)2
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210 . o -l |me - ok Cwmyp . o RIZEL R -1
T qya 3R’ [(3k 4)K + (4 - k®)E + 2 T 1 E-2o757K

(49)
Thus, evaluation of Equation (49) gives the following variation of

(27D/T _)u over the propeller disk.

a 'Ya
R' = % %gg q?a
0 0
1/10 +0.06
1/4 + .35
1/2 +1.96

These values and those from Equation (45) for ¢ = 0.2D are
plotted in Figure 3(b). These profiles, when added to those in
Figure 3(a) give the duct-induced velocity disﬁribution over the
propeller disk at angle of attack.

We shall now estimate the propeller interference produced by
qYa by making the rough approximation that the velocity profiles
are linear with r/R, as shown by the dashed lines in Figure 3(b).

We shall see later that the final results are insensitive to this

v

approximation. Thus, the assumed velocity.profile is from Equation (45)

r .
- r..k (2B ] 16D _ L
u'Ya (uya)s 5~ 3 (c tan = + In %2 G, Jgcos ¢  (50)




-29-

We shall also assume that the propeller consists of B blades of
constant chord b and that its peripheral speed wr is much

larger than the axial velocity uv . The angle of attack on a
o

blade element changes by an amount (-uv /wr), which causes a
a

pitching moment (but no net force) on each pair of blades. The

elementary pitching moment on a pair of blades is given by

u
o B o h)

dM(D-*P)a 2b 3 (wr)“r cos ¢ = cla dr (51)

We shall assume here that cl = 27 as before. Then -
a
wD?T: 3

N k 2 2D 8 16D _ r r

Mp—p) =Pz g (05" @) <c tan 7+ In %5 G1>(R> 4R

(52)

where 6 corresponds to the axial location of the propeller in

the duct. Integration gives the moment per pair of blades as

2
bpwD Fk

. 6
M = - —=
(D—~P) 32

(cos? ¢) <2 g tan 5 + ln ng - G;) (53)

Thus, for B/2 pairs of blades, the total pitching moment (time

averaged) on the propeller due to u,Y is
a

2T
.B L .
“omp) T2 2r M(n-.p)a d¢
o

BbpwD?T'
128 (} tan + ln Gl>

c 2 c (54)
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Differentiating with respect to a, and using Equation (A.64)

for T. we find that the interference of the duct on the pro-

k’
peller produces the following interference pitching moment.

c
3 =0
b7 ( D 6 16D ) wD
C = 2 —tan T + ln~— -G T— Ccos a
( ma)D-»P ( nc c 2 c 1 Vo (e}

(55)

U

If, in lieu of Equation (50), we had assumed that uY = (u ) = const,
integration over r would have given a result only 4/3 times larger.
Thus, the interference effect is quite insensitive to the profile

shape. For small angles of attack (ao << 1), we find that the

ratio of interference to duct moment (Eg. (13) and (55)) is given by

o 2] 16D _
( ma)D—‘P - wD tan 5 + 1ln P Gl (56)
(c ) 128 y in 16D _ 5

Mo /D (P) n =g

where G = 2, 3, or 4 for the propeller located at the duct lead-
ing edge, midchord, or trailing edge, respectively (see Eq. (D.12)).

Thus, (F is probably generally small compared with (C )
D(P)

D—P
except for propeller locations near the duct leading edge.

3.3.3 Interference produced by Vq

The interference from the duct bound vorticity Yq will be
estimated now by the same technique used above for Yar At the
inner duct surface, the axial velocity induced by yq is
<u ) = w_ + wqi. As above, we shall assume that the axial
velocity profile is linear with radius, so that, using Equations

(ar.88), (A.90), (A.94), (D.1l6), (D.17), and (D.18), we find

el ool e el
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2 2
L g‘-:--'4--sm6+4,-12—

= (w_ +w &=
Hq (q q) 8D o
- —_L__I_c_ tan % + G2>§- cos ¢ (57)
1l + 2D

where G, is evaluated on page D-7.

By analogy with Equations (50) and (54), it can be seen that

the pitching moment on the propeller due to qY is

- . BbpaD? qc? D, D2 _ _ 1 8
M(D—»P)a 128 21D 8D 4 c sin 6 + 4 " Ic tan > + G,

c 1l + oD
(58)
or
( )D 92 31n9+4 —L—tan-g-+G
"P 2D
(59)

Thus, using Equation (22) for the duct moment gives the following

moment ratio for pitching:

(60)

In Section 3.4.2 it will be shown that this ratio is large for-the
conditions assumed there. The tan(6/2) term in Equations (60)
and (57) is comparatively small except near the leading edge of the
duct where it dominates. This causes the interference moment to

reverse sign with variation of propeller location 4.
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Both Yq and yq and the axial velocity profiles induced by
them are all proportional to cos ¢. This causes only pitching
moments on the propeller due to a or g interference so that
NP(D) = Ny and YP(D) = Yp. The theoretical pitching moments are
infinitely large when the propeller is at the duct leading edge
because of the mathematical singularity there which invalidates the
assumption that the angle of attack on the propeller blade element

changes by only a small amount due to duct interference.

3.4 Comparison of Duct and Propeller Reactions for an Isoclated
Ducted Propeller

The static coefficients and stability derivatives of the duct
and propeller as determined above will now be compared for a spe-
cific configuration in order to illustrate their relative magnitudes
and overall importance for an isolated ducted propeller (and hence
for certain VTOL configurations). It is found that all of the
propeller reactions are small compared with the duct reactions
except the propeller pitching moment due to pitching. In Section
3.5.4, it is shown that even this component is negligible when the
ducted propeller is combined with a long hull. It should be noted,
however, that two of the reaction components for an isolated propel-
ler are perpendicular to the motion (a yawing moment due to a,
and a side force due to ). The results given below are for small
angles of attack, an aircraft type propeller which is moderately
loaded, and a duct with ¢ = 0,2D. Duct interference on the pro-
peller causes only pitching moments with a and ¢ (Section 3.3).

The duct moments are about its midchord diameter and the propeller

poed  pemg el
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moments are about its own diameter.® The propeller conditions

assumed for Section 3.2 are also applied here; for example,

\")
0—==1 and ¢ = 2.17. From Equation (170), we can evaluate
;D Tp (D)
'y/v° in terms of C, to find that these conditions lead to
P(D)

YV, = 0.78.

3.4.1 Static (a) derivatives

ey eeed pendd UEd DR OEE OB

First, consider the normal force derivatives of the duct and

propeller at small angle of attack Oy For the duct in the

PO

presence of an actuator disk (Eq. (9) with ¢ = 0.2D), we have

i Cy = 1.91 + 0.845\-',M = 2,57 (61)
b a/ D(P) o

For the propeller (from Table I)

Cy = 0.05, 0.10, 0.16 for p = 10°, 20°, 30° (62)
a/ P(D)

Thus, the normal force on the duct is much larger than on the
propeller.

Now, let us compare the pitching moments on the duct and
. propeller and the yawing moment on a single propeller. The duct

moment derivative is (Eq. (13)).

i, e - 1.45 == 1,13 (63)
<.ma> D(P) Vo

& c———
‘ i

®2For small values of c/D we shall assume that the axes of
pitch and moment for the duct and propeller coincide.

[ e O
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From Table I, the propeller yawing moment derivative is

(G *\ = 0.4 for 10 < B < 30° for a single propeller
o/ P(D)

= 0 for a dual propeller

The propeller pitching moment due to duct interference is given

by Equation (56) as

-gzm“)) (D=>P) w &, 0.451, 0.015 T (65)
Mo D(P)

with the propeller located at the leading edge, midchord, and
trailing edge of the duct, respectively. Thus, the propeller
interference moment is smaller than the duct moment unless the

propeller is located near the leading edge of the duct.

The thrust ratio from Equation (l11) and with Cp = 2.17 is
P(D)
CT
E—D—@- = 0.20 (66)
Tp (D)

so that the duct carries only 16.7 percent of the total thrust.

3.4.2 Pitching (gq) derivatives
The pitching derivatives will now be compared at %y = 0.

The duct normal force derivative is from Equation (18)

c = 0.675 ¥ + 0.126 = 0.65 67
(°%) oee) 7 (67)
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The side force derivative of a single propeller is from Table II

(CY ) = -0.15 for B = 10°
q/P(D)
= -0.12 for p = 30° (68)

Thus, the duct normal force is about five times larger than the
side force on the propeller,
Now let us compare the pitching moment on the duct and single

propeller. For the duct (Eg. (22)) we have

X
C = 4+ 0.0376 = (0,029 (69)
( “‘q)o(P) Yo

For the propeller (Table II)

(Fm ) = -0.17 for 10 < B < 30° (70)
q/P

But due to duct interference on the propeller (Eg. (60)), we get

C

=P

(th>D(P)

for leading-edge, midchord, and trailing-edge propeller locations,

= + o, -12,0, -10.2 (71)

respectively. Thus, the net propeller pitching moment reverses
sign with propeller position as mentioned below (Eq. (60)). It
is generally large compared with that of the duct and it is dom-

inated by duct-propeller interference.

3.4.3 Plunging (&) derivatives
For the duct normal force the plunging derivative is from

Equation (30)

wette g i Al
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2
c - 7 £~ = 0.13 (72)
( Nd) D(P) p2

This force acts at the dquct midchord, so that C = Q.
"&/p (P)

The plunging derivative of the propeller normal force is given

by Equation (41). Previously, we have assumed

= 3m " 10 (73)

Here, we shall also assume a three-bladed propeller (B = 3) so

that D = 12.7b. Then we have

<CN&.)P(D) = 0.058 sin® B, and (cmd) 2 (D) -0 (74)

Thus, the apparent mass of the propeller is considerably smaller
than that of the duct, and the interference effect of the duct on

the propeller is probably negligible as assumed in Section 3.3.

3.4.4 Summary

Specific calculations have been made for a moderately loaded,
aircraft type, ducted propeller of low solidity. The propeller
could be either single or dual for a, but only single for 4g.

The results of this section indiéate that for an isolated
ducted propeller ofvthis type (and hence for certain VTOL con-
figurations), all of the fdrces and moments on the duct are larger
than on the propeller except for (1) the pitching moment due to
pitch, and (2) the thrust force.

The motion studied consisted of small rates of pitching and

plunging about a straight-line flight path aligned with the duct

[RGB S |
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axis because of the analytical restrictions used to obtain the duct
plunging derivatives and all of the propeller stability derivatives,
The midchord duct diameter was taken as the axis of pitching and the
center of duct moments. The propeller pitching and moments were
taken about its own diameter. The duct and propeller axes coincide
for ¢ << D. It should be borne in mind that two of the propeller
reaction components were perpendicular to their duct counterparts
(a yawing moment due to a and a side force due to q).

The duct interference on the propeller markedly increased its
stabilizing moment for pitching if it was not located near the duct

leading edge. This can be significant for VTOL-type applications.

3.5 Calculative Example of a Torpedo~Like Configuration

In this section the foregoing results will be employed to
estimate the dynamic stability of a complete torpedo-like configu-
ration. The purpose is to determine the relative importance of the
ducted propeller derivatives for this type of vehicle.

We shall consider small rates of pitching and plunging about
an equilibrium condition of steady axial flight with the thrust of
the ducted propeller equal and opposite to the hull drag. It is
found that this condition requires a very lightly loaded propeller
for the assumed configuration (Fig. 4) where the propeller diam-
eter is taken equal to the maximum hull diameter. With this assump-
tion, the reference areas (A) of the hull and ducted propeller
derivatives are the same so that they are directly comparable. The
hull shape will be chosen for mathematical simplicity rather than

from practical considerations; however, for the present purpose

. Mfﬁw.mwﬁ.am&.‘wmaﬂ&mﬁmWw

mwﬁe&vw~uz‘wsauww; t,_
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it is probably sufficiently representative of actual hull shapes.
For purposes of the present stability analysis, the hull and ducted
propeller will be assumed to be isolated from one another (i.e.,
no duct-hull interference), but thrust equilibrium will be imposed.
This assumption will be examined qualitatively at the end of the
section.

The method of approach will be to estimate first the isolated
hull stability derivatives about its centroid by use of slender

body theory and then to calculate the isolated ducted propeller

derivatives about the hull centroid by use of the previous analysis.

The static stability of the configuration will be examined, and
sufficient fins will be added to the duct to provide a 10 percent
margin of static stability (neglecting aspect ratio and interfer-
ence effects). Finally, Ehe dynamic stability of the entire con-
figuration will be considered by shifting the axis of pitch and
center of moments from the centroid to the assumed location of the
center of gravity of the hull(0.4L in Fig. 4) Interference between
the hull and ducted propeller will then be considered briefly in

order to furnish a better understanding of the results obtained.

3.5.1 1Isolated hull derivatives about hull centroid

The stability derivatives of an isolated slender hull (Fig. 5)
will be estimated by using slender body theory and by assuming that
the hull boundary layer remains attached and axially symmetric.

The hull probably actually oscillates within its boundary layer
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. e

to some extent. Thus at small angle of attack the latter assump-

S

tion probably leads to overestimation of the effect of an attached
boundary layer and the hull stability derivatives. However, at
higher angles of attack, which are not considered here, the boundary
layer actually separates, and the normal force on the hull becomes
much greater than indicated by the above method. The total drag on
the hull will be taken equal to the friction drag, and its form

drag will be neglected. This seems justified for the present case
where the boundary layer is found to be thin. This condition is
believed to be generally true for submerged torpedoes which have
little wave drag.

Static (q) Derivatives

The normal force on a slender hull at small angle of attack is
given by Reference 10 (page 68)

Nﬁ = 2TrqorLzao (75)
a

where rL is the base radius. Also, the center of pressure is at
(Ref. 10)

Vol

2
1TrL

a=1L1 - (76)

where Vol is the volume of the body and L is its length (Fig. 5).
For a slender body with a pointed base at small angle of attack, it

is assumed that the effective base radius r is simply 6 _* the

L L
displacement thickness of the hull boundary layer at the base

BRSSPl a 8 S ST -
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(See Ref. 10, page 68). If the boundary layer is axially sym-
metric, then the friction drag of the body is given by 2w6L2q°
where GL is the momentum thickness of the boundary layer at the
base. Thus, if we neglect form drag (assuming the boundary layer
be thin), then the total drag is equal to the friction drag and

we have
X = 21r6L2qo (77)

It is assumed here that the hull is a body of revolution (Fig. 5)

for which
2xH> 2 r
- _H
( T 1 - T (78)

and the hull volume is from Appendix E (Eq.(E.7) with BL* = 0)

.8 .=
vol 15 ™n L (79)

Consequently, from the above equations, the axial and normal forces

of the hull are given by

2
X e
— =2 (80)
qu m rm
NHa 5_*2
- = 20, Le (81)
qurm rm

and, for no boundary-layer volume, the center of pressure is at

2
-1 - STm (82)
155L*2

ol
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The boundary layer profile over the axisymmetric hull will be taken
equal to that given by the l/7-powe£mlaw (p. 432, Ref.1ll) for a
turbulent boundary layer over a flat plate ofhi;ngth L in uniform
two-dimensional flow. Thus, at the hull base (Fig. 5), the

boundary-~layer profile is given by

/7

u ~ r
v ({Ew (83)
v (&)

for which (Ref. 11)
- &
5

B * = 1.29 6, = 0.37 L (ReL) (84)

where the length Reynolds number of the hull is Re, = (pVoL)/u.
For a hull moving through water with kinematic viscosity p/p =

10" °(ft%/sec), we can write

- 5
ReL 10 VoL (85)

Now, if L = 10 ft and v, = 40 (ft/sec) , we have Re. = 4x10’.

L
Thus, the hull boundary layer is mostly turbulent (as assumed),
since transition to turbulence occurs at a length Reynolds number
of approximately 2x10° for a flat plate®(or at 5 percent of the
hull length). Substitution of the assumed values (Fig. 4) into

Equation (84) gives
5L* = 0.111 ft = 1.34 in. (86)

GL = 0.0865 ft (87,

SKuethe, A. M. and Schetzer, J. D.: Foundations of Aerodynamics,
J. Wiley and sons, Inc., New York, p. 283,

AR i SIS At S 0
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and the drag coefficient and normal force derivative of the hull
are, from Equations (80) and (8l1),

Cy ™ 0.0600 (88)

c = 0.0994 (89)
( Na) H

Neglecting the boundary-layer volume, we have from Equation (82)
K- S ‘
I 9.78 (90)

However, with the displacement thickness of the assumed hull
boundary layer included, the total volume of hull and boundary

layer from Equation E.9 in Appendix E is given by

Vol* = 0.709(wr °L) (91)

and we find that
a*/L = -13.6 (92)

We shall use this value to obtain the pitching moment derivative

about the hull centroid. Thus (see Fig. 5) we have

N
H
e ). ——¢-—<£ - a*) 2 2 0.0994(10 + 13.6 x 20) = 28.0
m Aq o 2 D
a/H 0 O

(93)

Pitching (q) derivatives
The stability derivatives for the hull pitching about its

centroid are given by the following formulas, taken from p. 371 of

Reference 10:
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N'y _ re?
(cN.) z q_ /Lg_\= + 2A = 2 —— (94)
q/H rr 2 2V 22 rm2
mqo
and
+i
My 2 r. 2 r, 2
(Ca,) =9 gg)-ﬂx - 4c '""L““f HCH g H
m 2 22 22 2 2
q/H ﬂrm qo o L % rn

(95)

where Xza and C22 are apparent mass coefficients defined in
Reference 10, and the different reference lengths appearing in the
above formulas require conversion to the present system of nomen-
clature. Both of the above derivatives are zero for the assumed
hull shape if we neglect the boundary-layer thickness. With the
previous assumptions regarding the boundary layer, the above formulas

become (with ry = 8% and C* = -0.144 from Appendix E, Eq.(E.13)

6 %=
(CN' ) =2 L2
q/H rm

(Cm' > = 0.050 + 0.576 = 0.526 (97)
q /H

= 0.0990 (96)

The above g derivatives for the hull are due entirely to the
boundary layer. Now, converting to the present system of nomen-

clature, we obtain

(CN. ) = 0.0990 31‘3 = 0.495 (98)
q/H
_
q /H D

-y

hl
]
:
%
.»s
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&) Derivatives

The plunging (&) stability derivatives for the normal force

N and pitching moment M' about the centroid of the isolated

H H
hull are, from pages 369 and 374 of Reference 10,
+3
2
r
( > ( )-43 -4] —H—d% (100)
22 r2
-
and
+i
. 2
r
(cm.> ( >-4c -4 -H—ixﬁ H (101)
&/H  mr q L 22 r_ 2
-y W
where N (Fig. 5) is opposite in sign from Z of Reference 10.

H
For the assumed hull shape (neglecting the displacement thickness

of the boundary layer), the above formulag become

< ) —0=_ = 2,13 (102)
7r, L

C.. = 0 (103)
<’“ d)n

Now, approximating the effect of the boundary layer as before the

effective value of B is

22
*
p* = YOl* _ 4 w09 (104)
22 WrmzL

and the effective value of C22 from Equation E.13 in Appendix

E is
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C* = -0.144 (105)
22

Therefore, Equations (100) and (10l1) for the hull with boundary

c = 2.84 (106)

( Na>n

(cm. > - -0.576 (107)
&/ H

Thus, for pure plunging motion, all of the moment and a small part

layer become

of the normal force on the hull are due to its boundary layer. Now,
converting to the present system of nomenclature, we obtain for 4

derivatives of the hull with boundary layer

( ) = 2.84 == = 14.2 (108)

<Cm' ) - -0.576<-§) "= o576 (109)
a¢/H

The above results for the hull are summarized in Table V.

3.5.2 1Isolated ducted-propeller derivatives about the hull centroid
Here we shall determine the derivatives of the ducted propeller

mounted at the base of the hull in Figure 4 by use of the results

of Section 3. 1In order to do this, we must assume that the ducted

propeller is isolated from the hull but is in thrust equilibrium

with it. That is, we shall neglect all interference between the

hull and ducted propeller, including the effect of the hull boundary

layer flowing into the ducted propeller. Neglecting this latter

effect 1is probably justified, since the displacement thickness of

~adoninig
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the boundary layer at the hull base was found to be 1.34 inches,
which is reasonably small compared with the assumed duct radius
of 6 inches.

We shall assume that the propeller is located toward the rear
of the duct, so that the duct interference on the propeller from
q is not large and destabilizing. (See Eq. (71))

Thrust Equilibrium
The propeller disk loading is from Equation (170) with a, = 0

2 Vo
Cop - XY (1422 (110)
P(D) v°2 Y

also, from Equation (1ll1l), we find that the duct thrust (for a, =

0 and C = 0.2D) is

0.724 (111)

T(p) T T+ 2(v /7 B(D)

Thus, the total thrust of the ducted propeller is given by

T + 7T 2
Cp = P(D’A D(P) u y.724 X2 (112)
D (P) q, o o)

For thrust equilibrium of the entire vehicle, we have TD(P) +

TP(D) = X. Using Equation (88) for the drag coefficient of the

hull, we obtain

2

- X 2 Y a

Cy Aq 1.724 > t2yg 0.060 (113)
o] VO (o]
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so that

‘—,7- = 0.050 (114)
(o}

Thus, for the assumed configuration, the slipstream velocity Vj
is only 5 percent greater than the flight speed Vo and the
propeller disk loading is low. We shall now determine the stabil-
ity derivatives of the isolated ducted propeller about the hull

centroid for this case, namely a, = 0, ¢c=0.2D, and v = 0.05 Vo‘

Static (a) Derivatives

The normal force and pitching moment derivatives of the duct

are found from (Egs. (9) and (13)) to be

Cy ) = 1.91 + 0.845 ;}’— = 1.95 (115)
a/D(P) o
c, ) = 1.45 ;,“L = 0.0725 (116)
a /D(P) o

The above pitching moment is about the midchord duct diameter, so
that the moment about the centroid of the hull due to the duct

(Fig. 4) is given by

LN
D(P)
Mpre)y “"Mp) -2
Q. [0 ]
Thus we find that
<cm. > = 0.07 - 19.5 = -19.4 (118)
a/D(P)

b R Pl e A W S e S E B,
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where the first small term is the duct moment about its own center
and the second is the moment about the hull centroid due to the
duct normal force.

The duct a derivatives are listed in Table III together
with the propeller derivatives estimated from the results of Section
3.4.1 for either a dual or single aircraft type propeller located
near the rear of the duct with v = '0.05 Vo- It can be seen that
the normal force on the propeller is much smaller than on the duct
and that the pitching moment about the hull centroid due to the
propeller is much smaller than that due to the duct. It should be
noted, however, that there is a smaller yawing moment on the
propeller which is perpendicular to the duct moment.

Pitching (q) Derivatives

The pitching derivatives of the duct for rotation about the

>' 9.91

(119)

hull centroid are (from Egs. (9) and (18)):

' a 'v
Cy = 0.675 - + 0.126 + (1_.91 + 0.845 -3’—)( o
a/D(P) o o d

and from Equations (13) and (22)

a 'V
o = 0.0376 -vl + o.o725<—g—9> = 0.364 (120)
My ) D(P) o q

The last term in each expression is due to the induced angle of
attack which is introduced at the ducted propeller by rotation

about the hull centroid,
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a, v, (121)

The pitching moment about the centroid of the hull (denoted

by a prime) due to the duct is

- L
M' = - N (122)
D(P) MD(P)q 2 "p(p)
soO that
C._. = 0,364 - 99.1 = -98,7 (123)
( " q)D(P)

Note that the duct moment about its own center MD(P)q is negli-
gible, just as was MD(P)a'

The duct g derivatives are listed in Table IV for comparison
with the propeller derivatives as estimated from the results of
Section 3.4.2, for an aircraft type propeller located near the rear
of the duct, with vy = 0.05 Vo

It can be seen that the forces and moments acting at the hull
centroid due to the propeller are small compared with those due to
the duct. It should be noted, howéver, that there is a somewhat
perpendicular to the pitching motion.

The above results show that the g damping of the ducted pro-
peller is due almost entirely to the duct normal force arising from
rotation about the hull centroid. Equations (119), (120), and (122)
show that the disk loading has a small effect on pitch damping about
the hull centroid for the present example, even for high disk loading.
Plunging (&) Derivatives

For the duct, the net hydrodynamic reaction due to & is a

normal force acting through the midchord plane, and from Equations
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(30) and (31) we obtain
2

(cNd)n(p) =7(€) =o.126 (124)

and

The pitching moment about the hull centroid due to the duct is

then
a a
and the corresponding stability derivative is
. L
(Cm ) = - 5 (0.126) = -1.26 (127)
& /D(P)

From the results of Section 3.4.3, (Eq. (72) and (74)) the
estimated & reaction from the apparent mass of the propeller is

negligibly small compared with that of the duct.

3.5.3 Comparison of isolated hull derivatives and isolated ducted
propeller derivatives about hull centroid

The stability derivatives which have been obtained for the
hull and ducted propeller about the hull centroid are summarized
in Table V for comparison. It should be recalled that these
results were obtained for the configuration in‘Figure 4, and for
small oscillations from axial flight at low frequency as assumed
in the & analysis. The hull and ducted propeller are con-
sidered isolated from one another but are in thrust equilibrium.

An aircraft-type propeller is located near the duct exit
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plane. The hull boundary layer is assumed to be attached
and axially symmetric.

The following conclusions are drawn from Table V and the
foregoing analysis.

(1) The g¢q damping moment about the hull centroid (-Cm ")
from the propeller is small compared with that due to the duct,
even though the propeller moment about its own center was compar-
itively large.

(2) The upwash over the duct arising from the dq motion
causes a stabilizing moment about the hull centroid which is greater
than the destabilizing moment from the hull boundary layer.

(3) The & damping ('Cm.) is due mainly to the apparent
mass of the hull boundary layer?

(4) Both Cmd' and Cmq‘ for the hull are due entirely to
its boundary layer for a hull with a pointed base. Since these
damping components are comparatively large, refinement of the
present analysis is needed. Both of these components are probably
over-estimated by the present analysis for small g and & motions
of the hull, since the analysis assumes that the hull boundary
layer remains axially symmetric.

(5) For a torpedo-like configuration, all of the propeller
forces and moments (except thrust) are small compared with those
of the duct. However, some of the propeller reactions are perpen-

dicular to the motion which causes them. This is not true of the

duct.

o mets A
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3.5.4 Static stability of torpedo-like configuration

Before we can make a dynamic stability analysis of a complete
torpedo-like configuration, we must insure that the vehicle is
trimmed and is statically stable. For this purpose we shall now
add fins to the configuration (Fig. 4) and determine the static
derivatives of the entire configuration consisting pf a hull,
ducted propeller, and fin. We shall not consider the comparatively
small propeller forces and moments (Table III). The only interfer-
ence effect which is to be included is propeller interference on
the duct, so that the total normal force and pitching moment on

the entire configuration are given by

Neppr = Mg t ND(P) + Ny (128)

and

Muppr'™ Myt My )t M (129)

The double prime superscript on the moment indicates that it is

about the center of gravity of the hull.* We shall use the moment

transfer equations of page 400, Reference 10 to shift the centers
of moments and pitch from the hull centroid (previously considered)
to the hull center of gravity. The normal force derivatives due to
o and & are not affected by this transfer and can be taken
directly from Table V. All the other stability derivatives, how-

ever, are affected.

*It is assumed that the center of gravity of the hull is the same
as that of the complete vehicle.
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The center of gravity of the entire configuration is assumed

to be at 0.4L (Fig. 4). Using Table V, we find that the center of

pressure of the hull and duct is located a distance X, p ahead
of the hull centroid as given by
M'. + Ml
Xc.p. Hy D(P)y _ (28.0 - 19.4)D/2L _ 0.21
L N, + N 0.10 + 1.95 :
Ha D(P)a

(130)

Thus the center of pressure is located 0.29L from the nose in

‘Figure 4 and is ahead of the assumed center of gravity. Since this

results in static instability, we must add fins to make the config-
uration statically stable. We shall add fins near the base of the
hull (Fig. 4) which are sufficiently large to place the center of
pressure at the hull centroid (0.5L) and thereby obtain a "1l0-
percent static margin." We shall use a fin with chord ¢ and ex-
posed span S, such that the net moment about the hull centroid is

zero. That is,

M'F + M'H + M'D(P)a = 0 (131)

Thus, using Table V, we find that

' - D
M Fa 8.6 > Aqoczo (132)

SR A A, b b
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Now we shall neglect interference effects on the fin, assume that
its lift curve slope is 27 and make no correction for its aspect

ratio. Then we can write the normal force on the fin as

- D - 7D -
8.6 I Aqoao 0.86 ( 2 )qoao 271’cSq°cJLo
(133)

Thus, if the fin chord is taken equal to the duct chord (¢ = 0.2D),

we find that the total required exposed fin span is
S = 0.537 D (134)

With this fin added for static stability, the static a de-
rivatives about the hull center of gravity (0.4L) as obtained from
Table V using the transfer Equations (10-119) of Reference 10 are given

in Table VI.

3.5.5 Dynamic stability of complete configuration with no inter-
ference between hull and ducted propeller

The dynamic stability derivatives for the hull and duct about
the vehicle center of gravity can be found by transferring their de-
rivatives about the centroid (Table V) using Equations (10-119) of
Reference 10. The results are given in Table VI.

For the fin, we shall neglect the moment about its own axis,
any interference effects, and aspect ratio corrections. The upwash
over this idealized £fin due to pitching about the hull center of

gravity produces the following derivatives:

poand  wemnd
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W\ w8 5 (=6L\.
<ch)? 2 2r ( D) 5.15 (135)

" - o " . 6L - o
(cmq ) ] <ch )F(m 61.9 (136)

The normal force and moment on the fin due to rotation about its
own _axis are comparatively small and have been neglected here.
Due to &, there is a normal force on the fin (Section 3.6)

given by Equation (166)

N
o} 2 S
—— = £ == (0,298 (137)
ND(P). T D
a
thus we find that
(cN ) = 0.298(0.126) = 0.038 (138)
&/ F
(c ) = 0.298(-1.51) = -0.45 (139)
ms JF

The resulting stability derivatives about the hull center of gravi-
ty with ducted propeller and fins are tabulated in Table VI for
the entire torpedo~like configuration.

The following comments should be made concerning the results
summarized in Table VI:

(1) For the hull, both the stabilizing & moment and the
destabilizing g moment are due entirely to its boundary layer,
which has been assumed to remain axially symmetric. For the small

oscillations from steady axial flight considered here, these

PRTRUTN
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moments are probably overestimated by this assumption, since the

boundary layer oscillation will actually differ from that of the

hull.

(2) For the duct, the
center of gravity (with a
force which is generated by
about the midchord diameter
son with these moments. In
no interference between the

neglected the effect of the

stabilizing moments about the vehicle
and g) are due primarily to the normal
the upwash over the duct. The moments

of the duct are negligible in compari-

this analysis, however, we have allowed

hull and ducted propeller, and we have

hull boundary layer on the propeller

since it is reasonably small compared with the duct radius (G*L -

1.34 in., R = 6 in.).

(3) We have assumed an aircraft type propeller (of low solid-

ity with slender blades) which is located near the exit plane of

the duct. For such a configuration the only appreciable effects of

the propeller are its thrust force and its interference upon the

duct. However, small forces and moments are generated on the pro-

peller which are perpendicular to the motion which causes them.

The following conclusions are drawn from Table VI for the

overall configuration:

(1) The static stability Cm " 1is influenced appreciably by

Q

each component; the hull, the ducted propeller, and the fin.

(2{ The q damping Cn “ from the ducted propeller and fin

are both strongly stabilizing and outweigh the destabilizing effect

a
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of the hull boundary layer, even though this has been overestimated

here.

(3) The & damping Ch " is due almost entirely to the hull
Q

boundary layer and has been overestimated here.

(4) The Qamping in pitch (Cm "o+ Chn ") is stabilizing and is
q (o}
produced mostly by the ducted propeller. The fins provide about 30

percent of the damping and the contribution of the hull is negligible

with the boundary layer producing opposite effects on Cm "and C_ "
a q
Now we shall estimate the undamped natural frequency N and

the damping ratio Cl (or percent critical damping) for oscilla-
tion of the entire configuration, the undamped natural frequency is

given by (Egs. (8-85) , Ref. 10)

q A(D/2)
wn2 =-c, " [-—Q——a—- (140)
a l mcKy"

and the damping ratio for impulsive pitch control in steady flight
is (Eq. (8-86), Ref. 10)

( : !2 q A
¢, = CN - Cm " Cm > ” 22 2m V oL (141)
N a q & K " n
where m, is the mass of the entire configuration and Ky" is the

radius of gyration of entire configuration about the hull center of

gravity.

We shall take mc and Ky" to be those for the hull alone

from Appendix E as follows:

g e e
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- - 8 2
m, = p Vol = 7% wr, “Lp (142)
Ky"2 = 0.0457 L (143)

Substitution of these values and those in Table VI and Figure 4

into Equation (140) yields for the natural frequency

2 . "
D Cma 32(0 456) ( ) (144)
= . 16.4 C
Mo
= 95.0
w = 9.75 rad/sec (145)

The undamped period of oscillation is then

T = ;il = 0.66 sec (146)

n

and the damping ratio is
C [1] + C n . .
c = {C - .._n:g___l_n_d_ L-s- _YO_
1 N 8 x 4.57 32 Lw
a n
212.3 15 x 4
'6'91 ¥ 8 x 4. 57><15 X 9. 75

= 1.67 (147)

so the torpedo is heavily damped.

This ratio is influenced appreciably by each component of the con-

figuration (the hull, the ducted propeller and the fin) as seen

from Table VI.
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3.5.6 Interference between hull and ducted propeller

In the above calculative example, the stability derivatives
of an isolaﬁed slender hull were used along with those for an iso-
lated ducted propeller with which it was in thrust equilibrium,
X

+ TP(D)' In other words, the mutual interference between

* Tp(p)
the hull and ducted propeller was neglected. To obtain some in-

sight into the order of magnitude of this interference effect, we

shall estimate here the thrust interference for steady axial flight.

This will be done by:

(1) Assuming the hull drag to be independent of hull shape
and given by the flat plate boundary layer of Section 3.5.1 (Eq.
(84)) .

(2) Approximating the duct bound vorticity distribution

(Eq. (A.50)) by the expression

W, = v+ 2K_tan 2 (148)

2

where v 1is the actuator disk vorticity and Kl is a constant to
be determined.

(3) Representing the hull shape by the dividing stream
surface about a concentrated point source and sink (Sketch C).

(4) Choosing the value of K1 such that there is no lateral
velocity at the midchord point of the duct.

(5) Solving for the duct thrust from the leading-edge singu-

larity represented by Kl.

BRI 5 o cn B T fom DSt 0o
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In this analysis, the hull ahapg is allowed to change accord-
ing to the inflow of the ducted propeller (Sketch D), and the effect
of the hull boundary layer entering the ducted propeller will be
neglected. Thus, the resu;ts,will give only an order-of-magnitude

estimate of the mutual interference.

e L
jg— C Y
~
/ \»
! /
Tm !
Q -Q |‘
> -—X - —
v, X I\ D vj
|
\ -~
C
R
2 1%

Sketch C. - Hull and ducted-propeller nomenclature.

The above analytical approximations will first be tested by

solving for the value of duct thrust (for the isolated

ey
ducted propeller) using the above approximate bound vorticity

distribution and comparing this value with T obtained from

D(P)
e
the more exact theory (Eq. (11)). For the approximate flow model,

the duct thrust is found to be expressible as

B .
—




cD
T =L )
D(P)a 2

SRy

2 3
(ln 8. . 2> (149) ]

and from Equation (1l) we have

'2 2
- SD LY 16D _ .
o) Dy (m 6 2> (150)

peng mnd N BN BB =

For cases in which ¢/D ¢ 1/8, we find that

-

3
o
z

0.89 ¢ /2 ¢ 1 (151)

Thus, the approximate value of duct thrust is reasonably good for
very short ducts. Also, the total circulation about the duct chord
is found to be within 8 percent of the more exact value for c¢/D <
1/8. |

In the absence of the ducted propeller, the hull shape (Ref.

12, p. 461) is axially symmetric and is symmetric fore and aft.

Also, for a very slender hull, we have
T <
L = 28
and

~ 2
Q= wr (vo/z) (152)

In the presence of the ducted propeller, the hull is no longer

symmetric fore and aft, but the forward half of the hull is not

. significantly distorted (see Sketch D). The duct thrust in the
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presence of the hull and propeller (as calculated by the method

described abowe) is given approximately by

n'(b /y) :

"p (up) = TD“”,}a [ tn (8070 = 2

(153)

where it has been assumed that s <¢ D <« L and T << L. The
duct thrust in the presence of the propeller is therefore in-

creased, due to hull interference, by an amount

T

m-o(p) - "pmp), ~ Tn(p), (154)

On the other hand, the pressure drag of the hull due to inter-
ference from the ducted propeller is found from the Blasius formula

(p. 168, Rei. 12) to be

V cr_2
8D o - m
= D%q (: In=—+1+n7 —————-;)
X (p) % 5 v, D° (155)
Thus we find that the ratio of increased thrust to increased drag

is

"~ p(p) , 2 'n(8D/c) - 4+ 7 (v, /Y)inz/nz - 0.78

Xp(P) =H  in(8D/c) + 2 1r<v /v ) x,°/p?

(156)

and there is a net loss of thrust for the entire configuration due
to duct-hull interference. One would expect this effect to be even
greater without hull distortion. One can imagine that the inter-

ference forces are generated by moving the ducted propeller from far
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downstream to a point near the base of the hull as shown in Sketch
p. Now, since Th-*D(P) < xb(P)‘-ﬂ’ the propeller thrust (or
w/vo) must be increased to maintain thrust equilibrium. If there
were no propeller in the duct, that is, if « = 0, then the hull
and duct interference forces would of course be equal and opposite,

but thrust equilibrium would not be possible without the propeller.

Y
\ .
x x =——o V.
T © /5,-@» ]

—— r—

Toe) * Tp(D)
\ Y
B
o /
——r sl

X+ Xyp)=u Toe) * Ted) * Tu~D(p)

Sketch D - Hull and ducted propeller interference forces.

Using the values estimated in Section 3.5.1 for a different (para-
bolic) isolated hull shape (y/vo = 0.050, ¢ = 0.2D, D = 2rm, and
L= IOD) , we find from Equation (153) that

2
~ T -
Tp (up)a - Tn(p)a[ 1+ 0.050(4)1.69] 106 Ty (py,  (157)
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Thus, the approximate duct thrust increases tremendously because
of interference with a blunt base hull.® However, this is due to
the fact that the ducted propeller is very lightly loaded when it
is isolated from the hull (far downstream in Sketch D). When they
are brought together, the hull induces a large radial velocity
component across the duct as compared with the lightly loaded pro-
peller (éketch D). Thus, the duct thrust due to hullkinterference
is much larger than that required to overcome the hull drag for
the present configuration. If the propeller had been more highly
loaded so that Y- Vo for example, then the duct thrust would
have increased by a factor of only 2.15 rather than 106.

The above ‘analysis indicates that large interference effects
may exist between the ducted propeller and hull, and that more
precise analysis should therefore be made to obtain valid quantita-
tive results. Since both the hull and the propeller induce a radial
in-flow which results in a leading-edge suction on the duct, the
effect of hull interference on the duct stability derivatives should
be similar to the effect of an increase in propeller loading or
y/Vo. One aspect of this observation is that duct shapes which
would actually be used in practice to propel hulls with blunt bases
would likely have the duct diameter decreasing in the streamwise
direction in order to prevent flow separation (in the absence of
boundary-layer control). Thus, in view of the large effect of pro-
peller loading on hull-duct interference forces, a reasonable es-

timate of these interference forces would require that the actual

SNote that Equation (151) is considerably less accurate for
c¢/D = 0.2 than for c/D £ 1/8.
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hull and duct shape and the appropriate propeller loading be approx-
imated more closely than is possible within the scope of the present
project. This is particularly true for the nonaxial and unsteady
flight conditions.
3.6 Comparison of Duct Normal Force with that of an Equivalent Fin

It would be of interest to know whether a ducted propeller is
more or less effective in damping than a fin having the same pro-
jected area. For this purpose, we shall compare the normal forces
on a duct in the presence of a propeller with those on such a fin
for small a, 4, and & motions. The propeller forces themselves
are known to be comparatively small (Section 3.4) and will there-
fore not be considered.

The duct normal force ND(P) predicted in Section 3.1 (Eq.
(9)) will be compared with N for a fin with chord c¢ and total
exposed span D where c = 0.2D for both the duct and the fin.
Thus the fin planform is the projected side area of the duct. The
fin will be considered as a section of an infinitely long plate;
that is, no aspect ratio corrections will be made. For <¢= 0.2D
(aspect ratio of 5) these corrections are small.

First, let us consider the effect of a small angle of attack

a_. For the duct, we have from Equation (9)

(o]
(cN ) = 1.91 + 0.845 - (158)
a/ D(P) o

and for the fin, using a lift curve slope of 27, the normal force is

St Srndopwisviriiotihs
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N = ch°2vao (159)
Q
Hence
N .
D (P) : -
——2 =2 (1,91 + 0.845 =)= 1.19 + 0.528 & (160)
N, 8 v, v,
a

Thus, even without a propeller (y = 0), we see that ND is 19

percent greater than N_,. This result is nearly independent of

F

c/D when c << D as can be seen from Equations (9) and (159). In
Reference 7 an identical expression for Nb is derived for the

duct alone (o = 0) and it is shown therein that N, is exactly
twice the lift of a fin of elliptical planform with a total span
equal to D and a maximum chord equal to c¢. Increasing the
propeller loading (or W/Vo) further increases the effectiveness
of the ducted propeller over the fin.

Now consider Nb(P) due to pitching g about the midchord

duct diameter. From Equation (18) we find that

c 16D ' c® X
c == {ln =— - > + 7= = 0.675 + 0.126
( Nq>D(P) D < ¢ Yo p? Yo

(161)

for c = 0.2D and ao = Q.

For the flat fin pitching about its midspan with a

NF corresponds to that for an equivalent cambered fin (Sketch A.7)

so that the normal force is

-0’
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NFq - chOZWa‘ (162)

H
3
i
!
i
5
4

where

o
Thus, we find foz}pitching
e g 16D
T——q-5+5—<1n——-->—1-1.57+8.451 (163)
P c c Vo V°
q

The increased effectiveness of the ducted propeller over the fin in
pitch therefore increases with 'y/V° and decreases with c¢/D.
Finally, let us consider the normal force due to plunging,

a4 = -\'r/V° at a_ = 0. For the duct, we have from Equation (28)

T2c®D .

For the fin, we have from Equation (27)

2
- _ JcD .
N a2 PV (165)

Thus for any value of ¢/D

N,

D(P)d

- X
N 2 = 1.57

F'
Q

It is therefore concluded that the duct normal force dAue to o, g,and
& is larger than the fin normal force for all values of c¢/D and
y/Vo. Furthérmore, the effectiveness with @ and a increase as

the propeller loading is increased.
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4. COMPARISON OF EXPERIMENTAL DATA AND THEORY
4.1 Introduction

In this section, the predicted forces and moments on the duct
in the presence of the propeller will be compared with every known
source of applicable ducted propeller data. The sources of data
will be selected from the references listed, which are summarized
in Reference 2. We shall use only the data for which the forces
and moments on the proreller and on the duct were measured inde-
pendently and where the duct was reasonably short, straight, and
thin as assumed in the present theory. Wherever a choice is possible,
only the shortest duct tested will be considered here. Most of
these data are for steady hovering flight or for axial flow, in which
case only thrust forces exist on the duct and propeller and for which
the theory predicts only the duct thrust coefficient in terms of
the propeller thrust coefficient.

Two sources of data for steady flow at angle of attack (Refs. 13
and 14) will be used for comparison with the predicted normal force
coefficient of the duct, but only one of these (Ref. 13) contains
measurements of the duct pitching moment coefficient which will
also be compared. The most recent ducted proreller data at angle
of attack (Ref. 15) will not be used here, because the duct chord
to diameter ratio (¢/D = 0.61l) was not small as assumed in the
rresent theory.

The only known source of d&namic data (Ref. 16) will not be

used here for comparison, because the ducted propeller was mounted
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near a large hull and only the forces and moments on the entire ;
configuration were measured. Since the hull interference and V
boundary-layer effects upon the ducted propeller were probably not
small enough to neglect, it does not appear worthwhile to attempt
the extraction of isolated ducted propeller data from these measure-~
ments. Thus no dynamic data will be compared with the theory.
Even for the data which are used, the validity of the compar-
ison with the present theory is questionable because of one or
more of the following factors:
(a) Flow separation from the duct inlet
(b) Duct chord/diameter ratio too large
(c) Nonuniform propeller loading
(d) Slipstream swirl generated by a single propeller
(e) Too much duct taper

(f) Large centerbody

The present theory predicts the forces and moments on the
duct in the presence of the propeller by representing the propeller
as a uniformly loaded actuator disk. The duct force and moment
C

coefficients, Cop and C are predicted as

p(p)’ Np(p)’ ™ (p)’ ;
functions of the independent variables Gy c/D, and y/Vo. There-
fore, in order to predict the duct data for a given test, we must
first express y/vo in terms of the measured data. For the ideal,

uniformly loaded actuator disk and the corresponding ideal slip-

N 0 D

stream with constant velocity Vj and no swirl, this is done quite

simply by use of Bernoulli's equation far ahead and behind the
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propeller disk. However, this model is evidently too idealized
for a satisfactory comparison of theory and experiment. Therefore,
in order to improve the comparison of the present theory with data
for real propellers, we shall now consider real slipstream effects.
These can be catagorized as:

(a) Slipstream swirl generated by the propeller

(b) Nonuniformity of the jet velocity component V5, which is
aligned with the akis of the slipstream (Fig. 6)

(c) Frictional losses which appear as propeller blade wakes

Dual, counter-rotating propellers or propeller-stator combina-
tions are seldom used in the data described below. When such com-
binations are used, the slipstream swirl should be comparatively
small compared with that for a single propeller.

For the purpose of improving the comparison of the present
theory with experimental data, the data will be selected for com-
binations of blade pitch B anq advance ratio A for which the
real slipstream effects are minimum. A method for accomplishing
this end will be described below, énd the real slipstream effects
upon the present theory will be discussed. The purpose of the latter
discussion is to give some insight into how the predicted duct
coefficienfs are influenced, but no attempt is made to give quanti-

tative predictions of real slipstream effects.

4.2 Data Reduction Method
The present theory predicts the forces and moments on the duct

in the presence of a propeller by representing the propeller as a
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uniformly loaded actuator disk, and the propeller slipstream vorticity,
'y/v° in Figure 2, is the only direct effect of the propeller which
appears in the analysis. The purpose of this section is to develop
expressions for 'y/V° in terms of the propeller coefficients which
are usually measured in experimental investigations.

First, we shall retain the assumption of an ideal actuator
disk and find 'y/Vo in terms of the propeller disk loading CTP(D)'
Then we shall include two real propeller slipstream effects, the
swirl and the blade wake frictional losses, and derive a second
expression for W/Vo. The purposes of the second derivation are
to demonstrate: (1) a method for selecting data which minimizes the
real slipstream effects, and (2) the way in which real slipstream

effects influence the predicted duct forces and moments.

4.,2.1 Evaluation of y/Vo for an Actuator Disk

The diameter of the actual stream tube flowing through the
ducted propeller at angle of attack changes continuously as shown
in Figure 6. However, the duct forces and moments have been pre-
dicted by assuming that the slipstream vorticity v could be put
on the dashed cylindrical surface of diameter D. In the actual
slipstream, there is a counter-rotating swirl distribution due to
the cross flow of the free stream over it (Fig. 6). This swirl
distribution (which is generated by the trailing vortex filaments
in the duct wake draw in Fig. 2) is al;eady incorporated in the

present analysis. The kinetic energy associated with this swirl

distribution causes an induced drag due to lift, which appears in

ol Tk o 5 S5 S
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the calculated duct thrust and duct normal force. However, since
we have assumed that the cross flow is small (Vo sin oy <{ Vj),
we shall neglect the swirl Velocity component in evaluating the
total pressure rise across the actuator disk. Thus, we can write

Bernoulli's equation ahead of and behind the propeller disk as

Ap = % <Vj2 - Voa) (167)
8o that _
T v:2
Cq - —:‘9)- = L -1 (168)
P(D) q v,

Furthermore, since aj << o in Figure 6, we can write

o (169)

v = Vj - V° ?os Q
Thus, by equating the two expressions for Vj given by Equations
(168) and (169), we can evaluate the pr0pellervslipstream vorticity

in terms of the propeller thrust coefficient as

X . C +1 - cos a (170)
VoV Tp(p) °

For the special case of hovering flight, Equation (15) replaces

Equation (170).

4.2.2 Real slipstream effects and data selection procedure

The above evaluation of 'y/Vo assumes that the slipstream
is ideal; that is, the propeller is an actuator disk, which is
uniformly loaded so that it generates no swirl, the slipstream

velocity Vj is constant, and there are no frictional losses
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(blade wakes). Here we shall evaluate 'y/Vo with these real slip-
stream effects included insofar as possible within the context of
the present theory. To do this, we shall first assume that the
actuator disk adds angular as well as axial momentum to the slip-
stream as shown in Figure 6.

To account for the swirl qualitatively, we shall assume that
far downstream, at station Jj, the slipstream or jet rotates as a

solid body with a swirl velocity component

Vg = ;3—— Vg (171)
p W
The additional vorticity shed by the propeller to produce this
swirl is a uniform distribution of axial vortex filaments within
the jet and a uniform distribution of filaments of opposite sign
along the jet boundary. Within the context of the present theory,
the effect of this vorticity upon the duct is found by placing the
slipstream on the dashed cylindrical extension of the duct, as
indicated in Figure 6. It can be shown that when this is done
the additional vorticity induces no velocity outside of the semi-
infinite dashed cylinder. Thus, the equations for the duct force
and moment coefficients given by the present theory in terms of
y/vo are not affected by the additional vorticity due to solid
body rotation of the slipstream.
The theory assumes that the slipstream vorticity v, associated

with the velocity component Vj aligned with its axis, is concen~

trated along the jet surface. Thus, within the framework of this

i i, S b B L et bk R
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theory, we must retain the assumption that Vj is constant. How-
ever, for single propellers operating at peak efficiency, the net -
effect of propeller swirl Vg is probably larger than the non~
uniformity of Vj. Hence, we can account for the dominant real
effect.

With this representation of the propeller slipstream, the
propeller disk loading Ap is no longer uniform, since the total
pressure in the slipstream is not constant. We shall now assume
that, in addition to imparting axial and angular momentum and N
energy to the slipstream, the propeller introduces frictional
losses in the form of blade wakes. The head loss H1 associated ]
with these wakes causes an increase in propeller power. However, -
we shall assume that the wakes mix rapidly and that the head loss
is distributed uniformly within the slipstream. Thus, there is

no vorticity far downstream associated with H, and no effect upon

13
the duct or propeller forces. The only effect of H1 then is to

increase the propeller torque and power.

Steady Flight at Angle of Attack

Now let us consider the angular momentum, the power, and the
thrust associated with the slipstream swirl Vg. For a single
propeller and no stator, we can equate the propeller torque to the
angular momentum of the jet, since aj << 1 (Fig. 6). Thus, we

have
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where the mass flow rate in the slipstream is
W, = pA.V.,
5 = PRV (173)

For dual propellers, or propeller-~stator combinations, T is the

net torque on the combination.

The steady-flow energy equation for the stream tube in Figure 6

(between stations far upstream and far downstream) can be written

V4% + Vg 2 4+v P v_ 2
f(g >pvj A, - W, <—p‘i + -2 - ) (174)

where P is the power supplied to the propeller and Hl/p is the

as

© L__:::

frictional head loss due to bhlade wakes. 1In Equation (174),
have neglected the comparatively small swirl velocity component in
the jet which is induced by the duct trailing vorticity (see Fig. 6)

just as we did previously in calculating Ap across the actuator

disk (see Eq. (167)).

T b s e bt o
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Let us now find the variation of static pressure across the
jet so that we can evaluate Equation (174). This can conveniently
be done in a coordinate system which translates along the jet with

velocity Vj’ In this coordinate system, we can write

vs’"
g‘P— -p T {175)
xy ry

Making use of Equation (171), we find by integration that

2
b i}
e pw £ 2 _y2\abf 2 g
P, - P 2<Vs Vs> 7 Vs 1 > (176)
m m X.
Jm

Substitution into Equation (174) then gives

1 2
\'4 2
' s . .
| 2 2 S 2 r. r
J m P m rj Im jm
m

Fo L %0 )
- wj <jp + = - 5 (177)

and upon integration over the jet, we find that

W H
P-Ta)-—él ng-V°2+2f#') (178)

where Tw is summed for the propellers if there are more than one.

Thus, the propeller power is increased by an amount

" (Eﬁ“)

due to swirl and blade wakes.
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Now let us find the effect of V_ upon the total thrust force

. ]
of the ducted propeller, TD(P) + TP(D)' We can write the momentum

equation along the duct axis, for a large control surface surround-

ing Figure 6, as

TD(P) + TP(D) - wj (Vj cos aj -V, cos ao) - cos aj Jr (po - p) da

A,
J

(179)

Substitution of Equation (176) and use of cos aj = 1 then gives

N

1
2 £3° O\ 53, F3
TD(P) + Tpp) ™ wj(vj -V, cos ao) - pVSm Aj 1 - ~ s T ac
- °© jm‘ n om

L e

(180)

v 2
sm

TD(P) + TP(D) = Wj Vj -V, cos a, - zv;— (181)

so that the total thrust is reduced by an amount

vsz
W, WIF—
J
due to swirl. Now we shall combine Equations (172}, (178), (180),
and (181), and put the results in dimensionless coefficient form.
Thus, equating the two expressions for 1T as given by Equations

(172) and (178) yields for a single propeller

Ty Vs v,2 H
—Em%&v——ﬂ--j—;-1+2——-‘-; (182)
o o Vo pVo

RS I

“Caa

oo VRS 2R St et
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Division of Equation (181) by (178) gives a propulsive efficiency

defined as
v 2
VJ S \'/
v -cos a,_ - I =
(o] @ V.
T + 7T o 4v 3
= _D(P P(D o
TIP= P V°-2 v2 . " (183)
—l; -1 +2 -—F;,
v \"
o P o

and the total thrust coefficient of the ducted propeller is, from

Equation (181)

Vs S
i cos a_ =~ I (184)

Vo o 4V°Vj

0
i
'
N
oS|<t

where V is the averaged axial velocity component through the

duct, given by

<
]
>
—
<
S

In addition to the above set of equations, we can write from

continuity
r.
Im v Y%
= - ;: \—,; (185)
and, from Figure 6, (where a, >> aj = 0)
V. ,
eL - Vl ~ cos % (186)
-] o
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Thus, we have a set of five equations, (182) through (186), for

the six dimensionless unknowns

r. v _
S W R S R 2
] 9 } ] 9 ]
R Vo Vo pV°2 Yo Vo

in terms of three measured coefficients
(a) Propeller advance ratio, A = Vo/wR
(b) Propulsive efficiency, p

(c} Total thrust coefficient, Cop
DP

We could solve this set of equations by using the present theory
to evaluate V)Vo in terms of ¢/D and y/vo. For example,
Figure 3(a) gives values of V}W for hovering flight and for

c = 0.2D. For axial forward flight, vV is simply increased by

V_.. The present theory also gives the thrust ratio

=]
T Cp
D(P) <g R A )- —D(B) (187)
TP(D) D Vo o} ch(D)

so that either of these thrust coefficients could be used instead

of CTDP in Equation (184). However, our purpose here is to find

an independent expression for 'y/vo in terms of measured coefficients
to supplement the present theory. Therefore, we shall drop Hl/pv02

in Equation (183), assuming it to be zero, rather than use the

present theory to evaluate VVVO.

WP Lot erantiaols womormavenaSe 1 L
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It should be noted that the coefficients C and 1,

Tpp

used above are related to the torque coefficient cQ and the

power coefficient Cp as follows:

AC \Y r.,
T = S 3
- T - DP - \'4 m n
Co RaR " T, fQ_o ' T ———R> (188)
T _.Q
Cp = Ra v, 7Y (189)

Axial Flight

If we now restrict the angle of attack a, to zero and

eliminate Vg /Vo, Ly /R, and V/Vo with Equations (183), (185),
m m
and (186), respectively, then we can write the remaining Equa-

tions (182) and (184) in the form

<L}f1
\_/

N A2/4
v " /Y7 (190)
F (]
and
C
el T
Vo Mp V-2
b IR
v 2
o

Then, elimination of V/Vo gives the expression
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2 3
V. V.
acy, (v—l-1> <VJ+1>
DP [o} (o}
R
[o]

if Hl =a, = 0. From Equation (186) with o, = 0, we have

(193)

o“[R
]
N
1
=~

Thus, Equations (192) and (193) give the propeller vorticity
y/vo in terms of three measured coefficients (CTDP, Np» and A
for the case in which the angle of attack and propeller frictional
losses are zero.

To illustrate the effect of swirl, we shall use Equation (192)
for 'y/vo with one source of experimental data (Ref. 19) for
comparison with Equation (170). However, in general, we shall
use Equation (170) to evaluate y/vo. We shall do this for
selected values of A and B which minimize the real slipstream
effects. From Equations (170) and (183) it can be seen that, for
fixed values of a_ and CTD(P) (or Vj/Vo), these effects (as
represented by Vg and Hl) are minimum when Mp is maximum.

It is noted in Equation (183) that both propeller swirl and
frictional losses tend to decrease Np 2as would be expected from

physical reasoning for axial flow. It should be recalled that

Equation (183) is based upon the following assumptions:
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(1) Vj is constant and aj = 0
(2) The jet slipstream rotates as a solid body

(3) The frictional head loss is uniformly distributed over
the jet

Using the above results, we shall select combinations of A
and B for which 7 is a maximum for a fixed value of C .
P TP(D)

Since ducted propeller data are usually presented in terms of A
and B, this will be done by use of data plots as shown below for

a fixed angle of attack.

— ol

(o]
-3
L]
g
| /

Sketch E.- Example data plots.

It can be seen that the combination of A and £ for maximum

np With C, fixed cannot be obtained by the usual procedure
P(D)
of maximizing Mp with either B or A held constant.
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Hove Fl t
Carrying through the above analysis for hovering flight
(V° = 0), with the appropriate definitions based on Vj rather

then V, , we find instead of Equations (183) and (192)

2
Vs
1 - m
2
_Toe) o) Vi WYy (194)
M = P 2 2H
1l + ——l;
v,
PYy

and

v\t 201 - Tp(p), * Tp(D)
(_J_ - ¢ .nh) h h (195)
T"h A (% w2R2>

It can be seen that My is maximum for minimum swirl and minimum
frictional loss and that T could be evaluated from Equation (194)
by use of measured data and Equation (195) to eliminate Vj' How-
ever, m, is the "compressor efficiency" which is customarily

defined as

T + T T
D(P) P(D) / P (D)
h h h - -
T ) 20A for Vsm H 0 (196)

by neglecting swirl and evaluating Vj from the Bernoulli Equa-

m

tion (15). We shall retain this system for evaluating M- It

can then be shown that

for VvV, = H =0 (197)
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where Mh is the usual figure of merit for hovering flight as
defined in the Liqt of Symbols. Now, to select hovering data for
which the swirl and head loss are minimum, the value of B will
be chosen which gives a maximum value of Ny, as defined in Equa-
tion (197). For no swirl, we have the ideal case of

-1 (198)

h

For a very long duct, simple momentum theory gives TD(P)h _'TP(D)h’

and Equation (198) then gives for c »> D

ng =1 and Mh—o\/2 (199)

Pitching or Plunging Flight

For either pitching or plunging flight, the same procedure
of data extraction as outlined above for steady flight at angle
of attack will be used for small pitching and plunging rates. At
the present time, however, no applicable dynamic data are available
for comparison with the theory.

4.3 Thrust Ratio in Hovering and Axial Flight
Hovering Flight
The division of thrust in hovering flight as predicted by

theory (Eq. (17)) is

T
RAEL) - 28 (1n 262 - 5 ¥ (200)
P(D) h
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This expression is plotted in Figure 7 and is compared with six
sources of data chosen from Table I of Reference 2. The asymptotic
value for large chord (Eq. (199)) is also shown. Equation (200)

is based upon the assumption that ¢ << D. However, this assumption
does not introduce much error into the approximate expressions for
the velocity induced by the actuator disk if c¢ £ (D/4) (see Eq.
(A.12)). Furthermore, the additional approximation that the flow

is two dimensional over each chordwise strip of the duct is expected
to be reasonably accurate if c¢ £ (D/4). Therefore, we expect
Equation (200) to be valid within this range as indicated by the

solid line in Fiqure 7.

Data by Gill

Shown in Figure 7(a)are data by Gill taken from Figures 25,
26, and 28 of Reference 13 for three duct shapes designed at Hiller
Aircraft Corp. These ducts were all relatively straight, thin,
and short and had an inside diameter of 24 inches as indicated.
The ducts were used with counter-rotating propellers, each having
three twisted and tapered blades with only 0.04-inch clearance
between the blade tips and the inner surface of the duct. The
thrust ratio was found to depend only very slightly on the mean
blade pitch setting B, as shown in Figure 7(a). With independent

variation of B, neither the figure of merit

_Tn(e)y, T TR(D)y 1\/Tn(p)h RN
My, = P 2pA

(201)

o
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nor the compressor efficiency

T + T T
D(P) P(D) P(D)
Ny = A—2 Y 5t (202)

was a maximum when the thrust ratio TD(P)/TP(D) was maximum, as
can be seen from the data of Figure 7(a). This behavior is believed
to be associated with flow separation from the duct leading edge,
which was actually observed during hovering flight for all the

duct shapes except for one having a large inlet lip radius.

Because of this fact, it is not surprising that the measured thrust
ratio was only about half of that calculated. That is, the thrust
carried by the duct was evidently greatly diminished by flow separa-

tion from the duct leading edge.

Data by Horn

Shown in Figure 7(b)is a datum point by Horn taken from Fig-
ure 13 of Reference 17. The configuration was of the shape indicated
and was tested in water. A single propeller with four blades was
used without a stator, so that swirl was introduced into the slip-
stream. Furthermore, the duct is too\;ong for comparison with the

theory, and the blade-pitch angle was not varied. Propeller loca-

tion was varied in a still longer duct (which is therefore not
shown in the figure) and there was little effect of propeller

location upon either TP(D)h or TD(P)h'
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Data by Moser

Also shown in Figure 7(a) are data by Moser, taken from Fig-

N

e e T e I s B

ure 12(b) of Reference 18. The duct shape was varied by adding a

ey e A~ S

sheet~-metal ring after the duct, as indicated, such that
0.33 < % < 0.89

It was found that the thrust ratio was virtually invariant with
duct length as indicated by the arrow in the figure. The single

propeller had two blades. The blade pitch was not varied, and

stators were not used.

Data by Kruger

Finally shown in Figure 7(b)are data by Kruger, taken from
Figure 21 of Reference 19 for one of fifteen shroud shapes tested

with a relatively large centerbody. The duct shape used here had

the smallest camber, thickness, and chord-to-diameter ratio of
all the ducts tested therein, A single propeller with eight

blades and no stator was used with this duct, and the blade-pitch

S

setting £ was varied independently. It can be seen that the

thrust ratio in this case was very dependent upon £ and again

[ow—
H '

was not maximum for peak efficiency (either M or n,). These
peaks occurred at the lowest blade-pitch angle which was tested,
namely 15°. However, it can be seen from the measured values of
duct and propeller thrust in Figure 21 of Reference 19 that both

f l the propeller and the duct were stalled at the higher pitch angles,
so that the measured thrust ratio at high pf is not actually
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comparable with the theory. For a longer, thicker, converging
shroud, hovering thrust ratios as great as two were obtained.
However, the duct length, ¢ = 0.625D, and convergence were too

large for comparison with the present theory.

Data by Grose

Shown in Figure 7 (c)are data by Grose, taken from Figures 18
to 21 of Reference 14. The shroud shown in Figure 7(c) (Grose's
"high-speed" shroud), was relatively thin and straight, as indi-
cated; however, it was rather long for comparison with the present
theory (c = 0.475D). The flow was observed to separate from the
leading edge and to reattach near the trailing edge of this duct
during hovering. The variation of thrust ratio TD(P)h/TP(D)h
with blade pitch is shown in Figure 7(c). In this case Mo, T
and TD(P)h/TP(D)h were all maximum for P = 15°. A second
"static" shroud, designed with a large radius inlet lip to prevent
separation, had thrust ratios as large as unity. Both ducts were
tested with a single propeller having four blades and no stators.

Propeller tip speeds were between 500 and 1200 feet per second

during these tests.

Data by Platt
Also shown in Figure7(c)are data by Platt, taken from Figure 19

of Reference 20 for the shortest of three ducts tested. This duct
was tested with counter-rotating propellers with blade tip speeds
between 400 and 600 feet per second. The front propeller had five

blades and the rear seven blades. The variatidn of thrust ratio
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with blade pitch is indicated in Figure 7(c). Here M., n,, and
TD(P)h/TP(D)h were all highest for the highest pitch angle tested,
namely B = 45°. It will be noted that the values of Tn(p)h/Tp (),
measured by Platt were far in excess of the values predicted either
by the present theory or by simple momentum theory. However, neither
of these theories is expected to be valid for this intermediate range
of ¢/D (c = 0.67D). Thus, the need for a theory in the intermediate
range of chord-to-diameter ratio is readily apparent.°

Flow separation and high noise level were observed by Platt only
at low propeller speed with this duct. At the higher rotational speeds
tested (corresponding to the data shown in Fig. 7(c¢)), the flow was
attached and the duct thrust was about twice as great as for separated
flow. This configuration is the only one known for which the duct
was essentially straight and thin and for which the flow was known to
be unseparated in hovering. The fact that the Grose duct was always
stalled and the Platt duct generally unstalled during hovering tests
apparently was not due to Reynolds number, because the maximum Reynolds
numbers based on tip speed and chord length were nearly equal for the
two cases.
Axial Flight

The thrust ratio for axial flight can be written (from Egs. (11},
(168), (169), and (200)) as

o) | (in 82 . 2)2 (TD/TP>hh
T o) v, v
v

(203)

1+ 2 1 +2=2
Y

8subsequent analysis has shown that for hovering flight the theoretical
thrust ratio is greater than unity for the intermediate range of c¢/D.
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Thus, the thrust ratio in axial flow is evidently given by the
value for hovering divided by 1 + 2(Vo/v). Furthermore, the ratio
Vo/y is a function only of the actuator disk loading when there
are no real slipstream effects. That is, Equations (169) and (170)

give (for a, = 0)

°< I‘-‘<

.'1'*1'\/‘3 +1 (204)
Yo Tp (D)

Thus, Equations (203) and (204) give the predicted thrust ratio in
terms of c¢/D and the measured propeller thrust coefficient. This
predicted value will now be compared with five sources of measured
data. The data will be restricted, whenever possible, to those
corbinations of propeller advance ratio A = vo/wR, and blade~pitch
setting P which give maximum propulsive "efficiency,"

[T * eyl Yo
P P

(205)

with fixed propeller loading Cp This combination should
P(D)

minimize the real slipstream effects (see Section 4.2) which have
been assumed to be zero in the present theory. Thus, the predicted

value of propulsive efficiency (Eq. (183)) with V_ = H = 0) is

Sm

the "ideal Froude efficiency."

(206)
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Data by Gill

Of the three Hiller ducts shown in Figure 7(a), only D4Pss
was tested in axial flight. Measured values of Tp and values of
Vj/v0 calculated from Equation (204) are plotted in Figure 8,
using data from Figures 178 and 179 of Reference 13, and the method
of data selection is indicated in Figure 8 for values of Vj/vo
of 1.75, 2.0, and 3.5.

For the values of vj/Vo indicated in Table VII, this pro-
cedure (A and B in each case selected for the highest value of
np) gives the results shown therein. The values of Vj/V° in
Figure 8 differ from those in Table VII because the former were
chosen to illustrate that B varies with Vj/V° for maximum 7.
The measured values of Np in Table VII are considerably smaller
than the predicted ideal Froude efficiency (Eq. (206)). Therefore,
real slipstream effects are probably not negligible as assumed in
the above comparison of data and theory.

It was not reported in Reference 13 whether this duct was
stalled at the above test conditions, but it was observed to be
stalled during hovering. Therefore, the low values of measured
thrust ratio as compared with theory could be due to flow separation

and/or real slipstream effects.

Data by Horn
The duct shape of Horn, shown in Figure 7(b), was also tested
in axial flow, and the values in TablevVIII were obtained from

Figure 13, Reference 17, by the method described above.
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As indicated in Figure 7(b),this duct is actually too long for
accurate prediction of the thrust ratio by the present theory. A
single propeller was. tested with £ fixed. The axial flight data
indicate a wide variation of thiust ratio with advance ratio. At
the advance ratio for which 17, .was highest, there is little
difference between the small values of measured and predicted
thrust ratio. Real slipstream effects were probably large, since
Np 2as measured was much smaller than the predicted ideal Froude

efficiency.

Data Allen

In Reference 21, data are presented for axial-flow tests of
two-bladed propellers with and without a duct. Three different
propellers were used which had pitch settings, p = 20°, 25°, and
30°. The duct shape, propeller location, and tip clearance are

indicated in Sketch F, below.

6"

-

” 38.3" D
| |

37.8" D 0.3"

l ———

36.1" D

Sketch F.- Ducted-propeller configuration
tested by Allen (Ref. 21).
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It can be seen that more duct divergence and "internal diffusion"
were incorporated into this configuration than in those of Figure 7.
From a plocv of measured data (taken froﬁ Fi;. 2, Ref. 21)
similar to Figure 8, the values in Table IX were obtained for maximum

np at the selected values of CTP(D)'

Both the measured pressure distribution over this duct surface
and the good agreement between the measured values of duct thrust
and those predicted by the approximate potential flow analysis
(of Ref. 21), indicate that this duct was not appreciably stalled
during high-speed forward flight with any of the three propellers
tested. However, the measured value of TD(P) gradually increased
and then suddenly dropped appreciably when Vo/nD was decreas?d
to values slightly less than those corresponding to the data used
above. It is therefore concluded that the duct was not stalled
for the data used above. At high advance ratios, TD(P) became
negative due to the large external duct divergence and friction
drag. Negative values of TD(P) also were measured without the
propeller. It is observed that high values of np were attained
and that the measured thrust ratio for g = 25° is greater than
the predicted ratio (for a straight duct). It seems reasonable

to attribute the latter fact mainly to internal diffusion.

Data Kruge
The ducted propeller of Kruger shown in Figure 7b was also
tested in axial flow, and the blade pitch setting was varied inde-

pendently over the range 15° ¢ B < 55°. The procedure described

L o 1+ 4% Y et e
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above was employed for selecting A and B for maximum p at

fixed C , and the values in Table X were obtained from a

T
data plotpé?Lilar to Figure 8. (Data from Fig. 21, Ref. 19, were
used for this purpose).

It can be seen that at the highest value of CTP(D) the
measured value of np Wwas not much smaller than the ideal Froude
efficiency and the agreement between the measured and predicted
value of thrust ratio is fair.

However, comparatively high values of B and A were used
during these tests. From the data (Fig. 21, Ref. 19), it appears
that stalling of both the duct and the propeller occurred at low
advance ratios, but that neither was stalled at the advance ratios
in Table X. Therefore, at the lower values of CTP(D) the poor
agreement hetween the theory and data for p and TD(P)/TP(D)
is attributed mainly to real slipstream effects. However, a small part
of the duct thrust was generated by interference with the compara-
tively large centerbody. This effect was measured (Fig. 7, Ref. 19)
and found to give TD(H) = 0,063 Aq,.

To illustrate that the above data reduction procedure gives
better overall agreement between theory and exp;riment, we shall
now use the more conventional method where for each pitch setting

B, the advance ratic A which gives maximum propulsive efficiency

is chosen. The results are given below!
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T To(p) 0.75 p = ¥;
" v, ch(n) . Effﬁ% Tom) P20/ | np A+l

(Eq. (206))

15 ]0.20| 1.12 |0.46] 1.0 0.14 0.50 0.81
25 «35 .33 .15 0.62 .054 .56 .86
35 .48 .22 .10 .80 .036 .59 .90
40 .55 .16 .08| 1.0 .029 .58 .93
45 .60 .17 .08] 0.92 .029 .55 .92
55 .65 .24 .111 1.0 .039 .52 .89

Upon comparison with Table X it is evident that the overall agree-
ment for thrust ratio is not as good by this method.

We shall now attempt to account for the real slipstream effects
in these data by using the procedure described in Section 4.2.2.
Witﬁ this method, we choose A and £ for highest Np for each
fixed value of CTP(D) as was done for Table X. However, we
shall use Equations (192) and (193) to estimate 'y/V° with pro-
peller swirl present in the slipstream, rather than using Equa-
tion (170) whigh is valid only for an ideal slipstream with no
swirl. Using this method, we find the values given below for two
values of C, which correspond to the first and fourth values

P(D)
in Table X.

S AT fo SRR BN S e
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T
T D(P) 0.75
Y D(P) -
c v, Tp(n) TP(D) 1+ 2(vo/W)

B° T
P(D) (pred.) (Eq. (203))

15 0.14 3 2.05 0.3 0.38

Blo<

25 .32 0.5 0.75 .6 ' .21

It can be seen from these results that the comparison for thrust
ratio is improved by including the effect of propeller swirl in
evaluating y/vo. The experimental values of Tp» CTDP’ and A
were used in evaluating 'y/Vo from Equations (192) and (193).

The relatively poor agreement for the lower value of CT may
P(D)

be due to frictional head loss which is not included in Equation (192),

since we had set Hl = 0,

Data by Grose

The ducted propeller of Grose shown in Figﬁré 7(c) was also
tested in axial flow with independent variation of blade pitch.
Using the data reduction method illustrated in Figure 8 (for
maximum np at fixed CTP(D))’ we find the values in Table XI
by using data from Figures 33 through 37 of Reference 14. It
can be seen that relatively high values of 17, were attained in
these tests, so that real slipstream effects were probably com~
paratively small.

Although this duct was apparently unstalled in axial flow
(from the discussion in Ref. 14), particularly at the higher

advance ratios, agreement between theory and experiment for the
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thrust ratio cannot be expected because the duct was too long

(c/D = 0.475) for accurate prediction with the present theory.
Furthermore, the frictional drag of the duct was relatively large
for these tests as compared with the duct thrust. In fact, it

was found that for each blade pitch setting tested, except £ = l7°,
there was a net drag force on the duct at the advance ratio for
which Np was maximum. Using the data at peak efficiency for

B = l7°, we find the following values.

: - —a
. To(p) . _0.070 e T vy
8| 2 [ty o) [ Vo ") eim) [Ty 12V g v
(pred.) (pred.)

0.41 0.0049

Thus, TD(P) was much smaller than predicted, in fact generally

negative, by the data reduction procedure using Mp for
max
fixed 8.

4.4 Forces and Moments at Angle of Attack

Here we shall compare the present theory with all the available
data for the static stability derivatives of ducted propellers
having relatively short, straight, thin ducts. There are evidently

two sources of such data: Reference 14 for only <FN at

a)D(P)

reiatively low angles of attack (0 < %y < 6.3°), and Reference 13

for both (CN ) and (Cm )D at relatively large angles
a/D(P) a/D(P)

of attack (50° ¢ a, < 80°).

gt R b ¢ A e R
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The static derivatives of the duct forces and moments as
predicted by the present theory will be compared with these two
sources of data as selected by the technique used in Section 4.3
above. That is, combinations of advance ratio and blade pitch

will be chosen which give highest Np at fixed values of CT .
P(D)

Data by Grose
The comparison of the Grose data will be made for the " high

speed" duct (shown in Fig.7(c)) at the highest angle of attack
tested, namely 6.3°. The data are from Figures 69 through 80 of
Reference 14.

The predicted value of the duct lift force, for %y L 1,

can be expressed as
Loe) ™ ¥p(p) * To(p) % (207)

which gives upon substitution of Equations (9) and (1l1) with

c/D = 0.475

LD(P) 2
c 2 ——% u 3,42 + 1.47 ViY— + 0.009 L— (208)

Ly D(P) ) 9.2% o Vo
The value of 'y/Vo will be obtained from Equation (170) using
the measured valug of CTP(D). Choosing values of B and A for
maximum Tp .at fixed CTP(D) from a data plot similar to Figure 8
gives the values in Table XII.

The duct was apparently‘unstalled during the test conditions
used above. All of the data used here were with a free-stream

Mach number of 0.2, the lowest value which was tested. The
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agreement between theory and experiment for the duct 1lift curve

slope is excellent, despite the rather large value of ¢/D.

Data by Gill “

The three ducts of Gill shown in Figure 7(a) were tested at
large angles of attack. However, only the data for the shortest
duct (D4PaS) will be compared with theory for nonaxial flow.
All of the ducts were probably stalled at the large angles of
attack tested.

The predicted coefficients of this duct.(from Egs..(9),«(11),
and (13), with ¢ = 0.15D) are

(CN)D(P) = gin a, (1.52 cos a, + 0.655 %) (209)
T
D(p) _ _ 1 0.680 il + 1.25 sin® a (210)
P(D) o
= L i
Cm)D(P) 1.30 v sin o, (211)

and from Equations (169) and (170), we have

Vi

D . & + cosa = C + 1 (212)
v, vo o \/ TP(D)

Using the data reduction method of Section 4.2.2 and the
measured data from Figures 58, 60, 61, 196, 198, and 199 of
Reference 13, we obtain the values in Table XIII for two angles

of attack, a_ = 50° and a, = 80°.

ot it
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It can be seen that the measured values of thrust ratio and
duct pitching moment are much smaller than predicted. This is
attributed to flow separation at the duct leading edge, since both
TD(P) and MD(P) depend primarily on leading-edge suction (see
Eq. (13)). The agreement is considerably better for (cN)D(P)
because it is less sensitive to leading-edge separation than is
duct thrust. The experimental coefficients (CN)D(P) are from

53 to 86 percent of the predicted values.

4.5 Summary and Conclusions for Comparison of Data and Theory

For hovering flight, the predicted values of the duct-to-
propeller thrust ratio are, in general, about twice the measured
values. This is probably due mainly to flow separated from the
duct leading edges. However, in the case of the duct tested by
Platt (Ref. 20), which was comparatively long, the measured values
of thrust ratio were much higher than predicted either by the
present theory (for small c/D) or by simple momentum theory (for
large c¢/D). Additional uncertainty is introduced into the results
by real slipstream effects as described in Section 4.2.2.

For axial flight, the data of Gill (Ref. 13) and Grose (Ref. 14)
are probably most comparable with the present theory, even through
flow separation probably occurred for the duct used by Gill; and
the duct used by Grose was actually too long for accurate comparison
with the present theory. The measured thruét ratios for these ducts

are about half the predicted values.
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The data reduction procedure described in Section 4.2.2 to

account for real slipstream effects was compared with the usual

- procedure, and it was shown that the comparison of theory and the

data by Kruger (Ref. 17) was considerably improved when the real

=

effects were included in the theory.

Excellent agreement is obtained between measured and predicted
values of duct lift force at small angles of attack (ao < 6°) using
the data by Grose (Ref. 14), despite the large chord/diameter ratio
(c/D --0.475). Only large angles of attack were tested for the
duct used by Gill (Ref. 13), and this duct was probably stalled.
Hence, the duct thrust and pitching moment were much smaller than
the calculated values. Nevertheless, the normal force was more
than half the computed value.

The following conclusions are drawn from the comparison of

data with the present theory:

(1) For the only source of data for C at small
Na (P)
angles of attack with a thin duct to which the flow was attached
: (Ref. 14), this derivative was in excellent agreement with the
| present theory. Hence, the dominant contribution of the ducted
propeller to the dynamic stability of a torpedo-like configuration

is well predicted by the present theory (see Section 3.5).

e e
. B

(2) At high angles of attack with flow separation from the

[oS—1
1

. duct (Ref. 13), experimental duct coefficients (CN)D(P) were from

53 to 86 percent of the predicted values. The measured values of
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duct thrust and pitching moment were much smaller than predicted.
This is due in part to real slipstream effects but probably more
to effects of flow separation upon duct leading-edge suction.

(3) There is an urgent need for experimental data on ducted

propellers which do not exhibit leading-edge separation.
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5. OUTLINE OF TEST PROGRAM

It is evident from the previous comparison of ducted propeller
data with the present theory that additional data are needed for
all flight conditions with short ducts and without flow separation
from the duct leading edge. There are no data whatever for the
dynamic stability derivatives of isolated ducted propellers. Fur-
thermore, there is an apparent need for parametric experimental
studies of such design variables as propeller position in the duct,
duct chord-to-diameter ratio, duct camber, etc. Basic flow studies
should be directed toward prevention of flow separation from the
duct leading edge and direct measurement of real slipstream effects.

The following experimental program is specifically designed
to provide ducted propeller stability derivatives for comparison
with the present theory. A model configuration is suggested,
specific tests are outlined for each flight condition, and the

stability derivatives are predicted for the suggested configuration.

5.1 Model Design

The ducted propeller shown in Figure 9 is suggested for ob-
taining data comparable with the present theory. The inner dia-
meter is constant so that tip clearance does not change with pro-
peller location. The radius of the inlet lip is relatively large

and is provided with boundary-layer control to prevent leading-

.edge flow separation. Boundary~layer control is considered

essential to prevent flow separation from the duct for all the

test conditions. Suction through either a slotted or porous tube
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seems suitable for boundary-layer control, and the precise shape
of the leading edge may have to be investigated. Counter-rotating,
variable-pitch propellers should probably be used to minimize swirl.
The Hiller rig (at DTMB) having three-bladed propellers with a
diameter of 24 inches and a spacing of 1.5 inches (Ref. 13) might
be used with a modified duct. The propellers should be movable in
the duct to at least two well-separated positions (fore and aft).
If the propeller axial location is varied in the duct, the
inflow velocity distribution to the propeller disk will vary with
axial position of the propeller. The present analysis assumes a
uniform disk loading, and it may be necessary to vary both blade
setting and blade twist to obtain a uniform disk loading experi-
mentally. On the other hand, changes in blade setting alone may
give a good enough approximation to uniform loading. 1In order to
investigate this point, we have calculated the radial profile of
axial velocity at the entry, exit, and central duct planes for
c=0.2D and a = 0. T results (Fig. 3(a)) show the axial
velocity profiles induced by the bound vorticity on the duct and
the trailing vorticity shed from the disk.. It can be seen that the
profiles are relatively flat, except in the range 0.8 ( r/R ¢ 1.
This is particularly true when the axial component of the free
stream velocity, V0 cos a, is added to these profiles to obtain
the total axial velocity profile. Thus, the existing dual pro-
pellers used with the Hiller rig seem adequate for the study out-

lined here. (These propellers were designed to operate in a
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uniform flow.) Furthermore, actual duct thickness and boundary-
layer effects tend to decrease the velocity near the duct leading
edge from the computed value, which is singular as shown in Figure
3(a).

In the Hiller rig, duct forces and total configuration forces
were measured (Ref. 13). By subtraction, the forces on the propeller
plus motor housing were obtained. By use of a dqummy motor, the
aerodynamic force on the driving motor housing was shown indirectly
to be small. However, it would be desirable to measure this force
directly, particularly at angle of attack, by use of a separate
fairing or wind shield over the motor. 1In this way, any appreciable
disturbance to the slipstream and/or error in the measured aero-

dynamic reaction on the propeller could be measured directly.

5.2 Hovering Tests

The following specific procedures are suggested for the hover-
ing case: Use only the highest practical propeller speed (and
Reynolds number). Observe flow separation and measure minimum
boundary-layer-control flow required to prevent it. Using this

amount of boundary-layer-control, measure TD(P)h’ TP(D)h’ P, w.

Compare thrust ratio with theory by selecting data as described in

Section 4.2. For each value of B, traverse the slipstream and

measure the magnitude and direction of the time average-velocity

vector to determine whether the swirl is actually a minimum when
™ is maximum. The traverse probably should be about one

diameter downstream of the duct exit plane in order to minimize

-
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both blade interference with the probe and excessive mixing of the
slipstream with entrained fluid. Total pressure should also be
measured to determine whether it is nearly constant across the
wake, as assumed. Use at least two propeller positions in the

duct, varying 3 at each.

5.3 Axial Flow Tests

If, as predicted by theory, there is found to be little effect
of propeller axial position on TD(P) /TP(D)h for hovering
(measured at optimum np for each position), then only one central
position might be used in the axial flow tests. However, at least
one check case should be made to determine whether propeller
position also has little effect in forward flight, as predicted.
Repeat the procedure described for a sufficient number of advance

ratios to establish the values of C (B,A), np (g,A), and

T
TD(P)/TP(D)‘ at maximum o Comparepégip)/T}(D) with theory.

Use the duct alone to see if TD = 0 as predicted for zero duct
thickness and to determine whether the use of boundary-layer control
actually has little effect upon TD (aside from preventing flow
separation in the presence of the propeller),

5.4 Tests at Angle of Attack

Repeat the procedure in Section 5.3 for a sufficient number
of values of oy in the range 0 ¢ a, < 90° to determine the
effect of %, on the aerodynamic reactions (including the moment
and normal force on the duct and on the propellers). Use the duct

alone for comparison with theory (at Cop () = 0) and also for
p(D
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comparison with results obtained for the value of )\ for which the
propeller is free-wheeling. The latter comparison will indicate
the effect of propeller losses. Traverse the slipstream to deter~
mine swirl, variation in total pressure, and deflection of the slip~-
stream boundary by the free stream (if feasible in the presence of
mixing). For each run, use sufficient boundary-layer control to
prevent flow separation everywhere on the duct. Compare the static
stability derivatives and thrust ratios with the theory for which
each of these is given as a function of c¢/D, CTP(D)’ and a,
at optimum Mp-

Many of the tests suggested herein are actually being planned

at DTMB and should be coordinated with that facility.

5.5 Pitching (q) Tests

In evaluating stability derivatives for pure pitch (as on a
rotating arm) use the same blade pitch settings which gave optimum
Mp in Section 5.4 for each value of a,- Determine the boundary-
layer control required to prevent flow separation for each run (or
determine this in Section 5.4 versus Reynolds number and use the
results here). Use maximum arm radius and speed to maximize Reynolds
number and minimize boundary-layer control requirement. Use the
duct alone to obtain additional information (as in Section 5.4) at
angles of attack for which separation can be prevented. Measure
the aerodynamic reactions on the duct and propellers, propeller

power P and propeller rotational speed w. Compare with

i

SR,
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theory which gives these (as function of ¢/D, CTP > Qg Dq/vo
(D)

at optimum np). ‘If a rotating arm of radius Ra is used, then -

VO
q== (213)
Ra

and the dimensionless pitch parameter is

Dg . D_ -
v = (214)
[0} a

Several values of this ratio should be tested in order to deter-
mine the maximum value to which each aerodynamic reaction remains

proportional to Dq/vo as predicted by theory.

5.6 Plunging (&) Tests | |
Test with pure sinusoidal plunging with boundary-layér con-

trol as required to prevent separation. Cover a sufficient range

of %y and A to establish the functional relationship of each

variable. In addition to the complete cohfiguration, test the

duct alone as in Section 5.4.
The present theory (for low frequency, small angle of attack,

and low‘aﬁplitude oscillation) predicts that the duct normal force i

due to & is independent of A, Qs and frequency; that is, i

c® | (215) |
(cnd> T (
%/ p(p)
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This theory should be compared with data of low frequency, but
higher frequencies should also be tested. All the aerodynamic
reactions on the duct and propeller should be measured. Both the
steady values and the time variations should be measured for com-

pa}ison with previous tests (Sections 5.3 and 5.4) and with theory.

5.7 Predicted Coefficients and Derivatives
The static thrust coefficients and dynamic stability deriva-
tives for the proposed ducted propeller configuration shown in

Figure 9 are given below. They are obtained from Sections 3.1 and

3.4 (with ¢ = 0.2D) as functions of the disk loading Cop and
P (D)
the flight conditions (ao, qg, &). In the equations given below,
W/Vo - CTP(D) + 1 - cosa, Myp) is a positive pitching
moment about the duct midchord diameter, and MP(D) is about a
propeller diameter.
Hovering Flight (Vo = 0)
For hovering flight, the predicted thrust ratio is, from
Equation (17),
T
D(P)
—2D a2 (1580 - 2)2 = 0.724 (216)
T ST
P(D),

Axial Flight (ao = 0)

For axial flight, the predicted thrust ratio is, from Equations
(11) ’ (16.8) » and (169) ’

e s b B
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(217)

To(p) _ _0.724
TP(D) 1+ 2 Vo/'y)

Steady Flight at Angle of Attack
For this flight condition, the static coefficients of the duct

in the presence of an actuator disk are from Equations (9), (11),

and (13).

- A
<CN) sin a 6.91 cos o + 0.845 3 > (218)

D(P) o

Yl 2

Cc = (0,724 + 1.46 sin® o (219)

( T) D(P) v 2 °

o
c ) = 1.45 X sin q ’ (220)
( M) b(p) Vo °©

The only static derivative of an isolated dual propeller at
small angle of attack, with constant blade pitch and chord, and
with A = Vo/wD = 0.1, and 0 = 4Bb/37D = 0.1 is from Section 3.2.1,

a normal force derivative given by

. <CN> = 0.05, 0.10, 0.16 for B = 10, 20, 30° respectively,
a
P (221)

(cn *> -0 (222)
a p

For the Hiller propellers, we have o0~ 0.126 (from Reference 13).

since

Due to duct interference there is a pitching moment on the

propeller which is estimated (from Eq. (65)) to be given by
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c
. ——1-‘—)-<(: >)D"P = w, 0.451, 0.015 (223)
Ma/D (P)

with the propeller located at the entry, central, and exit planes

of the duct, respectively.

Pitching Flight
For small rates of pitch, the duct gq derivatives in the
presence of an actuator disk, are from Equations (18), (20), and

(22),

C = 0.675 4~ + 0.126 cos a (224)
( Nq)D(P) Vo °
C, = ~0.0460 sin a (225)
( Tq)D(P) °
c = 0.0376 X (226)
( mQ>D(P) Yo

The q derivatives for an isolated propeller at a = 0

are, for the previously assumed propeller parameters: a side

force derivative given by

- (c =0 (227) ;
( Yq)P §
and for a single propeller a pitching moment derivative given,

respectively, by

" (Cmg)p T 0017 0:17, 018 for B = 10°, 20°, 30° (228) ﬁ

Note that (Cm > for a dual propeller is not given in Reference 5
q/P )

nor is it calculated herein.
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Due to q interference from the duct, there is a pitching
moment on the propeller which is estimated (from Eq. 71) to be

given by

H o 2l
C
Mg

with the propeller located at the entry, central, and exit planes

= + 0, -12.0, -10.2 (229)

of the duct respectively.

Plunging Flight

For small angles of attack, the estimated normal force deriva-

tive of the duct due to plunging (Eq. (30)) is

C = 0.126
N, (230)
(%) .

There is no thrust force or moment due to &; i.e., <CT > bl
, a
D(P)

Cos)_, "°
m.
%/ p(p)

The estimated reaction on the propeller due to plunging, for
constant blade pitch and chord and ay <€ 1, 1is only a normal

force with (see Eg. 41)

(CN.> = 7B (g— sin a) 2 (231)
¢/ p(D)
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6. CONCLUSIONS

A theoretical analysis has been presented for predicting the
forces, moments, and stability derivatives of an isolated ducted
propeller. The analysis is an extension of the steady-flow anal-
ysis of Reference 1 in which the duct is fepresented as a straight,
short, thin ring surrounding a uniformly loaded actuator disk
which produces a slipstream velocity much greater than the lateral
component of the flight velocity (Vj >> Vg sin ao). This repre-
sentation, of course, requires that the minimum disk loading (for
which the theory is valid) increase with angle of attack. In the
present work, the approximations of Reference 1 have been investi-
gated in detail and the effect of moving the propeller in the duct
has also been taken into account. In addition, the interference
effect of the duct on a real propeller with finite blades has been
incorporated, and the cases of pitching and plunging motions have
been treated. An experimental program specifically designed to

check the theory has been outlined.

6.1 Theoretical Results for Isolated Ducted Propeller

The results quoted here are applicable to all angles of attack
to the extent that the propeller can be represented by an actuator
disk. Any results pertaining to the forces on a propeller with
finite number of blades, however, are restricted to small angles
of attack. With this restriction, the following conclusions can be
drawn from the theoretical analysis of an isolated, moderately

loaded, ducted propeller of solidity 0.1:

L e 7T
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(1) Except for thrust force and pitching moment due to pitch
(about the duct center), the forces and moments on the duct are
considerably larger than those on the propeller.

(2) when it is located within the duct the propeller produces a
positive dampingf%wcm ) which is greater than the negative damping due
to the duct. This fagt is significant for STOL airplanes with ducted
propellers mounted on a lateral axis through the center of gravity.

(3) The forces and moments acting on the duct are unaffected
by the location of the propeller inside the duct.

(4) The duct interference on the propeller produces a large
positive damping, unless the propeller is placed near the duct lead-
ing edge where it produces large negative damping.

(5) The normal force, provided by a ducted propeller, is from
20 to 60 percent greater than for a flat plate of the same projected
area, even for zero disk loading.

(6) All of the static and pitching derivatives for the duct in
the presence of the propeller are found to increase with propeller
disk loading. Some derivatives inqrease nearly proportionately to

disk loading, and others are nearly independent of it.

6.2 Theoretical Results for Torpedo-Like Configurations

From the analysis of a torpedo-like configuration (in axial
flow) consisting of a body of revolution with rear-mounted ducted
propeller, the fgllowing conclusions are drawn:

(1) The dominant contribution of the ducted propeller to the
damping is produced by the normal force on the duct due to its
induced angle of attack arising from the gq motion. This damping

is increased at higher disk loadings.

R— ] [ —
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(2) Both cC  and cmd due to the hull are large and are
associated with the hull boundary layer, which has been assumed to
oscillate as a solid body with the hull. Therefore, a more refined
analysis seems warranted, even though cmq and Cmd due to the
hull tend to cancel one another.

(3) The thrust interference between the ducted propeller and
the hull appears to be large, depending upon the geometry and the
propeller disk loading. Therefore, a more refined analysis of this
effect appears to be warranted.

(4) Because of the radial inflow produced at the base of a
symmetrical hull with attached flow, such a hull is expected to
affect the stability derivatives of a rear-mounted ducted propeller

in the same direction as would an increase in propeller disk load-

ing.

6.3 Comparisons with Experiment

The comparisons attempted herein between the present theory
and available experimental data have indicated the following con-
clusions:

(1) Only one reference (Ref. 14) provided data free of flow
separation for a check on any of the calculated stability deriva-
tives. This check showed that, for small angles of attack, the
present theory gave excellent predictions of the static stability

derivative CN . The dominant factor in the dynamic stability of
a

the torpedo-like configuration at zero angle of attack was found

to be the lift curve slope of the isolated ducted propeller.
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(2) Only one reference (Ref. 21) provided data for a short
duct free of flow separation as a check on the thrust ratio in
axial flow. For this case, the theory over-predicted TD(P)/TP(D)
by about 20 percent at the lowest advance ratio. The error was
larger at higher advance ratios because of duct drag not included
in the theory.

(3) In one case of a rather long unseparated duct in hovering
flight (Ref. 20), the measured ratio TD(P)/TP(D) was far above
that predicted by either the present (small c/D) theory or the
asymptotic simple momentum theory for infinitely long ducts. There
thus appears to be a real need for a theory valid for ducted pro-
pellers of intermediate chord/diameter ratios,

(4) There appear to be no experimental data for pitching
moments on unseparated ducts during steady flow at angle of attack
or for either normal force or pitching moments on unseparated ducts
at high angles of attack. However, the static stability derivative
CN predicted by the present theory at angles of attack of 50° and
808 agreed within about 15 to 45 percent with the data of Reference
for which the flow was probably separated at the duct leading edge.

(5) There are at present no experimental data for the dynamic
stability derivatives of isolated ducted propellers.

(6) The data reduction technique presented herein succeeded
in bringing theory and experiment into closer agreement than would

be indicated by comparisons made at the same advance ratio and/or

blade setting.

13
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7. RECOMMENDATIONS FOR FUTURE WORK

On the basis of the foregoing conclusions and the investiga-
tions undertaken in the present report, the following recommenda-
tions are made regarding future theoretical and experimental work

on ducted propellers:

(1) There is an urgent need for systematic experimental data
on ducted propellers having relatively straight, thin ducts of
small chord/diameter ratio without leading-edge separation at all
flight conditions to check the theory. A program designed for
this purpose has been suggested herein.

(2) A theory should be developed for treating ducted propel-
lers of larger chord/ diameter ratios than are treated in the
present theory. In addition, the effects of duct camber and thick-
ness should be investigated.

(3) The present theory should be extended to cover nonuniform
disk loadings and wake swirl.

(4) The effects of interference between a ducted propeller
and a wing, ground plane, or adjacent ducted propellers should be
s tudied theoretically, especially for VTOL configurations.

(5) The theory should be extended to study the speed deriva-
tives (0) of a ducted propeller at angle of attack, which may be
significant in the transitional flight regime for a VTOL aircraft.

(6) A more refined analysis should be carried out to study
the mutual interference between the hull and rear-mounted ducted pro-

peller for a specific modern torpedo and for a high-speed submarine.
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This analysis should include a further investigation of the aver-
aging process used herein because of its possible significant effect
on the duct derivative cNa which evidently dominates the damping
in pitch of the configuration.

(7) Engineering calculations should be made to investigate
the relative importance of the ducted propeller stability deriva-
tives on the overall stability of vehicles in the following cate-

gories:

(a) VTOL aircraft employing tilting ducts.

(b) Vehicles employing multiple ducted propeilers in which
mutual interference may be important but ground
effect is not. '

(c) Ground-effect machines.
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APPENDIX A

DUCT SURFACE VELOCITY DISTRIBUTION W FOR
PURE-PITCH FLIGHT CONDITION

As explained in Section 2, the complete velocity distribution

W for pure pitch is composed of three parts (see Fig. 2): w, + W%
i
due to hovering, Wy t Yy due to free stream vV, at angle of
i
attack a,, and Vg + Wa due to pitching rate q about the

i
duct midchord diameter. Here we shall determine successively these

three parts of W. The derivation of the first two parts will be
compared with Reference 1, from which it is taken, in order to
point out certain detailed errors. However, the final result of
Appendix B (after integration of W? and cancellation of higher
order terms in c¢/D) gives net duct forces and moments which are
identical with the results given in Reference 1 for both hovering

and steady flight at angle of attack.

A.l SURFACE VELOCITY DUE TO HOVERING, wy + W%
i

For no motion of the duct (hovering flight), the duct surface
velocity distribution Wy is induced by the vorticity shed by
the actuator disk (y in Fig. 2) and by the bound vorticity 02N
which is generated on the duct to satisfy the boundary and Kutta
conditions (considering vy to lie in a flat surface). Finally,
as described in Section 2, Whi is self-induced by Yh due to
the fact that this vorticity actually lies on a ring rather than
on a flat surface.

The complete surface velocity distribution on the duct for
hovering flight, wy, + Wii, can be obtained from the results of

this section by adding Equations (A.15) and (A.47) for w, and
Equation (A.53) for W% . This gives
i

i

on

i e o




w, +W, = qu + w + W
h hi ¥s Fg
L_ 8D _
" 2D [“‘ c

i

A-2

ln(l - cos 9)] (1L ~ cos 0)

£ 16D _ 4D 1
+ 2D <1n c 1) (an +2)}

On the inside and outside of the duct trailing edge, wh/y

is 3/4 and -(1/4), respectively.

For Wﬁ /Y, we obtain the

i
following values
c/D W%_/W
l .
0 0
0.1 0.136
.2 . 189
.4 .240
Thus ﬁi is somewhat smaller than wy

i
It is assumed that the disk loading C

- L )3T 16D _ é
27 2 6 +{1ln ps 2) tan )

(A.1)

at the trailing edge.

or pressure

rise across the disk Ap, is constant over the disk, which is

located at the exit plane of a thin duct of constant diameter

D. The flow field generated by the actuator disk is induced by

the shed vorticity

v which surrounds its slipstream.

The vy

vorticity distribution is approximated by a sheath of vorticity

uniformly distributed over a semi-infinite cylinder as shown in

Figure 2 and Sketch A.l.
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xs‘ €,

Sketch A.l.- Ducted actuator-disk nomenclature.

A.l.1 Velocity Induced by vy Shed From Actuator Disk
The velocity components induced directly by <y at the duct

surface, are (p. 319, Ref. 6):

uw =L [I+ Vi - k2 K(k)] (A.2)

Vg 2T 2
- _ 2
"3 [(k k) K(k) + & E(k)] (A.3)

where K(k) and E(k) are the complete elliptic integrals of first
and second kind, respectively, as defined in the List of Symbols.

The series expansions of these functions are (p. 307, Ref. 6):

x(k)-tn———i——«u%tn —4 _ _ 1\ 1 -x3)
Vi - k2 Vi - x2
9 4 yi 2 5
+ 2 fin —242—_1 (1-k)+... (A.4)
64 3
: Vi - %2

FTpRp——-

S0 ettt o SRR s




s Ln___‘l___z__%>(1_k2)2+ (A.5)
Vi -x

1 -
where
k2 - 1 > (A.G)
1 + %
D
ga: 2
1 - k2 -= D > (A-7)
[
1 + P
D

and for Equations (A.2) and (A.3) we have € = £ as shown in

>t
Sketch A.l. Now, if |g| << |D L then %2 = 1, and the leading
terms in the series expansion of E and K are simply

4D

K(k) = ln ¢

(A.8)

E(k) = 1 (A.9)

The duct lies on the surface r = D/2, -c < gt < 0. Since
we shall assume here that ¢ << D, the velocity components induced
by the actuator disk on the duct surface are given approximately
by the leading terms in the series expansion of Equations (A.2)

and (A.3) which are (for ¢ = gt)

Nayd

2€t

= X_ L, L
u D

Ys 27 2 Er ln 8 - 1In

(A.10)
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2¢
X - —t
V'Ys =5 l:(z ln 8) + 1In D

| e

These equations agree with Equations (A.2) 'and (A.3) within
‘1 percent and 10 percent, respectively, when

D
<3 (A.12)

te

A.172 Complex Potential F Required for Boundary Condition
In order to make the duct a streamline, a distribution of

vorticity must be added along the duct chord which induces a

radially inward velocity component Ve equal to the radial

component VY (Sketch A.l). To do this, we shall find a complex
s

potential function F(z) which gives Ve = VY by treating a
s 5
chordwise strip of the duct as a two-dimensional airfoil.l It is

convenient for this purpose to introduce the Joukowski transfor-

mation (p. 159, Ref. 12,)thus
= £ l - i
z=3 <? + C) x, + iy (A.13)

and with the actuator disk at the trailing edge of the duct, we
have from Sketch A.l
s t 2

The chordwise strip (- ¢/2 < x, < + c/2) maps on to the unit
i6

circle Cs = e such that on the duct surface z = X, = c/2 cos 9.

Thus, we can write Equations (A.10) and (A.ll) in terms of € as

follows:

1This approach is justified with the restriction that ¢ << D.

5 35 . e S iR




u = = {121; - ?cﬁ (1 - cos 8) |1In -BC—D - \n(l - cos 6)]} (A.15)

- X - 8D -
v,Ys o [2 ln el in (1 cos Gﬂ (A.16)

Let the required complex potential function in the { plane

iFh = ian
F'-¢'+i¢'-FLnC+ZT (A.17)
n=o o

Then the complex velocity in the ({ plane is given by (p. 150,
Ref. 12)

ir 2 ia_n
- D § - —n
2w§ C(n+1) ' (A.18)
n’

On the circle (Cs- ele), we have

-]
1F .
Voo TR —h -i : ~(n+1)1i6
ug ivg 27 © ia ne {(A.19)
s s &2

The complex velocity at a corresponding point in the physical

plane is

- i -—L—S-: '
Up - ivp = 3 az (uF ivg (C - ) (A.20)
so that on the flat plate (Cs = ele) we have, in terms of 6,
ié

. . 2¢e
u - iv - u ' - v ' ——— (A.21)
Fs Fs (Fs Fs> ci sin 6
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Substituting Equation (A.19) into (A.21) gives

r 2a_n .
F F Tc sin 6 c sin 6 © (A.22)

Therefore, Ve is finally found to be
]

00
2a_n
+vp sin 6 = Im jg: J‘ (cos né - i sin né) (A.23)
s

nso

Now let us express VY in the same form as Ve - The
s s

following identity can be found on page 202 of Reference 22)

[~}
In(l -~ cos 8) = - \n2 -2 }E; % cos né (A.24)
n.
By use of this and the identity
2 8in 6 cos n6 = sin(l + n)é + sin(l - n)éb (a.25)

Equation (A.16) can be written in the form
. - _ 16D .
V,Ys sin 6 oy {K} tn =2 sin 6
0

- Z % sin(n + 1)6 - sin(n - 1)6]} (A.26)
=

S Fs

to satisfy the boundary condition of zero normal velocity through

Now, setting Vy (Eq. (A.26)) equal to v (Eq. (A.23)) in order

the duct surface, we find that (an) is real, so that Equation (A.23)

can be written as

[-.]
2a_n
Ve sin 6 = Zi; - —??— sin né (A.27)
s

i

[}

Shtege var B0 n

it ilon

o A
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Substitution of Vy for wvg (Eq. (A.26) into Eq. (A.27)) then
s s
gives
00
4mna
16D . n _.
(é = ln =57 )sin e + jz; Yo sin né
n-
[
+ - 8in(n + 1)6 sin(n - 1)6 _ 4
n n
n=1
(Ar.28)

By reindexing, this equation can be written in the following form:

4vna 4vna
16D 2 1 .
(2- ln—-—- sin 6 + ( n+1>sm né

sin nbé _
n -1 0
n=2

(A.29)

Consequently, the coefficients a, are found to be

a, =0 )
- - <_ - _6_>
a 41r > (A.30)
En - '—lg'—_' for n > 1l
2mn(n“ - 1) W,

Thus, Equation (A.l17) for the complex potential can be written as

ir
F' = ¢' + iy’ E;n in § + i 1_

r-n ia,

2
&= n{n - 1)
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Now, on the circle (Cs - eie), we have
e 00

T
' . « : i el
Fs' - <l>s + iy, 37 + é J.an(cos né - i sin n@) (A.32)
Thus, substitution of Equation (A.30) gives

I‘hG

S M £ -3 ~8in n6é :
¢s a7 + 2T > + a, sin 6 (A.33)
&= n{n- - 1)

In order to evaluate the series the following technique is used
(from Ref. 1): We use the identity from Reference 22, page 188
sinnd 1 -6 4 (g ¢ 2 (A.34)

n 2
n=i

We then form the product

(cos 6 - 1) Z gignne - _;._Z sin(n+1)0 + s;nn(n-lle -2 8in né
J n-
(A.35)
Now, by reindexing, we can write Equation (A.35) as
(-]
8inpd  _T=-8 (59-1)+2sin6, 0<£6<2r
2 2 4
n(n® - 1)
n-
(A.36)
Thus, substitution into Equation (A.33) yields
¢.__£_tﬁ+lg I—;-i(cose-l)+l in 6|+ a 8in 8
s 2r 21 2 4 ® , B
(A.37)
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Finally, substitution of Equation (A.30) and differentiation with
respect to 6 gives the surface velocity distribution on the unit

circle due to F. That is,

od_' r
| w8 .. B Yo jl-cos0 6 -7, 3
wFs 36 a1 T 271 [ 2 + =3~ 8in @ + F cos ©
1, 16D _5
+<2 in =2 4>cos 9] (A.38)

A.1.3 Fulfillment of the Kutta Condition

The value of the total circulation around the duct in hovering
Fh will now be determined such that the Kutta condition of finite
velocity is satisfied at the trailing edge of the duct. Mathemati-
cally, this requires that the trailing edge be a stagnation point
in the transformed plane. That is, ws' =0 at 6 = 0. From

Equation (A.38), with 6 = 0, we have at the duct trailing edge

r
- SR D YT )
(wF ? = wp 5r "~ 21 (l ln =2 (A.39)
s - g) t
Xs™ 2
This is only the part of wt' which is due to the potential
function F. However, w& ', the part due to ¢ is zero, as shown
t

below. From Equations (A.l15) and (A.16) with 6 = 0, we find
that the velocity components induced by v at the trailing edge

of the plate are

(A.40)
v - L [2 - ln %? + n{(l - cos 6)]
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The complex velocity in the circle ({) plane is related to

that in the physical plane by
Ve iy e -iv )42 A.4
uy iv, (Pv v, )a (A.41)
Evaluationat 6 = Q0 gives

- 3 ' - - 3 c P2 . .
u'Yt lV'Yt (u'Yt J.v,Yt> > (sm @ + i 8in 6 cos 6)

6=o
(A.42)
Hence, substitution into Equations (A.40) gives

u = %; sin @ cos 9 in(l - cos G)I (A.43)

Y f=o

[ Ql a2

v - s8in® 6 In(l - cos 9) A.44
Y 4 ( G=0 ( )

Evaluation of Equations (A.43) and (A.44) shows that they are

each equal to zero; therefore, w%t' is zero.
Thus, if we set wFt' equal to zero in Equations (A.39)
to satisfy the Kutta condition, we find that
Th e (l.n 16D | 1) (A.45)
2r  4rw c

Finally, substitution of Equation (A.45) into Equation (A.38)

gives the surface velocity on the circle

' - lE - 16D - -
wFs s [(2 n p ) (1 cos O0) + (6 T)sin 9] (A.46)

Hence, we find from Equation (A.41) that the surface velocity

distribution on the plate due to v is

%




2w, !
o mwg 9o m
Fs Fs Xg c sin @
-_1_(_ ;e_n) g -
Y [ 2 - In =% Jtan 3 + (8 T) (A.47)
We have now found the hovering velocity distribution (wh =u +wg )
: s s

induced by vy and v, . This result (Eq. (A.15) plus (A.47)) is

identical with Equation (12) of Reference 1. Now we seek the

averaged self-induced component W% , as discussed in Section 2.
i

A.l.4 Self-Induced Velocity Wh
i

As described in Section 2, there is a surface velocity compo-
nent whi which is self-induced by the bound vorticity Y due
to the fact that it lies on a ring rather than on a flat surface.
We shall find ;£i’ its average value, by summing the elementary

velocity components induced by the vorticity (yh ng) on each

elementary ring deR of the duct (Sketch A.2).

¢ dv
e Ty
N dn,
<) D

,
Yh dﬁR
A

Y

Sketch A.2.- Velocity components induced by a
vortex ring of constant strength.
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Each elementary ring consists of a vortex ring of constant strength

(with respect to ¢) equal to v, df; where £ is the axial

b b S et A

distance from the ring to a fixed point on the duct surface. Thus

-c < QR < ¢. For ¢/D << 1, we can write (see pp. 306 and 307 of
Ref. 6)

4| _, Yp %R
27D

€p << D (A.48)
Th %R
h Zv&R

Thus, dvh , the radial velocity component, is equal to that

for a straightsline filament of infinite length (D = ») if
QR << D. Consequently, vhs and the boundary condition have been
accounted for correctly in the foregoing (flat plate) analysis.
However, we must account for U, the axial component of velocity
which is self-induced by the bouid vorticity on the duct, since
Uy, is zero for a straicht line filament.

s

Following the methcd used in Reference 1, both the bound

vorticity distribution Yp and the self-induced velocity wp
i
will be averaged over the chord as follows. Corresponding to the

surface velocity Wy, we obtain the bound vorticity distribution

[P AEIPR

Ty = ¥R (6) - w2 - 0) (A.49)

Thus, using Equations (A.15) and (A.47) for Wy, we have ]

ECR R P
Yh ,r[tn 2 -2)tan 2+ 7 -6 (A.50)
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P

The average value of Yy, over the chord is therefore

<
ta

% - . D
; yh-%f 'yhdxs-%['yhs:mede-%(l.n-—-l) (A.51)
c ‘ .

For this constant vorticity, Equation (A.48) gives

B e
£ +Xg

- Z?D (in 4D - 1)c - (—-- X, [Ln (% - xs> - ]

(50 s) [n (5 =) - 1)

Averaging this expression over the chord gives the averaged self-

induced velocity W% as
i

<
2
= 4 .1
Yn = 2wD (ln + )

b;
P-
]
0=
[
+
m£‘~—_\

- (m 18D _ 1) (m 40 , 1 (A.53)

This equation is identical with Equation (13) of Reference 1,
except for the last term (+ 1/2) which is incorrectly given as
(- 1/4) in Reference l. The accuracy of the averaging process is

examined in Appendix D.
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A.2 SURFACE VELOCITY DISTRIBUTION FROM V° AT ao
Here we shall find the second part of W shown in Figure 2,
namely wy t Whi which is due to the free stream Vo, at angle
of attack a . The first component Vo is induced by the boun&
vorticity Ya which is generated to satisfy the boundary condi-
tion and the Kutta condition, and by the wake vortex filaments
draw which are shed from the duct at angle of attack. Finally,
as described in Section 2, Wa‘ is self-induced by Yo which lies

1
on a circle.

A.2.1 Determination of L

The elementary velocity induced by a semi-infinite trailing
vortex filament in the duct wake (draw in Fig. 2 and Sketch A.3)
is given by the Biot-Savart law (p. 304, Ref. 6). Consider the
radial, axial, and tangential components of the induced velocity.
The variation of the radial component along the chord is negligible
because the trailing vortex filaments extend to + ». Consequently,
we can set ¢ = 0 as in Sketch A.3. Also, there is no axial com~
ponent of induced velocity, and the effect of the tangential com-
ponent is considered to be negligible here (as in Ref. 1).

The radial component of velocity induced at ¢ by the vortex

filament dra at ¢' 1is given by (p. 304, Ref. 6)
W

ar,

-dv, = s (A.54)
™ 47D tan (-¢—-2-—(P—)

e
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; —_———
D dr‘a des
ao dra
¢ v, , N—w
. ¢ .
v, | ¢
]

in a
V° sin o €8 ¢

Sketch A.3.~ Trailing vortex filament.

The strength of the trailing vortex filament dPa is equal to
w
the decrease in Py the flight induced bound vorticity on the

duct, as one moves arocund the ring. Thus, we can write

ar
- '
<j¢-> d¢

des ) 47D tan (EL:52L> (835)

Now, for a flat plate in uniform flow at angle of attack, the Kutta

condition gives the circulation as

rfa”‘ cho sin %y (A.56)
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where Vo sin a, is the normal velocity component. The normal
velocity at each chordwise strip of the duct due to both the free

stream and the wake-induced velocity (Sketch A.3) is given by
V, 8in a  cos ¢ - vws (A.57)
Thus, the circulation about the duct chord is, from Equations (A.55)

and (A.56),

2T

ar e

Fa = 'n'cVo sin a, cos ¢ - fﬁ f d—(,;%) cot -Q-—Z—L d¢ (A.58)
o

The method used in Reference 1 to solve this integral equation for

r,(¢) is to assume initially that

I, =Ty cos ¢ (A.59)
where Fk is a constant, such that

dFa i
—_-d¢| - - I"k sin ¢' (A.GO)

Substitution of this value and the trigonometric identity

& -9 1+ cos(p - 9')

cot /3 sin(¢p - ¢') (a.61)
into the integral in Equation (A.58) yields
2r
- '
sin ¢' cot 9—3—9— d¢' = =217 cos ¢ (A.62)
o
Substitution of this value into Equation (A.58) then gives
T
I = me \Vy sin o, - 3D (A.63)

i ra e
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which satisfies the initial assumption that Iy does not depend

on ¢. Solving for rk gives the ¢ variation of duct.circula=- - ——

tion from the free stream and wake when the Kutta condition is
satigsfied everywhere at the trailing edge. Thus, we have from
Equations (A.59) and (A.63),

TV, 8in a

r, = Pk cos ¢ =

o cos ¢ (A.64)

Ic
1+ 2D

The term wc¢/2D in the denominator is due to the wake. The
Surface velocity distribution vy induced on each chordwise strip
of the duct by the free stream and wake is assumed to correspond
with that for a flat plate at incidence so that (from Eqs. (A.78)
and (A.80))

r

-2 ]
W, = V° cos a, + s tan > (A.65)
and, with Equation (A.64), we find that
Vo sin a 9
w. =V cos o + —2>———=Lcos ¢ tan > (A.66)
a o ° 1 + gg 2

This equation is identical with Equation (17) of Reference 1.

A.2.2 Determination of W&i
Finally, the self-induced velocity Wai due to the circula-
tion Pa about the duct must be included. To do this, we shall
first find an expression for the elementary axial velocity com-
ponent induced at radius r = D/2 by an elementary vortex ring
(Sketch A.4) having diameter D and circulation dra = de cos ¢',

in accordance with Equation (A.59).
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dFa dva
/.

A du_ -
D
\ ¢
¢
e

Sketch A.4.~- Velocity components induced by a vortex ring
with variable strength.

Then, by‘using the results on pages 305 through 307 of Reference 6,

we can write

2T

ar YR '

dua - - 21r§f [zg_gw $') ngg_grQ)s/a ag’ (A.67)

° o 4gR

2t 2 - 2cos(¢p - ¢')
D
Further, by letting
k2 = z—;l~—- (A.68)
R
=t 1

and

X s 2 (A.69)

et Bt
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we can rewrite Equation (A.67) in the form

[tdid

ar
k (1 - x2 sin2 X )3/2

2
du
Q 3 4y _ 2 ; ; 3
27D s_lci__[ 2 cos ¢ cos*X cochogX+;_g:.n¢szcosxdx
$+1
2

(A.70)
The limits of integration can now be shifted to 0 — 7, and, since
the last term integrates to zero, Equation (A.70) becomes

du /2 cos2) - J% sin2XlB1 - k®sin3)) + (k% - 1)]
k

8 3
= k¥ cos ¢
dFk _

-27D

3/2 dx
(1 - k2 sin? X

(A.71)
Now, using the relations given on page 306 of Reference 6 for the

complete elliptic integrals, we find that the above equation can

be written as

-dar 2 : 2
a [(3k2 - 4 4 - k
au, = 5= [( n )x + <——k )E] (A.72)

s
where K(k) and E(k) are defined in the list of symbols. Finally,
using the leading terms in the series expansiohs of K and E

(Egs. (A.8) and (A.9) for £, << D, k? = 1, we obtain the desired

-dPa

8
This result is four times smaller than the corresponding expression

expression

4D
tR

given by Equation (19) of Reference 1. In a similar manner, it can

be shown that the radial velocity component dva for the ring
]
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filament is the same as for a line filament for eR << D. Thus,
it is not considered here, since it has already been accounted
for in Equation (A.66).

Let us now find WA by the averaging process described in
i

Section 2. The average vorticity (or circulation per unit length)

along the chord length is, from Equation (A.64),

r 7V, 8in o
U ¢ S - B ]
Ya po L, IS cos ¢ (A.74)
2D

so that each elementary vortex ring (Sketch A.4) has strength
dFa e O d&R (A.75)
At X, a fixed point on the duct surface, the velocity induced

by the bound vorticity 7& distributed over the chord is (from
Egqs. (A. 73) and (A.75)):

B, = - 335 (3 - ln 4D + In ,gRI) dép

<
2t X

.-5%5 (3-1n4D)c+(§-xs)[1n(§-xs)-] f

+ <§- + xs) [ln (g + xs> - ]} (A.76) 5
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Averaging this expression over the chord gives the average induced

velocity
<
v 2
w =431 T, ax, (—-ln"—
ay c Qg 2wD
<
2
V_ sin a
- -2 O 3 _
1+11’£ 2D< coscp (A.77)

This result is four times smaller than the corresponding
Equation (20) of Referencé 1, and the term 3/2 appears here within
the parentheses rather than the 9/4 of Reference 1. The accuracy
of the averaging process used both here and in Reference 1 is

examined in Appendix D.

A.3 SURFACE VELOCITY DUE TO FITCHING ¢

Here we shall find the third and last part of W indicated
in Figure 2, that is, wq + Wéi which is due to the pitching motion
of the duct g about its midchord diameter. Due to this motion,

each chordwise strip of the duct translates horizontally and rotates

about a midchord axis (Sketch A.5).

de 7
7
E‘q '._ -
qu T \jﬁ
g .

Sketch A.5.- Pitching motion of duct.
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Thus, wq will be considered in three parts:

w due to the rotation of each chordwise strip about its
9,  midchord axis
wq due to the horizontal translation of each chordwise strip
2
\ induced by the wake shed from the duct as described in
93  section 2.

Finally, ;ai is self-induced by the bound vorticity yq which
corresponds to wa and which lies on a circle. We will neglect
the effect of the yawing motion of the chordwise strips, so that
for each strip wdl is due only to the pitching component of its
rotation. This is consistent with Section A.2 where only the
component of Vo at a, which was normal to each strip was
considered to be effective.

The final results show that the predominant effect of gq is
caused by wéé (the horizontal translation) when ¢ << D. Thus,
the net force and moment on the duct due to q are nearly the
same as for a duct which distorts with each chordwise strip
moving parallel to itself with a velocity (gqD/2) cos ¢ (see
Sketch A.5). With the initial assumption that ¢ < D, the flow
over each chordwise strip is nearly two dimensional so that we
can obtain Vg and Wai from flat-plate formulas. We shall,
therefore, start the analysis by obtaining these formulas which

will be useful later when we consider the flow over the chordwise

strips of the duct.

L
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A.3.1 Flat-Plate Formulas
Consider the flat plate in Sketch A.6 which is in a pure-pitch

flight condition with a, not necessarily small,

A
\
\
N«
Tqu \\ ?Yf
Tgti J {?@; fﬁ——a—x
ag It ’
Vo

Sketch A.6.- Flat plate in pure pitch.

We wish to find the surface velocity distribution We ™ We + W
and the bound vorticity distribution Ye ™ Yfa + qu on tge flat
plate which are generated by the two parts of its motion, transla-
tion V° at angle Ay and rotation de¢ about its midchord axis.
For the first part, vV, at a, with the Kutta condition fulfilled,
we have (Ref. 8, p. 38)

6

£
wfa Vo cos o + Vo sin a, tan 3 (A.78)
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A=-25
O¢
qu = 2V, sin a  tan 5% (A.79)
Pf = 1cV, 8in a (A.80)

Q

and the thrust force due to leading edge suction is given by
- ; 2
Te = mpc(V, sin a,) (A.81)

To find the second part, we shall use the well known "equi-

valent camber" rule as follows: The bound vorticity Ye¢ must
q

induce a velocity normal to plate equal to the normal velocity

component of the plate (vf = -gXg in Sketch A.6) in order to

q
satisfy the boundary condition of no flow through the plate. The
same distribution of normal velocity is caused by a circular-arc

camber (Sketch A.7) for which

x2
y.=h(l -4 —g—) (a.82)
C

Thus, the slope of the cambered airfoil is

dy
== - B (A.83)
[ C

and the normal velocity is

v =-8

c 2 cho cos a (A.84)
c

Thus, by equating Ve and Ve , We obtain the equivalent camber
q
h corresponding to the pitch rate qe of the plate. That is

N, A (A.85)
c 8Vo cos ao

i
i
H
i
1
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|
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Sketch A.7.- Cambered airfoil nomenclature.

Now, since circular-arc camber producés a surface velocity distri-
bution given by

’YC
w =

c™2 =4

o

Vo cos o, sin Oc (A.86)

when the boundary and Kutta conditions are satisfied (see Equa-
tion (10.7) of Reference 8), we find for the equivalent camber of
Equation (A.85)
Y
fq cqg

wfq = =~ =3 sin ef (A.87)

Now, with Equations (A.78) through (A. 87) for a flat plate, we are
ready to find the bound vorticity distribution and surface velocity
distribution induced on the duct by its pitching motion about its

midchord diameter.
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gy

i A.3.2 Determination of wa

g The pitching rate of each chordwise strip caused by pitching
. of the duct about its midchord diameter (Sketch A.5) is g cos ¢.
L Therefore, using this value in Equation (A.87) for qe gives the
é first component of wd; nanmely,

. Y
d, q

—r 5, 8¢ :
wa 2 > Cos ¢ sin e (A.88)

so that

T

c . 4
'yql ax_ = - f 'yql (5 sin G)de -(% qc2> cos ¢
)

3
Q
-
L}
L:‘*‘—\mm

2 (a.89)

RS

A.3.3 Determination of w

9

The translational velocity of each chordwise strip of the

POV

I duct caused by its pitching about the midchord diameter (Sketch A.5)
is ~q(D/2)cos ¢. This chordwise translation produces the surface

velocity distribution

wdz = + %? cos ¢ (A.90)

which is clearly equal on inner and outer surface. Hence,

Ty = I = 0 (A.91)

»

A.3.4 Determination of w

1,

Since Fq varies with ¢, there must be vortex filaments

1
drqw which are shed parallel to the duct axis, as shown in Figure 2.
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The effect of the duct wake which is generated by the q motion
can therefore be found by analogy with the results obtained in
Section A.2.1, since the wake due to angle of attack shows a
similar character. The net duct circulation generated by the ¢
motion is Fq = qu since an is zero; and Fql (Eq. (A.89)) is
analogous to the first term on the right side of Equation (A.63)
(where gc/4 now replaces v, sin ao).

Thus, we obtain the total circulation including the wakg

effect by analogy with Equation (A. 64):

~cos ¢ (1 2)
Pq + Fq WERY qc (A.92)
3 2D

The circulation due to the wake is (by subtraction of Eq. (A.89)):

r - _me 19
q 2D I
3 1+2D

(A.93)

The q wake induces a nearly constant normal velocity over
each chordwise strip of the duct, since each vortex filament in
the wake extends to + « (Fig. 2). Thus, the chordwise distribu-

tions of surface velocity wé and bound vorticity yq (i.e.,

3 3
2wq ) which compose Pq are (from Egs. (A.78) and (A.80) with

3
a, = T/2).

(A.94)
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A.3.5 Determination of W

9y
The self induced velocity Wq due to the bound vorticity in
i

pitch ('yq =y ¥.. ) can be found by analogy with the results

+
q, q,
in Section A.2.2 for Yo+ If we replace v, 8in a, by gqc/4, as
in Section A.3.4, we obtain from Equation (A.77)
2 2 - 1n42
W, o= - %;-')L 2 € o8 ¢ (A.95)
4 1+ I2
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APPENDIX B ;
INTEGRATION OF W TO OBTAIN DUCT ?,
COEFFICIENTS AND DERIVATIVES
Expressions for the net force and moment on the duct will be
developed here for the pure-pitch flight condition (Fig. 2) by
integration of the pressure distribution pg over its surface,
These expressions are then used to obtain the static coefficients
and q stability derivatives of the duct in the presence of the
propeller.
The pressure distribution ps(6,¢) is related to the surface
velocity distribution W by the pressure equation in moving coor-

dinates (p. 87, Ref.l12) as applied to the pure-pitch motion (Fig. 2)
- L 2 _w - 2
Pg " Py + 5 (Y, Vg : (B.1)

where v; is the velocity (in a fixed frame of reference) of the
point in question on the duct surface. 8Since the first two terms
on the right side are constant over the duct surface, they do not
contribute to the net force QD(P) or moment (MN)D(P)‘ Further-
more, the velocity Ve is the same on the inner and outer surface
and hence does not contribute to Nb(P) or (hN)D(P)' Thus, the
duct force and moment can be found by substituting -(p/2)W= for
Pg in the following expressions:

2T 27
D D
ND(P)-fpsdx87c°'¢d¢--%-j ]pasinecosdbdeddb
© ©

(B.2)

[




D
(MN)D(P) = -fpsxs dxg 5 cos ¢ d¢

a2m a7

c®p
- 4 8 ! j ps cos O sin 6 cos ¢ 46 4o (B.3)
°

The duct force and moment due to leading-edge suction T are

given by
2T
D
T, -f D (1) a¢ (5.4)
°
2T
(MT>D(p) -f l2)' (T) -212cos ¢ do (B.5)
°

where T will be evaluated subsequently. The net moment on the

duct in the presence of the propeller (Fig. la) is then

Mpp) © <MN)D(P) * (MT)D(p) (B.6)

Let us proceed by finding W? and integrating it over the
duct. surface to obtain Equations (B.33) and (B.35) for ND(P) and
(MN)D(P)‘ as functions of a, and qD/VO. Finally, TD and
(MT)D(P) are evaluated in Section B.4.

B.l INTEGRATION OF W° TO FIND DUCT FORCE AND MOMENT
The surface velocity distribution on the duct during pure-
pitch flight from Equatioh (7) is

W om W o+ whi + oW, + wai + wd + wqi (B.7)

e
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where
- + + .
wq wdl wéa wde (B.8)
and the components are given by the following equations:
w, + W w. w w w w w w
h hi hi a a; q, q2 ‘ q3 q;
(A.1) (A.53) {(A.66) | (A.77) | (A.88) | (A.90) | (A.94) | (A.95)
By substitution of these equations, we can write
P
w T fl(e) + f2(9) cos ¢ + c, (B.9)
where
- L - L -
fl(e) e+ 2D (1 éos 6) \n ) (1 cos 6)
-(2+ tn<-)tan & (B.10)
1l6p 2 g
= 9. E 5
fa(e) c, tan 3 + 5= sin 6 + c, (B.11)
- 3y
c, whi + vb cos a, + 7 (B.12)
V_sin a_ - (mgc?/8D)
c =2 S (B.13)
2 1+ (me/2D) *
W+ W
a q
c, 5+ cos & (B.14)

and the c¢'s do not depend on ¢ or 6,
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The duct normal force and pitching moment, from Equations (B.2)

and (B.3) are given by

2T 2m
Np(py ™ 9—‘;—])-[ sin 6 46 f W2 cos ¢ d¢ (B.15)
(o]
2T
- %AJ fa(e) [%’? fl(e) + cl] sin 6 @6 (B.16)
and
2 27T a7
(MN)D(P) - -5 cos & sin § 46 f W* cos ¢ d¢ (B.17)
(¢} (o] '
2 a7
- %—’i £ (6) [-27; £(0) + cl] cos 9 sin 6 d6 (B.18)

Note that terms which integrate to zero have been omitted in the
above expressions. We shall now evaluate the remaining integrals
by letting 2B = 6 and making use of the expressions which follow
then.

2T
I-f c £ sin 6 a6
1 12

°

2T

-cf [c(l-cose)+9~<—:sin26+c sine]de
1 2 2 3
o

- 27rc5.; (c2 + %f—"-> » (B.19)

27
I -! c f cos 6 sin 6 d6 = ~ 77C ¢© (B.20)
2 172 12
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L)
3

- .
I [ 5% £,£_ sin 6 o (B.21)

Is-%J [-—9+—2% (1 - cos 9)ln——(l-cos 8)

s B ton B s |

- <2 + 1n 1—2'5) tan —g—] [c2(1 - cos 6)+ 325- sin®6 4 casin 9] a0

——rag
. 1

(B.22)
I Ia-%;'_x [-2B+<D 1n4D)s:LnB+-2—qu.nBlnsz.nB
o
1
! <2 t ln. lsD)-:i—g—g—] [(c2 + Yc)sin®g - qc sin‘p
% l + cssin B cos B] dasg (B.23)

T
(— 2 ! [(c2 + qc)p sin®p - qcB sin'g + c B sin B cos B] as

T
In z%f [(c2 + gc)sintg - qc sin°B]
5

+
vln

m
+ 2D_°j [(ca + qc)sin*g - qc sin“B] in sin B dp
o

T
\.-< jcsianB
]

¥

(B.24)
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T ¢ c 7 3T
IS-Z'V{(CZ'!-qC) {-5+§5<3 1“1_6_15"'7 }-l» qc[—é—

c c 37 1 c
- 16D (5 " 165 * 6 )] ~ %2 (1 *ing 6'n>}

vwred  wed  boewd bd

e e FE s D e B (s D)
w, o+ Vo
D i 1 C
-5+ cos 9 >'y (l + ln 16D> (B.25)
am
= l 1 '
I4 o7 ! flf2 sin 6 cos 6 a6 (B.26)
2T
I, - 27-;1[ £ [(c2 + gc) (sin®B - 2 sin*p) - gc(sin*p - 2 sin®g)
)
+ cs(sin B - 2 sin®B)cos ﬁ] ap (B.27) *

r =2y

c c o2 2c _. 2 .
R - [- 2B+(5 1n4D>smB+ D sin“pf ln sin B

O\‘ﬁ

- <2 4+ ln T%ﬁ) -gi—g—g-:l [(cz + gc)sin®g - (2c2 + 3qc)sin?g i

+ 2gc sin®p + cs(sin B - 2 8in®g)cos B] as (B.28) N
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T
L= 2 b/ [(c2 + gc)p sin®p - (2c_ + 3qc)p sin*f + 2qc B 8in®p

+ cs(B sin B - 2B sin®p)cos B] ag
T

I = g;” + % ln fsf [(c;qc)sin‘a - (2c2+3qc)sin°B + 2qc sinaﬁ] das

T
+ %c‘! [(ce-l-qc)sin‘s - (2c2+3qc)sin°B + 2qc sinaa] ln sin B dp

T .
C - T
~~-(2 + ln _IGD)f + c, (811'1 B 2 sin B) ag
(o]
(B.29)
- : . S <_ 3r
I, 2y (c2 + qc) [- 5 + 1ep (6 In 765 + 7)] + (2<:2 + 3qc) [8
c ‘ c 37 5 c c 533
* T6d (’ > M T6p - ‘3’)] t e [‘ 8" * Tep (35 " 165 * 12 ]

C
af5S c
*t2\ztinT 65) (B.30)
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The following expressions have been used in evaluating the above

integrals:

/

O\ 9 Ok\ 3 0\ " O\

B

B

sin™ g dag

sin® B dp

sin* g @B

sin® g ap

sin® g dap

B-8

m
ELifl'J( g 8in™ 2 g ap
(o]

2
4

T
J(B cos
J ‘

sinada--%

3T

SinaBdB-"}-{

sin® B dg = - %%

bd b
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m
/

m
fsinzﬁdﬁ-lzr-
[+

3T

T
fsm ﬁdﬁ--e—-
°

T

in® -5—7
f sin® B 4 16
° ,

in?® - -3;51,-
j sin~ B 4dp 128
°

T
f sin™ Bcos B d =0 from symmetry
)

j’singdﬂ_ s:.ngds_!sinﬁda

cos B cos B cos

T
-[ ?s:—ci::_g' d8 = - |n Icos B,] = 0 from symmetry
40
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J( sink B ln
o

[ sin* g 1n

3

o

! sin® B In

T
J( sin® B 1n
)

where

sin B 4

sin B dp

sin B dB

sin B dB

'(n) = (n -1):

yn+ 1) = - € +

v(3)-
v(3)-
v(3)-

- € - \ln
- € - 1ln
- € - 1ln

B-10

YT ()

()
- YRR [1(3) - vo
-5 (- 3 ln4+ ;27’)

- L v (3) - v

-
32

[ (252) - v (552)]

37

-5 1n 4 + —

6

- o8 (4 (3) - v

-
256

n

........

533

- 35 ln 4 + =5

12

is an integer > 0
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v(Z)=-e-na+ 8

v(3)=-e-maevict

€ = Euler's constant

T ‘
jﬂ sin™ B(iln sin B)cos B dB = O from symmetry
o

cos 6(1 - cos 6) = 2 sin® B - 4 sin* B
8in® 6 cos 6 = 4(sin® B - 3 sin* B + 2 sin® B)

sin 6 cos @ = 2(sin B - 2 8in® P)cos B

By substitution of the above expressions into Equations (B.16) and

(B.18) we obtain finally the duct normal force

- PcA - HNe < .1 (5 -
Npe) = § % [2""1 LLERYT ("“ 160 * 6)] * [2”‘:1 v

W + W
Ya,

Ye <, 5)|. D i 9 c
+ 38 (m Te5 + 6)] Y 93 * oon s (1 + ln ""‘151:) (B.32)

2pcAV, | sin a - (wqcz/evon) - v
Npip) = "5 1 + (rc/2D) [’r ("hi + V, cos a, + Z)

W, +W

a q
31;( < .21V .xy (D [ _“i i -
+ 8 ln16D+6)] 2 \2v, TV cos ¢ (1*‘“‘160)

d | (= Y Ye (5 S
+ 4v° [1r (whi + vo cos a + 4>+ %D (6 + In 16D (B.33)



B s e e AT 1

B-~12

and the duct moment due to ND(P)

'™

pc®a T c c 4
(MN)D(P) = - "% {ca [' Te, + 5 - 35 (“‘ Tép * 3‘)]

2
e <433 (2 <
32D (“‘ 6o * 12)+ €32 (2 * 0 165 (B.34)
2 : 2
pC=AV v sin a - (Tqe™/8V D) [,
- — W "~ ) l
(MN)D(P) 4D 1 + (mc/2D) Y (whi + Vo‘os oy 4)
< c 4 gc® c .19
i) (“‘ 1ep * 3)]* 16V D (“‘ 6D * 12)
Wa + Wé
_( Dg i i c S
<2vQ * ¥, cos ¢ ><“‘ Tep * 2) (B.35)

B.2 STATIC (a) COEFFICIENTS OF DUCT
As described in Section 2, we find the static (a) coef-
ficients of the duct by setting g = 0 in Equations (B.33) and

(B.35). This gives

w.
sin a h.
- ° i Y
(CN)D(P) (250,00 = 4 5 ¢ T35 (7e/2D7 | " v, + Tcosa, + T v,
3oy 7 —“'
C C 1 C
8DV, 6D T & 2v_7cos 9 16D

(B.36)

and
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i w
2 8in q h.
-C_ o) i -
(?M§>D(p)(aos0,0) p? 1 + (mc/2D) 2T v:— + cos a%> + 5%;
-‘;Q
S (n-S-+4)X|- i e . s5\ry
(o] fo) °
(B.37)

Equation (B.36) is identical with Equation 28 of Reference 1 except
for the addition of the amount{7 - 3 ln 2) SX- in the square bracket.
16 8 by,
Equation (B.37) is identical with Equation 30 of Reference 1 except
for the sign of the Gk term and the addition of the amount
i
<% - ln 2) %%— in the square bracket. All of these differences
o
appear only in higher order terms in c¢/D which will be dropped

later.

B.3 DUCT gq DERIVATIVES

As described in Section 2, we find the q derivatives of the
duct by differentiating Equations (B.33) and (B.35) with respect
to Dq/Vb holding Vb and a, constant. After substitution of
Equations (A.53) and (A.77) for Wy and W, this gives

i i

3 3 v

2D [o) 1 o 16 4D

(C ) - . _(EL__)_'L_I:_ T CO8 Q o e <1n — > <1n —
N Te Y o 4 4D c c
q/D(P) (1 + 2D>vo

2
+;>_%%lnlsn+7c]+yc <1n12D_1>+vxc

2 c " 16D|" VD 4v_p®
3 4D
® (1n 16D 2- "% %y 16D _ 5
= A\ln"g -1 e 3 tInST %
4V°D 1+ 2D 4D Vo
2
<1n 16D _ 1) (m 4D, -1-> + I~ cos a (B.38)
c 2 D2 o




B-14

2 2. ln 4D 2 2
c 5 16D\ 2 c Te”/8D° | T . ©
Yo ( in - [2 *25°

2D

16D 4D 1 c 16D 4
(“‘"'5--1> <1n—c'+‘z‘)+'5<- “"‘c"'?)].

2
c 16D 19
" Ten? (“‘ = -1 (B.39)

Only the leading terms in Equations (B.38) and (B.39) will be used
in the subsequent analysis. These are of lowest order in c¢/D and

are underlined.

B.4 DUCT FORCE AND MOMENT DUE TO LEADING-EDGE SUCTION

The thrust force TD(P) and moment (MT)D(P) on the duct
arising from leading suction will now be determined. The only
parts of W in Equation (B.7) which are singular at the leading

edge are w,, W and w_ , which are proportional to tan(6/2).

9,

Hence by analogy with the flat-plate formulas (Egs. (A.78) and (A.81))
we find that the thrust force on each chordwise strip of the duct
is proportional to the square of the coefficient of the singularity

and is given by

e
. _ 1g9e )
v (1 26D _ 5\ . (Vos“’ A, -~ “gp_/C°8 ¢
277 TC

T = wpcC
Cc
1+-2~'5

(B.40)
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The total thrust force on the duct is obtained by integrating with

respect to ¢. Thus from Equation (B.4) we find

- SD 2 16D 2
e = 2 (F) (012 - 2)

- 2

2
. Tqe
2 sin a_ -~
2 PV, o 8DV6
+ m°ch 3 - (B.41)
1+ D

The corresponding moment on the duct, from Equation (B.S5), is

given by

pAYy 2
(“r)n(p) "1 e 6’0 sin a, - T35~ )(‘“ ——12" - 2) (B.42)
o
2D

Mw‘awwem“d- EXRTE

S eI




= S S B R A AR

IR T I TEE AN N BN e e e

pesed  poud o)

pnnet

APPENDIX C

VARIATION OF ACTUATOR-DISK LOCATION

To determine the effect of actuator-disk location upon the
net aerodynamic reaction on the duct, we shall calculate the sur-
face vorticity distribution N during hovering flight for two
alternate disk locations, the duct leading edge and midchord.

It is recalled that the actuator disk was assumed to be at the
duct trailing edge in Section 3.

The leading-edge location is considered first. 1In this

case it can be seen (Sketch A.l) that Equation (A.14) is replaced
by

xg = £y - g (c.1)

By following through the analysis in Section A.l with this modifi-

cation we find that the equations therein are changed slightly as

indicated below.

Equations (A.15) and (A.l16) become

ufYs -% %r_ - ?cﬁ (cos 6 + 1)1ln [—é—% (cos 6 + l)]} (C.2)
V'Ys = -%r- {2 + 1ln [-893 (cos 6 + l)]} (C.3)
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Substitution of B = 6 + m into the identity used to obtain
Equation (A.26) gives

In(lL + cos B) = - ln 2 - 2 Z L (1) cos np (C.4)

n=,

By use of this, Equation (A.l16) can be written

©0
-X (2 - _1@.)- __LZE_n ;
v,Ys 57 <é ln =2 ) sin 6 T 5 (~1) cos né sin 6 (C.5)

n=,

and Equation (A.26) becomes

3 - L - _l_§2
V'Ys sin 6 T (2 ln - sin 6

o0

- Z 1 (-1)" [sin(n + 1)6 - sin(n - 1)9] (c.6)

n
n=;
Thus the factor (_1)n+1 is inserted into the summation
symbol in Equations (A.32) and (A.33). Using 6 =g + 7 in the

identity from Reference 22,we obtain

- n _.
Z {-1) nun ng . _% (c.7)

n=;
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Multiplying by (cos B + 1), reducing and re-indexing gives the
identity

-

(- l)ml sin nB
n(n® - 1)

- %-sin B - (cos B + 1) % ~ (c.8)
n=2

when
-T<BLT

By use of this, the main equations in the series, Equations (A.33)

through (A.47) become

' 0 N, (- I °) 3 & i
08 = -5t o [— > (cos 6 + 1) + 7 8in 9] + a sin 6 (c.9)
W, '-_Eh...ﬁ. -1—-"'—c—°—s-—9-+-?-sin9+icose
Fs 2T 2T 2 2 4
+<%— 1nig-q-%> cos 9] (c.10)
]
-_-h_2e 16D i
wft' T 21 T 4rw <} - n =g (c.11)
=X (T, S n4D
uYt 27r<2 + 35 ln—3 (C.12) 3
v, --%T-<2 - i (c.13)
t




c-4

r
h . e 16D
37 " An <1.n ~ - 3) (C.14)
- L - 1p 26D 8
wFs T 2 ln o tan 5 + 6 (C.15)

Finally Equation (A.50) for the bound vorticity distribution along
the duct chord becomes (with the actuator disk at the duct leading

edge)

-X 16D _ 8
Y T [(}n p 2) tan 7 - 9] (C.16)

where

0

I
@
IN
=

Now following through the analysis in Section A.l with the

disk at the midchord of the duct, we find that the equations in

Section A.l are changed as follows. Equation (A.l14) becomes
x, = ﬁt (C.17)

With this modification Equations (A.l15) and (A.l6) become

- .y_ _.-” + .._c .!‘. 2 - __8D C 8
Yy, 27 I 2+ 2p °°8 ¢ (2 n cos™ & - ln < (c.18)
v = l + l n co 2 e - n .._an c

Using the identity from page 188, Reference 22,

a n
- E: JC%L- cos 2n = % In(4 cos®6) = ln 2 + % ln cos®6  (C.20)
n=1
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we can write

V'Y 8in @ = -23’; [( in -1—62 sin 6 - Z -(—-L cos 2nf sin 9] (C.21)
8
nw=)

a-a for even n = 0

N = < > ? (c.22)

ye(-1)"
an = - Fmn(n - 1) for odd n > 1

/
r.e - n_.
' a._ D _ye -1) sin(2n -1 6 16D :
q>s 21 4r 2n(n -1 s:.n 0 (€.23)
n=y
Using the series from page 188, Reference 22,
[~
Z -:‘;sin ng = I8 (C.24)
n=3
for
0 B ar
and letting B =6 + 7, we obtain
(1)" sin 2n6 _
n -6 (C.25)
n=;
for
T T
259<3




C-6

Forming the product

-1r/2_<_6_<_+1r/2

-6 cos @ and simplifying gives for

26cose-sin9-z

n=z

(-1)® sin(2n - 1)6
n{n - 1)

(C.26)

By use of this, the main equations in the series, (A.33) through

(A.47) become

T, 6 i ]
d’s'-"z‘:rl_'—%% Gcose+(l-1nlg-12>sin9 (Cc.27)
L .
and
™ ye [/,. 16D o]
wFs' - -t n = - 2> cos 6 + 6 sin 6 (c.28)
when - m/2 < 6 <+ m/2, and when w/2 < 6 < 3m/2
R ' ‘ 16D\ _ ;
¢s' L Tl "4L.”' (6 - T)cos 6 + (1 - -—c—> sin 6 (c.29)
and
' - _Fl‘..g.yg lnL@-2+ (6 - m)sin 6 (c.30)
"’Fs 2T 4T c )
We also find
w -.-ih+:zsln_1£2_2 (c.31)
F, T 4T c )
« X (I, < L
Yy, T 27 (2 + 3p 0 en) (c.32)
- C)
V'Yt T (2 + ln 8D (C.33)
"howye (|, 16D _ 2) (c.34)
2r 4w c :
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Finally Equation (A.50) for the bound vorticity distribution along
the duct chord becomes (with the actuator disk at the duct mid-
chord)

- 16D _ 8.
h T [(In c 2} tan 5 e

and (C.35)

W

=T
2

th
0
N

(U
N\
D

N

It can be seen from Equations (A.50), (C.16), and (C.35) for the
three alternate locations of the actuator disk that tﬁé net vor-
ticity distribution vy + n is invariant with disk location.
That is, as the disk moves forward in the duct, its trailing vor-
ticity <y is subtracted from Y, 8° that the sum vy + T is
invariant. Thus, it becomes evident that with the present flow
model the flow pattern (and net duct reaction) is independent of
the actuator-disk location for all flight conditions (not only
hovering) so long as the disk is located within the duct. The

static pressure rise through the actuator disk merely causes hoop

tension in the duct downstream of the disk and does not directly

affect the resultant force on the duct in the present analysis
since its diameter is constant. For diverging ducts this pressure

rise does contribute directly to duct thrust, however.
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APPENDIX D

INVESTIGATION OF AVERAGING PROCESSES

Two averaging processes have been used in Reference 1 and in
Appendix A herein to obtain the axial velocity distribution on the

duct surface (w, = w, + w_ + w_ ) which is self-induced by the
i hy ay qy

bound vorticity distribution on the duct (wh + Yo + yé). Specifi-

cally: (1) the bound vorticity (y) was first averaged over the
chord length to give ¥ and (2) the surface velocity distribution
induced by & was averaged over the chord length to give Gi.l
To assess the inaccuracy which is introduced into the final
results of the analysis by these approximations, we shall use the

actual chordwise distribution of bound vorticity v to calculate

the actual value of the self-induced surface velocity w at the

i
duct.

D.l1. HOVERING COMPONENT, wh
i
The bound vorticity on the duct during hovering (or axial)
flight is (Eq. (A.50))

- 16D _ 6 _ a (D.1)
™" T [<ln c 2) tan o= + T 9}

We shall now find Wy the velocity induced by %, at three
i

points along the chord and compare these three values with the

average value Gh which was used in Section 3.
i

*only the axial velocity component was considered because the rad-
ial component induced by a vortex ring for small c¢/D 1is nearly
the same as that induced by a straight line filament (D = )
Hence the radial component of the self-induced velocity is zero.

S D 6 o B s o DI RR L
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c
— = g X
2 % d&R

-ZA
Duct section.z’Ji R|= (x_ - xs')

2

g

JIe

n

= % (cos 6 - cos 8')

Sketch D.l.- Duct nomenclature.

From Equation A.48 (with ﬁR = ¢/2 (cos 8 - cos 6') from
Sketch D.1) we find that each elementary vortex ring n dER

induces at X the axial velocity component

YW, g

- 8D
duh —m [ln

c(cos 6 - cos 6')| - l} (D.2)

s

The total induced axial velocity at Xy is therefore obtained by

integration over the duct. That is,

_ 16D _ 8 Y 8D
"hy T op2 [O c 2)tan2+7r Tp\re !
T D
(€ - x
(Z - =
- In|cos 8 - cos 6 ') dﬁR (D.3)

T
_ e [(1 16D _ 2) ) ; .
w. : n 1l - cos 6€') + T sin 6
hi 477D f c ( )

(o)

- @' sin 9'} <1n -2—2 - 1= 1n Icos 8 - cos 9'|> 46 (D.4)
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Evaluating this expression at three locations we obtain:

at midchord (2xs/c = cog 6 = 0)

= < 16D _ ( 8D _ ) ( 16D _
whi 215 [(m - 1) ln 2 1)+ 1n2 (In =2 2) + 1
(D.5)

at the trailing edge (2xs/c = cog 6 = 1)
- 16D _ ) 8D _ 16D _ _
“h, 7 4 [(m 2 1) (in g 1) + (in =2 2 (1n 2-1)+1n2

and at the leading edge (2xs/c = cos 8= - 1)

- 16D_>< ) ( 16D_>
“ 4,",D[<ln 2 - 1) (B -1)+ (in 2B -2) (in2+1)

+2-31n 2] (D.7)

Now from Equation (A.53), we have for the averaged value

W,

by < B (02 ) (0 B ) (22 ) (3w 9)

h

(D.8)

Note that the first term in the bracket of Equations D.5 through
D.8 is identical, and for very small values of c¢/D, the remainder
of the bracket is negligible. However, the actual value of the
remainder can be expressed in the form

A <1n D _ 1) + B (D.9)

c

in each case with the value of A and B tabulated as follows.
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Chordwise location A B i
r -
Leading edge ln 2+ 1= 1.69 l-41n2=-1.77
Midchord ln 2 = 0,69 l1 -1n2= 0.31
Trailing edge ln 2 - 1 =-0.31 1
Averaged value B
used 3/2 - \n 2 = 0.81 0 ‘

Evaluation of Equations(D.5 through(D.8) for two values of c/D gives

the values for 47D wy /cy tabulated below

| |
i
Chordwise location c=20.2D c=0.1D |
. AT .. | -i
Leading edge 13.09 18.92 |
Midchord 11.87 16.92 E
Trailing edge 9.08 13.54 ;
Averaged value é
used 11.86 17.09

Thus, the averaging process introduces an error in the local value

of w
hy

of about 30 percent for c = 0.2D.

D.2 ANGLE-OF-~ATTACK COMPONENT, wa
i
From Equation (A.65, we have for-the bound vorticity on the
duct induced by the free stream at angle of attack a,.

2r ar

A - ' - - ' -———a -9—'--__.2'
Yq v, (6') Wy (27 é') o tan 5 d€R (D.10)
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Now substituting for dP& and using ﬁR = c/2 (cos 6 - cos 6') in

Equation (A.73) we obtain the total induced axial velocity at Xg

L

. r ‘
Wy = - aa J( (1 - cos 6', <§ - in %? + ln |cos @ - cos 9'{) dae’
i 27°D

(o]

(D.11)
Evaluation of this integral gives:
2y, -1l g (D.12)
a4 c 1

where Gl = 2,3,4 at the duct leading edge, midchord, and trailing

edge, respectively.

Also from Equation (A.77), we can write the averaged value of

w as

ey
2™ & w16 _ 3 _ 4,4 = 1n 182 . 5. g9 (D.13)
Fa ai c 2 c

This value is nearly equal to the value at midchord. The follecwing

values of (21rD/l"a)wa are obtained from Equations (D.12) and ®.13)
i
for two values of c/D.

Chordwise location c=0.2D c = 0.1D
Leading edge 2.39 3.07
Midchord 1.39 2.07
Trailing edge 0.39 1.07
Averaged value 1.50 2.18

used

e sl s &
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It can be seen that the actual values depart considerably from the

averaged value which was used.

D.3. PITCHING COMPONENT, wq
i
The bound vorticity on the duct Yq
motion g (from Egs. (A.88) and (A.94))

/
- 'yql + fyqa = gqc cos ¢ (sin 6'

Yq

Using Equation (A.73) (with ar = 'yquR and &R

we obtain the total induced axial velocity at x

induced by the pitching
is

_ Tc/4D  ¢an %) (D.14)

1 + IE
2D

s

2
w -Ccos¢f[51n F—Cﬂp—(l—cose):l<—-l

1+2D

- 1n Icos @ - cos 9'|> a6’

Evaluation of this integral gives:

at midchord (2xs/c = cos 6 = 0)

(D.15)

w =8D [(ln——3>+ Ln2+— lrsézb_(mL@_3>]cos¢
93

at the trailing edge (2xs/c = cos ¢ = 1)

2
- dc” 8D _ ) I §
wqi 8D [(111 ps 3 + ln 2 2

(D.16)

—LC 2D (In ieb _ 4)] cos ¢

l+'§-’

(D.17)

= ¢/2 (cos @ - cos 6'))

wowd  bowend

o4
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and at the _Lgmjmg__g_dgg (2x_/c = cos & = - 1)

(111-- 3) +in2 - % - M(ln-—-2>]cos¢
i —
(D.18)
Now from Equation (A.95), we can write for the averaged value
2

- wd¢”_1 <.§2_ ) 3 _

wqi 8D ] 4 IS [ 11 ps 3) + > ln 2| cos ¢ (D.19)
2D
By use of

-——BD——>W =G ' (D.20)

qc2 cos ¢ 9 2

evaluation of Equations (D.16) through (D.20} for two values of c¢/D

gives the following values of G2

Chordwise location c=0.2D c=20.1D
Leading edge 0.31 1.16
Midchord 1.55 2.30
Trailing edae 0.79 1.44
Alecaied value 1.14 1.90

It is found that the components wy vary as much as 100 per-

cent (but not by an order of magnitude) from the average values

Gi previously obtained. The self-induced velocity components gen-

erally have only small effects upon most of the final>stability




D-8

derivatives. All of them affect only higher-order terms in c¢/D

for the pitching derivatives. The a coefficients MD(P) and

TD(P) are unaffected because neither whi nor wdi affect the
leading-edge singularity. The error, from averaging Wi and
i
wa » in Equation (8.14) for ND may be appreciable, however.
i

Inasmuch as the derivative <CN ) is found to dominate the
a/D(P)
dynamic stability of a torpedo-like configuration, this averaging

error would seem to warrant further attention.

— T T
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APPENDIX E

HULL-BOUNDARY~LAYER CALCULATIONS

In order to determine the center of pressure of the hull at
angle of attack (a/L in Section 3.5.1 and Fig. 5), the volume of
the hull combined with the displacement thickness of its boundary
layer is required, as seen from Equation (76). This volume will
now be determined by using the "effective" hull radius. Thus, we

let

rH* = ry + B* (E.1)

where Iy is the actual hull radius. Now, for the assumed flat-

plate turbulent boundary layer, we have for the displacement thick-

ness ©bO¥*
5% = 0.37 (Re }"*/® (—% - xﬁ> (E.2)
and
- 4/5
r r 2 L ‘
m m
Thus, we find from Equations (E.l), (E.2), and (78) that
4/5
2 2 2 *u
AT PR D IO L o B P )
T L T -2 L

6,.*\ 1-2%“—
+ T, 2 (E.4)

B b Bt s G S
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The volume of the hull and boundary layer is then given by

+1
r, *\& 2
* = 2-11 _.L —ﬁ ’
vol LE [ <rm d T (E.5)
=1

Thus, letting £ = 2(xH/L), we obtain

+1 +1
. oy *
Vol® | [ (1-e2Y dg+4;Lf (1+¢) (l-;—i)s/s de
wrmL J m
-1 -1

2 *1
6, * - 8/s
+-<§i—:>./’ (l—3—§> ae (E.6)
=1

B, * 6. * ¥
velr .8, (%0 .40) 2, s A.) (E.7)
e 15 T\18 719/ BTN A5,

for Re = 4x107 we have from Equation (86)

8  o0.111
T = SRS = 0.223 (E.8)
m

Yol® = 0.523 + 0.167 + 0.019 = 0.709 (E.9)

1rrm L

In addition to the volume the following integral is needed

in Section 3.5.1 for use in Equation (95).
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ac *=4 - - R (E.10)
22 rm L L
LS
T2
+1 +1
2 b _* 8/5
: L 1 - &
4022*.f (1-52‘)§dg+4——rm [ (1 - ¢) (——2—— g dt
-l -1
2 +1
B, * _ ee/
+ -1—'-> (—1——5> ¢ ae (E.11)
r 2
m
41
* *\&
4c * =0 - 1957 40 oL (E.12)
22 19 x 42 r 9 x 13 \r .
m n
5 *
4C * = - 0.576 for -2~ = 0.223 (E.13)
22 rm

The radius of gyration of the hull Ky will now be determined

for use in Section 3.5.1. The mass of the hull is given by

my = p Vol = += 7r 2Ip (E.14)

and about the hull centroid, at xH = 0, we have

1/2 . o
r
mK, ‘2 = 291rrm2L3f - <%’-> d i:‘ﬂ (E.15)
b
m
(=}

by 2

‘"ny'z - %vrmst [1 - (2 %)2} (izﬂj d _2_;_!1 (E.16)

s Al A S
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1
R [<€2 - 26 + &%) at (E.17)
mgk,'® = & 17,71 (135 (E.19)
Ky'2 - ;‘—g (E.20)

Now, about the hull center of gravity, at X = L/10, we find for

the radius of gyration

2
Kuz‘.l_'__’_

2
v = -%'53 = 0.0457 12 (E.21)

Ky“ = 0.214 L = 2.14 ft (E.22)

4
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TABLE I.- STATIC STABILITY DERIVATIVES OF A PROPELLER.

Vo

o2 =1 c - 2.17 vy = 0.78 V

wD ’ TP (D) ’ (o]

c c )

g ( Na)P ( n*o/p
(deq) Dual propeller Single propeller

(refined) (approx.) (refined)

10 0.051 0.142 0.401

20 .105 .279 .402

30 .158 .408 .398

TABLE II.- STABILITY DERIVATIVES OF

v
o
w1, ©

A SINGLE PITCHING PROPELLER.

= 2,17 y = 0.78 V

TP(D) ’ °

P i (FY )e ) (Fm e

(Geg) (refi g , !
refined) (approx.) (refined) (approx.)

10° 0.155 0.32 0.17 0.28
20 .128 .31 .17 .28
30 .122 .29 .17 .28

TABLE III.- COMPARISON OF DUCT AND PROPELLER STABILITY
DERIVATIVES DUE TO ANGLE OF ATTACK.

cy 1.95 < 0.15
Q

c .072 .130

ma

C_ v 0 < .4
a

Cp -19.4 l |< 1.5
a




TABLE IV.~ COMPARISON OF DUCT AND PROPELLER STABILITY
DERIVATIVES DUE TO PITCH.

| gtif;_ D(P) P(D)

]

CNq 9.91 < 0.8 (due to ao')

cY ! 0 ||< .15 (due to q)
a :

Co .364 .065 (due to a_ ')
q < .5 (due to q)

* ]
cnq 0 ||< 2 (due to ag )
c_ ' -98.7 |< 8

. |

TABLE V.- STABILITY DERIVATIVES ABOUT HULL CENTROID (0.5L)

FOR THE CONFIGURATION OF FIGURE 4.

Flight Stability Hull Duct Propellex
condition derivative H D(P) P(D)
C 0.099 1.95 < 0.15
N
a
a
c_ ' 28.0 -19.4 ‘ | < 1.5
T
c*|<cu
) My
CN ! .495 9.91 < .8
q ~cy ' < .15
q
q
c_ ' 52.6 -98.7 < 8
Mg : .
cn* K Cm
q a
CN 14.2 .126 Small compared
o with Juct
a
c_ ' -57.6 -1.26 Small compared
T with duct
q + a Cm '+ Cm ' -5.0 -100.0 Small compared
q a with duct
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TABLE VI.~ STABILITY DERIVATIVES ABOUT THE VEHICLE CENTER OF
GRAVITY (0.4L) FOR THE COMPLETE CONFIGURATION OF FIGURE 4.

Flight stability pull . | Ducted Fin Total
condition derivative H P D?:) F HDPF
cy 0.099 1.95 0.86 2.91
a
a
c_ " 27.8 -23.3 -10.3 -5.8
m
a
cy " .594 11.9 5.15 17.6
q
q
c_ " 79.4 -141.8 -61.9 -124.3
m
q
Cy 14.2 .126 .038 14.4
. a
a
c_ " -86.0 -1.51 -.45 -88.0
M5
a + alc + c 6.6 -143.3 -61.5 -212.3

TABLE VII.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY GILL, REFERENCE 13, FOR AXIAL FLOW,

= -

c T D(P) - __0.78 n - 2
o) | 4 -EQLBL Tom) | 1¥2 (VY P p = 0.7V )+1

v, P(D) exper. J '

exper. exper (pred.) Eq. (205) (pred.) ;

: Eq. (203) Eq. {206) T

; - ;

4.1 15 3.1 0.25 0.47 0.25 0.39 2
2.4 5.0 1.4 .12 .33 .44 .59
1.8 2.2 0.8 .16 .22 .51 .71

o ey e e peai pesaq ey
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TABLE VIII.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY HORN, REFERENCE 17, FOR AXIAL FLOW.

c To(py | D(B) o __0.7 - 2
v T y |22 T 2V /y) | P Mp = V. /V )+1
_o P(D) | ¢ Tp (D) p(D) ) o
nb exper. °© exper (pred.) exper. (pred.)
per. Eq. (203) Eq. (206)
0 0.46
0.25 | 1.14 |0.46 .32 0.125 0.31 0.81
.50 .22 .11 .18 .036 .51 .95
.75 .068 | .034 0 .012 .59 .97
1.0 .018 | .009| -.57 .006 .27 1.0
TABLE IX.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY ALLEN, REFERENCE 21, FOR AXIAL FLOW.
v lcp Tyep) |D(R) ~ _ 0.7 -2
ol Yo p) | X |2EBL |7 +2(v /) | e p = V./V )+l
B - v T P(D) i/ "o
nb exper ° P (D) exper
‘ exper (pred.) per. (pred.)
* Eq. (203) Eq. (206)
20| 0.40| 0.92 |0.38| 0.087 0.11 0.70 0.84
25| .60 .40 .19 .089 .061 .77 .91
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TABLE X.-~ COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL

DATA BY KRUGER, REFERENCE 19, FOR AXIAL FLOW.

T
o v D(P) . __ 0.75 . - 2
v T Yy |°’p(p) | T 2 (V_/7) P Mp = W./V )+1
g% | -2 P(D) | 7 T P(D) .- ° i "o
4R exper. ° P(D) (pred.) exper. (pred.)
exper. Eq. (203) Eq. (206)
15 | 0.14 3 3 0.3 0.45 0.42 0.50
25 .19 2 0.73 .5 .25 .43 .73
25 .26 | 1 .41 .6 .13 .50 .83
25 .32 0.5 .22 .6 .08 .56 .90
35 .48 .22 10 .8 .04 .58 .95
TABLE XI.-~ COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY GROSE, REFERENCE 14, FOR AXIAL FLOW,
. T Tp(p) . ___0.70 ] 2
v T ¥y | |T 2 (V_/7v) Tp | e © V. /v I+l
g° | == P(D) | ¥ T P(D) i’ Vo
nb exper. °© P(D) (pred.) exper. (pred.)
exper, Eq. (203) Eq. (206)
22 10.72 0.64 0.28 0.044 0.084 0.77 0.88
22 .63 .97 .39 .086 .115 .70 .84
27 .72 1.09 .45 .095 127 .70 .82
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TABLE XII.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL

DATA BY GROSE, REFERENCE 14, AT ANGLE OF ATTACK.
C

c (°ra)

v Cop Y < Lc:L>D(P) /D (P)

ESO =2 P(D) v (per rad)

nD exper o {per rad)
* N (pred.)

exper. Eq. (2087
22 0.85 0.25 0.12 3.58 3.60
32 1.3 .16 .08 3.56 3.54

TABLE XIII.- COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL
DATA BY GILL, REFERENCE 13, AT ANGLE OF ATTACK,

v, (Cw)p (@) p(p),” Te (D) (®m)o(p)
% Tll p° pred. 2 pred. pred.

° €XPer. | gq.(209) | $¥PX: 1gq. (210) | ®*PeT- | Bq. (211)
50 |3.40]18 | 1.76 | 2.02 | 0.11 | o.56 0.42 2.52
50 [1.80| 9| .es 1.32 .20 .75 .23 1.13
80 [3.25 |15 | 1.12 2.12 .15 .82 .44 3.68
80 |2.05| 9| 1.07 1.47 .10 1.12 .30 2.41
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(b) £ plane transformation,

Figure l.- Mathematical representation of ducted propeller.
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Actuator disk

Pure pitch flight condition

Hovering
V° at ao

/

a
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o
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LA 9,
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about midchord diameter ¢
Vﬁ Components of pure pitch

Figure 2.- Nomenclature for ducted actuator disk
in pure pitch flight.
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Assumed hull center of gravity at 0.4L
Hull centroid at 0.5L

Ducted propeller

¥
LI S

v, = 40 ft./sec., L = 10 ft., D = 2r, = 1 ft., c = 0.2 ft.

Figure 4.- Complete torpedo-like configuration.
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Figure 5.- Hull nomenclature.
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Angles indicated are blade pitch setting B.
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(a)

Data by Gill, Reference 13,

Figure 7.~ Comparison of theoretical and experimental
thrust ratio in hovering flight.
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I Figure 7.~ Continued,
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(c) Data by Grose and Platt,
Figure 7.- Concluded.
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