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ABSTRACT

The impedance characteristics of a capacitive ionos-
pheric rocket probe have been determined as a function of
the electron.density, collision frequency, and temperature.
The physical model used in developing the theory incorporated
both effects of the ion sheath which forms about the rocket
body and the anisotropic nature of the surrounding magneto-
ionic medium. Results are obtained and numerically evaluated
to show that the sheath makes a very aignifiéant contribution

to the impedance characteristics,



1. INTRODUCTION

The general characteristics of the ionospheric
electron density profile below 120 km have been determined
by several methods using instruments carried by rockets.
These methods are of great interest since ground based
radio techniques have not lead to reliable determinations
of the electron density profile below 120 km. In 1950
some data were obtained, between 30 and 80 km, by the use
of rocket borne Gerdien capacitors at White Sands, New
Mexico, giving one of the first estimates of the conduc-
tivity of this region. Bourdeau, Whipple, and Clark (1959)
analysed the Gerdien capacitor data based on the assumptions
that cosmic radiation is the principle source of ionisation
at lower altitudes, and that the contribution of free
electrons to the negative conductivity is negligible delow
80 km, The results appearod to indicate that the effect
of the shock front surrounding the rocket on the conduo-
tivity was not significant,

Since about 1957, a great deal of work has baen
done towards developing a reliable rocket probe applicabdble
to the lower portions of the ionosphere, Some of the more
popular methods are radio frequency impedance probes for
measuring the electron density, Langmuir probes for electiron
temperature, electron density, or ion density, Gerdien
capacitors as mentioned above, and combinations of these

and other methods employed simultaneously to utilisze the



best features of each,

The RF probe teohnique for the determination
of ionospheric parameters uses the impedance character-
istics of a probe immersed in a plasma, In flights of
RF probes discussed by Jackson and Pickar (1957), the
ionosphere was observed to have an effect on the impedance
of a rocket borne antenna operated at high frequencies.
This effect was later used as the basis of an electron
density probe by Kane, Jackson, and Whale (1962), They
obtained an electron density profile which agrees in form
with the profile reduced from ionosonde data above 120 km,
In this paper an attempt was made to account for the sheath
offeots by considering the sheath to be an empirically
determined cylindrical capacitor which was assumed to be
concentric with the antenna., The anisotropy of the iono-
sphere was also considered, However Kane, Jackson, and
Whale's analysis is only applicable where the collision
frequency is low compared to the collision frequency in
the 50 to 120 km region,

An analysis of a rocket probe experiment, which
seems more suitable for the 50 to 120 km region of the
ionosphere, was made by R, F. Mlodnosky and O. K. Garriott
(1962)., 1In this experiment a small low frequency RF
voltage was impressed upon a capacitor built into the nose
of a rocket, When the rocket passed through the ionosphere,

the impedance of the capacitor changed in responae to the
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changes in the electron density, collision frequency, and
temperature. The frequency of the voltage was high enough
80 that.tho ions present were unable to follow the voltage
changes, and far enough below the plasma frequency so that
the electron motion was in phase with the applied voltage.
Their analysis assumed that the capacitive coupling be=-
tween the sheath and the rocket would be the dominant
factor in determining the impedance characteristics of
the probe, The presentation given by Mlodnosky and Garriott
demonstrated the feasibility of this type of rocket probe,
The Langmuir probe technique (Langmuir, 1931)
is based upon the Boltzmann equation for ionized gases,
When an electrode is placed in a plasma, such as the iono=-
sphere, and the current to it is moaaured'aa a function
of the potential applied to the electrode, the resulting
current-voltage curves permit the evaluation of the
slsotron tempsrature and density. Rocket flights using a
Langmuir probe have been employed a great deal since 1949.
Some of the people engaged in the early Langmuir prob,
neasurements were G, Hok (1951), E. 0. Johnson (1950),
and J, C, Seddon (1953)., However it was not until recently
that the theory of such probes as applied to the ionosphere
has begun to be developed, A paper by L, G. Smith (1961)
discusses the qualitative features of this theory quite
thoroughly. He points out that the method is limited by

the svweep rate of the programmed potential, and that the
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theory fails to 48count for the earth's magnetic field or
for the ion sheath that forms about the rotket, A similar
experiment, didodbsed by Hoegy and Brace {(1961), using a
dumbbell shaped probe, accounted for the sheath and the
nagnetioc field ih the theory. However, here too the results
are good only abbve 120 km, and even in this region there
remain some large discrepancies in the measured temperature
to be explaineds The Langmuir probe theory, while well
developed for laboratory measurements, is still far from
being a well developed theory when applied to the ionoe
sphere, 1In patticular, the Langmuir probe analysis does
not apply to the lower altitudes,

2. THB‘OENERAL STATEMENT OF THE PROBLEM

A rocket probe flight similar to the one descridbed .
by Mlodnosky and OGarriott is planned for the near future by
the Ionosphere Research Laboratory of the Pennsylvania
State University. The main purpose of this experiment will
be to measure the electron density as a function of altitude
between 50 and 120 km. A low freqguency RF probe was se-
lécted because of its ability to single out electrons while
rejecting ion and dust particles on the basis of their
respective masses. Therefore, it is desirable that a
theoretical investigation of the probe be conducted to
aid in the interpretation of the experimental data, .

The specific problem to be considered will be



the investigation of the contributions to the impedance
charleteriétics of a low frequency RF capacitor prob’
immersed in the ionosphere as a function of altitude, and
to find the relationship between the measured probe im-

pedance and the electron density,



3. QUALITATIVE FEATURES OF THE THEORFTICAL MODEL

The capacitor probe is built into the conical
nose of a rocket by splitting the cone into two sections
separated by a dielectric slab, This spiit coio is con-
nected by a wire to each of its two metallic portions to
& source of low frequency RF voltage. Unfortunately, the
conical geometry is extremely difficult to analyse so that
a similarly split cylinder was considered instead; Fig.l. The
substitution of a cylinder for a cone will be shown to
have little effect on the results, From the application
of a low frequency RF voltage to the capacitor, we wish
to determine its complex impedance in a slowly changiﬁg,
inhomogenecus, conducting, and anisotropic nedium,
Finally, the electron density will be related to the
measured impedance,

.- If an undisturbed body is placed in a neutral
plasma composed of negative electrons ana positive ions,
such as the ionosphere, then both ions and electrons will
contribute to a current from the plasma to the body., In
the ionosphere the electron mean thermal velocity is
always much greatsr than the corresponding ion velocity.
This results in a net accumulation of negative charge on
the body. The accumulating negative charge reduces the
electron flow until the electron and ion currents are

equal. This constitutes the equilibrium condition. Thus,
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a region of space will surround the body which has a de-
ficiency of electrons relative to a neutral plasma, Such
& region is known as an ion sheath as it contains & net
positive charge attributable to the positive ions. The
thickness ef the sheath depends on the electron and ion
temperatures and concentrations as well as on the velocity
of the body through the ionosphers,

8ince the definition of capacitance is based on
the ratio of the charge stored within the capacitor to
the voltage impressed upon it, the region between the edge
of the body and the edge §f the sheath clearly makes a
contribution to the capacitance of the body. This capaci-
tance will change as the parameters describing the iono-
sphere change. Another contribut;on to the capacitance,
in the case of the split cylinder, 1s the capacitance
between the two halves separated by a dielectric insulator.
Here again the characteristics of the medium surrounding
the capacitor are intimately connecied with the value of
the measured capacitance. The combined contributions of
these effects will yield the impedance and capacitance
as a function of the electron density, temperature, and

collision frequency.



Le THRORETICAL CONSIDERATIONS AND DISCUSSION

The theoretical discussion will be divided into
several distinct steps. First, an estimate of the sheath
thickness will be obtained on the basis of a simple model,
From this estimated thickness and a consideration of the
velocity distribution of the ions and electrons in the
ionosphere, the currents to the split cylinder will be
obtained. These currents will in turn permit a compu-
tation of the capacitance and the conductivity associated
with the sheath. Second, a computation of the capacitance
and the conductivity associated with the oscillation of
the electronic charge between the two halves of the
eylindrical capacitor will be made. This computation
will take into account the effects of the anisotropic
nature of the ionosphere based on a tensor description,

An es.‘mate of the sheath thickness may be made
from a model based on the work of Hoegy and Brace (1961)
and Jastrow and Pearse (1957)., Assume we have a cylinder
1mmo£aod in a plasma about which an ion sheath has formed,
At a distance r, from the center of the cylinder the net
charge density is assumed to fall to zero, In the actual
case the net charge density falli to zero smoothly but
rapidly as the distance from the center increases,
However, it will be assumed that a sharp boundiry exists

for the purposes of the calculation. The positive charge
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oontained within the sheath exactly cancels the negative
charge q on the cylinder. Then, 1f V is the potential
on the cylinder, it will be related to the charge q bY

S UNEY SRR 8
[+]

with the boundary conditions

Thea the expression for the potemtial inside the sheath
is given by
2

Ve -2+ 3mr o0 , (2)
0

where

N 2 2\ )
B o= 4= lo = [F%o (r,=- ) - vo] s

Ne 2
C = E?o T, -« B 1n To o
The charge q is given by q = = n h N e ( ro2 - r?) ’
and

b = the height of the cylinder in meters,

K = the quantity of charge per cubic meter,
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r. = the sheath radius in meters,

r = the cylinder radius in meters,

o = 1.60206 x 1077 coulonds,

V = the potential in volts,

Vo = the potential at the cylinder surface,
The preceding calculation cag‘be used to estimate part
of the capacitance and conduct;nco ¢ ( in amperes per
volt ) of the cylindrical capacitor in the ionosphere
( Mlodnosky and Garriott, 1962 ). As long as the plasma
frequency is greater than the oscillator frequency, the
application of a small sinusoidal voltage will cause a

current to flow in phase with the applied voltage. Then

we may writs

vhere Al and AV are measured internally at the generator,

The value dV = AV/2 is measured across the sheath so that

c = 3 § .
The amount of charge variation arising from changes in
the sheath dimension with the applied voltage gives rise
to a component of current in phase quadrature with the
applied voltage. This current accounts for a capacitive

reactive part of the admittance C, and is given by
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or more usefully,

¢ - 3} (%)I,_,; . (3)

S8imilarly for G,

o = 12 Pl - (L)
[+

In order to use equations (3) and (4) it will be necessary
to enter into a calculation of the currents which flow
from the ionosphere to the cylinder. The computation of
‘ the ion and electron currents will de carried out sepa-
rately.

‘It will be assumed that outside of the sheath
the presence of the cylinder is not felt in the iono-
sphere,

Lel ION CURRENTS

8ince the rocket velocity will normally be much
greater than the ion thermal velocity, iho main contri-
bution to the ion current will result from the interception
of the ions by the speeding rocket. In addition, the ion
nass is so large that the ions are unable to respond to

the voltage changes on the order of 100 ke, This means
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that the ion current from the ionosphere to the roocket

48 virtually independent of the rocket's potential with

respect to the ionosphere.

Assume that all the ions whioh intercept the

sheath boundary are collected at the cylindrical conducting

surface., If a surface element d8 is moving with a velocity

u, along the x axis, and the following quantities are

defined,

3 4 L)

J

u

the unit normal vector to dS,

Boltsmann's constant (1,38 x 10'23Jouloa/°§),
the particle velocity in meters per second,
the temperature in degrees Kelvin,

the particle mass in kilograms, .
the current density in amperes/square no?or,

the rocket velocity in meters per second,

then the number of particles per unit volume with veloci-

ties between v and v + dv is

- =373 0!])(-72&%; dv .« (s)

The subscript 1 will denote the ions and 2 the electrons,
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Figure 2
The current density Jx is then
Iy -fe(v'xd- uw ) &, (6)

The limits of integration are given by

_vtu:m,

- ®3 1.2 ® o

The following standard integrals will be used,

Joo e k. (10)
-.- 2.2 - .2'2 ‘
[v:o * Tz dv, = %-3-:!—: . ()

u[c"'adv-g-u(itutul). (70)

vhere

orf u -V%fo"a av



Using the definition for 4, » Ve bave

s " ;s%—:; [Vi 8,0 ( 1+ erf '1nx)
L .2 .2
+..1n‘]. (8a)

Equation (8a) is readily generalised. Since n is the

unit normal to dS, let u make an angle P with n and write

J -
/r 2,

EJ; a,uen (1 ¢+ erf a uen )

- ai ( uen )2]

+ o . (Bb)

Referring to Pigure 3,
uen = u( uei )cos @ + u( muej) sine ,

where the quantities u, i, J, and k are unit vectors.
Integrating j over the cylindrical surface S
yields the total current through that surface. To this
we must add the current jc intercepted by the effective
cross sectional area in order to obtain the total ion

current to the cylinder, The total ion current I is

1-j;f3ds+-r23°. (9a)
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h 2»
Ie=rk [J[fa’_lu cos & (1 + erf Au cos &)
°

h 2x
f[\ﬁ Bu sin &

2 2 2
+ g=A"u"cos8 .] d¢ ds + » Kj.
oo

2.2, 2
(1 + erfB u sing) + ¢~5 U 8in ’] d¢ ds

n r°K L/i 8,u cos ¢ (1 + ert a,u cos e)

-ai w2 coazo]
+ e ,

(91b)

where

E——

t
Vi 2a,

A= I.l(_u'o_i_) ’
B = 31(11_0_1) .

Since the rocket velocity is very much greater than the
mean ion thermal velocity, the cylinder radius is used

to estimate the effective cross section rather than the
sheath radius. When the sheath radius is very much larger
than the rocket radius, the forces within the sheath are

far too small to deflect the ions toward the cylinder,
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It is nov necessary to compute several integrals.,

2
I’l'[““’“ .

2 N
L fln cos & erf(Au cos &) &
2n .
I, - onp(-lznzcoozo) » .

Ih-fnlinodi o
°

x

IS - fnu siné erf(Bu sin &) d¢
g 2

Ig * thp(-Bzu sine) @ .

It is apparsnt that 11 - Ih =0. 13 and I6 may be
evaluated by using

3 (s) = (s/2)° f.is cos &, 2n, .o ,
n Vi[(n ¢ 1/2) |

(from Tables of Functions by Jahnke and Emde, 1938), where
Jn(l) is a Bessel function. This gives

I, = 2% oxp(-lzu?'/z) J (1 12u2/2) , (10)
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I, = 2n exp(-8%u?/2) & (-1 %a?) (11)

Integrating by parts and using a variastion of the adbove

form of the Bessel function,

]

R
3 (a) oxgs;nuﬁ) !.1: cos & ... e de

I, and I, are found to be
- vE a2 Y2 5 (s u2?2)
-1 3 (1A n2/2)] , (12)
a/—n"”"‘/z[.r(inuzlz)
PEASLNT) I (13
Now I -f 3 a3 + ar®y_ 1s the total ion current

intercepted by the sheath and presumed collected by the |
cylinder within. Thus,

I-Khro[ﬁ(12+15)*13#16]

*+n rzdc ’ (14)

or in detail,
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I=Xr, n.[znz 2,-4%?/2 [J.o(i 124%/2)

~13, (1A uz/z)]

2 2

. 2 p2y24-B0/2 [J(iBu/z)

4 3 (-1 B u2/2)]
2 2 (15)

+2n [e“‘ u/2 3, (1 A%u?/2)
ve-B2u%/2 3 (-1 Bzu"’/z)]]
oknrl PT 8,u cos # (1+erf(a,u cos 8))

2 2 2
u ¢cos
". 1 io

When the arguments for the Bessel functions are large and

where u-i is taken to be sero, equation (15) becomes

a,u cos a

I-Ni'l(rh[eaucoaa+-———-}—-—] (16)
. o 1 1

n 1‘2300
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Unfortunately, under ordin(ry“cbhditiona the asymptotic
approximation to the Bessel function may not be made.

b.2 ELECTRON CURRENT

The electrons must be considered from another
viewpoint, Here both the small mass of the electron and
the high mean thermal velocity relative to the rocket sug-
gestd that the particle trajectories be examined. From
the time an electron enters a region under the rockot'i
influence to the time when it is either collected or again
outside of the region of influence, the rocket may be con-
sidered stationary.

In examining the electron particle trajectories
within the sheath, we are primarily interested in finding -
the limiting values of the velocity that will permit the
electrons to strike the cylinder surface 8. The rocket
flight may be roughly broken into two parts. First, a
region corresponding to the lower altitudes where the
electrons will undergo many collisions before striking the
cylinder, and second, where the electrons will be able to
traverse the distance between the sheath and the rocket
without collisions, In the lower region the contribution
of the electron current to the impedance will be over=-
shadowed by the contribution arising from the interelec-
trode capacitance. Therefore, collisions within the sheath

will be neglected for the compuiation of the electron
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ourreat during the entire flight.

. Given a cylinder of radius r surrounded by a
sheash of radius ro,‘lot us assume that an electron inter=-
ocepts the sheath edge, at A in Pigure L, and attempt to
caloulate the limiting conditions on its velooity so that
it will barely grase the oylinder. ULet the volgoity be
decomposed into a component tangential to. the sheath '0’

a ocomponent in the radial direction Voo and a co;ponont in
the axial direction Ve The field between A and B is
sssumed to be conservative and repulsive with respect to
electrons, As stated above, no collisions are assumed to
oceur while the eloctrons‘travoruo the path between A and B.
Un&gr these conditions, the minimum value the

radial oomponent v, may have is
e (o 1/2
'r ( 2.70/12) .

Conservation of energy and angular momentum requires that

1. (2 e v ooy ad_ (2 .2 .2
¥ m, (v0 v, o+ v.) 3 n, (v.l * Vet v') -V, ,

Vpy ond Vg1 &re the values of the radial and tyngential

components of the velocity at B, Since e " 0 at B,
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2k
'2 . 2ov°
2 ro Ry
v [ ]
0 max (’o/')! -1l ’

vhere n, = the electron mass in kg (9.11 x 10'31 kg).
The electron current may novw be calculated by
assuming a Maxwellian distribution of velocities.

Defining a, = (n2/2k!‘)1/2 s the electron current i is
ag -ag(v:+v§+vf)
G 2ur°hlo :37! v, ® dvrdvodv' ’
Vs Yo Vr

where the limits of integration are found from

wEty2e , (2.'0/32)1122 vr.'! -

o= Ve * 207 /m,

-V,

e-— [ ]
(r/r)? -1

The sero limit on Vo arises from the fact that this com=-
ponent of velocity is to be taken as positive regardless
of the direction it may assume,

Define L = 2xr hNe ag/n3/2, and consider the
following integrals:

2.2
fdvo"' -« i,
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v
es 2
Y
2 . yn .
°] dve gz orf (azvez).

Therefore,.

R (2, 20V
i . 535— dv. v. o 2 Tert 2, .3__!_!__ .
2a3 ror (ro/r) -1,

1/2
(-2ev°/-2) /

After a change of variables we need only consider the

integral

2.2
I, = d/’a o0 % ort (as) ds, D = a J(ro/r)!)-l.

[

Integrating by parts and noting that (D2 . 12) is always

greater than sero gives

2,2 eV
L - nL(ro/r -1) = . 'ET-g',
812 D! (a€ + Dz)l/2
or
v,
TN an
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he3 . THE COMPLEX IMPEDANCE COMPONENTS

We have now caloculated the expressions toi both
the electron and ion currents. It must be emphasised that
the above analysis applies only when the voltage changes
are slovw encugh so that the electrons fully respond in
phase with the voltage. The sheath radius and the po-
tential on the rocket may now be obtained when the rocket
is at equilibrium with the ionosphere.

The condition of electrical equilibrium demands
that I = i, Using this condition and solving for the
potential Vo yields

b
v, Ean( gde 1) . (18a)

8ince the derivative of equation (2) is equal to

-q/2ars h, snother expression for V_ is

2

-V, = {"-:-o- [r2 + r2(1n ;{- - 1)] . (18)

The elimination of Vo betwaen these two equations results
in a transcendental equation which determines the sheath
radiue Toe This equation is
2 2
2 r r
kT Nenrh Nor (] 0
-.--1!1 (hTzT-) .F—[l *;g(ln:! -1)]. (19)

-t



Graphical solution of equation (19) on a uigital computer
permits the use of equations (3) and (L) to obtain the
expressions for the capacitance and conductance arising
from the ion and electron currents and the sheath fluotue

ations. These are

ne_ h
C = 2 (20)
1n(ro/r)
2
I =« r®)
1],k?T ¢
G = (2= 1 + — )] R (21)
E[{ -2—":01‘ ln(r{/ra)]

The computation of equations (20) and (21)
will be comdined with the results of the next section to
give the total impedance characteristics of the rocket
capacitor probe,

bels THE APPLICATION OF MAGNETOIONIC THEORY

The second part of the problem is the calculation
of the contribution to the capacitance and the conductance
from the electrons oscillating between the two halves of
the split cylinder, The approach will be based upon a
development of the Appleton-Hartree equations taking into
account both the magnetic field of the earth and collisions
with neutral particles. The collisions will be expressed
through a quantity known as the collision frequency, that

is, the effective number of collisions per second.



Consider an electron under the influence of an
oscillating electromagnetic field and the earth's magnetic
f£ield, The collisions which result from the oscillating
motion cause a dissipation of electromagnetic energy in
the form of heat and work. It may be shown, Budden (1961),
that the forces from the oscillations of the magnetic
field are negligible compared to the electric field forces.
The peak/ioltage used will be quite small, so that very
little hoiting due to the applied field will result. This
restriction avoids considerations of power loss due to
80 called acoustic waves; as discussed by Kane, Jackson,
and Whale (1962).

First a tensor description of the ionospheric
medium Hill.be developed and applied by use of Poynting's
thoorqn to calculate the power dissipated in the mediunm,
Second, an alternate method will be employed, which will
turn out to be quite superior to the use of Poynting's
theorem., However, it will be shown that both descriptions
agree on a qualitative basis, Finally, the various contri-
butions to the capacitance and conductance will be combined
in an equivalent circuit which represents the actual
rocket probe electrically. The Poynting vector treate-
ment will be seen to be very sensitive to the method of
computing the electric field surrounding the rocket and
to the geometry used. The second method, based directly

on the definition of capacitance, is easily applicable
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4o any body having cylindrical symmetry.
The differential equation describing the motion
of an electron in an anisotropic midium with collisions

is
- a%p dr dr
=% = qE + q“o(if x H) = mVIE (22)
at ‘

where

m = the mass of an electron in kg

.q = the charge of an electron in coulombs

E = the electric field in volts per meter

$#_=~ permeability of free space in henry's/meter

B = the earth's magnetic field in ampere-turans
per meter

v = the collision frequency of electrons with
neutrals

® = the angular frequency of the oscillator

Xt'= the electric auscoptibiliiy

P » the polarisation

¢ = the tensor polarisabdlility

N = the electron density per cubic meter

The following basic equations will be used.

P=o¢B&, (23a)
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.,.‘o‘)
{J
=X, (23v)
B - xeiet, (23¢)
P = polot, (234)
P = Ner . (23e)
where r is the displacement of an electron from some
reference point designated at time t = 0. Equation (22)
in component form beconmes
oF, = aX - p oH. 7y ¢ uocl,i + nvk
08’ - ay - “o‘nx' + uoon’x + mvy
OE’ = ng - uoeﬂyx + poeH y + mvs
By using (23d) and (23e), and the following definitions,
the above may be reduced to matrix form,
Y = Fo®
W H . (2{;!)
2
Ne
b Qi —y . (2k4v)
ne
v
Z=z. (2ke)
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i '_J B !1 r - ! + r- -P'J R

Therefore, by using (23a) and U = 1 = 1Z, the inverse of
the tensor polarigability is

-0 -1 I' i !y
-1- - - 1
Qo 1!' U 113 xo
-3 !’ i !& -0

Inverting this matrix yields the tensor polarisability ¢

Pz —
v 1, -AUY, LY 107, - LY
- '!*5'!‘ iUY = Y. Y ve. Y2 iUY = T Y
u(x%- U%) s rx y x ‘y's
2 L2 .
b-wry- YT, AT LY LCh

When H is along the s axis ¢ beconmes,



B -1 1,
|#w &=o °
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0

2 2
U= T

° ° (;2- u’)u ]

Using the fact that ¢ = LR + ¢ we have

‘o * o7 i = 0
Y¢-U %~ U
E!E!EE s * —%!—— 0
Y- o yé_ g2
X
] 1] .o' v

Define the following quantities:

2ho:o£oro,
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KX 4

- !1-12 , 25)
ot FotEe s

K=t - TTH— (25%)
4 o . (25¢)

- . ]
L A TNTTL

Thus, we have

B . -
K, 1Ky 0
¢ =|1 K, Ky 0 (26)
0 0 K| -
- -

The matrix form of ¢ in the equation above will
be assumed to be a good description of ﬁho ionosphers's
electrical behavior in the region below 150 kms. 1In other
words, we are assuming an anigotropic, inhomogeneous,
aﬂd dissipative medium that is siightly perturbed by an
electromagnetic disturbance, From this we will attempt
to compute the energy dissipated when a capacitor is
immersed in the medium,

Starting with Maxwell's equations and the follow-
ing definitions,

curl H - %% -Jd =0, (27)
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3k
ourl B + g% =0, (28)
D, - 'iitd , (29s)
Jg = °1'.3'3 , (29v)
Fa = by By, (290)

we oan obtain an expression for the effective value of &,

Assuming that all quantities have the time dependence

.1ot

» We can write for equation (27)
ouln-gt(n#f.ldt)'o.

curl B = (D ¢ 32 9) = 0,

In component form, by using (28a) and (28v), (27)

becomes

(curl H), = g; [(¢i3+ %3 giJ)EJ] s

i1, = 1,2,3.

Define Dofroctivo as
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: ' 1 -
(Pottective)s ™ (845 * T oy3)By = 2448y » (30)

then

curl H = g%efrective . (31)

fij may now be associated with the matrix
defined in equation (26). This association will enable
the Poynting theorem to be applied to the field quantities,

If we have a surface S in space containing a volume V,

e ey e 4 2 v e

then the net energy W passing out through the surface

can be computed.

Ve fdiv(l. x H) dv ,
v

or

W= %- [(E + E*)+32(D + D*¥)

+ (H + H*).gf(n + B*ﬂ av ,

where E* is the complex conjugate of E, A time average

over one cycle is

LA %jﬁx'%i'n* + E’%—;D + Hgﬁ* » H’%EB)] av ,
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i
V" F‘l I.Z'I f“EJ - :1:;333* + n:u“nd - “1":3"5’] av .

If there are no magnetic losses, that is Byg ® “:3’ then

'av becomes

1w ‘
Vv " T [(n*;r“x::l - Eif‘hl‘;)] av . (32)
v
Equation (32) gives the rate of heat generation in a

given volume of the medium due to electromagnetic sources.
The quantities ‘i are Just the amplitudes of the electric
field because of the time averaging. Performing the

operations indicated in equation (32) we have
Vor " .};ﬂ[ln (kg - £8) + [B|2cos?(B,B) (K= KE + Kye KE)
+ 1(Ky - K2) (B3 By - 3‘1'32)] av , (33)
where (E,H) represents the angle between E and H, and
R N e | AL | N

2, 2
» - 24X2(2°+ Y%+ 1)

(T%¢ 2% = 2)%+ 4z’
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-1 = 4ixz .
R F (124 2%- 1)+ 122

av is a real quantity and it is greater than sero.
Assume that the inhomogeniety of the medium is such that
Kr, ‘P' and ‘H vary slowly over the region strongly
influenced by the capacitor. 1In the ionosphere, with

a capacitor whose largest linear dimension is on the

order of one meter, the assumption is excellent.

oy - %2 (kg - x;)J(|EIZdV * %2 (Kp- ‘; + Ky - F;)
7 (3L)

o | [8|%cos?(®,H) 4V + %2 (K- k%) [ (5, - EJE,) 4V

The integrals that are contained in equation (33)
reflect the influence of the geometry. Unfortunately,
for many practical geometries closed form integration
is impossible, This is certainly true for the conical

rocket capacitor,

L5 TWO DIMBNSIONAL APPROXIMATION TO THE BLECTRIC FIELD

The amount of work necessary to obtain an
accurate numerical integration of Laplace's equation for
the split cylinder is too much in three dimensions.

A reasonable approximation to the fields may be had by
treating the corresponding two dimensional problem. It

is well known that only a few two dimensional electro-
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static prodblems may be rotated to yield a three dimensional
selutien to Laplace'’s equation, but even so the qualitative
features of the field will be retained,

The fringing field produced by the cylindrical
capacitor is of primary interest, because it is only
this field which contributes to the heat dissipation
in the surrounding mediume The field surrounding the

cylinder, in the quasistatic case, may be found from

v =0 . (35)

Equation (35) may be solved using the general
Schwars transformation., ZThis transformation is governed

by the differential equation,

d‘l (bi- ‘l)/l
I, - °'I_1l (55 = ay)

n = one less than the number of vertices in
the polygon forming the boundary.

C = a constant, possibly complex, which specifies
the orientation of the polygon with respect

to a set of axes in the 5 plane.

a, = the location of the i th vertex in the

'2 plane.
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¥
b1 = the interior vertex angle measured in a
counterclockwise sense.
The boundaries in the s plane are first trans-
formed into the u axis of the ¢+ plane, and then to the
w plane where the stream function s and the potential
function V form a rectangular coordinate system. The
Schwars transformation for this case is
ds ¢ vi=1
at -z
Integrating, we obtain
20 (V=T - tan"yT=T) s, +(36)

where C' may be set to gero,
Assume that we are in the region where t =<0,

then ¢t = 1< 0, Set Vi = I = im, where m is positive,
then

i n=-1

When 2z = 1A, m = 1 and

c 2ia

n
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Then equation (36) becomes
s -3 (TTT - tnlEED) (€1))

Equation (37) maps the upper half of the s plane into
the upper half of the t plane, and places the point B
at ¢t = ],

In order to map the ¢+ plane into the w plane,

the transformation is easily seen to be

t - e'iam/vo . (38)
To verify the transformation, let ¢ » |n|, Then

Voln|n| = -4V + ns ,

s = ;2 in|nm| ;

VeoOo,
When ¢t = «|m| ; then

vV, In(-|n|) = ein? - ms,

v.-vo,
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s == 1n|n| ,

Therefore, the boundaries are mapped as required. The
first transformation may be simi}arly verified, The
potential V ranges from -Vo to 0, and the stream function
s troﬁ - ® to + ™,

For the transformation to be useful, we combine
the two equations (37) and (38) and write the total
transformation in real and imaginary parts,

sexety=R2Gumi-n) 2 E-h, G

where the guantities r, R, bl, a4 & and d are related

to ¥V and by the following set of definitions:

1 ‘
a, = [(e -1)% f"’]’:(cos(%tan'l L)) , (Loa)

6 - 1

1 .
b, = [(e - 1)2% fz_]E(sin(%tan'l;—f-—l)) s (Lov)

e = exp(n-;-o) cos(n %o) , (Loc)
£ = -oxp(n% ) sin(n % )‘,' (Loa)
o 0

r=V(1+0b)a al , (LOe)
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g " tan'l—I-%-s- , (o)
R=V(1 - b)! + 2l , (Lkog)
d = tan'l T—:—r . (Lon)

Values of V and s are now inserted into the
above set of equations, Connecting points of equal V,
and similarly for equal s, constitutes a two dimensional
mapping of the potential and the stream functions, The
electric field vector is everywhere tangent to the stream
function, The components of the electric field may be
caloulated from the total Schwars transformation.

W w

. -1 1 -1 1 :
s - E?A [ o 'v° - 1. tan~2(e .v° - 1‘5] ’
E = Re (- %% ),

and

n,-m-g;).

Taking the derivative %% is lengthy, but easy. The final

result is



v /28
dvw )
- » 0 - 1')0
@ T
Therefore,
S B (L1)
X - H G + 7 ’
v° r
where
v,
E N'I cos & ': cos ¥ '-; v

e
F--2|2 «gin n v. cos P. co3 % y sin 4
LV‘I][ \ R o 4 I

[+

’

1
R, = [coaz (n ;:) exp (n %l + sin? (n ;-;)] z

P = tan-l

-8in n ;— ]
Vo 8
(x =)
cos (R v-o- pr(ﬂ v-o-J

Equations (L1) and (L2) determine the quantity [E| 2 in
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equation (33).

The angle between the electric and magnetic fields
must now be calculated at each point in space. A co~-
ordinate system with one axis tangent to the earth at the
point of the rocket launching and another perpendicular to
the earth makes a convenient reference system. Measuring

all angles from the horisontal axis yields
-1
(B,H) -;. + L - tan™" ( zy/ E) -H'.

H' = <the angle that the magnetic field makes
with the horizontal in radians.

L = the launch angle in radians

It is now possidble to perform the integration in
equation (33) numerically, However, one further simpli-
fication is in order. Suppose there exists a conformal
mapping, such as a Schwars transformation, between the s
plane and the w plane.

Consider the integral

ff cos’ (E,H) 4V ds,
.

and

av = 2L ax + g d7»



an-gax +§.;ay .

vhere s » x ¢+ iy and v = V 4 49,

Squaring and adding,
(an)? + (d0)? = [«g;.# ’ <g;>2] [(a:)* . (ay)"’] X

where the Cauchy Reimann equations,

have been used. Therefore,
(an? + (a0)? = )2 [(4_3)2 . (a;)"’] .

This determines the differential element in the transformed

plane. Thus, 4V ds becomes lll2 dx dy, and

[fcoaz(l.ﬂ) av ds = fflnl"’ cos?(E,H) dx dy . (43)
s s
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Since the mapping is conformal, (B,H) transforms unchanged.

Bquation (43) reduces the difficulty of per-
forming the integration, The limits of integration are
nov more difficult to determine in the untransformed space.
The object is to select a region of space sufficiently
large so that almost all of the power is dissipated within
the chosen volume. If the limits are selected in the
transformed space, and then carried over to the untranse
formed space, an appropriate boundary may be determined,
The most convenient boundary lies along one of the lines
of constant stream function.

The.intogration and computation was performed
on an I.Bels 7074 somputer. The results of this cem~
putation are displayed in the next section. An interesting
feature of the computation was that the last term of
equation (33) turned out to be quite small compared with
the rest of the terms. This term can be rearranged to
resemble a polarisation term in the magnetoionic theory
by some algebraic manipulation, Essentially, it is a
measure of the anisotropy of the polarizability of the
medium, Thus, for the region below 150 km this anisotropy
is a negligbly small effect. Thia result is just what
is expected on the basis of qualitative argument.

When the magnetic field H and the electric field
E are specified, equation (33) can be written
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'., - t("’.“) .

>4<
on

The total power dissipated by the fields from the
orliadr1511 capacitor is approximately 2:".' = Q, or

v2 v2
Q= 21—%— £(N,v,0) = !ﬁ s (in joules/second)
A

where Vo is the peak voltage and R the effective
resistance. Then it follows that

2

2= E;?T%:;:=’\ (in odms) . | (b))

Bquation (LL) determines the effective resistance of the
medium in which the capacitor is immersed, No information
results from this method.about the capacitive portion of
the impedance,

It is obvious that the procedure just outlined
'10 far from an ideal treatment of the problem. The greatest
difficulty being that the answers obtained are extremely
sengitive to the method used in evaluating the effects
of the electric field near the ec¢ylinder. The two di=-
mensional field solution yields only the grosser features
of the slectric field surrounding the capacitor, since

the cylindrical rotation of this field does not represent
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the’ true three dimensional electric field., The information
that it does contain, namely the qualitative behavior of
the losses due to heat dissipation, is useful,

ke6 APPLICATION OF THE DEFINITION OF CAPACITANCE

A better approach, for the computation of the
impedance characteristics of the capacitor, is to return
to the basic definition of capacitance in any medium,

In a strict operational sense this definition is
c=3
v’
where q = the charge on the plates of the capacitor in
coulombs, and ¥V = the potential difference detwesn the
plates in volts. The definition can be written in a

more useful form by expressing q and V in terms of

integrals of the field quantities.

fn.g as
c = ’ (s5)

Jrea

where R = the unit normal to the surface of the
capacitor,
dS = a surface element on the capacitor plates,
and L = a path along which B is integrated between

the plates.
Equation (L5) becomes
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o-%sfn.gas .

E
However, n = Ixﬁ], where E, is the electric field at the
]

surface of the capacitor., Then

1 [ DB,
CPV w:rds » (h6)

E,¢e
1 174
C = ds ° (h?)
Vf IE,]

By an analysis similar to that for equation (33), we have

c = %[ual [x, + (Kp = Kp) cosz(B,H)] as . (48)

The definitions of the quantities Kr and ‘P are the same
as in equation (33).
If the same capacitor is evaluated in free

space, then its capacitance will be

c, = vJeo I®| 48 . (h9)

Since neither KP nor ‘T varies over the dimensions of
the rocket,
T '

— L

. (50)

alo
[ ]
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If the nose of the rocket is slender, that is, if its apex
angle is small, then by using the angular symmetry of the

rocket, equation (50) becomes

K Kp = K
¢ .. 1 A 4 238> (51)
Uo R * , Los® (s, ’
where
K"n)naxl
Gos?(B,8D = L [ cos?(x,B) d(x,B) . (52)
Ks'n)nin'

fhen the electron density is vanishingly small,
and the collision fraquency is very high, lf m,:,
approach & , or c/c° approaches 1, -

The first term in equation (51) displays the
isotropic portion of the capacitor's characteristics,
while the second term gives the orientation sensitive
behavior. The quantity <§oaz(!,ni> is readily de-
termined from a knowledge of the launch angle and tele-
metered aspect data for every point during the rocket's
flight, The earth's magnetic field is assumed to make
a constant angle with some arbitrary fixed reference
throughout the flight,

It is clear fhat the evaluation of equation

(52) can easily be made for many different geometries

in closed form. 1In addition, an evaluation of equation
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(50) may be made on a digital computer with great acoursey
dad'odnparitivo oase, thti 1- oogtoinly not the ease with
equation (hk).

ke? BQUIVALENT CIRCUIT REPRESENTATION

1f both the developments presented here are
to be considered valid, then they must show the same
qualitative behavior as a function of the ionospherie
parameters. A numerical comparison of the two developments
appears in the nexﬁ section,

The quantities calculated must now be spe-
cifically identified, This will be done with the aid
of a schematic circuit representation of the actual
physisal sitwation,

As was stated defore, the capacitance and the
conductance calculated in equations (20) and (21) relate
to the fluctuations of the ion sheath surrounding the
vehicle., This may be represented by a capacitor shunted
by a resistor between the surface of the cylinder and the
sheath edge for each half, Th’ capacitance caloulated in
equation (51) is & complex number which contains both
resistive and reactive terms. Writing c/c° in its real

and imaginary parts, we have

0 '-i"b'o (a + 1) ,
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The quantities a and b are defined in terms of the real
and imaginary parts of K, and K, ( written Bo(lp), lo(l,),
In(x,). and In(K,) )

Re(K,) = ¢, - ;__t? .
In(K,) = - 1—-?—2,- .
Relly) = %o * ?ﬁ%%z-zl;"’li w
e - - A

Then for the inpedance 81 of this complex elemens, we have

z, - 2, e=ost
100
7. = =b .4 -g
.
1 aco(a!+ b!) oco(a!* bE)

Identifying the real and imaginary parts as the series

resistive Rs and reactive x’ parts respectively, yields
R [ ]
(.2, w2y °?
s mco(n + b°)

S =
s mco({z + b°)

R‘ and X, may be converted into their equivalent parallel



eirouit components, np and xP respectively, by

L &

- "—r""‘. ’ (53)
2, 42
R X .

Tyt (5h)

Noting that the conductance G in equation (21) is just

the reciprocal of the resistance, we may now complete the
identification of the resistive and reactive components,
Labeling the capacitance derived in equation (20) as 02

and the resistance from equation (21) as nz, the quantities
RP,.IP, R,, and G, may be combined into a single capacitor
o,, and a single resistor n,, shunting the oocillgtor.

The total impedance of the resulting circuit will bde th..
valwe actually measured by an impedance bridge contained

within the rocket. The reduction of the physical cirecuit

.40 one which contains only one reactive element and one

roqiltivo element in parallel with it is quite standard.
Each half of the rocket capacitor interacts

with the sheath to produce a capacit;ncq 02 and a

resistance 32‘ These four components can be reduced td

their series equivalents nz. and 12..

R -
2s P P ’
l+e 0232
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e
200232

X ® - .
29 2.2 .2
b f ) 02 nz

Changing nz. and X, into two parallel oonpqaontl n,z

and xPz by
2 2
R = Ros * X2s

P2 “23 ’

2 2

R + X
and L Rpy = 228,

' ' 28

. Combining Rp, and Xy, with Bp and I, we obtain the

expressions for npr'and xpr. These are

RR
Ry, » —l2_ (55)

PT
. Rp + Brz

b 2 3

2
pT :
Xp *+ Xpp |

Equations (55) and (56) are the relation

between the measured impedance and the electron. density.



S« NUMERICAL EVALUATION OF THE THEORETICAL RESULTS

Bquations (Lb), (55), and (56) were numerically
evaluated with the aid o; an I, B, M, computer, The data
for the eslectron density, temperature, and collision
frequency were obtained from ionospheric models as incorpoe
rated into CIRA 1961. An experimental determination of
the rocket's velocity made from similar rockets during
test flights yielded the approximate result

6 16,85 x 10> n ,

¢ = 3,35 x 10
for altitudes greater than 4O km. The altitude h is in
kilometers and the velocity v in meters per second. The
rocket launch angle was taken at 85° with respect to the
horisontal, and the angle (u,s) between the rocket axis
and its velocity vector for every point of its trajectory
is approximately given by

1

(u,3) = tan™ 10,5 - tan"1(-2.5 x 1074 q « 10.5);

vwhere d=L4,2 x 10 (1 tV0,88 - 4e6 x 10-3 h_)-

The data for the magnetic field strength,
6,07 x 10"5 webers per square meter, and angle with
respect to the horizontal, 58°, were used as approximate
figures for vhat might be encountered at the launch site,
The oscillator freqﬁ;nciea were taken to be 1,0 x 10s and
.12 x 10S cycles per second to correspond to the planned
rocket flight,

The results of these computations are shown in
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the aeconpapying graphs. PFigure 6 displays the ionospheric
nodels used., Pigure 7 shows the resistive conpgnont of

the complex impedance as a function of altitude, and
sinilarly Pigure 8 for the reactive component. The values
given in Pigures 7 and 8 neglect the resistive and reactive
contributions from the inside of the rocket. Thus, to
actually interpret experimental results the data must be
adjusted to account for the internal contributions. Since
the interior of the rocket is sealed from the effects af
the ionosphere, the adjustment to the data should be a
constant throughout the flight,

Pigure 9 is a plot of the resistive component
obtained in equation (ki) and the resistive component
ob;ainod from equation (53). Since these are supposed
teo represent the same circuit element, at least quali-
tatively, they have been plotted together for purposes
of c;nparilon.

The left hand ordinates of Figure 7 to Figure 1l
are multiplied by the capacitance co measured in free apace;
while the right hand ordinates give the resistance and
reactance for C_ = 1.0 x 1011 farads. The value of ¢,
selected is representative for this type of experiment,

The application of magnetoionic theory alone,
as developed in section L.L, leads to probe impedance
curves vhose general form is not altgrod over a wide range

of oscillator frequencies below 2 m¢, The frequency 2 moc
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was an arbitrary computational limit, The general form

of the reactance curves for the above freguency range

is that shown in Figure 8 for £ = 1,0 x 10S cps. The
resistance curves follow the form of the curves in

Pigure 7, The smooth transition between curves of differ-
ent frequencies is the notable result for the magnetoioniec
calculation.

The addition of the effects of the ion and
electron currents flowing to the rocket from the iono=
sphere, developed in sections L.0 to k.3, alters the
impedance characteristics considerably., Now the shape
of the reactance curves shows a marked frequency de-
pendence. At frequencies less than 2,5 x 10S cps the

‘renctanco undergoes a change from negative capacitive
values to positive inductive values in the vicinity of
100 km. This change moves towards higher altitudes as
the frequency increases, For the frequency range 2,5 x 10S
cps to 2,95 x 105 cps, a second change back to negative
reactance occurs., Above 2,95 x 105 cps there are no sign
changes in the reactance until 2 mc where the reactance
undergoes two sign changes again, The computations were
carried out in the range 55 km to 130 km because above
130 km there is a lack of meaningful collision frequency
and temperature data, The curves showing this frequency
dependence are in Figure 10, Four representative curves

showing the corresponding resistive component are in



Figure 11.

These results show the strong effect of the
sheath on the impedance characteristics, In the lower
portion of the altitude range considered, the contributionl
of the sheath are only a small portion of the total
impedance., However, at altitudes higher than approximately
90 km the sheath effect contribute quite strongly. The
second change in sign of the reactanc; is directly attribut-
able to the sheath, Thus, neglecting the sheath contri-
bution or the magnetoionic contribution would lead to
serious error in the altitude range considered,

The theory developed will allow data for the
measured value of the probe impedance %0 be redused to
electron density as a function of altitude. This is
nost easily done by computing an entire family of impedance
characteristic curves and then obtaining the best fit to
the raw data by inspection, or by the use of a suitable

numerical smoothing technique,
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6. CONCLUSION

A relationship between the measured {upedance
of a low I?Qquonoy RF rocket probe, immersed in the
ionosphere, and the elsctron donaify has been developed.
This relationship will enable data, telemetered-.from
the rocket to the ground, to be reduced into an electron
density profile for the altitude range of 55 km to 130 km,

The problem was separated into two main sections,
Firast, the formation of an ion sheath about the rocket:
probe was investigated so as to be able to determine its
effects on the impedance of the probe. The main features
of the sheath were determined by calculating the ion and .
electron currents from the ionosphere to the rocket prode,
and requiring that they be equal at equilibrium, 1In
order to apply the results, the oscillator frequency
must be low enough so that is able to respond fully to
the voltage changes, Second, a magnetoionic description
of the ionosphere was developed to determine an effective:
dielectric constant to be applied to the capacitor. Thi;
description accounted for the oscillations of the electrons
between the two halves of the capacitor., Since coliisiona
wire included in the description, a resistive and reactive
contribution was found to result from the electron
oscillations,

A schematic description of the electrical
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properties of the 1onoaphoro? as seen by an impedance
bridge carried by the rocket, vas developed. A single
resistive and ;osotivo slement, each in parallel with

the oscillator, was derived from the d;tailod schematic
circuit, It is through these two elements that the
contributions of the sheddh dnd the electron oscillations
were combined. The final result constitutes a relation-
ship between the measured impedance and the electron
density.

A model ionosphere was described and used to
determine a set of resistance and reactance curves for
a theoretical model of the rocket probe. These curves
clearly indicate that the sheath effects and the
magnetoionic effects were both important throughout tb?
altitude range of interest. Above approximately 90 km,
the contributions of the sheath to the total reactance
actually dominate to produce a double change in sign
for certain frequencies, and no change in sign for other
frequincio;. Alone, magnetoionic theory produces only
& .single change in sign in the reactance as a function
of altitude.

There are obviously some drawbacks to this type
of experiment. In order to calculate the impedance
characteristics, it was assumed that a detailed model of
the collision frequency,'temperature, and ion mass 1is

known accurately as a function of altitude, In general,
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this is not the case. Therefore, such data must be
obtained from t’iuitablo experiment flown simultaneously
with the capacitor rocket probe, or from theoretical
models of the ionosphers.

6.1 SUGGESTIONS FOR FURTHER RESEARCH

Some refinements in the theory suggest themselves
immediately. The sheath model should be obtained from a
solution of Poisson's equation in which the charge
distribution is a derived function rather than a specified
one, The Maxwellian velocity distribution should be
modified to account for both the presence of a solid
bouﬁdary, and for the possibility of two different
temperatures for ions and electrons. Fortunately, the
tonpora@ure always enters in an insensitive way, so that
orr;rl introduced by an imprecise knowledge of the temper-
ature at the time of the flight should be small., PFinally,
the oylinder used is an extreme idealisation of the gconical
rocket. This might be improved upon by employing a split
prolate spheroid instead.
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