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FOREWORD

The Acoustics and Seismics Laboratory of the Institute of Science and Technology at The
University of Michigan has been conducting research on seismic wave propagation during the
past two years under Air Force Contract AF 49(638)-911., The collections of a considerable
number of magnetic-tape recordings of seismic events under this and other contracts have
presented a problem of data analysis. The same problem, only on a much larger scale, is

currently being encountered in the VELA UNIFORM program.

It was thought that the use of analog and digital computers could conceivably speed up and
improve the analyses of selsmic recordings. Hence, the assistance of the Analog Computer
Laboratory at the Institute nf - ..ce ..nd Technology was enlisted to determine the feasibility

of using analog-computer techniques to solve many of the problems.

This report covers the theoretical background and the results and conclusions that have
been reached to date on the use of analog-computer techniques for the analysis of seismic

data at The University of Michigan.

The authors would like to acknowledge the assistance of the following members of the
Acoustics and Seismics Laboratory: J. M. DeNoyer, P. L. Jackson, J. A, Prout, and D. E,
Willis.
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SYMBOLS
t = Time
f(t) = Time function
A , A, B = Fourier series coefficients
o “n" Tn
2
w, = Fundamental angular frequency (71,1)
t‘l = Fundamental frequency (1?)
T = Period of periodic wave, or length of portion of {(t) being analyzed
P(t) = Instantaneous power-dissipation in 1-ohm resistor
Pav = Average power
P(n) = Power in the n-th trigonometric Fourier component
a(w), b(w) = Fourier integral coefficients
w = Total energy dissipated across a 1-ohm resistor with applied voltage f(t)
W(wj) = Energy contained in all frequencies from 0 to wj
w d(w) = Energy-density spectrum {function of w) (energy/ (rad/sec)-bandwidth at w)
wc = Carrier frequency
wm = Modulating frequency

Wd(u). to) = Time-varying energy-density spectrum at time to

p(w,

to) = Double-sided power density spectrum at time to

P{w, to) = One-sided power density spectrum at time to; z[p(w, to)] = P(w, to)

G(w - wo) = Filter transfer function

p(n) - Power in the n-th exponentially-defined Fourier component: P(n) = 2p(n)
p(nwl) = Power density in watts per radian per second, at the value of w which is eq- to nw
Q(t - to) = Weighting function

2
fl(t - to) = Time aperture or window; Q(t - to) = fl {t - to)

p(w)
K

F(w)
F(w)

F

= Power density in watts per radian per second at w
= Normalizing factor

= Fourier transform of f(t)

= Complex conjugate of F(w)

= Interrogation frequency used in analog-computer circuit

1



institute of Science ond Technology The University of Michigan

h{t) = Response of an electrical network to a unit impulse

En = Analog-computer voltage

o = Reciprocal of first-order filter time constant

pa(w) = Exponentially mapped past (e.m.p.) power spectrum

w‘ = Interrogation angular frequency used in analog-computer circuit, (wl = 2r F‘)
wo = Frequency coordinate of time-varying power spectrum p(wo. to)

t =

Time coordinate of time-varying power spectrum p(wo, to)
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ANALOG COMPUTATION OF TIME-VARYING POWER
SPECTRA OF SEISMIC WAVES

ABSTRACT

An analog computing technique for measurirg time-varying power spectra of seismic
signals has been developed. The signal to be analyzed is recorded on a magnetic-tape loop
so that it may be played back repeatedly, and the analog computing equipment, connected to
the output of the tape-playback apparatus, measures as a function of time the power level at
a different specific frequency for each passage of the tape.

The concept of a time-varying spectrum is developed and the theory of the analysis method
used is derived., It is shown that in measuring time-varying power spectra, there is a theoret-
ical relationship between the time resolution and frequency resolution such that any adjust-
ment which gives an improvement in one results in a degradation of the other. This conflict
is not caused by equipment limitations, but instead is a result of theoretical relations between
the time and frequency domains.

A plot of the energy- or power-density spectrum of a seismic wave is not smooth, but
instead shows a number of sharply defined peaks. It was found experimentally that a filter
bandwidth of 2 1/2% for the analyzing apparatus gave satisfactory frequency resolution with-
out seriously degrading time resolution when magnetic-tape seismograms were analyzed.

It is concluded that measuring methods based on the use of filters are theoretically
equivalent to methods using weighted Fourier analysis, and that the choice of a method to
be used should be based primarily upon equipment requirements. The analog-computer setup
makes a very flexible tool for developing methods of power-spectra measurements, although
more specialized apparatus would probably be more satisfactory after an optimum method
has been found.

There is a possibility for considerable improvement in the measuring techniques, and it
is recommended that research directed toward optimizing the analysis of seismic waves be
continued.

1
INTRODUCTION

This report describes analog computing methods which were employed in measuring the time-
varying frequency spectra of seismic waves. Formal analytical methods, using the Fourier series
or Fourier integral formulas, are not directly applicable, since these methods yleld sinusoids of
constant amplitude. In fact, a sinusoid whose amplitude or envelope varies as a function of time does not
really represent a single frequency, but instead is made up of a carrier frequency plus sidebands, If
time variations in amplitude of a frequency component are permitted, the value of frequency cannot be
specified exactly, or if the exact frequency of a component is specified, then variations in {ts amplitude
are impossible.
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The concept of a signal made up of amplitude-modulated frequency components is not difficult to
understand. An example is the group of all of the radio signals in the broadcast band. These consist of
amplitude-modulated carrier frequencies, spaced 10 kc apart and occupying the frequency band from 550
to 1500 ke, A broadcast radio receiver serves as an "analyzer" in that it selects any desired frequency
and through a "'detection' process produces a signal corresponding to the time variation of the frequency

component's amplitude,

The various frequency components of seismic surface waves propagate at different velocities and, in
the case of body waves, by different paths. Consequently the arrival times for the different phases at a
recording point which is far removed from the source of the initial disturbance will occur at different

times, and portions of the wave train will be dispersed.

In analyzing the seismogram, it is important to determine accurately the time of arrival and duration
of each major frequency component. Any frequency-analysis method employed should be capable of ac-
curately measuring the time variations of a specific frequency component, but should at the same time be
capable of separating the various frequency components, These two requirements conflict, since improve-
ment of performance on one of them results in degradation in performance on the other. The following

section of this report discusses the basic problem and its solution in more detail.

2
THEORY

2.1, CONVENTIONAL SPECTRAL ANALYSIS

2.1.1. FOURIER SERIES. If a seismic signal is defined for the interval 0 < t < T, it can be synthesized
within this interval from a Fourier trigonometric series. The terms of the Fourier series are harmonically
related. If the length of the signal being analyzed is T seconds, the lowest or fundamental frequency of the
Fourier series expansion would be f 1° 1; cps. All other frequencies of the Fourier terms would then be
integral multiples of this fundamental frequency. Thus, within the interval 0 < t < T, the signal would be

represented by a series of the form

A o]
£(t) =~—23 + Z (An cos nw t+B_ sin nwt) 1)

n=1

where w 1" 2nf . = 2n/T (radians per second) and the coefficients are defined as follows:

2 (T
A = ?J’o f(t) dt @
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2 (T ’
An = ; f f(t) cos nwltdt 3)
0
2 T
Bn = ;J; f(t) sin nwltdt 4

If the Fourier series for a function f(t) is computed and the terms are added as specified by Equation 1,
the result is f(t) for 0 < t < T, but the function is periodic. That is, f(nT +t) = {(t) for (n = 0, %1, £2,...).
Thus, the function obtained from the Fourier series does not exactly correspond to the original function,

for which f(nT +t) = 0 for (n = £1, £2, £3,...).

Plots of Anvs. n, and Bn vs, n result in "line" spectra, which have values for integral values of n only.

Plots of this type are shown in Figure 1.

An O-l-u-l-‘-v-n-l—‘-ry—u-l-l-u-‘—n Bno.LLLLLLLLI.U_“lh n

FIGURE 1. EXAMPLES OF "LINE" FREQUENCY SPECTRA

If f(t) is a voltage which is applied across a 1-ohm resistive load, the instantaneous power dissipated
in the load at any time t is given by

PO = (1) ®)

and the average power, in the interval 0 < t < T, is given by

T
1 2
= = d
Pav T J;) [f(t)] dt

Since the average power produced in the load by a sinusoidal vc'tage of amplitude A is AZ/Z. the average
power level of the n-th harmonic of the Fourier series is given by

An2 nz
POyt ©
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The sum of the average power levels of the Fourier components is equal to the average power in f(t)
in the interval from 0<t< T,
Thus

A2+Ba
n

= A e 1 (T,
Z — = Z P() = ;L (f))]° dt m
n=0

A power spectrum for f(t) may be obtained by plotting P(n) as a function of n. A sketch of a typical

|

FIGURE 2. EXAMPLE OF A LINE POWER SPECTRUM

plot is shown in Figure 2.

P(n)

POWER

“III.I.

3456 7 8 9 1011121314
n FREQUENCY

]

Note that the function P(n) has values only for integral values of n. The value of P(n) for each n cor-

responds do the power level at that particular harmonic of the fundamental frequency.

Note also that the average power level P(n) for any frequency component n is not a function of time,
Thus with conventional Fourier analysis, the concept of a frequency component, whose average amplitude

varies as a function of time is not applicable,

2.1.2. FOURIER INTEGRALS Fourier integral analysis may be used to describe the frequency spectra
of nonperiodic waveforms. The Fourier integral formulas are derived from the Fourier series formulas
hy letting the period of the waveform under analysis approach infinity. This gives infinitesimal frequency
separation between the frequency components, and thus leads to a dense or continuous frequency spectrum,

as opposed to the "line" spectra obtained from the Fourier series expansion.
The Fourler integral representation of a fun. tion f(t) is [ 1] as follows
)

0
f(t) = j a(w) cos wtdw *f b(w) sin wtdw (8)
0 0
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where
N ©
a(w) = o f f(t) cos wtdt 9
-0
1 0
blw) = — f f(t) sin wtdt (10)
-0

If £(t) is a voltage which is applied across a 1-ohm resistive load, the total energy W dissipated for

all time from -2 to +0 is given by

oy
W = f [f(t)) dt (11)
-0

In order for W to be finite, the actual duration of f(t) must also be finite. If this requirement is satis-

fied (as it would be for a seismic wave), the Fourier integral energy theorem [1] applies and

RV . 0 . .
f iEe1 a = 7 J' (a@n’ + @)1 dw a2)
0

-0

Substituting Equation 11 into 12 gives

J’°° 2 2
W= [a()] + [b(w)] dw (13)
0

Equation 13 gives the total energy in {{t) as a summation of the separate energies of all the frequency

components. The energy contained in all frequency components between 0 and w_would be given by

! 2 2
W(Wi) = "f [a(w)] + [b(w)] dw (14)
~ 0

Since the integrand is always positive, W(u)j) is a monotonic increasing function. This function may be

plotted as shown in Figure 3.

Since the slope of the curve of Figure 3 corresponds to the increase in energy W per unit increase

in angular frequency w, the energy-density function may be obtained by differentiating Equation 14 with
respect to wj.
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W(wi)

FIGURE 3. INTEGRATED ENERGY-DENSITY SPECTRUM

w d(w j)

FIGURE 4, ENERGY-DENSITY SPECTRUM

dW(wj) 2 2
Vo) = {lan® « b’} as)
dW(w )
A plot of ] corresponding to the W(wj) function of Figure 3 is shown in Figure 4.

i

This plot corresponds roughly to the Fourier series power spectrum, as shown in Figure 2, except
that it is a continuous spectrum instead of a line spectrum, and the ordinate is energy density instead of

power.

Thus, the expression
2 2
W = r{ian’ + b’} as)

corresponds to energy per unit bandwidth in the frequency spectrum of f(t). The energy at any single

frequency is zero, since this is given by r {[a(w)]z + [b(w)]z} dw,
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As in the case of Fourier series, the frequency components a(w) and b(w) are not functions of time.
The integral

[ o]
f(t) = j [a(w) cos wt + b(w) sin wt]dw (8)
0

may be visualized as a summation of sinusoids of all frequencies, each sinusoid extending in time from
- to +0. These sinusoids add to produce f(t) for the interval in time during which f(t) exists, and add to
produce zero at all other times. The energy in any one of these sinusoids is zero, whereas the energy
density per unit bandwidth is not, as shown by Equation 15 above. Since the sinusoids extend in time from
- to o0, and since the energy per unit bandwidth is finite, the power per unit bandwidth is zero. If the
power in any band of frequencies were greater than zero, this power integrated for time from - to +®

would give infinite energy!

Although Fourier integral analysis can be applied to seismic waves, and the energy-density spectrum
can be plotted, the results are not particularly useful; they apply to the wave in its entirety and there is
no provision for obtaining the relative intensities of the various frequency components for different por-
tions of the seismogram as a function of time. If we wish to examine various parts of the wave trains for
their frequency compositions and plot these frequency spectra as functions of time, the formal techniques

of Fourier integral analysis must be modified,

2.2, TIME-VARYING POWER SPECTRA

Not all portions of a sefsmogram have the same frequency content. That of the initial portion of a seismo-~
gram may be completely different from that of the final portion. Thus it is desirable to be able to observe the
amplitude of each frequency component as a function of time. A formal Fourier integral analysis of a seismic
waveform yields a frequency spectrum which does not vary with time: therefore, a modified analytical procedure

f{s required to obtain a time-varying spectrum.

2.2.1. NATURE OF A TIME-VARYING POWER SPECTRUM Exact specification of any general
function f(t) in terms of time-varying frequency spectra is quite difficult, or even perhaps, impossible.
This difficulty results from the fact that a sinusoid of constant frequency whose amplitude is varying with
time cannot be regarded as a single frequency. Instead, since it is an amplitude-modulated wave, it has
a frequency spectrum consisting of a carrier frequency plus bands of adjacent frequencies called sidebands

[1]. If a sinusoid with a frequency wc is amplitude modulated by another sinusoid with a frequency wm'

the resulting modulated signal contains three frequencies: the carrier, wc; the upper sideband, wc + wm:

and the lower sideband, wc - wm. If the modulation envelope of the sinusoid is not itself a sinusoid, then

each Fourier frequency component of the modulating signal generates an upper- and lower-sideband fre-
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quency. Thus, the spectrum of the upper sideband is the same as that of the modulating signal, with all
frequencies displaced upward by the amount of the carrier frequency, whereas the lower-sideband frequency
spectrum 18 a mirror image, reflected in the carrier, of the upper sideband. These relationships are

illustrated in Figure 5.

o] Spectrum of 5]

28] Modulating Carrier g

£l signal E

& &

ol : R

Lt , 1 LU
0 w - w, w - w,
() ()

FIGURE 5. SPECTRA RESULTING FROM AMPLITUDE-MODULATION PROCESS, (a) Spectra of modulating
signal and carrier. (b) Spectrum of modulated sinusoid,

The bandwidth or frequency spread occupied by the signal is determined by the highest frequency com-~
ponent of the modulation envelope. Consequently, if we expect to detect rapid variations in the amplitude
of a given frequency component of a seismic signal, we must really examine the signal over a wide band
of frequencies; therefore it becomes impossible to specify exactly what frequency component is being
measured. On the other hand, if a very narrow band of frequencies is being examined, so that the fre-
quency component whose amplitude is being measured is specified very accurately, rapid variations in
the amplitude of this component cannot be detected because the sideband frequencies which are generated

by the higher frequency components of the modulation envelope are being suppressed.

2.2.2. TECHNIQUES FOR COMPUTING TIME-VARYING POWER SPECTRA

2.2.2.1. The Rectangular Time Aperture. One possible method of computing the time-varying power

spectrum of a signal f(t) is illustrated by Figure 6.

Suppose the actual duration of f(t) is unknown, and we wish to estimate its frequency composition at

time to. The portion of f(t) extending from to -T2 to to + T/2 could be analyzed to determine the energy-

density spectrum for this portion of f{t). The energy-density spectrum for al! of f(t) cannot be computed
from this sample, but the energy contributed during this period can be computed and divided by the length

of the period to give an average power-density spectrum for the interval from to -T/2 to to +T/2.
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f() 0 M 'ﬂ \V../'\V/\-ﬁ_ ¢

FIGURE 6. EXAMINATION OF {(t) THROUGH A "TIME WINDOW"

Thus, if we consider f(t) as existing only in the interval (to -T/2)<t< (to + T/2), we can compute
the energy-density spectrum as follows: changing the limits for the integrals of Equations 8 and 9, and

considering the results as a function of to we derive

t +T/2
1 0o
afw,t ) = —f f(t) cos wtdt (16)
o m
t -T/2
o]
t +T/2
1 o
b(w, to) == f(t) sin wtdt [$%)]
to-T/2

The energy-density spectrum is given by Equation 15:
2 2
Wd(w) = 1 {(a(@)]” + [b(w)] } (15)
and the average power-density spectrum at to may be obtained by dividing by the length of the interval:

m 2 2
P, t) = T {la, t 1" + [bw, t )"} (18)

Substituting Equations 16 and 17 into Equation 18 gives

t +T/2 2 t +T/2
o o

1
P(w, to\ = _T f(t) cos wtdt + f(t) sin wtdt (19)
" t -T/2 t,-T/2

The integrals in Equation 19 could be evaluated continuously on analog computing equipment for any

specified w as a function of to by using tape-reconling equipment with spaced playback heads, so that the
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integrals of f(t) could be obtained simultaneously between the limits of 0 and to +§. and of 0 and to - {- .
The first integral of Equation 19 can be rewritten
t +T/2 -
o to+’r/2 ty T/2
ft) cos wrdt = f(t) cos wtdt - f £(t) cos wtdt (20)
t -T/2 0 0
o
providing f(t) is continuous from 0 to to + T/2, and to - T/2>0.
Substituting t + T/2 for t in the first integral on the right side of Equation 20 gives
t +T/2 t
[} o
f f(t) cos wtdt = f f(t + T/2) cos w(t + T/2)dt 21)
0 -T/2
Similarly, the second integral may be written
t -T/2 t
(] o
I f(t) cos wtdt = J’ f(t - T/2) cos w(t - T/2)dt (22)
[} T/2

If f(t) = O for t < 0, then f(t ~ T/2) = 0 for t < T/2, and the lower limit of the integral on the right in
Equation 22 may be extended to ~T/2 without affecting the value of the result. Therefore, substituting
Equations 21 and 22 in 20 gives

f

t -T/2
°

t +T/2 t
o [+

f(t) cos wtdt = f [f(t + T/2) cos w(t + T/2) - f(t - T/2) cos w(t -~ T/2)]dt (23)
-T/2

Equation 23 could easily be mechanized on analog computing equipment in combination with a tape
recorder having two playback heads spaced T seconds apart, so that f(t + T/2) and £(t - T/2) could be
obtained.

A similar method could be used to obtain

t +T/2
o

f(t) sin wtdt (24)
to-T/Z

and P(w, to) as a continuous function of to could be computed from Equation 19,

10
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There would be no need for a tape recorder if a device having a transport delay of T seconds were

avallable. A block diagram showing the method of computing the first integral of Equation 19 be using
such a device is shown in Figure 7,

t°+T/ 2
f(t + T/2) f(t + T/2) cos w(t + T/2) J‘ 1(t) cos wtdt
o——— Multiplier ' to-T/Z
‘ Transport |
cos w(t + T/2) Delay T
f(t - T/2) cos w(t - T/2)
Oscillator

FIGURE 7. ANALOG-COMPUTER MECHANIZATION OF EQUATION 23

2,2.2,2. The Rectangular Frequency Aperture. The power spectrum of f(t) as a function of time might

also be found by use of a filter. For example, a filter having a finite passband with sharp cutoff at the
edges of the passband might be regarded as a rectangular aperture or "window" for viewing the frequency

spectrum of f(t). Figure 8 shows the passband of such a filter superimposed upon P(w), the power spectrum
of f(t).

The filter, whose pass charcteristic is shown in Figure 8, passes all frequencies from wo - %"—’ to
wo +?w without attenuation, and completely suppresses all frequencies outside this range. If the filter

function is G(w - wo), the power transmitted through the filter is given by

W +A_w
0 o 2
p(Aw) = J. P(WG(w ~ wo) dw = f plw)dw (25)
0 Aw
wo B 2
fo— Aw —
P(w) Glw-w) Filt
l o er
o N—— - N
| Power = P(wo, t) Aw
w' w —»>

FIGURE 8. ILLUSTRATION OF A FREQUENCY APERTURE

[
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and the average power per unit bandwidth for the frequency range covered by the filter is obtained by
dividing Equation 25 by Aw.

1 3
P(wo. t) = e f P(w) dw (26)
w

The output of the filter may be time-varying, subject to restrictions imposed by the filter's bandpass
characteristics. The filter should have a narrow passband in order to restrict the range of w over which
the power is averaged for any given wo. and thus give good frequency resolution. However, if the pass-
band is very narrow, rapid variations of the power output cannot be transmitted because the sideband fre-

quencies which must be part of such a signal are suppressed,

In practice, the filter would be set for various values of wo, and the output power would be interpreted

as Aw P(wo, t).

2.2.2,3, Comparison of Time-Aperture and Frequency-Aperture Approaches. Summarizing Sections

2,2.1 and 2.2,2, it appears that there are two possible methods of obtaining time-varying power-density
spectra of f(t). One of these involves examination of a portion of f(t) through a moving "window" in time
and performing Fourier integral analysis on the portion of f(t) seen through the window. The second in-
volves use of a filter, or frequency-spectrum window, through which the power content of a band of fre-
quency components of f(t) are observed. The entire frequency spectrum could be covered either by using
a number of filters, or by adjusting the center frequency of a single filter and making consecutive obser-

vations.

Increasing the length of the time window for the first method improves the accuracy of frequency-
component determination, but reduces the rate at which the power density being measured can vary. In-
creasing the length of the frequency window for the second method has the opposite effect. It increases

the rate at which the output of the filter may vary but reduces the selectivity, or frequency resolution.

It will be shown later that the two methods discussed above are not really separate and that any method
of analyzing a signal f(t) in terms of a time-varying frequency spectrum involves the use of both a time

aperture and a frequency aperture,

2,2,2.4. The Variable-Transmission Time Aperture. Use of the rectangular time aperture, as des-

cribed in Section 2.2.1, gives the average power-density spectrum of f(t) for the interval (t0 -T/2)<t<
(to + T/2), Indetermining this average P(w, to). equal weight i8 given to the spectral characteristics of

f(t) throughout the interval covered by the time aperture. Better time resolution would result if the spec-

12
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tral characteristics of f(t) in the neighborhood of to were emphasized in the computing process. This may
be accomplished by using a variable-transmission time aperture whose transmission i8 maximum in the
neighborhood of to. An equation for computing P(w, to). which uses a time aperture of this type, will be

derived in this section,

In deriving this formula, it is comvenient to use the exponential form of the Fourier series and inte-

gral formulas, For the Fourier series, these are [2]

o jnwlt
ft) = Z F(n)e en
n=-o
L T2 chnw
Fo = 5 f f(t)e dt (28)
-T/2
F(n) = % (A -1B) (=022, (29)

where An and Bn correspond to the coefficients of the trigonometric series (Equation 1). The factor of
1/2 occurs in Equation 29 because the exponential form of the series uses both negative and positive values

of n, and thus has twice as many terms as the trigonometric series, which uses only positive values of n.

If f(t) is the voltage across, or the current through a 1 ~ohm resistor, the average power dissipated in

the resistor by the n-th harmonic component is

2 Anz * an
p = [Fm)| * = -

(n =0, £1, £2, ,,.) (30)
Comparison of Equation 30 with Equation 6 reveals that the p(n) of the former is equal to half the p(n)

of the latter. Similarly, any time-varying continuous power spectrum derived from the exponential for-

mulas will include both positive and negative values of w, and therefore the value of p(wo, to) so obtained

must be doubled to obtain P(wo. to). the physical power level at frequency wo at time to.

Substituting Equation 28 into Equation 30 gives

2
2 1
p(n) = |[F(|" = — @y

T/2 - jnwlt
f f(t)e dt
T Vo

T/2

13
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14

where

and is the fundamental frequency.

Equation 31 gives the power level of each frequency component. Since each harmonic frequency is an
fntegral multiple of the fundamental frequency, a plot of p(n) versus n would be a "line" spectrum, with wl

as the spacing between adjacent lines,

Even if {(t), 18 nonperiodic, the Fourier components for a section of f(t) extending from -T/2 to T/2
are still given by Equation 31. The length of the section under consideration may be extended by increasing
T. When T is increased, wl is decreased, thus reducing the spacing of lines on the power spectrum. As T
is allowed to approach infinity, wl approaches zero and the power spectrum becomes a continuous plot. Since
there are now an infinite number of frequency components in any finite bandwidth, and the power in such a

bandwidth is also finite, the power per frequency component must be zero.

Thus,

.

2
=0 (32)

-joiw, t
j f(t)e dt
0

lim (n)=llm_1__
Teco P T 2

Thus, the power spectrum can no longer be expressed in terms of power per frequency component. In
order to avoid this difficulty, the power density at any given frequency may be expressed in terms of power

per unit bandwidth,

If p(n) = power per frequency component, and the frequency components are spaced fl cps apart, the

number of frequency components per cps is 1/f X and the number of frequency components per radian per

second is l/w1 = 1/21rf1. The power density in watts per radian per second, then, is p(nwl) - P

21!1'1

Substituting this into Equation 31 gives

T/2 -jwt |2
pw,) = 3 f f(t)e dt (33)
2rf T -T/2
or, since f1 = 1/T,
T2 cjwt |2
p(nw,) = o== f f(t)e dt
1 27T -T/2
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Then, in order to obtain & continuous frequency spectrum, let T become infinite. The quantity nwl.

becomes w, and

_lim 1
T 22T

2

1% 64

T/2 .
J tye It
~T/2

At this point, a brief discussion of the nature of the function defined by Equation 34 {8 in order. It may
be shown that this function i8 not valid as a statistical estimate of the power spectrum of a m process,
because the variance of the p(w) defined in this manner does not approach zero as T becomes infinite, [3].
Nevertheless, Equation 34 accurately defines the power spectrum of the particular function, f(t), to which
the equation is applied in that the power spectrum so defined corresponds exactly to the spectral density of
the Fourier series for f(t). The function, p(w), as defined by Equation 34 is extremely irregular. Sincep(w)
is proportional to the amplitudes of the Fourier series components making up f(t), and since f(t) is infinitely
long, the increment between terms of the series is infinitesimal, and thus any small interval of w (no matter
how small) contains an infinite number of different values for p(w). If p(w) is averaged over a small incre-
ment of w, however, a consistent usable value for average p(w) for that interval is obtained. According to

Goldiaan, [4], this averaged or smoothed power spectrum

_ lim w+Aw
p@) = f Pw) dw
w

Aw-0 AW
corresponds to the statistical power spectrum for the function f(t). In other words, p(w) as defined above is
also the result of averaging p(w) from Equation 34 for an infinite number of random functions of time, each
having the same statistical power spectrum. In the steps which follow, since the sections of f(t) being exam-
ined are of finite length, an averaging with respect to walways occurs, and we are not bothered by a vari-

ance of p(w) of the type discussed above.

Next, let us consider the problem of estimating p(w) by observing a finite section of f(t). If f(t) has uni-

form power spectral characteristics throughout the length T of the section being observed,

p(@) = —

T/2 2
-jat
27T J. f(t)e dt (35)

-T/2

27
for w >>=—,
° T
Since T is now finite, we are really formally justified in computing the frequency spectrum only at
valves of w which are multiples of the fundamental frequency wl = 2r/T. Evidently, the resolution of the
frequency spectrum obtained from Equation 35 is of the order of 1/T cps. Roughly, about 1% resolution
could be obtained if T corresponded to 100 cycles of w, the frequency for which the power density is to be

15
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computed. If p(w) is to be determined accurately at low frequencies, long intervals of f(t) must be observed;
but for higher frequencies, the interval T can be shortened,

If a portion of the time axis of f(t) is divided into a number of intervals, each long enough to permit a
reasonably accurate computation of p(w) using Equation 35, and if the power density spectrum of f(t) is uni-
form throughout the portion chosen, then the values of p{w) obtained by applying Equation 35 to each of the
intervals should be approximately the same.

For each interval, extending from time tn- to tn' Equation 35 may be written

1

t 2

1 n -jat
plw) = T f ftye T at (36)
2ty ) | Yy

n-1

or

n 2
- = -jwt
27r(tn tn- 1) p(w) f f(t)e dt (37)

tn- 1

Summing all equations of this type from n = 1 to n = N,where tN - to = T, and assuming that p(w) is

constant over this interval, we derive

n 2

N N t ot
2m{(w) Z ® -t )= Z ft fitye - dt (38)
n=1 n=1 n-1

However,
N
Z(tn -t )=T (39)
n=1
therefore,
N n 2
2mp(w) T=Z f fme 1 *at (40)
n=1| 'n-1

And substituting Equation 40 into Equation 35 gives

t
T/2 2 N n 2
f fe P at =Z f fie %at @1)
1/2 L e

16
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An integral over any interval may be expressed as the sum of integrals over all subintervals contained in

this interval; thus

t

T/2 N n

f fye Pt = Z f fire 1% at (42)
-T/2 L

n=1l ‘n-

The operation of squaring the absolute values of both sides of Equation 42 and substituting the result

into Equation 41 gives the rather interesting relation

tn 2 tn 2
f f(t)e'j Kae| = f f(t)e"“'t dt (43)
t t
n-1 n-1

n=1

N

n=1

If (tn - tn-l) = At (with all intervals equal), and thus

N
Z t -t ) =T=Nat
n=1

then Equation 38 can be rewritten to give

t

N 1 n 2
Z 27At f f(t)e'j“"dt
t
=1 -1
p(@) = = = (44)

Thus, this glves p(w) for the interval fromt = 0tot = NAt as the average of the values of p(w) computed

for the subintervals tn- <t< tn.

1
If the power spectrum of f(t) varies with time, Equation 44 specifies the average value of p(w) for the

section of f(t) being examined. In order to define p(w) at some particular time to. a weighting function may

be used in computing this average. Suppose we use a weighting function Q(t - to), which reaches a maximum

for some particular instant to and approaches zero for values of t which are significantly removed from to'
0
in such a manner that the integral f Q(t - to) dt exists, (Figure 9 shows a typical weighting function.,) Use
-0

of such a weighting function will give more weight to the spectral characteristics of f(t) in the neighborhood
oft = to’ and thus the weighted average of p(w), obtained by using this weighting function, can be interpreted

as p(w) at t = to.

17
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Qt -t )

N

FIGURE 9, A WEIGHTING FUNCTION

Using the weighting function Q(t - to). Equation 44 can be rewritten

t

N n

1 ~jat
E Q(tn ~ to) FTAT j; f(t)e dt
=1

n-1

2

n
p(w, to) = N (45)
Doae -t
n=1
where Q(tn - to) is the average value of the weighting function in the interval tn—l <t< tn.
Since Q(tn - to) is constant for any particular tn’ Equation 45 can be rewritten
N 1 tn -t 2
Z e J; YRE T fe T dt
_n=1 n-1
p(w, to) = N (46)
Z Qe - t)at
n=1

If N is permitted to increase now, so that Equation 46 includes all time from - to ®, Equation 46 can be

rewritten

0 1 tn Sjut 2
Z = f ]/Q('tn Ty fwe
t
plw, t) = == o= "

o]
Z Qe -t )at

n=-0

18
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< e 1 e A

and, when Equation 41 is used,

1] % et |2
bre f—w |/Q(t - to) f(t)e dt
p(w, !o) = 2 (48)
Z Qe -t )At
n=-0
Finally, if we allow At in the denominator of Equation 48 to approach zero,
] 2
1 -jwt
brs 'I_w |/Q(t - to) f(t)e dt
p@. t) = % (49)
f Q- t )t
-0
and, if we redefine ]/Q(t - to) = t'l(t - to),
<] 2
1 “jwt
5 f_w (-t )ft)e " dt
Pl t ) = 5 (50)
f £t at
-0
For any specified weighting function, the denominator of the right side of Equation 50 is a constant:
0
2 1
f £ -t ydt = (51)
-
So, this equation can be rewritten
0 2
=K - -jut
p{w, to) = on f fl(t to)f(t)e dt (52)
-0
where
Keee L
© 2
f £7 -t )t (53)
-0

Equation 52 can be Interpreted as describing the use of an aperture or window in time, having a trans-
mission function of fl(t - to) to examine f(t) about the inatant to and to determine the power spectrum of f(t)

at that point.

19
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if {l(t - to) = 1 for all values of t and to, Equation 52 becomes equivalent to Equation 34, which is restated

here:

lim 1
T 27T

T/2
f f(t)e"“"dt 2

-T/2

pw) = (34)

Thus we obtain the non-time-varying power-density spectrum, where p(w) is the average power density at w

for all time, from -o0 to +w.

Evidently, the time resolution of p(w, to) as computed from Equation 52 is improved as the interval
covered by the window function f 1(t - to) becomes narrower, but a resonably long window function must be

used to give good frequency resolution,

2.2,2,5. The Frequency-Aperture Equivalent of a Time Aperture, Next, we show that use of a time aper-

ture in the manner specified by Equation 52 is actually equivalent to using a window in the frequency domain,

For power at a specific time to and at a specific frequency wo. Equation 52 is written

k| r® -jwot 2
P(wo, to) =§'ﬂj' f fl(t - to) f(t)e dt (54)
-
Substituting 7 + ‘o for t in the integrand of Equation 54 gives
-)woto 0 -jwor 2
p(wo, to) = ;r e f f(r + to) fl(T)e dr (55)
-0
Since wo s a constant for this integration, we can define
-jwor
f,(r) = £ (e (66)
Substituting this in Equation 55 gives
“jwt L® 2
w.t)=2le °° [ fr+t)fmar 6T
Pl b “2r o 2
-®
However, it can be shown [ 2] that
® © jwt
f £ (T(r + ¢ )dr = f 2r F (@)F(@e °dw (68)
- 00 d -00
where
1 (%® ~jwr
Fw) = &~ J f(rye * dr (69)
-0
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L% ~Jar (80)
Fz(u)) - 2—”J. fz(f)e dr
-0
-]
—_ _ 1 - juwr
Fz((D) = Zﬂf fz(‘r)e dr (61)
-0
Since by definition,
_ jwo'r
f2(1') = fl('r)e (56)
Equation 61 can be rewritten
- 0 Jlwiw )7
Fz(w) = fl(f)e dr
-0
= Fl(w + wo) (62)

Substituting Equation 62 into Equation 58 and the result into Equation 57,

K | Wt (® jut . |2
W, t )= — F 6
P S le j 2rFWF (@ + w)e dw (63)
-0
K woto
and, since |e =1
20 Jat 2
p(wo, to) = 21rKJ F(w)Fl(w+ wo)e dw (64)
0
The factor K in Equation 64 can be rewritten in terms of fl(w + wo) by using the Fourier integral
energy theorem,
Since fl () and Fl(w + wo) are a Fourier transform pair,
1 0 2 ko) 2 ] | 2
-E=f f1 (t-to)dt=f fl (rydr =f 27 Fl(w+wo) dw (65)
-0 -0 -0
and since
lFl(w+w°)| = 'Fl(w+wo)| (66)

2
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therefore
K = ! - ®7)
ZWJ. Fl(w + wo)| dw

Substituting Equation 67 into Equation 64, substituting -wo for wo in the result, and recallingthat p(wo. to) =

p(-wo- to) because of symmetry in the power spectrum, we obtain:

© _ ja.vto 2
F l(w - wo) F(w)e dw
-a0
P(wo. to) P(-wo' to) = 2 ) (68)
f Fl(w - wo) dw
-0
Repeating Equation 50 for comparison,
1 0 -jwot 2
5 .[;.o t‘l(t - to)t‘(t)e dt
= 0
PW .t ) 5 (50)

2
f 15 t)at
-0

In comparing Equations 50 and 8, we see clearly that since Equation 50 describes p(wo. to) interms
of a portion of f(t) as seen through a variable-transmission "time-window" function fl(t - to). Equation 68
describes P(wo. to) interms of a portion of F(w), the spectrum of F(t) as seen through a variable-trans-
mission "frequency-window" function Fl(a) - wo). The frequency window Fl(w - wo) is the complex con-

jugate of the Fourier transform of the time window, fl(t - to).

In general, if the time aperture i8 narrowed in order to obtain better time resolution, the effective
filter bandwidth is broadened, and the frequency resolution becomes poorer. If the time aperture is widened
so that the frequency spectrum is computed for larger sections of f(t), the frequency resolution is improved.
but the time response or resolution is degraded. Specification of either the time aperture or the filter band-
width characteristic determines both, since one is derived from the other. The exact choice of either

aperture depends upon the nature of the data to be analyzed and the type of spectral information desired.

2,2.3. THE FREQUENCY-ANALYSIS METHOD USED IN THE IST ANALOG COMPUTER LABORATORY

2,2,3.1, Computer Setup. In preparation for measurement of its power spectrum on the analog com-
puter, the seiamic signal to be analyzed was first recorded on one channel of a length of magnetic tape.
The ends of this length of tape were spliced together to form a loop so that when the loop was played back,
the recorded seismic signal would be reproduced repeatedly. Control signals were recorded on a second
channel of the tape at positions corresponding to the beginning and ending of the seismic signal. These

control signals were used to program the operation of the analog computer,
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The computer was 8o mechanized that it examined ﬁdlfferent segment of the power spectrum of the
seismic signal for each pass of the tape, and plotted the results automatically, The control signals which
were recorded on the second channel of the tape actuated the analog computer so that it automatically reset
itself to a new "interrogation” frequency for each pass of the tape. Thus, each pass of the tape generated

information concerning a new portion of the power spectrum,

Figure 10 is a block diagram of the basic computing circuit used. The oscillator, operating at some

interrogation frequency w, generates signals corresponding to cos wlt and sin w,t. Multiplier A multiplies

i
the incoming seismic signal f(t) by cos w

i
(t. whereas multiplier B multiplies f(t) by sin wtt.

The output signal of multiplier A (designated El on the diagram) next passes through filter A, and the

filtered signal E3 is squared in multiplier C to produce E5, which is fed into the adder.

The output of multiplier B is similarly processed to produce a second input to the adder.

2,2.3.2. Theory of Computer Circuit Operation, The operation of the circuit can be explained qualita-

tively in terms of heterodyning and filtering. Multiplication of f(t) by cos wlt shifts its frequency spectrum,
F(w), by wl so that the frequency spectrum of E 1 is F(w - wl)' Therefore, examination of the frequency

spectrum of E 1 for zero frequency or d-c components {8 equivalent to examination of f(t) for wi components,

Multiplier A Filter A Multiplier C
E E
1
X s 1 X
E
cos wit 5
Adder
Oscil- | 1B
1(t)o—— lator ] To
7
sin wit Es
Ey

st —1

Multiplier B Filter B Multiplier D

FIGURE 10. FUNCTIONAL BLOCK DIAGRAM OF ANALOG-COMPUTER CIRCUIT USED IN FREQUENCY
ANALYSIS

23
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Filter A is a low-pass filter which passes d-c perfectly but attenuates a-c signals. Use of this multipiier
and lowpass filter is roughly equivalent to using a passband filter centered at w’ on f(t) directly. The output
of filter A is squared by multiplier C, thus converting voltage amplitude to power.

The lower channel operates similarly, except that it multiplies f(t) by sin wlt and produces a signal
(Ez) having a frequency spectrum which is in phase quadrature with that of (El). After this signal is passed
through lowpass filter B and squared, it is added to the squared signal from the upper channel and the sum
is then & voltage which is proportional to p(wl. t).

A more quantitative explanation of the operation of the analog-computer circuit can be made by showing
that it evaluates p(wi. to) in terms of Equation 52, which was derived above. Rewriting Equation 52,

K w -jw1t
P, t) =3 J: . £, -t )ie dt (52)
where
K= 1
® 2
I fl (t - to) dt (53)
-0

and where fy(t - to) is the time-aperture function
f(t) is the function being analyzed
wjand to are the frequency and time coordinates at which p is being evaluated

-jw, t
Since e = cos wlt - j sin wlt. Equation 52 can be rewritten

2

0 L]
K
p(wly to) = J;w fl(t - to)f(t) cos wltdt - J'-w fl(t - to)f(t) sin wltdt (69)

And, since the square of the magnitude of a complex quantity is equal to the sum of the squares of its real

2
(70)

and imaginary components,

K
p(wl' tO) = '2';{

2
+

0
J:w fl(t - to)f(t) cos wlt dt

0
J-.w fl(t - to)f(t) sin wltdt

24
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Returning now to Figure 10, {f filter A is linear (so that superposition principles are applicable), the

output signal la3 at time to can be expressed in terms of the input signal El(t) and the response of fllter A
to & unit impulse h(t) [ 2, pp. 323-328),

]
Ea(t) -J E 1(t)h(to - t)dt (71)
-0
but
El(t) = f(t) cos w‘t
Therefore,
©
Ea(t) =J:w h(to - t)f(t) cos wltdt (72)
or
o0
E3(t) =J_'w h[-(t - to)] f(t) cos witdt (73)
If now we define
h{-(t - to)] = fl(t - to) (79)

and make the substitution in Equation 73, the result is

©

Ejwpt) = f- . £, - t )f(t) cos wit dt (75)

By a similar process, if the impulie response of filter B is the same as that of filter A,

0

E4(w‘. To) = f-w fl(t - to)f(t) sin w‘tdt (76)

Substituting Equations 756 and 76 into Equation 70 gives
K[ 2 2)
P(wr t) rm (E3 +E, )

Since Figure 10 shows that

E -E32+E (78)

25
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then

K
Pl t) = o Eglw,. t) (79)

where p(wl. to) {8 the magnitude of the time-varying power spectrum as defined by Equation 70 for time to

and angular frequency wt'

1

and K= =

f flz(t -t )dt
-0 o
In this last expression

fl(t - to) = h[-(t - to)]

where h(t - to) is the response of the filters to a unit impulse occurring at time to.

Thus, the analog-computer circuit evaluates P(wi. to) in accordance with Equation 70, and uses a time
aperture or weighting function which is equivalent to the filter's fnput response, folded about the ordinate
t= to. The relationship between hit - to) and fl(t - to) is shown in Figure 11,

2.2.3.3. Computer Circuit Operation Using First-Order Lowpass Filters. In Equation 79 above, it is

assumed that the filter impulse response is such that the time-window function, fl(t - to) = h[-(t - to)].
gives more weight to the characteristics of f(t) in the neighborhood of to and less weight to the parts of f(t)

which precede to. Next, we shall examine the effects of using various filter transfer functions.

A first-order low-pass filter is easily synthesized from an analog integrator and two coefficient poten-

tiometers, as shown in Figure 12,

d
If the integrator output is eo. its input is -Fet' and thus the circuit solves the equation

de

[
- -‘R- = a:ei + aeo (80)

f.(t-t) hit -t )
1 0 / 0

t t —»
(]

FIGURE 11. RELATIONSHIP BETWEEN h(t - to)
AND fl(t - to)
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i@ )

FIGURE 12. ANALOG-COMPUTER MECHANI-
ZATION OF A LOW-PASS FILTER

If we take the Laplace transform of both sides of Equation 80 and assume that eo(o) = 0,

-8 eo(s) = ae‘(s) + aeo(s) (81)
e (s)
and, solving for—g—
°1(°)
: e (s)
o _a ! (82)
e.(s) a+8 [-]
i 1+-
o
If 8 = jw,
eo 1
— (W) = - —— (83)
i 1+22
(3

e
The half-power points, where 'e_o_ gw)| = 7%. occur at w = o, Therefore, the effective bandwidth

of such a filter when it is used in the iclrcult of Figure 10 will be 2a.

The impulse response is found by taking the inverse Laplace transform of the transfer function:

-1 o ~at
hit) = £ — = ae (t > 0) (84)

Then, the equivalent time-aperture function is given by

£(t-t) = Bl-t =t )] (85)
Since
-a(t-to)
hit - t) = ae t2t
(86)
=0 t<t
(1]
-a(to-t)
fit-t)=hl-(t-t)) = ae tst
1 [ o [ &n
. =0 t>t
(]
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The value of K in Equation 79 is

K= ! = ! =2 (88)

© t o
J’ flz(t -t )at f 0 2 2at-t )dt
-0 -0

Substituting 2 for K in Equation 79 gives

1
PW . t) == E . t) (89)

Figures 13(a) and (b) are sketches of { Jt-t)and lFl(w)l, the associated time and frequency windows
used in the process,

_ 1
jw-w)
- [+}
aedt-t) 14—
N G(w) | 1.0 /
0.707
a
o ol § > W
to wo
(a) M)

FIGURE 13. ASSOCIATED TIME AND FREQUENCY APERTURES. (a) Exponential time
aperture. (b) Frequency aperture or filter function,

The time aperture is an exponential which gives greatest weight to the characteristics of f(t) at t = to'
with the weight decreasing exponentially as to - t becomes larger.

Substituting Equations 87 and 88 into Equation 70 gives

a to a(t-to) 2 t0 Ol(t-to) 2
p(wo, to) == I e f(t) cos wotdt + j e f(t) sin wotdt (90)

-0 -c0

which is the expression used for evaluating p(wo. to) when first order low-pass filters are used for filters
A and B of Figure 10,

Since the various frequency components of selsmic surface waves propagate at different velocities, the
initial part of the received wave will contain only those frequency components which propagate at the higher
velocities, and the more slowly propagating frequenctes will arrive later., Measurement of this dispersion

of the arrival times for the different frequency components is an important part of analyzing the wave. The
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exponential time aperture of Figure 13(a) is well suited for this type of work, since it gives major emphasis
to the frequency characteristics of the portion of f(t) which is just entering the window.

An expression resembling Equation 90 has been defined as the e.m.p. (exponentially mapped past) power
spectrum by Dr, Joseph Otterman {5]. The e.m.p. power spectrum {s defined as follows:

t 2 t 2
P, = o’ l: f txre ™ cos wit - x)dx:l +at [ f fe ™ ain wit - x)dle (1)
-

-0

In order to permit comparison of this expressfon with Equation 90, we show that cos wx may be sub-
stituted for cos w(t - X), and sin wx may be substituted for sin w(t - X) in Equation 91 without changing the

value of pa(w). Equation 91 can then be written in complex form:

t t
P, = o’ j f(t)e-a(t_x) cos Wt - x)dx + j J f(x)e'a(t_x) sin W(t - x)
-0 -0 :

t

-a(t-x) 2
= f f(x)e [cos w(t - x) + j sin W(t - x)] dx
-®

92)

@ 2
= a2 J t‘(x)e-m(t-x)ej w(t-x) dx
-0

[

-] 2
= a ejmf f(x)e_a(t‘x)e-’wxdx
-®

Since ‘ejwt' = 1, this factor may be deleted from Equation 92 and we can write

2 t 2
=a® { I: f f(x)e-a(t-x) cos wx dx:]
-0
t 2
+ I: f tye ™ sin wxdij } (93)
-0

Comparison of Equation 93 with Equation 90 reveals that since the corresponding integrals are identical,

t
j f(x)e-a(t_x)e-ijdx
-2

pa(w) = o?

1
Pl t) = 75 P (o)

where p(wo. to) is the time-varying power spectrum defined by Equation 90, and pa(w) is the e.m.p. power
spectrum defined by Equation 91.
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Also, according to Equation 89
1
p(wo. to) = Eo(w‘, to) (89)
and comparison of this with Equation 94 above shows that
E, = P, @ (95)
Thus, the output voltage, Eo' of the analog-computer circuit directly represents the e.m.p. power spec-

trum as defined by Otterman, but this voltage must be multiplied by the factor 1/7a to obtain the time-
varying power spectrum defined by Equation 90.

We recall from the discussion following Equation 30 that the derivation of p(wo, to) is based on a power

spectrum which includes negative as well as positive frequencies, and that
P =
W, to) 2p(w o' to) (96)
where P(wo, to) is the power density at wo for time to. and where the frequency spectrum of f(t) is considered
to exist for positive values of w only.

2.2,3.4. Change of Bandwidth with Frequency. When the analog-computer cicuit using first-order low-

pass filters, as described in Section 2.2.3.3, is used for measuring the power or energy density at low fre-
quencies such as 1 cps, the filter passband must be much narrower than1 cps in order to give reasonable
frequency resolution. At higher frequencies, such as 100 cps, this extremely narrow bandwidth is unsatis-
factory because a large number of separate frequencies would have to be investigated to cover a given fre-
quency range, Consequently, the filter bandwidth was changed for each interrogation frequency. It was ex-
perimentally determined that for seismic data, satisfactory frequency resolution could be obtained by making
the filter bandwidth between the half-power points equal to 2,5% of the interrogation frequency wl' Thus,

for the first-order low-pass filters,

bandwidth = 2a = 0.0250’l (97)

or solving for a,

a= 0.0125(4)l = 0.0251rF‘ (98)
where 1-‘i = w'/21r

This value for @ may be substituted in Equation 89 (repeated here),

1
P, t)=ooF . t) (89)
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to give

1

2

PW . t) =
0.0257"F,

Eo(Fl

40
. to) = —E—EO(FF to) (89)
L4 l"l

Equation 99 {s valid only when the bandwidth 2« s programmed to be 2.5% of the interrogation angular

I3
%
i
i
#
5
L

frequency wl.

Under these conditions, the frequencies to be investigated were chosen 0.01 decade apart, thus giving

v

200 separate interrogation frequencies in the two-decade range from 1 cps to 100 cps. With a 0.01-decade

separation, the relationship between two adjacent interrogation frequencies is

log wnﬂ = log wn +0.01 (100)

wn+1
Solving this for ©

gives
n

(5]
ntl o 10291 10233 (101)

n

Thus, the increase from any given interrogation frequency to the next higher is 2.33%, and since the
bandwidth at each interrogation frequency is 2,5%, the frequency spectrum will be adequately covered, with
no gaps between adjacent interrogation frequencies.

If only positive frequencies are considered as making up the seismic signal, then Equation 99 must be
multiplied by two.

Combining Equations 96 and 99,

80
P(wo. to) = 2p(w°‘ to) = "2!.- Eo(Fl' to) (102)
i

or, since wo = ml and «)i = 27F,, P is also a function of Fl and to' and

i

80
P(F,t) = n E (F, t) (103)
i

2.2,3.5. Computation of the Energy-Density Spectrum, If the output of the adder of Figure 10 is inte-

grated, the result is

t t
] [+] T
= = 2T — Pw N
. E, fo E dt = Ta jo P, t)dt == I @, t)dt (104)

3



Institute of Science ond Technology The University of Michigan

32

And, since the energy density Wd is given by

t

[}
wd(wo‘ to) = fo P(wo. to) dt (105)
(assuming f(t) = 0 for t < 0)
T
Ep =7 Walo b (106) |

If we substitute 0.0251rl-‘l for o and designate E7 and W 4 as functions of the two variables, Fl and to'

we obtain
80
wd(Fl' to) = -—2—- E7(Fl’ to) (108)
* F
i
3
RESULTS

Since the time-varying power-density spectrum P(Fi' to). discussed in Section 2, is a function of the
two variables l-‘l and to. there are two basic ways in which this data could be plotted. Frequency, Fl' could
be held constant and the power density P could be plotted as a function of time to; or plots could be made of

power density versus frequency for various fixed values of time.

Figure 14(a) is an illustration of the first type of plot, applied to a seismometer signal produced by an
earthquake. These curves, with the exception of the bottom one, show the product power density and freq-
uency at various frequencies as a function of time. The bottom curve is a plot of instantaneous power versus
time for the signal being analyzed, and is included to serve as a time reference. Note that although signals
were received immediately after the sixth second, according to the bottom curve, the individual curves for
the various frequencies from 0.5 cps to 1.41 cps show no significant activity before the ninth second. Fig-
ures 14(b)(c)(d) and (e) are continuations of Figure 14(a) for increasingly higher interrogation frequencies.
As the frequency becomes higher, the starting time becomes earlier until it corresponds to the starting

time of the selamic wave itself.

Another interesting phenomenon is the separation of the trace into two separate parts, one starting at

6 seconds and the other at about 20 seconds, for frequencies above 7 cps.

The second method of presenting data (i.e., power density versus frequency for fixed values of time)
was slightly modified by making the ordinate the product of energy density and frequency instead of power
density.
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Results of this type are shown in Figure 15. The curves labeled 1 through 5 represent the signal's
total energy-density-frequency product, as a function of frequency, for times of 11, 22, 33, 44, and 55 sec-
onds from "zero'' time shown on Figure 14. Thus, curve 1 represents frequency-energy-density product
as a function of frequency, for the first 11 seconds of the signal; curve 2 is for the first 22 seconds, and so
on. Finally, curve 5 shows the frequency-~energy-density product versus frequency for the entire seismic
signal. The separation between the curves at any specific frequency is proportional to the average power
density for the time interval bounded by the two curves. A logarithmic frequency scale was used for Fig-
ure 15 in order to give uniform separation between the separate interrogation frequencies, which are spaced

0,01 decade apart. (See Section 2.2.3.4.)

It can be readily shown that if the curves of Figure 15 are extended to cover all frequencies from0to %,
the area under the highest curve (number 5) is proportional to the total energy of the seismometer signal.

The area under the curve is given by

o]

A= f ydx (109)
~0
For Figure 15,
y=KFW, (110)
where K is a scaling constant, F is the frequency, and W 4 is the energy-density spectrum in watt-seconds
per radian per second. Also for Figure 15,
KZ
X= KZ loglo F = l—o-jse—l-aloge F (111)
and
K
2 dF
dx = Tog 10 F (112)
Substituting into Equation 109,
K1K2 0
A =-13—ge—i~6f0 del-‘ (113)

but the total energy in the signal, by the Fourier integral energy theorem, is

-] -]
W= W dw= 2r W dF (114)
0 d 0 d
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and, from Equation 113,

© A loge 10
W.dF = (115)
I 0 d l(IK2

Therefore,

27 loge 10

W= —— A= st (116)
12
Thus, aside from the fact that FW P is readily available from the computer circuit, plotting this quan-

tity versus log F instead of W f versus log F has the additional advantage that the area under the curve is
proportional to total energy. (This would also be true for a plot of W A versus F, but would not be true for

W':l versus log F.)

It is clear that the area under any one of the curves of Figure 15 is proportional to the total energy of
the signal up to the time represented by that curve. The curves of Figures 14 and 15 represent specific
results for a particular seismic wave. During the investigation, about 45 separate tape-recorded seismic
records were processed in the manner indicated, A detailed discussion of the seismologically significant
results of this investigation is being deferred to a later report, since the present report is concerned with

theory and techniques only.

4
CONCLUSIONS AND RECOMMENDATIONS

4.1, CONCLUSIONS

(a) For obtaining useful information from a frequency analysis of a seismic signal, the formal methods
which analyze the entire signal in terms of constant-amplitude sinusoids of various frequencies are unsatis-

factory. Instead, some method which leads to a ""time~varying' spectrum must be used.

(b) Any "time-varying' spectrum so obtained necessarily involves some approximations, since any
analysis of a aignal in terms of amplitude-modulated sinusoidal waveforms is not unique, but depends upon
the characteristics of the filter or time window used.

(c) In obtaining a time-varying power spectrum by any technique, the time resolution and frequency
resolution are interrelated in such 2 manner that an improvement in one results in a degradation of the
other, They can both be improved somewhat by optimum choice of time and frequency apertures, but the
basic problem arises from the interrelated nature of the time and frequency domains, and not from equip-

ment limitations,

4]
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(d) Three possible techniques for obtaining s time-varying power spectrum are:

1. Weighted Fourier analysis, using a moving '"time window" as the weighting function,
2. Use of variable filters or "frequency apertures’ and measuring the amount of power, as a func-
tion of time, which passes through the filter for various frequencies.
3, Translation of the frequency spectrum of the seismic wave by heterodyning techniques in such
a manner that each portion of the spectrum in turn may be passed through a fixed-frequency
filter,
Theoretically, these three techniques are equivalent, and no one method can give results which are superior
to those obtained from the others. Choice of the technique to be used should be based on available equipment
and its limitations.

(e) Although it offers no theoretical advantage over methods using filters, the analog computing tech-
nique described inthis report is by its flexibility probably is the most satisfactory for developing and testing
various methods. After an optimum method of analyzing seismic data has been found, it would probably be
advantageous to build special apparatus for routine analysis rather than continue using an analog computer.
Such apparatus would probably be less expensive to operate and would perform the analysis much more
rapidly than the analog computer setup.

(f) Seismic spectra in general are not smooth, but contain a number of definite peaks, In order to re-
solve these peaks, a filter bandpass of about 2 1/2% of the center frequency appears necessary, No signif-

icant improvement in resolution is obtained by using narrower filters.
4,2. RECOMMENDATIONS

Recommendations for future work may be divided into two categoriea: (a) optimization of frequency-
analysis techniques; and (b) development of other methods of analyzing seismic data, The principal object
of future investigation would be to develop methods of analyzing seismic waves which lead to accurate deter-
mination of the nature and location of the sources and the physical characteristics of the transmission path,
Investigation of the spectral characteristics of a seismic wave is only one of several reseach programs

which may lead to significant results.

4.2,1, FURTHER DEVELOPMENT AND REFINEMENT OF FREQUENCY-ANALYSIS TECHNIQUES. We

recommend that further research be performed on the items below,

(a) Theoretical and experimental investigations to find a technique which gives the best compromise
between time and frequency resolution when applied to seismic data.

(Although the time and frequency apertures may not be independently chosen since the choice of one
automatically specifies the other, it seems possible to find a system which gives optimum results in terms

of time resolution and frequency resolution considered simultaneously. A particular frequency aperture to
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be tested 18 one with a shape corresponding to the bell-shaped Gaussian distribution curve. Since the Fourier
transform of this curve is also a Gaussian distribution curve, the time aperture in this case would be iden-

tical in shape with the frequency aperture.)

(b) Attempting to find a graphical presentation type of a time-varying spectrum which will result in a

"signature" characteristic of the type of sefsmic wave being analyzed.

(c) Investigating the possibility of accurately measuring the arrival times of the principal frequency
components of the seismic wave by first using a narrow filter to determine the center frequencies of peaks

in the spectrum, and then using wideband filters to measure the arrival time of these frequencies.

(d) Investigating the feasibility of playing the tape-recorded seismic signal both forward and backward to

measure more accurately the arrival time of each frequency component,

4,2.2, DEVELOPMENT OF METHODS OTHER THAN FREQUENCY ANALYSIS FOR ANALYZING SEIS-
MIC DATA. Other methods of analysis which could be investigated are the method of time-varying autocorre-
lation functions and that of time-varying amplitude-distribution functions.

(a) The autocorrelation function of a function of time is useful not only in power-spectra determination,
but also in detecting periodic signals. Any periodic signals which were concealed in seismic data would
probably appear only during certain time intervals, Thus, techniques for determining a time-varying auto-

correlation function could be developed and applied to seismic data.

(b) A signal which has uniform statistical characteristics for any interval of time (stationary function)
is often described in terms of its amplitude-distribution function. Since the statistical characteristics of a
seismic wave are not uniform in time, the amplitude-distribution function as measured for one time interval
may be considerably different from that determined for the preceding or following time interval. Analog
computing techniques similar to those used for time-varying power-spectra measurement could be used to
determine a time-varying amplitude-distribution function. Whether or not such a function would be useful
for describing seismic signals in terms of their source and transmission path would be determined experi-

mentally,
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Appendix A
SEISMIC - SIGNAL CORRECTION

In the following, the notation f(t) designates a signal produced by a seismometer with a flat response,
and f'(t) represents the output of a seismometer which is sensing the signal. In general, f'(t) differs from
f(t) in the seismometer's response characteristics. The seismometer output, f'(t), had been recorded on
magnetic tape, using an FM recording system, and the analysis was performed on the signal played back
from the tape. No significant frequency distortion resulted from the tape-recording and reproducing proc-
esses, but a slight difference between the center frequency of the playback demodulator and the carrier
frequency of the recorded signal generated a d-c¢ bias voltage which was not originally present at the seis-
mometer output. In order to obtain an accurate reproduction of f(t) for frequency analysis, both the d-c
introduced by the record-reproduce process, and the spectral distortion introduced by the seismometer re-

sponse were removed,

If the complex frequency spectrum of f(t) is F(s), and the seismometer response is G(s), the output of

the seismometer is given by

F'(s) = F(s)G(s) 117)

Since the record-reproduce process adds a d-c bias, the output of the playback demodulator is given by
F"(s) = F'(s) + blas = F(s)G(s) + bias (118)

Equation 118 can be solved for F(s) to give

F''(a) - bias

F(s) = GG

(119)

and the time response corresponding to F(s) then represents f(t).

The recording process is {llustrated by the upper block diagram of Figure 16, The lower block diagram
of this figure illustrates the arrangements of the correcting filters in the playback setup. The FM signal

from the tape-playback unit enters the demodulator, where it is converted to a signal corresponding to
8T

1+ 87

of the demodulator, and the block labeled 1/G(s) removes the effect of the seismometer response from

F'(s) or f'(t). The filter block with the transfer characteristic

removes any d-c bias from the output

the signal, The output of the inverse seismometer circuit is then approximately f(t), the error depending

upon how accurately the inverse seismometer response is represented by the 1/G(s) block.

Average frequency-response characteristics of two types of seismometers (Benioff and Willmore) are

shown in Figure 17. These curves represent the average of a number of curves obtained from shaketable
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tests. For these tests, the input signal, as obtained from the shaketahble, was a sinusoid having an rms
velocity of 0,01 inches per second. The curves show the resulting rms voltage output of the selsmome.ters
as a function of frequency. In Figure 17, the peak response of the Benioff curve is about 0.8 volt at 2.2 cps.
If the inverse seismometer response filter had a gain of unity at this frequency, the voltage scaling from
the seismometer-filter combination would be 0.8 volt per inch per second. If the correcting filter has a
gain of 1/0,8 at this point, however, the output scaling of the seismometer-corrector combination is 1 volt

per inch per second over the frequency range for which the corrections are valid,
A.1, BENIOFF-SEISMOMETER RESPONSE CORRECTION

The response curve for the Benioff seismometer is redrawn in Figure 18, Below it afrequency-response
curve is plotted as measured from an analog-computer mechanization which was used to approximate the

inverse seismometer response,

The resultant frequency response of the seismometer-filter combination is the product of the two

curves; it is also plotted in Figure 18,

As shown, the resultant droops at both the high- and low-frequency ends, but since the range of the in-
vestigation was from 0.5 to 50 cps, with the major portion of the return well within these limits, it was felt
that this droop was permissible,

1
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The transfer function G(s) between the velocity of the shaketable and the output of the Bentoff selsmom-
eter is approximated by

s
¥
%
!
i
N
;

G(s) = Ko (120)
s2 2¢
—_—+2g 4]
2 w
w n
n
where K = a gain constant
wn = the natural angular frequency
¢ = a damping factor
The inverse of this function is
1 1 8 2t .1
E(s—)_l—((_2+w +s> (121)
wn n

In order to avoid difficulties arising from differentiating high-frequency noise and from integrating low-

frequency drift, the transfer function for the inverse response was changed to

11 T a1
G(s) wn2(1+728) wn 'rls+1

(122)

The mechanization of

is an approximate integrator which is good for frequencies much greater than

1
+
Tls 1 T8

1/'1'1 radians per second, and the mechanization of

TS is an approximate differentiator which is valid for
2

frequencies much less than 1/7 2 radians per second. Rearranging terms of Equation 122 in order of ascend-

ing ""break-point" frequencies of the approximate integrator and the approximate differentiator gives

U Y N SO SN

—_— = +
Gis) K rls+1 wn

w 2(1 +7.8) -
n 2
Figures 19(a) and 19(b) show the response curves that would result if perfect integrators and differen-
tiators were used to generate the inverse Benioff response characteristics called for in Equation 121, Here
the response curve would start with a gain of infinity for d-c (curve a) and follow a negative integrator slope
down with increasing frequency until it met the added positive slope (curve b) of the differentiator, where the
gain would rise again back to infinity for infinite frequency. The constant term of Equation 121 adds to the
gain value and, at the point of intersection of the negative and positive gain slopes, adjusts the value and
shape of the minimum gain area, Figures 19(c) and 19(d) show the response curves of an approximate inte-
. grator and differentiator which are specified by Equation 123, From inspection of Figures 19(c) and 19(d),
it is apparent that the break-point frequencies must be moved up the slopes as far as possible so that the
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AND DIFFERENTIATORS. (a) Integrator. (b) Differentiator. (c) Approximate integrator.
(d) Approximate differentiator.

actual curve closely matches the ideal curve within the frequency range of interest. This was done and the
inverse Benioff response curve was followed almost perfectly for all test frequencies used; but for the
actual runs the high-frequency gain was too much for the electronic multiplier, If the frequency of the signal
and/or noise is much above 100 cps, the amplitude must be greatly reduced in order to keep the electronic
multiplier from overloading.
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High-frequency response was suppressed enough to satisfy the requirements of the electronic multiplier
by adding a amall feedback capacitor around the output amplifier of the inverse filter, as shown in Figure 20.
In order to shorten the time constant of the d~c bias eliminator (an approximate differentiator), its break
frequency was moved up, which made the addition of another approximate integrator necessary to increase
the negative slope at the low-frequency end of the inverse Benioff filter. The completed filter had afrequency-
response curve which accurately approximated the inverse Benjoff response characteristics within the fre-
quency range of interest, and which dropped off rapidly for frequencies outside this range.

Figure 20 shows an analog-computer diagram for the solution of the inverse Benioff response charac-

teristic. The parts which were added to compensate for the analog computer limitations are drawn with

dashed lines.
1/,
1/7,w 2 n
2 n N : =k
U 3 l " I
G =10 L I
F'() |1 ; |
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FIGURE 20, ANALOG-COMPUTER CIRCUIT FOR INVERSE BENIOFF-SEISMOMETER RESPONSE

A.2. WILLMORE-SEISMOMETER RESPONSE CORRECTION
The Willmore-seismometer response and the inverse response function used are shown in Figure 21.

Since the gain at the high-frequency end is only about 3.3 for a maximum, no trouble was encountered in the

solution,
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The transfer operator for the Willmore seismometer was approximated by

'2
K=
w
G (8) = L (124)
v '2 2f
—2 + ; s+1
w n
n
The inverse of this operator is
2
L 2 s+l
w 2 wn
1 1 n
6@ K K (28)
2
w
n
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or

zcwn wn
E 1+ T' + —2— (126)
8
1/s is replaced here by the previously used expresaion Farera U thus the final equation is
1
2
1 1 2 1 1
response K ‘:wn <rls + 1> * chn (115 + 1> * 1] az7)

The analog-computer circuit for this inverse response filter is shown in Figure 22,

(9

—10
o——110 /K 1
F'(t) ‘

F(t)

F'(t) ={F(t}X Willmore Response)

FIGURE 22. ANALOG-COMPUTER CIRCUIT FOR THE INVERSE WILLMORE-
SEISMOMETER RESPONSE FILTER

. Appendix B
ANALOG - COMPUTER IMPLEMENTATION
This appendix contains a more detailed deacription of the analog computing circuits than that presented
in Section 2,2,3. of this report. The main computing circuits were assembled on a "PACE" computer made
by Electronic Associates, Inc. The automatic programming was performed by additional conventiona! analog
equipment built in the IST Analog Computer Laboratory. The interrogation frequency wl for each run was
selected by a digital-to-analog converter, operating from a punched-paper-tape reader.
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B.1 ANALOG-COMPUTER ARRANGEMENT

Figure 23 i8 a block diagram of the complete analog-computer setup used for the frequency analysis of
seismic signals. It consists of the basic computing block diagram of Figure 10 and the blocks used for cor-
recting the recorded seismic signal, controlling the computer, and plotting the final results. Input informa-
tion is received from two tape-recorder channels, shown at the upper left in Figure 23. Channel 1 is the con-
trol channel and channel 2 is the signal or information channel,

The signal from the demodulator for channel 2, the information channel, is f''(t). As explained in Appen-
dix A, this signal consists of f(t) multiplied by the seismometer response and containing a small d-c bias.
The bias eliminator is a high-pass filter which removes any d-c component from the signal. Its output is
f'(t), the seismic signal f(t) multiplied by the seismometer response characteristics. Switches SW1 and SW2
may be positioned either to pass f'(t) directly into the computer circuits, or to insert the proper inverse

seismometer filter and thus produce f(t), corresponding to the output of a seismometer with a flat response,

The corrected signal f(t) then enters the basic computing circuit, whose operation has been explained
qualitatively in Section 2.2.3. In order to explain the operating sequence and at the same time quantify the
results somewhat, we assume that the signal f(t) i{s replaced by a sinusoild A sin wt. Then, the block marked
"Multiplier A" in the upper channel multiplies the signal A sin wt by cos wlt from the oscillator block to pro-
duce at its output

El = A sin wt cos wlt

or

A
E =3 [sin-w)t +sin @+ w

and multiplier B in the lower channel multiplies the signal A sin wt by sin wlt from the oscillator to produce
at its output

E =

A
2" 2

[cos (w - wl)t +cos (w+ wi)t]

Filter A {n the upper channel and filter B in the lower channel are both low-pass filters and, as such, attenu-
ate all signals except those of zero frequency, Consequently, the sum-frequency terms [sin (W + wl)t and
cos (w + w‘)t] in the above equations are attenuated to such a degree that their amplitudes may be considered
negligible at the outputs of the filters. Thus, the output of filter A of the upper channel is

A
E3 = ) sin (w - wl)t G(w - wl)

and the output of filter B of the lower channel is

E --A—cos (w-wi)tG(w-w

4 2 l)
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The computer control block operates together with the digital-to-analog (D/A) converter to generate an
analog voltage corresponding to a particular interrogation frequency wI for each computer run. This voltage
operates servo-positioned potentiometers in the oscillator, in order to set it at the corresponding frequency,
and in filters A and B so that the bandwidth of the filters will be proportional to the oscillator frequency.
Multipliers C and D are servo multipliers used to square the outputs of filters A and B, respectively. isy
use of a gain of 2 at the multiplier inputs, the 1/2 is eliminated from the equation of the output of the filters;

therefore the output of multiplier C becomes
2 2
E = A%sin® (- wpt G2w - w,)

for the upper channel and

l.-:6 = A2 cos2 (W - wi)t Gz(w - wi)

for the lower channel,

The summing amplifier adds these two multiplier outputs (Es) and (E 6) to produce at its output

2,2
, = + = -
Fo E5 [-:6 AG (w wi)

This result is integrated to produce at the integrator output

T
E_= f Asz(w - w )dt
7 0 i

where T is the time of the seismic signal on the magnetic tape, or more precisely, the time of the "On" sig-

nal in the control channel,

The oscillating term has disappeared in the equation for the output of the adder:
2.2
Eo =AG(Ww- wl)

However, it should be pointed out that the difference frequency (w - w‘) determines the filter response
G(w - wl), and thus determines the attenuation of A, whereas interrogation frequency (wi) controls the band-
width of the filter,

The control channel in Figure 23 is operated by a positive or negative voltage from demodulator 1. The
control signals were recorded on a separate channel of the magnetic tape which contained the seismic signal
to be analyzed. A positive voltage, or ""On'" signal, was recorded for the duration of the seismic signal, A
negative voltage, or "Off"" signal, was then recorded for about fifteen seconds after terminating the seismic
signal, This magnetic tape was spliced into an endless loop which could be played continuously.
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The operating sequence of the computer control follows. During the playback of the seismic signal, the
control-channel voltage keeps the computer on "Operate,” and the seismic signal is investigated for frequency

components in the neighborhood of the interrogation frequency w, , to which the oscillator is set. At the end

of the seismic signal, the "On' voltage from the control channel lchanges to an "Off" voltage; this change is
sensed by the computer control and causes it to operate & relay which in turn switches the computer to the
"Hold" mode. This stops all integrators in the computing circuit and maintains all analog voltages at their
values at the end of the run, The "Off" voltage in the control channel also causes the controller to start a
timing integrator whose output is connected to various differential relays, so arranged and connected that

the following sequence is followed,

After a time interval long enough for the servo-driven multipliers, resolvers, and plotter to come to
rest, a relay operates, momentarily dropping the pen on the plotter, and thereby plotting the value of E,,
from the integrator. Next, the hold condition is momentarily removed from the digital-to-analog converter,
and the paper tape advances, reading the next set of values (u.)H_1 for the oscillator and the filters, and le
for the plotting table). Next, the computer is placed in the '"Reset’ mode, which establishes all initial volt-
ages required for the problem at time ""zero', The computer is now ready to receive an '"On'' signal to start
the next computation at the beginning of the next playback cycle of the tape loop.

The D/A converter reads from a punched-paper tape on command from the computer control, and feeds
this information back to the computer control in the form of a d~c voltage. The plotter is an X-Y plotting
table having an external pen-drop circuit. The X is positioned by a voltage proportional to the interrogation
frequency (wl); the Y is positioned by the value of the voltage at the output of the integrator E7 at the end of
each integration. Thus a line drawn through these integration end points produces a curve showing energy
versus frequency for the entire signal. More detailed descriptions of the individual blocks of Figure 23
follow,

B.1.1. THE OSCILLATOR. The oscillator, which generates sin wlt and cos w.t, is basically a three-

i
amplifier oscillator loop where two of the amplifiers are integrators. This arrangement is shown schemat-

ically in Figure 24,

B.1.2. THE ELECTRONIC MULTIPLIER. Multipliers A and B of Figure 23 were actually two channels
of a single electronic multiplier. This is a four-quadrant multiplier in that any combination of mathematical
signs of input variables will always produce the correct sign on the output. The bandwidth of this multiplier
is over 100 cps.

B.1.3. THE LOW-PASS FILTER. Filters A and B of Figure 23 were simple first-order low-pass units

assembled from analog components, as shown in Figure 25,
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FIGURE 24. ANALOG-COMPUTER OSCILLATOR FOR GENERATING sin w;t AND cos w;t

a=Kw‘
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\\
1
E—(D— | £,

FIGURE 25. ANALOG-COMPUTER SCHEMATIC OF A LOW-PASS
FILTER

If the integrator output is Eo' its input is —Eo. and the circuit solves the equation

5 + = -
E +aE = -aE, (80)

Obtaining the Laplace transform of both sides of Equation 80 and assuming that EO(O) is zero,

BEo(s) + an(s) = -aEi(s) (128)

E (8
E(8)

and solving for

Eo(’) a 1

E‘(a)"s+a='1+sr (129)
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where 7 = 1/a,

e anen £ 5 A T 5 A YDA e .
-

If the filter circuit shown in Figure 25 is to have unity d-c gain, it is important that the potentiometer
labeled (a) in the feedback path of the integrator have exactly the same setting as the (a) potentiometer in the
input circuit. As with the previously described oscillator, these potentiometers are set by a servo multiplier
8o that the value of a is a function of the interrogation frequency w‘/zu. Any mismatch between these two
potentiometers will affect the d-c gain of the filter and cause an apparent error in the filter response,

Figure 26 shows a rearrangement of the filter so that Eo and I-:l are summed before multiplying by o
instead of multiplying each by a and then summing at the input of the integrator. This arrangement insures
a gain of unity.

FIGURE 26. ANALOG-COMPUTER SCHEMATIC OF A LOW-PASS FILTER USING
ONLY ONE (a) POTENTIOMETER

B.1.4. THE SQUARING MULTIPLIER. Multipliers C and D in Figure 23 were high-speed servo units
used for squaring the signals from filters A and B, respectively, before they were added. Althoughelectronic
multipliers or function generators could have been used for this purpose, the servo multipliers were used
because they were readily available and their speed was compatible with the frequency spectra of the signala

coming from the low-pass filters,

A diagram of the squaring circuit is shown in Figure 27. The output of this circuit is always positive,
regardless of the polarity of the input.

One particular advantage of the use of a servo multiplier for performing the squaring function is the
lack of any residual output voltage when the input is zero. When diode function generators were used for
squaring, considerable difficulty was encountered in reducing the drift resulting from output voltages pro-
duced by the function generators at zero input.

B.1.5. THE COMPUTER CONTROL AND DIGITAL-TO-ANALOG (D/A) CONVERTER. The computer con-
" trol circuits are shown in Figure 28, When an off signal or minus voltage is received from the control channel, a
switching amplifier (labeled "H.G," in Figure 28) switches the computer to the ""Hold" mode of operation,
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FIGURE 27. SERVO MULTIPLIER USED FOR SQUARING

thus retaining all voltages present at this point of the computation. The operation of a switching amplifier
such as this is based on the action of a high-gain amplifier with two different diode-feedback circuits. When

the input voltage E, is positive, the output voltage Eo tends to be negative, but the diode L1 produces a feed-

i
back path of approximately zero impedance; hence Eo = 0 and sensitive relay SK1 is unenergized as shown.
When Ei is positive, Eo tends to go positive and diode L1 does not conduct. Under these circumstances, the

feedback path must be through diode L 9" This feedback path is established for a positive Eo when thﬁ voltage

1
at junction El (between Rl and R2) is approximately zero. This action occurs only when Eo =+ 100 i—-
R 2

Thus, the output of the switching amplifier is either 0 or +100 -R—l volts, depending upon the polarity of the
2

input voltage, With the proper ratio of R1 to Rz. the minus "Off" voltage produces a plus Eo of sufficient
amplitude to energize relay SK1 and thereby switches the computer to the "Hold"' mode, The RC-time-con-
stant filter placed between the contacts of Sl(1 and the hold relay reduces the off signal to a pulse and thus

releases the hold command so that the computer can cycle.

The hold-command pulse, coming through network RC from the switching amplifier, also energizes relay

Kl' and the "feedback" voltage from the computer hold circuits keeps K_ energized. Relay K1 switches volt-

age t into integrator 1 and removes the short-circuit from the integrato:"s feedback path, thus allowing the
integration of t The voltage output (t) of integrator 1 rises, thereby supplying relays SK2 and SKs with an
increasing voltage. The most sensitive relay was chosen for SK2; thus it operates first, produces a "pen-
drop" signal through the RC network, and causes the X-Y plotter to produce a dot. Relay SK3, operates

next: it removes the "Hold" voltage from the D/A converter; allows it to read the next w‘; and also puts the
computer on the "Reset" mode, thus removing the computer Hold and de-energizing relay Kl’ When the com-
puter goes on '""Reset," the integrator output t goes to zero, and, de-energizing SK2 and SKI. re-establishes

the D/A hold and sets the computer for the "Operate’ command.,
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FIGURE 28. COMPUTER CONTROL AND D/A CONVERTER
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