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FOREWORD

The Acoustics and Seismics Laboratory of the Institute of Science and Technology at The

University of Michigan has been conducting research on seismic wave propagation during the

past two years under Air Force Contract AF 49(638)-911. The collections of a considerable

number of magnetic-tape recordings of seismic events under this and other contracts have

presented a problem of data analysis. The same problem, only on a much larger scale, is

currently being encountered in the VELA UNIFORM program.

It was thought that the use of analog and digital computers could conceivably speed up and

improve the analyses of seismic recordings. Hence, the assistance of the Analog Computer

Laboratory at the Institute nf , .nd Technology was enlisted to determine the feasibility

of using analog-computer techniques to solve many of the problems.

This report covers the theoretical background and the results and conclusions that have

been reached to date on the use of analog-computer techniques for the analysis of seismic

data at The University of Michigan.

The authors would like to acknowledge the assistance of the following members of the

Acoustics and Seismics Laboratory: J. M. DeNoyer, P. L. Jackson, J. A. Prout, and D. E.

Willis.
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SYMBOLS

t = Time

f(t) - Time function

Ao, An, Bn ' Fourier series coefficients

(1 = Fundamental angular frequency 2-•)

fl Fundamental frequency (T)

T = Period of periodic wave, or length of portion of f(t) being analyzed

P(t) = Instantaneous power-dissipation in 1-ohm resistor

P = Average powerav

P(n) = Power in the n-th trigonometric Fourier component

a(wo), b(w) = Fourier integral coefficients

W = Total energy dissipated across a 1 -ohm resistor witJh applied voltage f(t)

W(w) = Energy contained in all frequencies from 0 to w.J I

W d(w) = Energy-density spectrum (function of wo) (energy/(rad/sec)-bandwidth at W)

U = Carrier frequencyc

W = Modulating frequencym

W d(u, to) = Time-varying energy-density spectrum at time to

p(o, to) = Double-sided power density spectrum at time to

P(w, to) = One-sided power density spectrum at time to; 2[p(w, to)] P(W, t)

GiW - W 0) = Filter transfer function

p(n) = Power in the n-th exponentially-defined Fourier component; P(n) f 2p(n)

p(nw ) = Power density in watts per radian per second, at the value of w which is eq'.- to nw

Q(t - tI) = Weighting function

fI(t - to) = Time apertureorwindow; Q(t - t) = fl2(t - to)

p(W) = Power density in watts per radian per second at W

K = Normalizing factor

F(W) = Fourier transform of f(t)

F(w) = Complex conjugate of F(w)

F I - Interrogation frequency used in analog-computer circuit
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h(t) - Response of an electrical network to a unit impulse

E - Analog-computer voltage

1 - Reciprocal of first-order filter time constant

p (0P) = Exponentially mapped past (e.m.p.) power spectrum

W i = Interrogation angular frequency used in analog-computer circuit, (0i 2v Fi)

W0 = Frequency coordinate of time-varying power spectrum p(Wo, to)

t 0 i -Time coordinate of time-varying power spectrum p(uo 0 to)
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ANALOG COMPUTATION OF TIME-VARYING POWER
SPECTRA OF SEISMIC WAVES

ABSTRACT

An analog computing technique for measurir.g time-varying power spectra of seismic
signals has been developed. The signal to be analyzed is recorded on a magnetic-tape loop
so that it may be played back repeatedly, and the analog computing equipment, connected to
the output of the tape-playback apparatus, measures as a function of time the power level at
a different specific frequency for each passage of the tape.

The concept of a time-varying spectrum is developed and the theory of the analysis method
used is derived. It is shown that in measuring time-varying power spectra, there is a theoret-
ical relationship between the time resolution and frequency resolution such that any adjust-
ment which gives an improvement in one results in a degradation of the other. This conflict
is not caused by equipment limitations, but instead is a result of theoretical relations between
the time and frequency domains.

A plot of the energy- or power-density spectrum of a seismic wave is not smooth, but
instead shows a number of sharply defined peaks. It was found experimentally that a filter
bandwidth of 2 1/2% for the analyzing apparatus gave satisfactory frequency resolution with-
out seriously degrading time resolution when magnetic-tape seismograms were analyzed.

It is concluded that measuring methods based on the use of filters are theoretically
equivalent to methods using weighted Fourier analysis, and that the choice of a method to
be used should be based primarily upon equipment requirements. The analog-computer setup
makes a very flexible tool for developing methods of power-spectra measurements, although
more specialized apparatus would probably be more satisfactory after an optimum method
has been found.

There is a possibility for considerable improvement in the measuring techniques, and it
is recommended that research directed toward optimizing the analysis of seismic waves be
continued.

1

INTRODUCTION

This report describes analog computing methods which were employed in measuring the time-

varying frequency spectra of seismic waves. Formal analytical methods, using the Fourier series

or Fourier integral formulas, are not directly applicable, since these methods yield sinusoids of

constant amplitude. In fact, a sinusoid whose amplitude or envelope varies as a function of time does not

really represent a single frequency, but instead is made up of a carrier frequency plus sidebands. If

time variations in amplitude of a frequency component are permitted, the value of frequency cannot be

specified exactly, or if the exact frequency of a component is specified, then variations in its amplitude

are impossible.
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The concept of a signal made up of amplitude-modulated frequency components is not difficult to

understand. An example is the group of all of the radio signals in the broadcast band. These consist of

amplitude-modulated carrier frequencies, spaced 10 kc apart and occupying the frequency band from 550

to 1500 kc. A broadcast radio receiver serves as an "analyzer" in that it selects any desired frequency

and through a "detection" process produces a signal corresponding to the time variation of the frequency

component's amplitude.

The various frequency components of seismic surface waves propagate at different velocities and, in

the case of body waves, by different paths. Consequently the arrival times for the different phases at a

recording point which is far removed from the source of the initial disturbance will occur at different

times, and portions of the wave train will be dispersed.

In analyzing the seismogram, it is important to determine accurately the time of arrival and duration

of each major frequency component. Any frequency-analysis method employed should be capable of ac-

curately measuring the time variations of a specific frequency component, but should at the same time be

capable of separating the various frequency components. These two requirements conflict, since improve-

ment of performance on one of them results in degradation in performance on the other. The following

section of this report discusses the basic problem and its solution in more detail.

2

THEORY

2.1. CONVENTIONAL SPECTRAL ANALYSIS

2.1.1. FOURIER SERIES. If a seismic signal is defined for the interval 0 < t < T, it can be synthesized

within this interval from a Fourier trigonometric series. The terms of the Fourier series are harmonically

related. If the length of the signal being analyzed is T seconds, the lowest or fundamental frequency of the
1

Fourier series expansion would be f I " cps. All other frequencies of the Fourier terms would then be
1 T

integral multiples of this fundamental frequency. Thus, within the interval 0 < t < T, the signal would be

represented by a series of the form

A 0

2+ (A cos nwlt+ B sin nelt) (1)
2 n 1 n 1

n-l

where w= 2rffi 2,r/T (radians per second) and the coefficients are defined as follows:

A f f f(t)dt (2)

o Tj 0
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A = f(t) coo nw tdt (3)

Bn = i f(t) sin nw1 tdt (4)

If the Fourier series for a function f(t) is computed and the terms are added as specified by Equation 1,

the result is f(t) for 0 < t < T, but the function is periodic. That is, f(nT + t) = f(t) for (n = 0. *1, *2, . .

Thus, the function obtained from the Fourier series does not exactly correspond to the original function,

for which f(nT + t) = 0 for (n = *1, *2, *3, ... ).

Plots of A vs. n, and B vs. n result in "line" spectra, which have values for integral values of n only.n n

Plots of this type are shown in Figure 1.

+ +

"A n 0 1lll ..l1' n n 0 n,

FIGURE 1. EXAMPLES OF "LINE" FREQUENCY SPECTRA

If f(t) is a voltage which is applied across a 1-ohm resistive load, the instantaneous power dissipated

in the load at any time t is given by

P(t) = f 2(t) (5)

and the average power, in the interval 0 < t < T, is given by

P = i [f(t)] 2 dt
av Tf

Since the average power produced in the load by a sinusoidal vw•tage of amplitude A is A 2/2, the average

power level of the n-th harmonic of the Fourier series is given by

2 2
A Bn in
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The sum of the average power levels of the Fourier components is equal to the average power in f(t)

in the interval from 0 < t < T.

Thus

2 2

V A +B 2 c0 1T
2 =7 P(n)=Tj [f(t) 2dt (7)

n=0 n=0

A power spectrum for f(t) may be obtained by plotting P(n) as a function of n. A sketch of a typical

plot is shown in Figure 2.

P(n)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n FREQUENCY

FIGURE 2. EXAMPLE OF A LINE POWER SPECTRUM

Note that the function P(n) has values only for integral values of n. The value of P(n) for each n cor-

responds do the power level at that particular harmonic of the fundamental frequency.

Note also that the average power level P(n) for any frequency component n is not a function of time.

Thus with conventional Fourier analysis, the concept of a frequency component, whose average amplitude

varies as a function of time is not applicable.

2.1.2. FOURIER INTEGRALS Fourier integral analysis may be used to describe the frequency spectra

of nonperiodic waveforms. The Fourier integral formulas are derived from the Fourier series formulas

by letting the period of the waveform under analysis approach infinity. This gives infinitesimal frequency

separation between the frequency components, and thus leads to a dense or continuouis frequency spectrum.

as opposed to the "line" spectra obtained from the Fourier series expansion.

The Fourier integral representation of a fun ion f(t) is [11 as follows:0 So0
f(t) = J a(w) cos otdw f b(w) sin Wtdw (8)

4
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where

a(w) - I f(t) cos W.tdt (9)

b(w) f f(t) sin Atdt (10)

If f(t) is a voltage which is applied across a 1-ohm resistive load, the total energy W dissipated for

all time from -00 to +00 is given by

W f 0 if(t) 2 dt (11)

In order for W to be finite, the actual duration of f(t) must also be finite, If this requirement is satis-

fied (as it would be for a seismic wave), the Fourier integral energy theorem [1) applies and

[f(t)2 dt = 7r 2a(wfl)2 + [b(w)12 dw (12)

-:0

Substituting Equation 11 into 12 gives

W = ?r la(u&)l + [b(W) 2 dw (13)
0

Equation 13 gives the total energy in f(t) as a summation of the separate energies of all the frequency

components. The energy contained in all frequency components between 0 and u). would be given byJ

W(. = ' 1aJgol}2 + [b(,) 12ddw (14)

Since the integrand is always positive, W(wu) is a monotonic increasing function. This function may be

plotted as shown in Figure 3.

Since the slope of the curve of Figure 3 corresponds to the increase in energy W per unit increase

in angular frequency u), the energy-density function may be obtained by differentiating Equation 14 with

respect to Wj.

5
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w.

FIGURE 3. INTEGRATED ENERGY-DENSITY SPECTRUM

FIGURE 4. ENERGY-DENSITY SPECTRUM

dW1•w) . [1)2+ ro,2} (15)

Wd(u)) = ... '...y. = , r{[a12 (15

A plot of dW(w corresponding to the W)) function of Figure 3 is shown in Figure 4.

This plot corresponds roughly to the Fourier series power spectrum, as shown in Figure 2, except

that it is a continuous spectrum instead of a line spectrum, and the ordinate is energy density instead of

power.

Thus, the expression

Wd(W) = 7r{I[a(w)] 2 
+ [b(w)]2} (15)

corresponds to energy per unit bandwidth in the frequency spectrum of f(t), The energy at any single

frequency is zero, since this is given by ir {Ia(u)12 
+ [b(W)12} dw.

6
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As in the case of Fourier series, the frequency components a(w) and b(W) are not functions of time.

The integral I.
ft) =J [a(u)) coo 4t + b(W) sin utjdw (8)

may be visualized as a summation of sinusoids of all frequencies, each sinusoid extending in time from

-so to +so. These sinusoids add to produce f(t) for the interval in time during which f(t) exists, and add to

produce zero at all other times. The energy in any one of these sinusoids is zero, whereas the energy

density per unit bandwidth is not, as shown by Equation 15 above. Since the sinusoids extend in time from

-o to +ao, and since the energy per unit bandwidth is finite, the power per unit bandwidth is zero. If the

power in any band of frequencies were greater than zero, this power integrated for time from -oc to +o

would give infinite energy!

Although Fourier integral analysis can be applied to seismic waves, and the energy-density spectrum

can be plotted, the results are not particularly useful; they apply to the wave in its entirety and there is

no provision for obtaining the relative intensities of the various frequency components for different por-

tions of the seismogram as a function of time. If we wish to examine various parts of the wave trains for

their frequency compositions and plot these frequency spectra as functions of time, the formal techniques

of Fourier integral analysis must be modified.

2.2. TIME-VARYING POWER SPECTRA

Not all portions of a seismogram have the same frequency content. That of the initial portion of a seismo-

gram may be completely different from that of the final portion. Thus it is desirable to be able to observe the

amplitude of each frequency component as a function of time. A formal Fourier integral analysis of a seismic

waveform yields a frequency spectrum which does not vary with time; therefore, a modified analytical procedure

is required to obtain a time-varying spectrum.

2.2.1. NATURE OF A TIME-VARYING POWER SPECTRUM Exact specification of any general

function f(t) in terms of time-varying frequency spectra is quite difficult, or even perhaps, impossible.

This difficulty results from the fact that a sinusoid of constant frequency whose amplitude is varying with

time cannot be regarded as a single frequency. Instead, since it is an amplitude-modulated wave, it has

a frequency spectrum consisting of a carrier frequency plus bands of adjacent frequencies called sidebands

[11. If a sinusoid with a frequency w c is amplitude modulated by another sinusoid with a frequency wml

the resulting modulated signal contains three frequencies: the carrier, W ; the upper sideband, w + w mc C m

and the lower sideband, w - w . If the modulation envelope of the sinusoid is not itself a sinusoid, then

each Fourier frequency component of the modulating signal generates an upper- and lower-sideband fre-

7
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quency. Thus, the spectrum of the upper sideband is the same as that of the modulating signal, with all

frequencies displaced upward by the amount of the carrier frequency, whereas the lower-sideband frequency

spectrum is a mirror image, reflected in the carrier, of the upper sideband. These relationships are

illustrated in Figure 5.

W Spectrum of
Q Modulating Carrier

S Signal liii ______ _____

0 WA W Wa
c c

(a) (b)

FIGURE 5. SPECTRA RESULTING FROM AMPLITUDE-MODULATION PROCESS. (a) Spectra of modulating
signal and carrier. (b) Spectrum of modulated sinusoid.

The bandwidth or frequency spread occupied by the signal is determined by the highest frequency com-

ponent of the modulation envelope. Consequently, if we expect to detect rapid variations in the amplitude

of a given frequency component of a seismic signal, we must really examine the signal over a wide band

of frequencies; therefore it becomes impossible to specify exactly what frequency component is being

measured. On the other hand, if a very narrow band of frequencies is being examined, so that the fre-

quency component whose amplitude is being measured is specified very accurately, rapid variations in

the amplitude of this component cannot be detected because the sideband frequencies which are generated

by the higher frequency components of the modulation envelope are being suppressed.

2.2.2. TECHNIQUES FOR COMPUTING TIME-VARYING POWER SPECTRA

2.2.2.1. The Rectangular Time Aperture. One possible method of computing the time-varying power

spectrum of a signal f(t) is illustrated by Figure 6.

Suppose the actual duration of f(t) is unknown, and we wish to estimate its frequency composition at
time t . The portion of f(t) extending from t - TV2 to t + T/2 could be analyzed to determine the energy-

density spectrum for this portion of f(t). The energy-density spectrum for all of f(t) cannot be computed

from this sample, but the energy contributed during this period can be computed and divided by the length

of the period to give an average power-density spectrum for the interval from t - T/2 to 1 + T/2.

8 o
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T T

+

fit) 0 c l m4t

to - to to T-

FIGURE 6. EXAMINATION OF f(t) THROUGH A "TIME WINDOW"

Thus, if we consider f(t) as existing only in the interval (to - T/2) < t < (to + T/2), we can compute

the energy-density spectrum as follows: changing the limits for the integrals of Equations 8 and 9, and

considering the results as a function of t we derive0

t +T/2

a(u., t) = • f(t) cos Atdt (16)0 rt-T/2
0

t +T/2

b(., t) = f(t) sin wtdt (17)
t -T/2
0

The energy-density spectrum is given by Equation 15:

Wd(u)) = r {[a(w)12 + [b(w)•l} (15)

and the average power-density spectrum at t may be obtained by dividing by the length of the interval:
0

P(w, to) = T{1aluj, to)]2 + [b(w, t)1 2 } (18)

Substituting Equations 16 and 17 into Equation 18 gives

P(W, to t { - L T/2 f(t) cos Adtj + T/2 f(t) sin Atd_ (19)
7T t-T/2 t] /2

The integrals in Equation 19 could be evaluated continuously on analog computing equipment for any

specified W as a function of t by using tape-recording equipment with spaced playback heads, sn that the
0
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integrals of f(t) could be obtained simultaneously between the limits of 0 and t + T, and of 0 and t .02o 2
The first integral of Equation 19 can be rewritten

t+T/2 t +T/2 t -T/2

ft f(t) cos wtdt = f(t) cos wtdt - f (t) cos u0tdt (20)
t-T/2 0 0

providing f(t) is continuous from 0 to t + T/2, and t - T/2 > 0.0 0

Substituting t + T/2 for t in the first integral on the right side of Equation 20 gives

to+T/2 tf 0 0 of f(t) cos 4Adt = f l/ f(t + T/2) cos W(t + T/2)dt (21)

0 -T/2

Similarly, the second integral may be written

t -T/2 t
f f(t) cos Aotdt = f f(t - T/2) cos uo(t - T/2)dt (22)

0 T/2

If f(t) = 0 for t < 0, then f(t - T/2) = 0 for t < T/2, and the lower limit of the integral on the right in

Equation 22 may be extended to -T/2 without affecting the value of the result. Therefore, substituting

Equations 21 and 22 in 20 gives

fto+T/2 t

f(t) cos utdt = f f(t + T/2) cos uo(t + T/2) - f(t - T/2) cos W(t - T/2)ldt (23)

t -T/2 -T/2
0

Equation 23 could easily be mechanized on analog computing equipment in combination with a tape

recorder having two playback heads spaced T seconds apart, so that f(t + T/2) and f(t - T/2) could be

obtained.

A similar method could be used to obtain

t +T/2

ft f(t) sin utdt (24)
t-T/2
0

and P(w, t ) as a continuous function of to could be computed from Equation 19.

10
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There would be no need for a tape recorder if a device having a transport delay of T seconds were

available. A block diagram showing the method of computing the first integral of Equation 19 be using

such a device is shown in Figure 7.

to0 +T/2

ft + T/2 f(t + T/2) cos uw(t + T/2) ff (t) cos wtdt- Multiplier t 1-T/

cos w(t + =T/2) D=elyT f(t - T/2) cos w(t - T/2)

% OscHilator

FIGURE 7. ANALOG-COMPUTER MECHANIZATION OF EQUATION 23

2.2.2.2. The Rectangular Frequency Aperture. The power spectrum of f(t) as a function of time might

also be found by use of a filter. For example, a filter having a finite passband with sharp cutoff at the

edges of the passband might be regarded as a rectangular aperture or "window" for viewing the frequency

spectrum of f(t). Figure 8 shows the passband of such a filter superimposed upon P(u)), the power spectrum

of f(t).

The filter, whose pass charcteristic is shown in Figure 8, passes all frequencies from w - "- to
AW 2

S+ • without attenuation, and completely suppresses all frequencies outside this range. If the filter

function is G(w - W ), the power transmitted through the filter is given by
0

p(AW) = f0 p(u))G(w - wo0)d f / AW plu)) dc (25)

o 2

P(W) = f 0(

Power P(o' t) QAW
00

FIGURE 8. ILLUSTRATION OF A FREQUENCY APERTURE

11
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and the average power per unit bandwidth for the frequency range covered by the filter is obtained by

dividing Equation 25 by &u.

(A)

P(W .t) I P(w) dw (26)
0 AW 2

The output of the filter may be time-varying, subject to restrictions imposed by the filter's bandpass

characteristics. The filter should have a narrow passband in order to restrict the range of w over which

the power is averaged for any given w 0, and thus give good frequency resolution. However, if the pass-

band is very narrow, rapid variations of the power output cannot be transmitted because the sideband fre-

quencies which must be part of such a signal are suppressed.

In practice, the filter would be set for various values of w , and the output power would be interpreted
0

as AW P(Wo, t).

2.2.2.3. Comparison of Time-Aperture and Frequency-Aperture Approaches. Summarizing Sections

2.2.1 and 2.2.2, it appears that there are two possible methods of obtaining time-varying power-density

spectra of f(t). One of these involves examination of a portion of f(t) through a moving "window" in time

and performing Fourier integral analysis on the portion of f(t) seen through the window. The second in-

volves use of a filter, or frequency-spectrum window, through which the power content of a band of fre-

quency components of f(t) are observed. The entire frequency spectrum could be covered either by using

a number of filters, or by adjusting the center frequency of a single filter and making consecutive obser-

vations.

Increasing the length of the time window for the first method improves the accuracy of frequency-

component determination, but reduces the rate at which the power density being measured can vary. In-

creasing the length of the frequency window for the second method has the opposite effect. It increases

the rate at which the output of the filter may vary but reduces the selectivity, or frequency resolution.

It will be shown later that the two methods discussed above are not really separate and that any method

of analyzing a signal f(t) in terms of a time-varying frequency spectrum involves the use of both a time

aperture and a frequency aperture.

2.2.2.4. The Variable-Transmission Time Aperture. Use of the rectangular time aperture, as des-

cribed in Section 2.2.1, gives the average power-density spectrum of f(t) for the interval (t - T/2) < t <

(to + T/2). In determining this average P(w, t ), equal weight is given to the spectral characteristics of

f(t) throughout the interval covered by the time aperture. Better time resolution would result if the spec-

12
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tral characteristics of f(t) in the neighborhood of t were emphasized in the computing process. This may0

be accomplished by using a variable-transmission time aperture whose transmission is maximum in the

neighborhood of to. An equation for computing P(w, t ), which uses a time aperture of this type, will be

derived in this section.

In deriving this formula, it is comvenient to use the exponential form of the Fourier series and inte-

gral formulas. For the Fourier series, these are [21

f(t) = F(n)e (27)

fl=-00

F(n) T/ T/2 -jnwIt (28)f-TI f(t)e dt8

ST

F In f T/2

F(n) =-(A - JB) (n = 0, •1,- .. ) (29)

where A and B correspond to the coefficients of the trigonometric series (Equation 1). The factor of
n n

1/2 occurs in Equation 29 because the exponential form of the series uses both negative and positive values

of n, and thus has twice as many terms as the trigonometric series, which uses only positive values of n.

If f(t) is the voltage across, or the current through a 1 -ohm resistor, the average power dissipated in

the resistor by the n-th harmonic component is

2 2
p(n) = IF(n)1 2 A n n (n 0, +1, 2 .. (30)

4

Comparison of Equation 30 with Equation 6 reveals that the p(n) of the former is equal to half the p(n)

of the latter. Similarly, any time-varying continuous power spectrum derived from the exponential for-

mulas will include both positive and negative values of w, and therefore the value of p( 0, to) so obtained

must be doubled to obtain P(coo, t ), the physical power level at frequency W0 at time to.

Substituting Equation 28 into Equation 30 gives

2 1 T/2 -JnW 1t 2
p(n) = I F(n) I = T- ifT/2 f(t)e dt (31)

13
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where

2w"

and is the fundamental frequency.

Equation 31 gives the power level of each frequency component. Since each harmonic frequency is an

integral multiple of the fundamental frequency, a plot of p(n) versus n would be a "line" spectrum, with W1

as the spacing between adjacent lines.

Even if f(t), is nonperiodc, the Fourier components for a section of f(t) extending from -T/2 to T/2

are still given by Equation 31. The length of the section under consideration may be extended by increasing

T. When T is increased, W, is decreased, thus reducing the spacing of lines on the power spectrum. As T

is allowed to approach infinity, w1 approaches zero and the power spectrum becomes a continuous plot. Since

there are now an infinite number of frequency components in any finite bandwidth, and the power in such a

bandwidth is also finite, the power per frequency component must be zero.

Thus,

Tim lim 1 T1 -jnolt 2

lim p(n) = - ý f(t)e dt = 0 (32)

Thus, the power spectrum can no longer be expressed in terms of power per frequency component. In

order to avoid this difficulty, the power density at any given frequency may be expressed in terms of power

per unit bandwidth.

If p(n) = power per frequency component, and the frequency components are spaced fI cps apart, the

number of frequency components per cps is 1/f1 . and the number of frequency components per radian per

second is 1/1w= 1/21rf . The power density in watts per radian per second, then, is p(n01) -(n)
1

Substituting this into Equation 31 gives

cf T/2 -Jnw)ltd2

17rf T2 T/2 f(t)e dt (33)
2a T/2

or, since If1 I/T,

If T/2 -jzw&t t 2
p(nWI) = ý f-T /2

14
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Then. in order to obtain a continuous frequency spectrum, let T become infinite. The quantity n1,

becomes 4 and

P( lira I T/2 f(t)e-jwt dt 2(34)T-ao21rT "fT/2

At this point, a brief discussion of the nature of the function defined by Equation 34 is in order. It may

be shown that this function is not valid as a statistical estimate of the power spectrum of a random process,

because the variance of the p(W) defined in this manner does not approach zero as T becomes infinite, [ 31.

Nevertheless, Equation 34 accurately defines the power spectrum of the particular function, f(t), to which

the equation is applied in that the power spectrum so defined corresponds exactly to the spectral density of

the Fourier series for f(t). The function, p(W), as defined by Equation 34 is extremely irregular. Sincep(w)

is proportional to the amplitudes of the Fourier series components making up f(t), and since f(t) is infinitely

long, the increment between terms of the series is infinitesimal, and thus any small interval of w (no matter

how small) contains an infinite number of different values for p(w). If p(w) is averaged over a small incre-

ment of W, however, a consistent usable value for average p(w) for that interval is obtained. According to

Goldvman, [41. this averaged or smoothed power spectrum

li ra I " '+A
P(W• = Atw--0 f-•J p(l) d,•

corresponds to the statistical power spectrum for the function f(t). In other words, p(w) as defined above is

also the result of averaging p(w) from Equation 34 for an infinite number of random functions of time, each

having the same statistical power spectrum. In the steps which follow, since the sections of f(t) being exam-

ined are of finite length, an averaging with respect to walways occurs, and we are not bothered by a vari-

ance of p(w) of the type discussed above.

Next, let us consider the problem of estimating p(W) by observing a finite section of f(t). If f(t) has uni-

form power spectral characteristics throughout the length T of the section being observed,

P(W) =-1 r f/T/2 flt)e-J(Atdt 2 (35)
F2 J -T/2

for w >> 2'r
T

Since T is now finite, we are really formally justified in computing the frequency spectrum only at

values of u) which are multiples of the fundamental frequency w1 = 2r/T. Evidently, the resolution of the

frequency spectrum obtained from Equation 35 is of the order of 1/T cps. Roughly, about 1% resolution

could be obtained if T corresponded to 100 cycles of w, the frequency for which the power density is to be
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computed. If p(s) is to be determined accurately at low frequencies, long intervals of f(t) must be observed;

but for higher frequencies, the interval T can be shortened.

If a portion of the time axis of f(t) is divided into a number of intervals, each long enough to permit a

reasonably accurate computation of p(O) using Equation 35, and if the power density spectrum of f(t) is uni-

form throughout the portion chosen, then the values of p(w) obtained by applying Equation 35 to each of the

intervals should be approximately the same.

For each interval, extending from time tn- 1 to t , Equation 35 may be written

2P) t it n f(t)e-JO0 dt (36)
n n-i tn-I

or

fn 2

27r(t - tn-1) p(W) f f(t)e-J"' dt (37)
n n-i tn-i

Summing all equations of this type from n = 1 to n = N,where t - t = T, and assuming that p(w) isNo

constant over this interval, we derive

N N 2 n

2'()) (tn - tn~i) = J f(t)e-J(°tdt (38)

n=1 n=1 n-i

However,

L (tn - tn-i) = T (39)

n=1

therefore,

27rp(•) T = N J f(t)e-JCtdt (40)

n=1 n-i

And substituting Equation 40 into Equation 35 gives

T/2 f(tle-J aV dt f(t)e-"utdt (41)

n=l n-i

16
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An integral over any interval may be expressed as the sum of integrals over all subintervals contained in

this interval; thus

-T/2 f(t)e-jut dt = N f f(t)e-J(t dt (42)

n-1 n-1

The operation of squaring the absolute values of both sides of Equation 42 and substituting the result

into Equation 41 gives the rather interesting relation

N f•tn•tfl 2 tN nt f(t)e -J(Atdt 2SJ f(t)e~j dt ffi tn~ (43)

tn- f ~ n t
1n=It n' I Tn -1

If (tn - tn-1) = At (with all intervals equal), and thus

NZ- (tn - tn~i) = T = NAt

n=1

then Equation 38 can be rewritten to give

N 1 tn 2

;&2rt fnf(t)e jdt
n=1 tn-1

N (44)

Thus, this gives p(WO) for the interval from t = 0 to t = NAt as the average of the values of p(w) computed

for the subintervals tn_1 < t < tn'

If the power spectrum of f(t) varies %ith time, Equation 44 specifies the average value of p(uW) for the

section of f(t) being examined. In order to define p(w) at some particular time t , a weighting function may0

be used in computing this average. Suppose we use a weighting function Q(t - t ), which reaches a maximum

for some particular instant t1 and approaches zero for values of t which are significantly removed from to,
0 0

in such a manner that the integrallf Q(t - t) dt exists. (Figure 9 shows a typical weighting function.) Use

of such a weighting function will give more weight to the spectral characteristics of f(t) in the neighborhood

of t = to, and thus the weighted average of p(w), obtained by using this weighting function, can be interpreted

as p(w) at t t.

17
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Q(t - t)

t
0

FIGURE 9. A WEIGHTING FUNCTION

Using the weighting function Q(t - t ), Equation 44 can be rewritten

N t
' Qltn to) n f(t)e-j-ldt 2

Lffil n- 02rt 11P(n' t =1 N (45)

L Q(tn - to)

n=1

where Q(tn - to) is the average value of the weighting function in the interval tn- 1 < t < tn.

Since Q(tn - to) is constant for any particular tn , Equation 45 can be rewritten

N n 2

t -J Qn- t) f(t)e-j'tdt

n tn-i

pN, I n 1 (46)

Y Q(tln - to)At

n=1

If N is permitted to increase now, so that Equation 46 includes all time from -0 to 0, Equation 46 can be

rewritten

S1 t 2
2•Jt • l)e-J dt

p(W, t ) = n=-0 n-i (47)
SQ(t n - to0)A t

n-00
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and, when Equation 41 is used,

t 1 f Q t t' f(t)e-J' dt 2

pi•O. to) = 0 i0L 48)

SQ(tn - tl)At

n= -00

Finally, If we allow at in the denominator of Equation 48 to approach zero,

pLw t f _ o Tj Q(t -Q f f(t)e-JUK dt2
P(LO. 1o 0= -000 0(9

f Q(t - to)dt

and, if we redefine t - to) = f (t - to),

-0 1 0
f1 (t to)fit)eJdt 2t'llOf~-(0

p(w), to) = (50)

f _ f12 (t - to dt

For any specified weighting function, the denominator of the right side of Equation 50 is a constant:

f• 2(t - to)dt- (51)

So, this equation can be rewritten

p(wO, to) = • 1t- (52)

PWto) , f (t -to)f(t)e Judt 2(2

where

K=

J f1
2(t - to)dt (53)

Equation 52 can be interpreted as describing the use of an aperture or window in time, having a trans-

mission function of fI(t - to) to examine f(t) about the Instant t and to determine the power spectrum of f(t)

at that point.

19



Institute of Science and Technology The University of Michigan

If f (t - to) 0 1 for all values of t and to, Equation 52 becomes equivalent to Equation 34, which is restated

here:

lim 1 fT/2 _J I 2
P(W) = F -T/2 f(t)e dt (2 34)

Thus we obtain the non-time-varying power-density spectrum, where p(w) is the average power density at w

for all time, from -o to +co.

Evidently, the time resolution of p(w, t ) as computed from Equation 52 is improved as the interval

covered by the window function fI(t - t ) becomes narrower, but a resonably long window function must be

used to give good frequency resolution.

2.2.2.5. The Frequency-Aperture Equivalent of a Time Aperture. Next, we show that use of a time aper-

ture in the manner specified by Equation 52 is actually equivalent to using a window in the frequency domain.

For power at a specific time t and at a specific frequency wo, Equation 52 is written

P 0 0 T 0 W0 t2(4Kf_ "Jwt '2

P t ) •ot if _ f (t-to) f(t)e dt (54)

Substituting T + t for t in the integrand of Equation 54 gives
0

P(Po. to &(I e-JW't° rf + t l(T)e dT( 2 55)

Since W is a constant for this integration, we can define
0

f 2() = f (r)e 0 (56)

Substituting this in Equation 55 gives

K 2
p(to. t ) = ejWt fo f( +t If (Tr)dT (57)0 0 27 f o) f2

However, it can be shown 121 that

-0 j UAt

o00

where

F0- f(T)ecJ(°Tdd (59)
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1 - jwF2(W) =- f f2(e- d-, (60)

2 2? J
"F211') = Y-s 2('rleJyrdT" (61)

Since by definition,

-o ~
f2(T) f1(T)e (56)

Equation 61 can be rewritten

- 1 j (W(A) 0W)T

F2W 2irf 1Y ()e d

= F (W + W) (62)1 0

Substituting Equation 6i2 into Equation 58 and the result into Equation 57,

S-jw0 t , .le•.d 2pP K, et 0o o 21F(WO)F (w + w()e dw 2(3)

0 o 27r fJ0P(-jt) t•

and, since e-j 00t° = 1

pIw,_t) (O~eU4)do

p(. to) 21rK11 F(WF 1
(W + (64)

The factor K in Equation (4 can be rewritten in terms of F (W + wo) by using the Fourier integral

energy theorem.

Since f1 iT) and F1 (wo +w 0) are a Fourier transform pair,

f f1
2(t - t)dt =f_ f 2 (Tr)d7T f 2F(W+W 2o) dw (65)

and since
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therefore

12irf F1 (Co+wt) do(67)

Substituting Equation 67 into Equation 64. substituting -W for w in the result, and recallingthat p(a% to) =
0 0 0 0

p{-*oo to) because of symmetry in the power spectrum, we obtain:

SF1(w - wo) F(w)e 0 dw

"P(W t)p(-W "t i0 (68)
0 0 0 0 FI( 0- dw

Repeating Equation 50 for comparison,

11o I f1 (t - to)f(t)e dt

P(W ,o 2 (50)
00 1 12(t t)dt

In comparing Equations 50 and 68, we see clearly that since Equation 50 describes p(W 0 to) in terms

of a portion of f(t) as seen through a variable-transmission "time-window" function f1 (t - to), Equation 68

describes P(W%, to )interms of a portion of F(w), the spectrum of F(t) as seen through a variable-trans-

mission "frequency-window" function FI(W - w ). The frequency window F (w - wo) is the complex con-
0 1 00

jugate of the Fourier transform of the time window, fI(t - t ).

In general, if the time aperture is narrowed in order to obtain better time resolution, the effective

filter bandwidth is broadened, and the frequency resolution becomes poorer. If the time aperture is widened

so that the frequency spectrum is computed for larger sections of f(t), the frequency resolution is improved.

but the time response or resolution is degraded. Specification of either the time aperture or the filter band-

width characteristic determines both, since one is derived from the other. The exact choice of either

aperture depends upon the nature of the data to be analyzed and the type of spectral information desired.

2.2.3. THE FREQUENCY-ANALYSIS METHOD USED IN THE IST ANALOG COMPUTER LABORATORY

2.2.3.1. Computer Setup. In preparation for measurement of its power spectrum on the analog com-

puter, the seismic signal to be analyzed was first recorded on one channel of a length of magnetic tape.

The ends of this length of tape were spliced together to form a loop so that when the loop was played back,

the recorded seismic signal would be reproduced repeatedly. Control signals were recorded on a second

channel of the tape at positions corresponding to the beginning and ending of the seismic signal. These

control signals were used to program the operation of the analog computer.
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The computer was so mechanized that it examined a different segment of the power spectrum of the

seismic signal for each pass of the tape, and plotted the results automatically. The control signals which

were recorded on the second channel of the tape actuated the analog computer so that it automatically reset

itself to a now "interrogation" frequency for each pass of the tape. Thus. each pass of the tape generated

information concerning a new portion of the power spectrum.

Figure 10 is a block diagram of the basic computing circuit used. The oscillator, operating at some

interrogation frequency Wi, generates signals corresponding to cos W it and sin w it. Multiplier A multiplies

the incoming seismic signal f(t) by cos wIt, whereas multiplier B multiplies f(t) by sin wIt.

The output signal of multiplier A (designated E1 on the diagram) next passes through filter A, and the

filtered signal E3 is squared in multiplier C to produce E5 , which is fed into the adder.

The output of multiplier B is similarly processed to produce a second input to the adder.

2.2.3.2. Theory of Computer Circuit Operation. The operation of the circuit can be explained qualita-

tively in terms of heterodyning and filtering. Multiplication of f(t) by cos Wit shifts its frequency spectrum,

F(w), by w so that the frequency spectrum of E is F(W - W i). Therefore, examination of the frequency

spectrum of E1 for zero frequency or d-c components is equivalent to examination of f(t) for w components.

Multiplier A Filter A Multiplier C

f (t) Osc---.-_- aol-fE0

sin w~tx E6

G(w)4j

Multiplier B Filter B Multiplier D

FIGURE 10. FUNCTIONAL BLOCK DIAGRAM OF ANALOG-COMPUTER CIRCUIT USED IN FREQUENCY
ANALYSIS
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Filter A Is a low-pass filter which passes d-c perfectly but attenuates a-c signals. Use of this multiplier

and lowpass filter it roughly equivalent to using a passband filter centered at w on f(t) directly. The output

of filter A is squared by multiplier C, thus converting voltage amplitude to power.

The lower channel operates similarly, except that it multiplies f(t) by sin wIt and produces a signal

(E2) having a frequency spectrum which is in phase quadrature with that of (EI). After this signal is passed

through lowpass filter B and squared, it is added to the squared signal from the upper channel and the sum

is then a voltage which is proportional to p(w1. t).

A more quantitative explanation of the operation of the analog-computer circuit can be made by showing

that it evaluates p(wi, to) in terms of Equation 52, which was derived above. Rewriting Equation 52,

P(Wi. t L K fl(t - to)f(t)e Iit dtl (52)

where

1

Kf f1
2 (t - to)dt (53)

and where fl(t - to) is the time-aperture function

f(t) is the function being analyzed

w• and t are the frequency and time coordinates at which p is being evaluated

0jWot

Since e = cos wit - j sin WIt, Equation 52 can be rewritten

K ,._o ~o i •id2

P(Wi, to) = K J0 f (t - t°)f(t) cos Witdt - j J0 fl(t - t°)f(t) sin witdt (69)

And, since the square of the magnitude of a complex quantity is equal to the sum of the squares of its real

and imaginary components,

Kf• dt2 +f I°ft in 1~t t21

p(W1, t) - f (t - to)f(t) cosg Wtdt 2+ f1 (t - t)f(t) sin wtdt} (70)
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Returning now to Figure 10, if filter A is linear (so that superposition principles are applicable), the

output signal E3 at time t can be expressed in terms of the input signal EM(t) and the response of filter A
3 01

to a unit impulse h(t) 12, pp. 323-3281.

E3 (t) = f El(t)h(to - t)dt (71)

but

E1 (t) = f(t) coB W It

Therefore,

EP)=f h(t - t)f(t) cos •01tdt (72)

or

Co

E3(t) h[-(t - to)I f(t) cos Wi tdt (73)

If now we define

h[ -1t - to)] I fIlt - t) 074)

and make the substitution in Equation 73, the result is

00

t f0 fl(t - t0)f(t) cos W It dt (75)

By a similar process, if the impulae response of filter B is the same as that of filter A,

00

E_(, f I (t - to)f(t) sin w 1tdt (76)

Substituting Equations 75 and 7U into Equation 70 gives

t) = K (E3 + E4 2) (77)

Since Figure 10 shows that

E. E32+ E 42 (76)
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then

p(•i. t) = E(W, t) (79)
0 2v 0 i0

where p(w, t ) is the magnitude of the time-varying power spectrum as defined by Equation 70 for time t0

and angular frequency w,

and K 1

_f 1 f72(t - t)dt

In this last expression

fI(t - t) 0 hi-(t - to0)

where h(t - t ) is the response of the filters to a unit impulse occurring at time t

0 0

Thus, the analog-computer circuit evaluates P(w.i, t0) in accordance with Equation 70, and uses a time

aperture or weighting function which is equivalent to the filter's input response, folded about the ordinate

t = t . The relationship between h(t - t ) and f (t - t ) is shown in Figure 11.

2.2.3.3. Computer Circuit Operation Using First-Order Lowpass Filters. In Equation 79 above, it is

assumed that the filter impulse response is such that the time-window function, f1 (t - to) = h[-(t - t )),

gives more weight to the characteristics of f(t) in the neighborhood of t and less weight to the parts of f(t)

which precede t . Next, we shall examine the effects of using various filter transfer functions.

A first-order low-pass filter is easily synthesized from an analog integrator and two coefficient poten-

tiometers, as shown in Figure 12.

If the integrator output is e , its input is - de ando' - an, thus the circuit solves the equation

de"- 0 = oel + reo (80)

i2ht- 

tO0

It t ---__
0

FIGURE 11. RELATIONSHIP BETWEEN h(t - t0 )
AND fI(t - t0)
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a

e a ei 0

FIGURE 12. ANALOG-COMPUTER MECHANI-
ZATION OF A LOW-PASS FILTER

If we take the Laplace transform of both sides of Equation 80 and assume that e(o) = (o

-S eo(a) =rIeI(s) + aeo(S) (81)

e (s)

and, solving for 0
e (s)

eos = -_ (82)
e (s) a + a a

i 1+-

If = jw,

e0
-_o )= --- (83)ei 1 +

The half-power points, where 0- o) = I occur at wo *a. Therefore, the effective bandwidth

of such a filter when it is used in the circuit of Figure 10 will be 2a.

The impulse response is found by taking the inverse Laplace transform of the transfer function:

-I a -at
h(t) = /-- a = ae (t > 0) (84)

Then, the equivalent time-aperture function is given by

f1(t-to) 0 h[-(t - to)l (85)

Since
-- (t-to)

0

h(t-to) = I e t>t)
0 0 (86)

=0 t<t

0

-ar~t2-t)

o (87/)

=0 t>t
0
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The value of K in Equation 79 is
1 1 2

K = I -=I 2 (88)
f: f 1

2 (t - to)dt fto a•
2e 2

a(t-to)dt 
1

Substituting - for K in Equation 79 gives

aI
p(Woo to) Eo(wo, to) (89)

Figures 13(a) and (b) are sketches of fI(t - t ) and F1(0)1, the associated time and frequency windows

used in the process.

SI

°e°(-'° I/I) 1.0

t
0 0

(a) (b)

FIGURE 13. ASSOCIATED TIME AND FREQUENCY APERTURES. (a) Exponential time
aperture. (b) Frequency aperture or filter function.

The time aperture is an exponential which gives greatest weight to the characteristics of f(t) at t = t

with the weight decreasing exponentially as t - t becomes larger.

Substituting Equations 87 and 88 into Equation 70 gives

p(W, to) = a f { [:e )f(t) cos wtdt 2 + - e a ftt0 ) sin w tdt2 (90)

which is the expression used for evaluating p(wo, t ) when first order low-pass filters are used for filters

A and B of Figure 10.

Since the various frequency components of seismic surface waves propagate at different velocities, the

initial part of the received wave will contain only those frequency components which propagate at the higher

velocities, and the more slowly propagating frequencies will arrive later. Measurement of this dispersion

of the arrival times for the different frequency components is an important part of analyzing the wave. The
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exponential time aperture of Figure 13(a) is well suited for this type of work, since it gives major emphasis

to the frequency characteristics of the portion of f(t) which is just entering the window.

An expression resembling Equation 90 has been defined as the e.m.p. (exponentially mapped past) power

spectrum by Dr. Joseph Otterman 151. The e.m.p. power spectrum is defined as follows:

pa(O)= I2[ t flxie-'(t'x) coo wll - x) dx2 + 2 t fl~xe a(t-x) sin i(t - x)dx (91)

In order to permit comparison of this expression with Equation 90, we show that cos wx may be sub-

stituted for cos W(t - x), and sin wx may be substituted for sin W(t - x) in Equation 91 without changing the

value of p a (w). Equation 91 can then be written in complex form:

pa(W) f 2 f f(t)ea(tx) cos w(t - x)dx + j f xle-a(t-x) sin u(t - x)

a2 j~f~xt L X2
. a f t f(x)e-c'(t 'x) [Icos w•(t - x) + j sin W(t - x)) dx

(92)
f fi O2 f -0 0 f lx le c' • lt -x le j U ( t - x l d x :

00 12

= 2 e1"t f f(x)e-a(t-X)e-wxddx 2

Since leJWtI = 1, this factor may be deleted from Equation 92 and we can write

pa(wO) = lot 2 t f(x)e-c lt-x)e-J°xdx 2= 2f f(x)e -a(t-x) cos ox dx2

+ t f(x)e-(t-x) sin oxd 2 (93}

Comparison of Equation 93 with Equation 90 reveals that since the corresponding integrals are identical.

I
p(Wo. to) = "• a PC() (94)

where p(Wo, t ) is the time-varying power spectrum defined by Equation 90, and p ((w) is the e.m.p. power

spectrum defined by Equation 91.
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Also, according to Equation 89

P(Wo' to) =-Eo(W to) (89)
o ia o0 5 t

and comparison of this with Equation 94 above shows that

E0 = pa(w) (95)

Thus, the output voltage, E0, of the analog-computer circuit directly represents the e.m.p. power spec-

trum as defined by Otterman, but this voltage must be multiplied by the factor 1/ra to obtain the time-

varying power spectrum defined by Equation 90.

We recall from the discussion following Equation 30 that the derivation of p(wo, t ) is based on a power

spectrum which includes negative as well as positive frequencies, and that

P(Woo to0 = 2p(w, to) (96)

where P(Wo, t ) is the power density at w for time to, and where the frequency spectrum of f(t) is considered

to exist for positive values of w only.

2.2.3.4. Change of Bandwidth with Frequency. When the analog-computer cicuit using first-order low-

pass filters, as described in Section 2.2.3.3, is used for measuring the power or energy density at low fre-

quencies such as I cps, the filter passband must be much narrower than 1 cps in order to give reasonable

frequency resolution. At higher frequencies, such as 100 cps, this extremely narrow bandwidth is unsatis-

factory because a large number of separate frequencies would have to be investigated to cover a given fre-

quency range. Consequently, the filter bandwidth was changed for each interrogation frequency. It was ex-

perimentally determined that for seismic data, satisfactory frequency resolution could be obtained by making

the filter bandwidth between the half-power points equal to 2.5% of the interrogation frequency w1. Thus,

for the first-order low-pass filters,

bandwidth = 2a = 0.025w (97)

or solving for a,

a = 0.0125wi = 0.0257rF (98)

where F =•/2"

This value for a may be substituted in Equation 89 (repeated here).

p(wo, t) =-L F (w t) (89)
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to give

p(W1t) I E (F t 40 (99)

0 0.025vr
2  

E t -

Equation 99 is valid only when the bandwidth 2a Is programmed to be 2.5% of the interrogation angular

frequency w1 ,

Under these conditions, the frequencies to be investigated were chosen 0.01 decade apart, thus giving

200 separate Interrogation frequencies in the two-decade range from I cps to 100 cps. With a 0.01-decade

separation, the relationship between two adjacent interrogation frequencies is

log W n+1 = log Wn + 0.01 (100)
n

Solving this for n+--l gives
n

Wn+- = 100.01 = 1.0233 (101)

n

Thus, the increase from any given interrogation frequency to the next higher is 2.33%, and since the

bandwidth at each interrogation frequency is 2.5%, the frequency spectrum will be adequately covered, with

no gaps between adjacent Interrogation frequencies.

If only positive frequencies are considered as making up the seismic signal, then Equation 99 must be

multiplied by two.

Combining Equations 96 and 99.

=80E 12
P(Wo, to) = 2p(wo, t ) E (Fi= to)

7r F i

or. since Wo = wI and wi = 2rFl, P is also a function of F and t0, and

80

P(F , to) =-EF o(Fi, to) (103)
10 2 FIo i o

2.2.3.5. Computation of the Energy-Density Spectrum. If the output of the adder of Figure 10 is inte-

grated, the result is

E7 = 0 Eodt = ra 0 p(W, to)dt 2SP . to)dt (104)
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And. since the energy density Wd is given by

Wd(W 0 to) - 0 P(w., to)dt (105)

(assuming f(t) = 0 for t < 0)

E= Wd(W.. to)dt (106)

If we substitute 0.025,rF for a and designate E7 and Wd as functions of the two variables, F and t

we obtain

Wd(Fi. t) = 80 t (108)
ir F1

3
RESULTS

Since the time-varying power-density spectrum P(Fi, to), discussed in Section 2. Is a function of the

two variables F and t 0 there are two basic ways in which this data could be plotted. Frequency, Fi. could

be held constant and the power density P could be plotted as a function of time t ; or plots could be made of

power density versus frequency for various fixed values of time.

Figure 14(a) is an illustration of the first type of plot, applied to a seismometer signal produced by an

earthquake. These curves, with the exception of the bottom one, show the product power density and freq-

uency at various frequencies as a function of time. The bottom curve is a plot of instantaneous power versus

time for the signal being analyzed, and is included to serve as a time reference. Note that although signals

were received immediately after the sixth second, according to the bottom curve, the individual curves for

the various frequencies from 0.5 cps to 1.41 cps show no significant activity before the ninth second. Fig-

ures 14(b)(c)(d) and (e) are continuations of Figure 14(a) for increasingly higher interrogation frequencies.

As the frequency becomes higher, the starting time becomes earlier until it corresponds to the starting

time of the seismic wave itself.

Another interesting phenomenon is the separation of the trace into two separate parts, one starting at

6 seconds and the other at about 20 seconds, for frequencies above 7 cps.

The second method of presenting data (i.e., power density versus frequency for fixed values of time)

was slightly modified by making the ordinate the product of energy density and frequency instead of power

density.

32



insdlute of Science and Technolog The Univorsity of Michigan

1. 1.... . .

1.38

1.935

1.32
.. . ......

P 1.811 ___ ________________

.72EATQUK
.74__________HOLSECLFRI,15

Z .256__________________

.64
1.17

.152
5741I

.58 .609 cl:i jPFt)
*

51
54 1.ot0Cu7:Tta oe v.Tm

1.538

.931



Institute of Sclome and Technology The University of Michigan

2.34

2.29-
IN.

2.23

2.18
2.13

2.08

2.04

U
z
:D 1.90
(7

.. 86
z
.0

1.82

1.77

1.73

1.69

1.66

1.62 ...... :'7

1.58

1.55 
2

Scale: 71 F P(F t I
1.51 1 0

ý1.48

1.440 10 20 30 40 50
TIME (sec)

FIGURE 14 (Continued). (b) 1.44 to 2.34 cps.

34



jInstitute of Science and Tecknology The University of Michigan

3.35



hIsmom of Science and TechnWolgy The University of Michigan

5.0

4z.8

36 .3



institute of Science and Technology The University of Michigan

9.75
9.52
9.31
9.10 1
8.89

8.49E (Eee)

7.337



Institute of Science and Technology The University of Michigan

Results of this type are shown in Figure 15. The curves labeled 1 through S represent the signal's

total energy-density-frequency product, as a function of frequency, for times of 11, 22, 33, 44, and 55 sec-

onds from "zero" time shown on Figure 14. Thus, curve 1 represents frequency-energy-density product

as a function of frequency, for the first 11 seconds of the signal; curve 2 is for the first 22 seconds, and so

on. Finally, curve 5 shows the frequency-energy-density product versus frequency for the entire seismic

signal. The separation between the curves at any specific frequency is proportional to the average power

density for the time interval bounded by the two curves. A logarithmic frequency scale was used for Fig-

ure 15 in order to give uniform separation between the separate interrogation frequencies, which are spaced

0.01 decade apart. (See Section 2.2.3.4.)

It can be readily shown that if the curves of Figure 15 are extended to cover all frequencies from 0to ao,

the area under the highest curve (number 5) is proportional to the total energy of the seismometer signal.

The area under the curve is given by

A f ydx (109)

For Figure 15,

y K1FiWd (110)

where K is a scaling constant, F is the frequency, and Wd is the energy-density spectrum in watt-seconds

per radian per second. Also for Figure 15,

K2
X= K log F lo (111)

2 og og 1F0-.lgeFXe

and

K2 dF (112)
x loge 10 F

Substituting into Equation 109,

K IK 00
1I2 Ca

A =- W ddF (113)
loge 10 0

but the total energy in the signal, by the Fourier integral energy theorem, is

W o W d dw 21f0 WddF (114)
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and, from Equation 113,

f WddF = Alog (115)
SK1K2

Therefore.

22w log, 10
W f 2 A=fiK3A (116)

K 1K 2 3

Thus, aside from the fact that FWd is readily available from the computer circuit, plotting this quan-

tity versus log F instead of Wd versus log F has the additional advantage that the area under the curve is

proportional to total energy. (This would also be true for a plot of Wd versus F, but would not be true for

Wd versus log F.)

It is clear that the area under any one of the curves of Figure 15 is proportional to the total energy of

the signal up to the time represented by that curve. The curves of Figures 14 and 15 represent specific

results for a particular seismic wave. During the investigation, about 45 separate tape-recorded seismic

records were processed in the manner indicated. A detailed discussion of the seismologically significant

results of this investigation is being deferred to a later report, since the present report is concerned with

theory and techniques only.

4
CONCLUSIONS AND RECOMMENDATIONS

4.1. CONCLUSIONS

(a) For obtaining useful information from a frequency analysis of a seismic signal, the formal methods

which analyze the entire signal in terms of constant-amplitude sinusoids of various frequencies are unsatis-

factory. Instead, some method which leads to a "time-varying" spectrum must be used.

(b) Any "time-varying" spectrum so obtained necessarily involves some approximations, since any

analysis of a signal in terms of amplitude-modulated sinusoidal waveforms is not unique, but depends upon

the characteristics of the filter or time window used.

(c) In obtaining a time-varying power spectrum by any technique, the time resolution and frequency

resolution are interrelated in such a manner that an improvement in one results in a degradation of the

other. They can both be improved somewhat by optimum choice of time and frequency apertures, but the

basic problem arises from the interrelated nature of the time and frequency domains, and not from equip-

ment limitations.
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(d) Three possible techniques for obtaining a time-varying power spectrum are:

1. Weighted Fourier analysis, using a moving "time window" as the weighting function.

2. Use of variable filters or "frequency apertures" and measuring the amount of power, as a func-

tion of time, which passes through the filter for various frequencies.

3. Translation of the frequency spectrum of the seismic wave by heterodyning techniques in such

a manner that each portion of the spectrum in turn may be passed through a fixed-frequency

filter.

Theoretically, these three techniques are equivalent, and no one method can give results which are superior

to those obtained from the others. Choice of the technique to be used should be based on available equipment

and its limitations.

(e) Although it offers no theoretical advantage over methods using filters, the analog computing tech-

nique described in this report is by its flexibility probably is the most satisfactory for developing and testing

various methods. After an optimum method of analyzing seismic data has been found, it would probably be

advantageous to build special apparatus for routine analysis rather than continue using an analog computer.

Such apparatus would probably be less expensive to operate and would perform the analysis much more

rapidly than the analog computer setup.

(f) Seismic spectra in general are not smooth, but contain a number of definite peaks. In order to re-

solve these peaks, a filter bandpass of about 2 1/2% of the center frequency appears necessary. No signif-

icant improvement in resolution is obtained by using narrower filters.

4.2. RECOMMENDATIONS

Recommendations for future work may be divided into two categories: (a) optimization of frequency-

analysis techniques; and (b) development of other methods of analyzing seismic data. The principal object

of future investigation would be to develop methods of analyzing seismic waves which lead to accurate deter-

mination of the nature and location of the sources and the physical characteristics of the transmission path.

Investigation of the spectral characteristics of a seismic wave is only one of several reseach programs

which may lead to significant results.

4.2.1. FURTHER DEVELOPMENT AND REFINEMENT OF FREQUENCY-ANALYSIS TECHNIQUES. We

recommend that further research be performed on the items below.

(a) Theoretical and experimental investigations to find a technique which gives the best compromise

between time and frequency resolution when applied to seismic data.

(Although the time and frequency apertures may not be independently chosen since the choice of one

automatically specifies the other, it seems possible to find a system which gives optimum results in terms

of time resolution and frequency resolution considered simultaneously. A particular frequency aperture to
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be tested is one with a shape corresponding to the bell-shaped Gaussian distribution curve. Since the Fourier

transform of this curve is also a Gaussian distribution curve, the time aperture in this case would be iden-

tical in shape with the frequency aperture.)

(b) Attempting to find a graphical presentation type of a time-varying spectrum which will result in a

"signature" characteristic of the type of seismic wave being analyzed.

(c) Investigating the possibility of accurately measuring the arrival times of the principal frequency

components of the seismic wave by first using a narrow filter to determine the center frequencies of peaks

in the spectrum, and then using wideband filters to measure the arrival time of these frequencies.

(d) Investigating the feasibility of playing the tape-recorded seismic signal both forward and backward to

measure more accurately the arrival time of each frequency component.

4.2.2. DEVELOPMENT OF METHODS OTHER THAN FREQUENCY ANALYSIS FOR ANALYZING SEIS-

MIC DATA. Other methods of analysis which could be investigated are the method of time-varying autocorre-

lation functions and that of time-varying amplitude-distribution functions.

(a) The autocorrelation function of a function of time is useful not only in power-spectra determination,

but also in detecting periodic signals. Any periodic signals which were concealed in seismic data would

probably appear only during certain time intervals. Thus, techniques for determining a time-varying auto-

correlation function could be developed and applied to seismic data.

(b) A signal which has uniform statistical characteristics for any interval of time (stationary function)

is often described in terms of its amplitude-distribution function. Since the statistical characteristics of a

seismic wave are not uniform in time, the amplitude-distribution function as measured for one time interval

may be considerably different from that determined for the preceding or following time interval. Analog

computing techniques similar to those used for time-varying power-spectra measurement could be used to

determine a time-varying amplitude-distribution function. Whether or not such a function would be useful

for describing seismic signals in terms of their source and transmission path would be determined experi-

mentally.
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Appendix A
SEISMIC- SIGNAL CORRECTION

In the following, the notation f(t) designates a signal produced by a seismometer with a flat response,

and f'(t) represents the output of a seismometer which is sensing the signal. In general. f'(t) differs from

f(t) in the seismometer's response characteristics. The seismometer output, f'(t), had been recorded on

magnetic tape, using an FM recording system, and the analysis was performed on the signal played back

from the tape. No significant frequency distortion resulted from the tape-recording and reproducing proc-

esses, but a slight difference between the center frequency of the playback demodulator and the carrier

frequency of the recorded signal generated a d-c bias voltage which was not originally present at the seis-

mometer output. In order to obtain an accurate reproduction of f(t) for frequency analysis, both the d-c

introduced by the record-reproduce process, and the spectral distortion introduced by the seismometer re-

sponse were removed.

If the complex frequency spectrum of f(t) is F(s), and the seismometer response is G(s). the output of

the seismometer is given by

F'(s) = F(s)G(s) (117)

Since the record-reproduce process adds a d-c bias, the output of the playback demodulator is given by

F"(s) = F'(s) + bias = F(s)G(s) + bias (118)

Equation 118 can be solved for F(s) to give

F(s) = F"(s) - bias (119)
G(s)

and the time response corresponding to F(s) then represents f(t).

The recording process is illustrated by the upper block diagram of Figure 16. The lower block diagram

of this figure illustrates the arrangements of the correcting filters in the playback setup. The FM signal

from the tape-playback unit enters the demodulator, where it is converted to a signal corresponding to

F'(s) or f'(t). The filter block with the transfer characteristic ST removes any d-c bias from the output

of the demodulator, and the block labeled 1/G(s) removes the effect of the seismometer response from

the signal. The output of the inverse seismometer circuit is then approximately f(t), the error depending

upon how accurately the inverse seismometer response is represented by the 1/G(s) block.

Average frequency-response characteristics of two types of seismometers (Benioff and Willmore) are

shown in Figure 17. These curves represent the average of a number of curves obtained from shaketable
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tests. For these tests, the input signal, as obtained from the shaketable, was a sinusoid having an rms

velocity of 0.01 inches per second. The curves show the resulting rms voltage output of the seismometers

as a function of frequency. In Figure 17, the peak response of the Benioff curve is about 0.8 volt at 2.2 cps.

If the inverse seismometer response filter had a gain of unity at this frequency, the voltage scaling from

the seismometer-filter combination would be 0.8 volt per inch per second. If the correcting filter has a

gain of 1/0.8 at this point, however, the output scaling of the seismometer-corrector combination is 1 volt

per inch per second over the frequency range for which the corrections are valid.

A.1. BENIOFF-SEISMOMETER RESPONSE CORRECTION

The response curve for the Benioff seismoineter Is redrawn in Figure 18. Below it a frequency-response

curve is plotted as measured from an analog-computer mechanization which was used to approximate the

inverse seismometer response.

The resultant frequency response of the seismometer-filter combination is the product of the two

curves; it is also plotted in Figure 18.

As shown, the resultant droops at both the high- and low-frequency ends, but since the range of the in-

vestigation was from 0.5 to 50 cps, with the major portion of the return well within these limits, it was felt

that this droop was permissible.

0.6

0.6 0.01 in/sec

0.04 Shaketabel . .... ....

"'GnCBenoiff Response

0.06 ..

0.1 0.2 0.4 0.60.81 2 4 6 8 10 20 40 60 80100
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FIGURE 18. BENIOFF-SEISMOMETER CORRECTION CURVES

46



Institute of Science and Technology The University of Michigan

The transfer function G(s) between the velocity of the shaketable and the output of the Benioff seismom-

eter is approximated by

Ks

G(s) 2 (120)
a + 2_ + 1

2 w
W n
n

where K = a gain constant

w = the natural angular frequency
n

S= a damping factor

The inverse of this function is

1 1 /s2t +1\
1+ 2 (121)

In order to avoid difficulties arising from differentiating high-frequency noise and from integrating low-

frequency drift, the transfer function for the inverse response was changed to

I ;) T ( 2S +-2C + 1) (122)Gs W •W2 (1 + T'23)

1

The mechanization of 1 is an approximate integrator which is good for frequencies much greater thans+1s

11r1 radians per second, and the mechanization of 1+7--- is an approximate differentiator which is valid for

frequencies much less than 1/T2 radians per second. Rearranging terms of Equation 122 in order of ascend-

ing "break-point" frequencies of the approximate integrator and the approximate differentiator gives

SKj1 [ + 1 + W n2(1+ T2) (123)

Figures 19(a) and 19(b) show the response curves that would result if perfect integrators and differen-

tiators were used to generate the inverse Benioff response characteristics called for in Equation 121. Here

the response curve would start with a gain of infinity for d-c (curve a) and follow a negative integrator slope

down with increasing frequency until it met the added positive slope (curve b) of the differentiator, where the

gain would rise again back to infinity for infinite frequency. The constant term of Equation 121 adds to the

gain value and, at the point of intersectiorn of the negative and positive gain slopes, adjusts the value and

shape of the minimum gain area. Figures 19(c) and 19(d) show the response curves of an approximate inte-

grator and differentiator which are specified by Equation 123. From inspection of Figures 19(c) and 19(d),

it is apparent that the break-point frequencies must be moved up the slopes as far as possible so that the
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FIGURE 19. RESPONSE CURVES OF ACTUAL AND APPROXIMATE INTEGRATORS
AND DIFFERENTIATORS. (a) Integrator. (b) Differentiator. (c) Approximate integrator.

(d) Approximate differentiator.

actual curve closely matches the ideal curve within the frequency range of interest. This was done and the

inverse Benioff response curve was followed almost perfectly for all test frequencies used; but for the

actual runs the high-frequency gain was too much for the electronic multiplier. If the frequency of the signal

and/or noise is much above 100 cps, the amplitude must be greatly reduced in order to keep the electronic

multiplier from overloading.
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High-frequency response was suppressed enough to satisfy the requirements of the electronic multiplier

by adding a small feedback capacitor around the output amplifier of the inverse filter, as shown in Figure 20.

In order to shorten the time constant of the d-c bias eliminator (an approximate differentiator), Its break

frequency was moved up, which made the addition of another approximate integrator necessary to increase

the negative slope at the low-frequency end of the inverse Benioff filter. The completed filter had a frequency-

response curve which accurately approximated the inverse Benioff response characteristics within the fre-

quency range of interest, and which dropped off rapidly for frequencies outside this range.

Figure 20 shows an analog-computer diagram for the solution of the inverse Benioff response charac-

teristic. The parts which were added to compensate for the analog computer limitations are drawn with

dashed lines.

1//1 2_

I--T W 2-1 1

LL2LW
F%) I i

FIGURE 20. ANALOG-COMPUTER CIRCUIT FOR INVERSE BENIOFF-SEISMOMETER RESPONSE

A.2. WILLMORE-SEISMOMETER RESPONSE CORRECTION

The Willmore-seismometer response and the inverse response function used are shown in Figure 21.

Since the gain at the high-frequency end is only about 3.3 for a maximum, no trouble was encountered in the

solution.
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The transfer operator for the Willmore seismometer was approximated by

2KS__
2

G (s) = 2n (124)

-L + -a + 1
2 w•0 n

n

The inverse of this operator is 2: W
1 1 ____nns+____

iw(- (125)
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or

( 2twW~a~
+ n / (126)

i/s is replaced here by the previously used expression 1 thus the final equation is

1 1 iW2 Iý1 1)212w 17
response KF s • +1 +•n) 1]

The analog-computer circuit for this inverse response filter is shown In Figure 22.

FF(t) =/ FI 2C eF(t)

n101

0

,/TI

F'(t) = [F(tg(X Wilimore Response)

FIGURE 22. ANALOG-COMPUTER CIRCUIT FOR THE INVERSE WILLMORE-
SEISMOMETER RESPONSE FILTER

- Appendix S
ANALOG- COMPUTER IMPLEMENTATION

This appendix contains a more detailed description of the analog computing circuits than that presented

In Section 2.2.3. of this report. The main computing circuits were assembled on a "PACE" computer made

by Electronic Associates, Inc. The automatic programming was performed by additional conventional analog

equipment built in the IST Analog Computer Laboratory. The interrogation frequency i for each run was

selected by a digital-to-analog converter, operating from a punched-paper-tape reader.
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B.1 ANALOG-COMPUTER ARRANGEMENT

Figure 23 is a block diagram of the complete analog-computer setup used for the frequency analysis of

seismic signals. It consists of the basic computing block diagram of Figure 10 and the blocks used for cor-

recting the recorded seismic signal, controlling the computer, and plotting the final results. Input informa-

tion is received from two tape-recorder channels, shown at the upper left in Figure 23. Channel 1 is the con-

trol channel and channel 2 is the signal or information channel.

The signal from the demodulator for channel 2, the information channel, is f"(t). As explained in Appen-

dix A, this signal consists of f(t) multiplied by the seismometer response and containing a small d-c bias.

The bias eliminator is a high-pass filter which removes any d-c component from the signal. Its output is

f' (t), the seismic signal f(t) multiplied by the seismometer response characteristics. Switches SWI and SW2

may he positioned either to pass f'(t) directly into the computer circuits, or to insert the proper inverse

seismometer filter and thus produce f(t), corresponding to the output of a seismometer with a flat response.

The corrected signal f(t) then enters the basic computing circuit, whose operation has been explained

qualitatively in Section 2.2.3. In order to explain the operating sequence and at the same time quantify the

results somewhat, we assume that the signal f(t) is replaced by a sinusoid A sin wt. Then, the block marked

"Multiplier A" in the upper channel multiplies the signal A sin ot by cos w It from the oscillator block to pro-

duce at its output

E1 = A sin ut cos wit

or

A
El= (- [sin (W - Wi)t + sin (w + w)t]

and multiplier B in the lower channel multiplies the signal A sin wt by sin wIt from the oscillator to produce

at its output

E A = -[cos (w - w )t + coo (W+ Wi)tC

Filter A in the upper channel and filter B in the lower channel are both low-pass filters and, as such, attenu-

ate all signals except those of zero frequency. Consequently, the sum-frequency terms [ sin (w + wi )t and

cos (w + wi)tj in the above equations are attenuated to such a degree that their amplitudes may be considered

negligible at the outputs of the filters. Thus, the output of filter A of the upper channel is

E - sin (w - wi)t G(W - Wi)

and the output of filter B of the lower channel is

A
E= cos (W - wi)t G(W - W)
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The computer control block operates together with the digital-to-analog (D/A) converter to generate an

analog voltage corresponding to a particular interrogation frequency w for each computer run. This voltage

operates servo-positioned potentiometers in the oscillator, in order to set it at the corresponding frequency.

and in filters A and B so that the bandwidth of the filters will be proportional to the oscillator frequency.

Multipliers C and D are servo multipliers used to square the outputs of filters A and B, respectively. By

use of a gain of 2 at the multiplier inputs, the 1/2 is eliminated from the equation of the output of the filters;

therefore the output of multiplier C becomes

E5 f A2 sin 2 (0 - W i)t G2 (W - wi)

for the upper channel and

E1 =;A cos2 (w Wi)t G 2(W - Wi)

for the lower channel.

The summing amplifier adds these two multiplier outputs (E ) and (E6 ) to produce at its output

E° = E5 +E6 = A2G2(2 - Wi)

This result is integrated to produce at the integrator output

E7 fT T A2G2 (w - W I)dt

where T is the time of the seismic signal on the magnetic tape, or more precisely, the time of the "On" sig-

nal in the control channel.

The oscillating term has disappeared in the equation for the output of the adder:

E 2= A2G2(

However, it should be pointed out that the difference frequency (w - w i) determines the filter response

G(w - w i), and thus determines the attenuation of A, whereas interrogation frequency (W i) controls the band-

width of the filter.

The control channel in Figure 23 is operated by a positive or negative voltage from demodulator 1. The

control signals were recorded on a separate channel of the magnetic tape which contained the seismic signal

to be analyzed. A positive voltage, or "On" signal, was recorded for the duration of the seismic signal, A

negative voltage, or "Off" signal, was then recorded for about fifteen seconds after terminating the seismic

signal. This magnetic tape was spliced into an endless loop which could be played continuously.
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The operating sequence of the computer control follows. During the playback of the seismic signal, the

control-channel voltage keeps the computer on "Operate," and the seismic signal Is investigated for frequency

components in the neighborhood of the interrogation frequency wi to which the oscillator is set. At the end

of the seismic signal, the "On" voltage from the control channel changes to an "Off" voltage; this change is

sensed by the computer control and causes it to operate a relay which in turn switches the computer to the

"Hold" mode. This stops all integrators in the computing circuit and maintains all analog voltages at their

values at the end of the run. The "Off" voltage in the control channel also causes the controller to start a

timing integrator whose output is connected to various differential relays, so arranged and connected that

the following sequence is followed.

After a time interval long enough for the servo-driven multipliers, resolvers, and plotter to come to

rest, a relay operates, momentarily dropping the pen on the plotter, and thereby plotting the value of E7

from the integrator. Next, the hold condition is momentarily removed from the digital-to-analog converter,

and the paper tape advances, reading the next set of values (Wi+1 for the oscillator and the filters, and fi+l

for the plotting table). Next, the computer is placed in the "Reset" mode, which establishes all initial volt-

ages required for the problem at time "zero". The computer is now ready to receive an "On" signal to start

the next computation at the beginning of the next playback cycle of the tape loop.

The D/A converter reads from a punched-paper tape on command from the computer control, and feeds

this information back to the computer control in the form of a d-c voltage. The plotter is an X-Y plotting

table having an external pen-drop circuit. The X is positioned by a voltage proportional to the interrogation

frequency (wi)- the Y is positioned by the value of the voltage at the output of the integrator E7 at the end of

each integration. Thus a line drawn through these integration end points produces a curve showing energy

versus frequency for the entire signal. More detailed descriptions of the individual blocks of Figure 23

follow.

B.1.1. THE OSCILLATOR. The oscillator, which generates sin W It and cos w It, is basically a three-

amplifier oscillator loop where two of the amplifiers are integrators. This arrangement is shown schemat-

ically in Figure 24.

B.1.2. THE ELECTRONIC MULTIPLIER. Multipliers A and B of Figure 23 were actually two channels

of a single electronic multiplier. This is a four-quadrant multiplier in that any combination of mathematical

signs of input variables will always produce the correct sign on the output. The bandwidth of this multiplier

is over 100 cps.

B.1.3. THE LOW-PASS FILTER. Filters A and B of Figure 23 were simple first-order low-pass units

assembled from analog components, as shown in Figure 25.
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FIGURE 24. ANALOG-COMPUTER OSCILLATOR FOR GENERATING sin wi)t AND cos Wit

E., a E°

FIGURE 25. ANALOG-COMPUTER SCHEMATIC OF A LOW-PASS
FILTER

If the integrator output is E0, its input is -Eo, and the circuit solves the equation

E + aE = -"°E (80)

Obtaining the Laplace transform of both sides of Equation 80 and assuming that E (0) is zero,

SE (s) + aE (a) -aE i(s) (128)

E (a)
0

and solving for -
E l(S)

Eo(s) a I
(129)
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where r = 1/a.

If the filter circuit shown in Figure 25 is to have unity d-c pin, it is important that the potentiometer

labeled (a) in the feedback path of the integrator have exactly the same setting as the (a) potentiometer in the

input circuit. As with the previously described oscillator, these potentiometers are set by a servo multiplier

so that the value of at s a function of the interrogation frequency W1/21r. Any mismatch between these two

potentiometers will affect the d-c gain of the filter and cause an apparent error in the filter response.

Figure 26 shows a rearrangement of the filter so that E and EI are summed before multiplying by a

instead of multiplying each by a and then summing at the input of the integrator. This arrangement insures

a gain of unity.

a = KwfE

EL E0

FIGURE 26. ANALOG-COMPUTER SCHEMATIC OF A LOW-PASS FILTER USING
ONLY ONE (a) POTENTIOMETER

B.1.4. THE SQUARING MULTIPLIER. Multipliers C and D in Figure 23 were high-speed servo units

used for squaring the signals from filters A and B, respectively, before they were added. Although electronic

multipliers or function generators could have been used for this purpose, the servo multipliers were used

because they were readily available and their speed was compatible with the frequency spectra of the signals

coming from the low-pass filters.

A diagram of the squaring circuit is shown in Figure 27. The output of this circuit is always positive,

regardless of the polarity of the input.

One particular advantage of the use of a servo multiplier for performing the squaring function is the

lack of any residual output voltage when the input is zero. When diode function generators were used for

squaring, considerable difficulty was encountered in reducing the drift resulting from output voltages pro-

duced by the function generators at zero input.

B.1.5. THE COMPUTER CONTROL AND DIGITAL-TO-ANALOG (D/A) CONVERTER. The computer con-

trol circuits are shown in Figure 28. When an off signal or minus voltage is received from the control channel, a

switching amplifier (labeled "H.G." in Figure 28) switches the computer to the "Hold" mode of operation,

57



institute of Science and Technology The University of Michigan

El C.T. E---
So 100

LE>__V

FIGURE 27. SERVO MULTIPLIER USED FOR SQUARING

thus retaining all voltages present at this point of the computation. The operation of a switching amplifier

such as this is based on the action of a high-gain amplifier with two different diode-feedback circuits. When

the input voltage Ei is positive, the output voltage E tends to be negative, but the diode L1 produces a feed-

back path of approximately zero impedance; hence E 0 0 and sensitive relay SK 1 is unenergized as shown.

When E is positive, E tends to go positive and diode L1 does not conduct. Under these circumstances, the

feedback path must be through diode L2 . This feedback path is established for a positive E when thp voltage

R11
at junction E1 (between R1 and R ) is approximately zero. This action occurs only when E 2 + 100-

Thus, the output of the switching amplifier is either 0 or +100 1 volts, depending upon the polarity of the
R2

input voltage. With the proper ratio of RI1 to R2 , the minus "Off" voltage produces a plus E of sufficient

amplitude to energize relay SK1 and thereby switches the computer to the "Hold" mode. The RC-time-con-

stant filter placed between the contacts of SK1 and the hold relay reduces the off signal to a pulse and thus

releases the hold command so that the computer can cycle.

The hold-command pulse, coming through network RC from the switching amplifier, also energizes relay

K1, and the "feedback" voltage from the computer hold circuits keeps K1 energized. Relay K1 switches volt-

age t into integrator 1 and removes the short-circuit from the integrator's feedback path, thus allowing the

integration of t. The voltage output (t) of integrator 1 rises, thereby supplying relays SK2 and SK3 with an

increasing voltage. The most sensitive relay was chosen for SK2 ; thus it operates first, produces a "pen-

drop" signal through the RC network, and causes the X-Y plotter to produce a dot. Relay SK 3, operates

next: it removes the "Hold" voltage from the D/A converter; allows it to read the next W I; and also puts the

computer on the "Reset" mode, thus removing the computer Hold and de-energizing relay K1 . When the com-

puter goes on "Reset," the integrator output t goes to zero, and, de-energizing SK 2 and SK 1, re-establishes

the D/A hold and sets the computer for the "Operate" command.
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FIGURE 28. COMPUTER CONTROL AND D/A CONVERTER
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