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ABSTRACT

An analysis is presented which can predict the compressible laminar boundary
layer characteristics on a blunt flat plate with prescribed surface temperature
and pressure gradients. The analysis uses a Von Karman integral method to solve
the compressible momentum and energy equations, Problems usually encountered
wvith very high pressure gradients are avoided by employing a new velocity profile
which remains undistorted. A first-order analysis of the effect of entropy gradi-
ents in the inviscid flow on the boundary layer parameters is also given.
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I. INTRODUCTION

The use of blunt bodies to alleviate the severe heating problems associated
with atmospheric re-entry vehicles has generated a considerable amount of interest
in determining the boundary layer characteristics about blunt bodies in hypersonic
flow. During a large portion of the re-entry trajectory the boundary layer will
be entirely laminar and there is some hope for an analytic solution, at least in
the regime where the Prandtl boundary layer approximations are valid. This report
presents an attempt at solving the compressible laminar boundary layer equations
for a blunt flat plate at a zero angle-of-attack. The only attendant restrictions
are these:

1. Prandtl's boundary layer assumptions are valid.

2., The viscosity 1s linearly dependent on temperature.

3. The pressure distribution on the body is available,

L, The wall temperature distribution is defined.

5. The shock-wave shape can be predicted.
Consistent with the above restrictions, the analysis will be capable of predicting:

1. Boundary layer profiles for temperature, enthalpy and velocity.

2. local skin friction coefficient.

3. Local heat transfer coefficient.

k. Total-pressure gradient along the outer edge of the boundary layer.

5. Variation of the boundary layer thickness along the plate.

6., Variation of the momentum, energy, and displacement thicknesses
along the plate.

The literature contains many special or restricted solutions to the laminar com-
pressible boundary layer equations. These solutions usually contain various
combinations of the following restrictions:
1. Zero pressure gradient.
. Zero surface temperature gradient.
. Prandtl number equal to unity.

2
3
4k, Adiabatic wall condition.
5. Incompressible flow,

6

« Very specific pressure gradients.

Manuscript released by suthar 19 October 1962 for publication as en ASD Technical
Documentary Report.
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T. uinear viscosity-temperature relationship.
8. Boundary layer and shock wave coincide.
One of the earliest solutions of the compressible laminar boundary layer equations

vas given by Chapman and Rubesin (1).* They vere the first to use the linear
viscosity-temperature relationship

.'i". =cx
s Ts (1-1)

to separate the energy and mumentum equations. Unfortunately their analysis does
not account for the effects of pressure gradient.

Basically the present analysis applies the Von Karman integral method to ob-
tain the solution of the compressible laminar boundary layer equations for any
arbitrary pressure and temperature distributions. A good reference to previous
works utilizing the integral approach for & solution to the laminar boundary layer
equations as well as a critical analysis of their short-coming is contained in the
introductory section of a paper by Beckwith (2). The analysis of Beckwith has the
disadvantage that it cannot be applied to a problem with a surface tempersture
gradient, The introductory section of NACA TN-3157 by Libby and Morduchow (3)
gives another good review of the papers using the integral method to solve the
compressible laminar boundary layer equations. The analysis of NACA TN-3157 is
only valid for an axial pressure gradient with a uniform wall temperature or a
zero pressure gradient with an arbitrary wall temperature distribution.

The analysis of this paper, in addition to being valid for a flat plate with
a wide range of pressure and temperature distributions, can be extended to encompass
the solution of three-dimensional axially-symmetric blunt bodies at zero angle-of-
attack, as well as blunt (or sharp) flat plates at moderate angles-of-attack.

The only severe restriction on the solution is the linear dependence of the
viscosity on temperature. The analysis by Chapman and Rubesin (1) to define the
error involved by using the linear relationship instead of the more accurate
Sutherland law concluded that "regardless of Mach number, free-stream temperature,
or average surface temperature, the approximation

7"—‘-: c T

Moy T

can be made to yield nearly correct values for the viscosity in the important

region near the surface.” They then show that the approximate viscosity law does
not introduce an error of more than 5 or 6 per cent over the range of free stream
temperatures from 72°R to 548°R and a Mach number over the plate of 5. The maximum
error in the boundary layer parameters obtained by the analysis of this paper attri-
buted to using the linear viscosity-temperature relationship instead of the Suther-
land equation could be expected then to be around 5 or 6 per cent since in hyper-
sonic flow the Mach number over the plate never gets much higher than 5 and there

is reason to believe that the error is not a strong function of temperature.

*Numbers in parentheses denote references listed in the bibliography.



To start the analysis the shock-wave shape, the surface temperature distri-
bution, and the pressure distribution existing on the body must be known. Part
of thc problem of solving for the boundary layer characteristics is to define
both the pressure distribution and shock-wave shape consistent with the body
shape and free-stream Mach number. One method of obtaining the pressure distri-
bution about a blunt flat plate at very high free-stream Mach numbers is taken up
in Section II. A method of predicting the shock-wave shape is discussed in
Section III. The methods selected for defining the shock-wave shape and pressure
distribution will be pointed towards applications in hypersonic flow where at
present the greatest interest seems to lie. This does not in any way detract from
the usefulness of the analysis at any steady-state supersonic flow condition.

II. ANALYTIC METHOD FOR FPREDICTING THE PRESSURE DISTRIBUTION
ABOUT BLUNT BODIES AT ZERO ANGLE-OF-ATTACK

The pressure distribution over the body must be known before the boundary
layer equations can be solved by the Von Karman integral method. In the past an
integral analysis itself, to which another constraint has been added, has been
used to predict the pressure distribution (4). This added constraint was to
assume that the shock wave lies right on the boundary layer. This constraint has
been criticized by some (5) as not being representative of the physical conditions,
consequently it is not awsed in this analysis. Instead, a method of predicting the
pressure distribution will be used which has been found to be very successful (6).
The method basically consists of predicting the pressure distribution on the cylin-
drical leading edge using the Prandtl-Meyer plus Newtonian analysis as proposed by
Lees and Kubote (6) and using the hypersonic blast-wave analogy to define the
pressure distribution on the afterbody.

In the nose region it has been found experimentally that the Newtonian corpus-
cular theory as modified by Lees adequately predicts the pressure distribution on
& cylindrical leading edge up to a point about 35° from the shoulder. Lees and
Kubota (6) in attempting to predict the pressure distribution to the shoulder tried
matching a Prandtl-Meyer expansion to the Newtonian solution. The point at which
tje two methods were joined was defined to be that point at which the pressures and

P/ predicted by both analyses are the same. The above conditions together with
the condition that the total pressure was assumed constant around to the shoulder
allowed one to calculate the angle $,p and Mach number Mmp at the match point as
a function of the free-stream Mach number. A plot of the variation in $me and Mme
with free-stream Mach number is found in reference (7). Fortunately the pressure
distribution generated by such an analysis has been shown experimentally to predict
the inviscid pressures about a blunt body arocund to the shoulder. It will not
account for any induced pressure effects.

A comparison of the non-dimensional pressure distribution, P /P, as predicted
by the Prandtl-Meyer plus modified Newtonian analysis, is made in Figures 1 and 2.
The experimental data at My = 6.86 (Figure 1) were obtained from reference (8) and
the experimental data at My = 12.28 (Figure 2) from reference (9). From Figures 1
and 2 it can be seen that the modified Newtonian plus Prandtl-Meyer analysis can be
considered as a satisfactory approximation of the pressure distribution around the
cylindricel leading edge. It might be noted that in both cases, the blunt body was
a camplete cylinder and the effect of an afterbody is not well known. In reference
(9), a cylindrically blunted flat plate vas tested at moderate angLes-of-attack;
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Figure 5 presents a portion of the data showing that the forebody pressures are not
influenced by these angles-of-attack. Somewhat conflicting results were obtained
in reference (10), a series of tests on a flat plate of slightly different config-
uration than the blunted slab of reference (9). As shown in Figure 3, it appears
that the distributions are affected by the afterbody at angles-of-attack. Whether
these differences can be attributed to experimental scetter, Reynolds number, or

to model configuration, or whether the forebody pressures are indeed influenced by
afterbody shape will have to be resolved by further experiment.

It must be kept in mind, however, that this representation neglects the effects
of Reynolds number as well as surface temperature distribution. Extreme care must
be taken to insure that a method of predicting pressures around blunt leading edges
i1s not used in situations where it is not applicable, i.e., flow conditions where
severe merging of the boundary layer and shock wave caused an induced pressure to
alter the inviscid (Prandtl-Meyer plus Newtonian) solution eppreciably. Along this
line the analysis of reference (11) will prove invalusble.

The pressures on the afterbody can be determined from the hypersonic flow-blast
wave analogy. It has been demonstrated (12) that the equations of motion of the
hypersonic small disturbance theory (13) are analogous to the equations of motion
for unsteady shock wave flow (14, 15, 16, 17, 18). The analysis of lLees and Kubota
(6) indicates that in particular the analogy is a valid one for the case of hyper-
sonic flow over a flat plate with a cylindrical leading edge. The analogy is an im-
portant one when it is recognized that the blast-wave equations (equations of motion
for unsteady shock waves) have been solved many times (14, 15, 16, 17, 18) and as a
consequence of the analogy these solutions represent a solution to the equation of
motion of the hypersonic small disturbance theory. Lukasiewicz (19) develops equa-
tions for defining the surface pressures and shock-wave shape applicable to a blunt
flat plate from the solution of the blast-wave equations of Sakurai (1L, 15). The
peper by Lukasiewicz is also an excellent survey paper pertaining to the hypersonic
flow-blast wave analogy.

Sakural presents two solutions to the blast-wave equations. In both sclutions
the basic property of the analysis is the power series representation for P 2 and
U in terms of the inverse shock wave Mach mzmber[“—:/uwj . For very strong ex-
plosions the speed of sound, @, will be very much smaller than the wave speed, &,
The first solution keeps the linear terms inf[a, /4] (14) and the second solution
the terms up to /.a “.?‘ (15). 1In eddition to the approximate solutions of
Sekurai (14, 15) the blast-wave equations have an exact solution which was deter-
mined by Sedov (16). The exact solution of Sedov agrees with Sakurai's first-order
solution, being 5.2 per cent larger at all values of x/d, but does not agree nearly
as well with Sakurai's second-order solution. A comparison of the solutions of
Sedov (16) and Salurai (1%, 15) with experimental data is made in Figure 4. It is
evident from Figure 4 that the exact solution of Sedov does not represent the data
as well as Sakurai's second-order solution. This is not too alarming, however, since
in developing the hypersonic small disturbance theory the linearization process
could easily account for the discrepancy between the experimental data and the exact
solution of the linearized equations of motion. It might also be noted that the
over-all agreement is the poorest in the vicinity of the nose region. This is vwhat
might be expected because it is in the nose region that the assumption that the
body slopes be small, vhich effectively means that the velocity disturbances are
small, is invalid. All available correlation of theory with experimental data in-
dicates that the blast-wave theory is valid approximately for X,z 2 or 3.

4



The equation which best defines the pressure distribution over a blunt flat
plate, as obtained from Sakurai's second-order solution, is

I MZ[C"" % ro0s6
P‘ .‘2' + x ] (2-1)
The term Cﬁ; in equation (2-1) is analogous to the initial energy of the explosion
in the blast-wave equations and its full significance is explained in reference (6).
The above theory as applied to hypersonic flow has the disadvantage that it does
not account for any effects of heat transfer or surface temperature distribution.
Fortunately it seems from an analysis of experimental data that this is not too
severe a limitation, at least not of the order of magnitude of the next problem.
The initial hypersonic analysis assumed inviscid flow and at low free-stream Rey-
nolds numbers it might be expected that an interaction between the boundary layer
and shock wave cauld alter the inviscid pressure distribution over the plate. This
Reynolds number effect is illustrated in Figure 5; where experimental pressure data
from reference (9) have been plotted. It can be seen that the experimental data at
a Reynolds number of 11,900 do not agree with the second-order blast-wave theory as
well as the data taken at the higher Reynolds numbers.

The pressure distribution in the vicinity of the shoulder, where both methods
discussed are not applicable, is obtained by joining the data from the Prandtl-Meyer
expansion with that of the blast-wave theory with a reasonably smooth curve. It is
noteworthy to mention that if the data for the pressure over the plate from both
theoretical analyses are expressed in the form P/ vs Xy , they will generate one
curve for M ,28. This would lead one to the conpfl.ﬁsion that the predominant para-
meter defining the pressure on the blunt flat plate is the impact pressure down-
stream of the normal shock and not the free-stream Mach number. This conclusion
is borne out for the leading edge region by the experimental data as shown in Figure
6. The pressures on the afterbody do not correlate in quite the same manner as
shown in Figure 7 where the data of reference (9) are plotted for three different
Mach numbers all with the same H' and T, . The correlation is not as Mach-number
independent as the theory would indicate.

In addition to the pressure distribution on the body the pressure gradient
term 4/, must also be known in order to obtain a solution. In analyzing the
gradient term from the Prandtl-Meyer plus Newtonian analysis it was noticed that,
although the pressure gradients at the match point are equal, the curvature or
second derivative of the pressure with respect to x is not continuous. In the non-
dimensional plot of the pressure gradient dfk/4x, versus Xu (Figure 8) this appears
as & discontinuity in the slope. Figures 8 and 9 present a comparison between ex-
perimentally and theoretically determined pressure gradients. From a comparison of
the data presented in Figures 8 and 9 it can be concluded that for the purposes of
& boundary layer analysis the theoretically determined pressure gradients are an
acceptable approximation to the experimental data,

ITI, SELECTION OF THE METHOD FOR PREDICTING
THE SHOCK-WAVE SHAPE

As previously mentioned, in order to arrive at a numerical solution for the
boundary layer characteristics the shape of the shock wave in the vicinity Qf the



stagnation point must be known. ‘the stagnation region is of primary interest
because all the mass flow in the boundary layer will have passed through the
strong portion of the shock wave, that portion of the shock wave which is in the
vieinity of the forward stagnation point. Three methods were examined in detail
before one was selected to predict the shock-wave shape around the test body
(20, 21, 22). A plot of the shock wave in the vicinity of the stagnation point
as predicted by the methods of references 20, 21, and 22 is shown in Figure 10.
Fortunately the three methods, although differing in complexity, predict basically
the same shock-wave shape near the stagnation point. Consequently, since there
was no appreciable difference among the three methods, the one easiest to adapt
to our particular situation was selected. This was the method of reference (20).
The shock-wave shape is represented by

z = 2X, [. \ +3(N- D] (3-1)

where K is the normal shock density ratio.

References 20, 21, and 22 are by no means the only papers available for
predicting shock-wave shapes. These references were selected because each satis-
fied the high Mach mumber restriction., If an analysis is to be carried out at a
lower Mach number, the particular method chosen to predict the shape at Mach 12
cannot be applied since it is an hypersonic approximation. But there are other
methods for predicting shock-wave shape (23) which would work equally well with
this analysis.

IV, THEORETICAL ANALYSIS

This analysis presents & method of solving the compressible boundary layer
equations for a blunt flat plate at zero angle-of-attack. The main purpose of
the analysis is to determine the boundary layer characteristics on a blunt flat
plate, without referring to any experimental data if possible. The only restric-
tions imposed on the analysis are the following:

1. The pressure distribution on the body is available.

2. The shock-wave shape can be predicted.

3. The wall temperature distribution is defined.

4, The viscosity is linearly dependent on temperature.

5. Prandtl's boundary layer assumptions are valid.
The restrictions (1) and (2) were anticipated in sections II and III where ans-
lytical methods for obtaining the shock-wave shape and the pressure distribution
on the body were discussed, Restriction (3) can pe relaxed if the adiabatic wall
condition is analyzed and in effect the adisbatic wall temperatures can be defined
for a flat plate with a pressure gradient. Restriction (4) was discussed in Section

I and it was shown that the error to be expected is less than 6 per cent. Inherent
in (5) is the fact that pA: = 0. This expression for é%“ fails in the region

6



vhere the boundary layer thickness is large compared to the local radius of curvature
of the body. The cylindrical leading edge of the blunt flat plate under analysis

is highly curved, and consequently the analysis to follow will be valid only for
conditions where C‘_-«. l.

Consider the flow model shown in Figure 11. All the mass in the boundary layer
at the station X, bas passed through the shock wave between the stagnation stream-
line \Y, and the streamline Y, . Since the streamline is being followed from the
point vhere it crosses the shock wave to the point where it enters the boundary
layer, the mass in the streamtube crossing the shock wave between q). and 9, must
be equal to the mass in the boundary layer at Xy,. If the mass crossing the shock
wave between \f, and Y, is

m, = P.U.Z, (4-1)

and the mass in the boundary layer at X is

é
mwm, = So pw d% ; (4-2)

then by equating the two expressions for mass flow the following equation is
obtained,

2 = P, Ug j L4 dj

' feUs (4-3)
where the subscript "£" refers to conditions at the outer edge of the boundary
layer. The term Ppus can be taken under the integral sign because it is not a
'y'-dependent term.

In order to make the analysis effectively one of constant density, the
Dorodnitzyn transformation is used. It can be written,

P/F‘ d% = Aﬂ, (k-4)

or if N = n » Where A 1s the boundary layer thickness in the transformed co-
ordinate system, it can be written as

bp, du~adn (4-5)

Transforming the co-ordinates in equation (4-3) in accordance with equation (4-5)
the following equation results:

u 'y
Z = %‘{ALU‘A'\..

(k-6)

Nowv following the method of Von Karman the velocity ratio “u is assumed to be
expressible as Vs



4 .
Q_, = & o “
Ug dwe ° n (4-7)

In effect the unknown boundary layer profile has been traded for five unknown con-
stants in a fourth-order polynominal inwn . To solve for the five coefficients
five boundary conditions on the profile are needed. It has been shown (3) that

it is advantageous to distribute the boundary conditions equally between the wall
and the outer edge. For this analysis the boundary conditions will be chosen as

£l
[ J
u

1. \3—8 ('-L.‘) s

2. Léas C‘\") ,

3

S 2t

3. '3'6 Cas=1d , =0

L. laso (n=0), U=o (k-8)

The fifth boundary condition is obtained by evaluating the momentum equation at
the wall., If this is done, one obtains the following expression:

- geenn, ()RR

The first three boundary conditions of equation (4-8) state that the velocity at
the outer edge of the boundary layer is W g and that there is no change in the
first or second derivative of u with respect to y at the outer edge of the bound-
ary layer. When there are entropy gradients in the inviscid flow field, the second
and third boundary condition will have to be modified. This will be further dis-
cussed in Section VII. The fourth boundary condition states that the velocity
edjacent to the wall is identically zero.

As is usually done, the boundery conditions of equation (4-8) are used to
define coefficients ®Rp, A ,,Xgand X, as a function of X, and then equation
(4-9) is considered the defining equation for Ol.z . If this is done, the follow-
ing polynominal for %8 is obtained,

u 3 & 2 3 4
Qg™ an-en v+ -+ %["\.'3‘1*3"(_"\.]' (4-10)

where — 2,24\, Introducing the expression for HG of equation (%4-10) in
equation (4-6) and evaluating the resulting integral, the following equation is
obtained,

RUs a2 A
z"zf‘.m d o e ]

(4-11)



]
In evaluating the integral ,f, 3;3n. 1t has been assumed that A% -(('0 .
This will now be shown to be the case by evaluating the fifth boundary condition,
equation (4-9), It 1s at this point in the analysis that the Chapman-Rubesin
viscosity-temperature relationship is used.

The most accurate viscosity relationship with which the term ﬁ)wcould
be determined is that of Sutherland, at least in the range of temperatutes likely
to be encountered on & blunt body in hypersonic flow; however, it is difficult to
incorporate into the integral analysis. The problems presented by the Sutherland
law can be circumvented by using the Chapman-Rubesin viscosity-temperature relation-
ship. It is expected that their relationship will introduce errors no larger than
S or 6 per cent.

Using the result that d"/ *Q (obtained from an order of magnitude analysis
of the y-momentum equation), the Dorodnitzyn transformation, equation (4-5), can be
written

2 L Ts 2
24 4 T 2n

(4-12)
Utilizing the Chapman-Rubesin viscosity model,
A cX
g Ts (4-13)

in conjunction with the Dorodnitzyn transformation, equation (4-12), and the poly-
nominel expression for the velocity, equation (4-10), the momentum equation at
the wall, equation (4-9), can be used to defined\ in the following manner,

dpy AL
-A.'-' ( J{)w u:}"’w 'T,'.t (4-14)

It is evident from the above equation thatA the velocity boundary layer shape
parameter, is only a function of x and not y a.nd consequently the integration per-
formed to obtain equation (4-11) is valid., In many applications equation (l4-1%4)
will be used as an expression for A% as a function of x in the following form,

e DY fuTe
G *%x) (4-15)

The compressible momentum integral equation can be written, following the
analysis of Schlichting (2k), as

S Hur [ 24
:)g( ‘ch—[a* M‘] ( ) (4-16)

where O 1s the momentum thickness and 8 the displacement thickness. Evaluating
( %:) uy TTOm equation (4-10) with the help of the Dorodnitzyn transformation,
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equation (4-12), using the compressible Bernoulli equation,

u _1 s dp
ax P:“scc‘")' (h-17)

to eliminate the velocity gradient and then multiplying both sides of equation
(4-16) by the momentum thickness, & , results in the following equation:

°1= wut.Q A‘* ..L—AQ d ..-M‘
%7 gjé;I—sA{(‘ )=, &¢ -8 ‘)}-

Equation (4-18) is the compressible momentum integral equation in the form it will
be used in the numerical calculations.

(4-18)

The terms 870 and O/A vhich appeer in equation (4-18) have yet to be evalu-
ated. Then momentum thickness, (] , can be defined as

s @ q
©= go )%:JS “\- u;] di ) (k-19)

Applying the Dorodnitzyn transformation in the form of equation (4-5) and then
evaluating the resulting integral, one obtains the following expression for the
momentum thickness:

2 sl 245

where j‘.‘t is noted that % o has the same form as in incompressible flow. If the
term /e is written as &/8 /O/‘ , then it is evident that an expression for
the non-dimensional displacement thickness 8"/A is still needed.

L}
o The evaluation of 8/4 is not as straightforward as was the evaluation of
/4 . The displacement thickness in the rL-pla.ne can be written as

3. ([T.474
a S., [Tc. as] ", l (4-21)
where again the fact that 6%‘ = O has been used. The integral L'E‘ <LV'L has

already been shown to equal{7 o A\ "1 and with this the displacement thickness
may be written, to \2o

» |
I 7.4
S - ‘L TsArL “loT \eo (4-22)

! ]
This is the expression that will be used to evaluate S/A for use in the numerical
calculations. More will be said later concerning the evaluation of the integral

lT .
$.1 dn
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The term 9 which appears in the momentum integral equation is evaluated
from the expressions for (equation (4-20)) and A* (equation (4-15)) in the

following manner,
2
2 Q_] 2
e - {A 4 (4-23)

Again consider the sketch shown in Figure 11, Since the total enthalpy of
the flow is unaffected by passing through the shock wave, the streamline )
enters the boundary layer at X with free-stream total enthalpy. In contrast

to the conservation of mass analysis, where the free-stream mass and the mass

at X, vere equated, the energy in the free stream between ¥, and \y, cannot be
equated to the energy in the boundary layer at Xm because there has been a net
heat transfer to the wall. It can be accounted for by summing up the energy lost
to the wall between X=O and X -X“ . The energy balance can then be written

5 X,
P'u‘\n"z':],wh*&j‘f, —Z.,Ax‘ (4-2k)

where P4 \n Z is the free-stream energy in the unit streamtube bounded by
and \f’ S" Pu J is the energy contained in the boundary layer at station
>? and ? the heat lost to the wall (or added to the boundary layer
depending on the wa.ll temperatures). If both sides of equation (4-24) are divided
by s and then the Dorodnitzyn transformation (equation (4-L4)) is applied,
the resulting equation is

' h | ¥
So%sb“-\'il}‘lm: LU a L'Z‘,Ax ' (4-25)

where equation (4-6) has been used to simplify the above expression.

If the energy thickness is defined as

S ﬂ“t h+.] A%

then Z can be obtained, by applying the transformation from ‘4 to n (equation

(k-4)), as '
o (ol T4

©
This definition of 5“ allows the energy equation (equation (4-25)) to be written
as

(4-26)

{ -
3 :F‘uahﬁd Ic: Zw‘ dx (k-26)
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The parameter %‘ will be evaluated after a suitable polynominal expression
for YWA,, has been defined. As it stands, equation (4-28) is basically the
energy integral equation and will be used to define the heat transfer character-
istics of the body.

For purposes of evaluating the parameter % the total enthalpy in the
boundary layer can be assumed to have the form

T R e I LW (4-29)

vhere

h*e’ "‘w 1%(71_) {-\"*-‘\"w] ] (5-30)

Equation (4-30) represents the total enthalpy-distribution for the situation where
the wall is at the adiabatic temperature. The expression for the total enthalpy
profile through a boundary layer with heat transfer is represented as perturbation
of the adiabatic wall condition in equation (4-29).

The function k('l,) is assumed to have the form

4 .
kc'l)= = f;,'\:.

Lwo (h"‘jl)

The following boundary conditions define the coefficients fo in equation (4-%1):
1. %-8 (n=) | W

dhn
2, \a-s (11': l} S =0

3. La.o (n=o) | \\*‘.. \"w .
L, \a.o (n=o) , dn =0 - (h-32)

Physically the first boundary condition expresses the fact that at the outer
edge of the boundary layer the total enthalpy of the equilibrium boundary layer is
equal to the free-stream total enthalpy. The secondary boundary condition is tied
into the first in that it says all of the fluid beyond the outer edge of the boundary
layer has a constant total enthalpy equal to the free-stream total enthalpy. The
third boundary condition states that equilibrium total enthalpy of the fluid ad-
Jacent to the wall is obtained by considering the fluid at the wall temperature and
pressure, The fourth boundary condition arises from the fact that for zero heat
transfer to the wall the temperature gradient at the wall dT/d‘go , and con-

sequently bh'e /J‘ =0 .

12



Applying the boundary conditions of equation (4-32) to the expression for the
equilibrium total enthalpy distribution the following equation is obtained for \\,, e

\'\Q-.C."L) =2 \\w + [\\-b“ \'\W]XK-UD ¢ fz K;CQ)] , (4-33)

The term f-,. arises because there were only four boundary conditions specified to
determine five coefficients, and just as was done with the velocity profile four
of the coefficients were determined as a function of the fifth.

Again s fourth-order polynominal of the form

. .
qond = = S (4-31)

is used to evaluate the distribution of total enthalpy through the boundary layer.
The boundary conditions which define the coefficients in equation (4-34) are:

1. ‘A’S ('L"‘) » \""'h+l

2. \A-s (YL=\) , C_li} = O
94

3 '3:0 Cn=o) hy=he - (4-35)

The first boundary condition stems from the fact that at the outer edge of the
boundary layer the total enthalpy of the boundary layer reaches the free-stream
value., The second condition indicates that the local rate of change of the total
enthalpy is zero at the outer edge of the boundary layer. The third condition
states that at the wall the total enthalpy of the fluid may be obtained from the
surface pressure and wall temperature, This time there are only three boundary
conditions with which to solve for five unknown coefficients. Consequently any
three of the coefficients can be determined as a function of the other two. Carry-
ing out the indicated calculation the expression for \‘\_‘cvz_) becomes,

Mo = Key Lhe o] vk 00l he, -G s,

+¥,en)d [fz (h.'\'\w) + Sz(\'\w '\\W)] '

(4-36)

where equation (4-33) has been substituted for \\#‘ () , There are three coef-
ficients in equation (4-35) which still must be determined,g , g‘ , and Sz .
(]

The expressions for g..' and S‘ can be obtained by considering the energy
equation evaluated at the wall,

13



\'_% !m')] +/-L..,(3%) =o hsm)

Expanding equation (4-3%/ ), using the Chapman-Rubesin expression to represent the
thermal conductivity, k, and applying the Dorodnitzyn transformation (equation
(4-12)), the expression that will be used to determine §, and g becomes

L 9
g.T] + Ru" B--'.;L]a =0
on Ce, LN (4-38)

At this point in the analysis the above equation will be used to determine p’ 2y
Using the basic definition tor the specific heat at constant pressure, Cp = %1- »
to convert from a temperature derivative to a enthalpy derivative and then using
the equilibrium enthalpy distribution (equation (4-33)) to evaluate the enthalpy

derivative at the wall the expression for 32 becomes

$.=(-R)) ———0 “* -he ‘_A 2] , (30)

where ()%n)uwas evaluated. using the velocity distribution function (equation
(4-10)). Applying the same procedure but using the enthalpy distribution of equa-
tion (4-36) to evaluate the enthalpy derivative the expression for gz becomes

e hw
§.< ) S. (4-40)
If
) Naw -
b.= €, N, (h-h1)

then the total enthalpy distribution through the boundary layer may be expressed
as a function of the coefficient ©, and n in the following manner,

\\.‘(V\) < \‘w r Xen (\\h.\\w) *» K. () b“ \'\4.'

+ Kyend iO -R )(.\h \\;)(é+2) (’b_’)
zc n S0 (h-k2)
The functions ¥,¢n) , %< and K1) are the only terms dependent on the

variable n_in the expression for the total enthalpy distribution. If equation
(4-42) is divided by \'\.; and the resulting expression substituted for V¢ /'\
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equation (’+-27), then the expression for
it can be written as

. ————h*'-hw '-3—74»4 zes | SA bt X hh
a \"*. {:no l«}'hu\zczo 302.4]‘ E‘l (fr)w E;z

- h%‘l‘_‘ \(l- Pew) C% ) (s * S“Ao'zJ] ) (4-43)

The expression for the shock-wave shape, which was developed in Section III,
will now be used to obtain some relationships which are necessary to complete a
numerical solution. The equation defining the shock wave, equation (3-1), can be
differentiated once to obtain the slope,

%’ carn be developed to the point where

d2. - Tav B, = 3&-1
da Xy (N-DE, (b=t )

where av is defined in Figure 11. Equation (4-44) can be considered as a relation-
ship between Guw and 2« , with another relationship between 8, and P, existing
in the oblique shock tables (25), or effectively there exists a definite dependence
of P’s on 2,. Consequently, given & ¥, , the total pressure drop across a bow
wave experienced by a streamline passing through the shock wave at 2+ can be deter-
mined. Now at any station Xy that is being analyzed the static pressure at the
edge of the boundary layer is known. From the total and static pressure at the

edge of the boundary layer and the free-stream total enthalpy, the static tempera-
ture at the edge of the boundary layer can be determined. As yet the total pres-
sure has not been defined as a unique function of X (i.e., the relationship be-
tween 2, and X, is not yet knovn). Consequently, at each station a for which
the analysis is carried out, a curve of s vs Tg must be drawn. Such a curve is
effectively one equation in the two unknowns 2« and Vg . With a knowledge of Vg
and B reference 26 can be used to define \'\‘ such that q‘- can be obtained from

Ug = ‘_2 (h+.-h‘)]% . (k-b5)

Equation (4-45), in conjunction vith the curve of 24 vs lg is sufficient to per-
mit a curve of 2, vs Ug to be drawn at each station. Continuing in basically
the seme manner, and employing reference 26, it is possible to plot a curve of

ve 2, and Mgvs R, at each station. Such curves come in very handy vhen a
numerical solution is being obtained by use of a desk calculator.

The local heat transfer z at any point can be determined from the following
equation, w

-9,° ., ( f-:':; )w _ (4-46)
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Applying the Dorodnitzyn transformation and converting the temperature derivative
to an enthalpy derivative, the heat transfer at the wall can be written

M T,
o Pl iy he, B, (4-k7)

vhere the enthalpy derivative has been evaluated using the enthalpy distribution
of equation (4-36),

The local shear stress at any point can be determined by considering the

ﬁ’,u..,()

(4-18)
Evaluating (Bu/ e from the polynominal expression for the velocity profile
(equation (4-10)) local shear stress can be written
- _r U QJ ]
T, /d_z__,_. ‘X.«o °] . (h-19)

V. SOLUTION FOR THE ADIABATIC WALL CASE

In Section IV an expression for 9'/4 as a function of A was developed
(equation (4-43)) for a condition of heat transfer to the wall. This term could
also be developed starting with the total enthalpy distribution applicable for
zero heat transfer (equation (4-33)). The integration of equation (4-27) leads
to the following expression for application to the case of zero heat transfer:

a - hh\r-\r,w (:_‘;'7"’—) [ Gl razs 3} (5-1)

By examining the energy integral equation it can be shown that %‘s o for the
adiabatic wall solution. For the condition of zero heat transfer the term involving
the integral of ~9_ in equation (4-28) is identically zero and hence must
also be zero. 8 being the case, equation (5-1) becomes the second eXPression
for Sz , the first being equation (4-39), If St. is eliminated from both equations
the following equation results,

p.s
1"Ywr = 36 3024 (A"2) (‘ w)

ltv_g, - ’ (5-2)
40

where Y:”, , the recovery factor at the wall, has been defined as

hw- \\8

16

X =



On a blunt body, such as the one being analyzed, the pressure gradient parameter
4\ 18 always positive. This is shown in equation (k-14) where A\ is expressed
as a function of, among other terms, (~%*/4x)., . The term - */dx)wr is positive
everywhere on the plate (see Figures 5 and 9) as are the other terms in the ex-
pression for A , consequently #\ itself must always be positive. A plot of the
recovery factor at the wall is shown in Figure 12 for Prandtl numbers of .57, .72,
and .77.

The local recovery factor ¥ varies through the boundary layer as & function
of n where

h+e¢'t.’ - \'\s
h*.. \'\8 (5-4)

Substituting the enthalpy distribution for zero heat transfer into equation (5-4),
the following expression for +the local recovery factor is obtained

Yo + (U-Yur) K,en) ¢ U-pew)(%*z)z K0 .

where equation (5-1) has been used to replace f;_ in equation (4-33). A plot of
the local recovery factor for Rw= .72 is shown in Figure 13 for A of -5, O,
and 6.

Equation (5-2) can be considered an expression between _\:_,, Tg R a.ndA .
Employing it in the system of equations derived in Section IV, it becomes possible
to define the adiabatic wall temperatures consistent with & given pressure distri-
bution. Consequently, the integral analysis can be used to predict the surface
temperature distribution for flow over an adiabatic flat plate with a finite pres-
sure gradient., One such method is outlined in Appendix VII.

VI. STAGNATION POINT ANALYSIS FOR
TWO-DIMENSIONAL BLUNT BODIES

In order to start the step-by-step solution of the system of equations derived
in section IV it is necessary to evaluate the parameters 0°/dx and ©® at the
stagnation point. The momentum integral equation for a compressible fluid can be
expressed as

»
.+ ..,.Ts A 1 - QA 2+8 - M }
3%- ZP..uct %i(é +z) Ta 4 ‘. o 8] © (ke18)

The energy integral equation as developed in Appendix I (a different form, but a
more classical expression than that of section IV) can be written

30 _ 2MuT: Qu[ S L AS/mi
ax“ e y {_R.ﬂ;* A ( s l)f

(6-1) *
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Equations (4-18) and (5-1), as they stand, are not applicable at the stagnation
point because us , which appears in the denominator of both equations, is zero at
a stagnation point. Consequently the derivatives take the indeterminate form

d,ot__ QCA,b.UXD

ax o '
46 _ o (A b, X)
3 X o ' (5-2)

The gr{.l! possibleéay for equation (56-2) to have a finite value at X = O would be
cor 8093y and d@w/Jx to be of the form 0/0. The values 4\ and b,, which force
the numerator of equations (4-18) and (6-1) to go to zero simultaneously will be
the stagnation point solution for A and b“ . With the values oféA and b" §0
determined, values for the derivatives in equation (5-2) can be determined in the
limit (if they exist) by applying L'Hospital's rule.

Two equations in the two unknowns, A- and b.., , can be obtained by setting
the bracketed terms in equations (4-1d) and (6-1) equal to zero. The resulting
equations are

Az 2TeA 280 3],
< (5-3)

bn' = Rw-r; AOL?AJ‘)Q ,

(6-4)

2
where the M‘ terms have been dropped because they are zero at the stagnation
point.

In order to solve equations, (5-3) and (5-4) for bu. and S\ .an analytic ex-
pression must be developed for S/A . An expression has to be obtained for T/-,-
in terms of v\ in order to evaluate the integral in equation (4-22). This choice
cannot be an arbitrary one since an expression for T/T‘ has already been defined.
That is, we actually define the boundary layer temperature profile when the total
enthalpy (equation (4-35)) and velocity distributions (equation (4-10)) are defined.
At the stagnation pcint where Ny , since Ug is everywhere zero, the tempera-
ture distribution is only a function of the total enthalpy distribution. The problem
nov arises of finding an expression for VAfg as a function of YW/, so that the
integral of equation (L4-22) can be analytically integrated. Now in the most general
case, enthalpy is & complicated function of both pressure and temperature and an ex-
plieit relationship “TeT(W) is not generally available. However, it is always
possible to arrive at some good approximate expression for T=T(WY) when certain
restrictions are placed on the range of temperature and pressure variation.

An approximate expression of this type has been developed in Appendix II. The
resulting equation has the following form

A .qzb— +.08

T Ny

(5-5)
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and has the following restrictions:

1. 360 = o2 2700°R.
2. 368 ¢« T < 2700 R.
L'y
3, .00l % _P:.Lé 10 . (6-5)

Applying equation (6-5) to the integral in equation (L4-22) and then substi-
tuting for the enthalpy ratio the enthalpy profile function (equation (4-33)),
there results the following expression for 5/4 , valid only at a stagnation

point, h h,_
% .e xf +, Oug
S)=-03-A , 06+ 138k Té(gﬁ-)th_
A /o 20 Pe - (5:7)

Substituting for S;A from equation (6-7) and for % from equation (4-20)
equation (6-3) becomes

by, o
A8 B“o \\+ _.__i,c aT) \0“0]
=1l2_131],1 194. , A,
T Te|A. zoJ +63‘_+'H o e ] (6.5)
Equation (6-4) for bu. can be rewritten as
137 | A,
by, = Nache 320 *aa .
° h n 263 , SA,
+, S-&W_'; A.] + 2520 -a—oz? (6..9)

where e"/A (equation (4-43)) evaluated at the stagnation point has been substi-
tuted for the (ON/A). term in equation (6-4). It might be mentioned that the
simplest form of the equation formed by eliminating %., from equations (46-8) and
(6-9) will be a seventh order polynominal in 4\, , and even then the term involving

Ce/AT vas considered small compared with one in order to simplify the resulting
expression,

Equations (6-8) and (6-9) do not generate the final value for A. and B...
The final values are obtained by an iteration process as follows. First solve
equations (6-8) and (6-9) for fAe and B,, o * Using these values for A, and b,,,
calculate 87, from equation (4-22). The temperature ratio in equation (h-22) is
determined from the enthalpy distribution of equation (4-42) as a function of b...
and A, as determined from equations (6-8) and (6-9). This value of 8'/4 is
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e ® - -

substituted into equation (6-3) which then becomes the equation from which A

is determined. With this value of 4\, equation (6-9) can be used to solve for

b... . The iteration process can be continued until the values for By, and
.ure obtained to the accuracy desired.

]
with A, and Bw, obtained such that 484x 1s in the form 0/0, it 1s possi-

ble, by the method of L'Hospital, to evaluate the limit if one does exist. If, in
equation (4-18), F,(X) 1is defined to be

«
oo =[]z 28],

then, taking the derivative of the numerator and denominator of equation (4-18)
with respect to X, the following equation is obtained

(6-10)

'
%_\] 2/:.,1-, (9 F.cx),
A/e u‘: (5-11)
2
The above expression is used to determine the initial slope AO/J First, how-

ever, the terms W, (X) and Ug, must be evaluated. The term W,eX)d, 1is defined
in Appendix III, and can be reduced to a relatively simple form for a given set of
conditions. The term u; can be written

(), - 5=

and its derivation will be found in Appendix IV,

(-12)

Also of interest at the stagnation point is the transformed toundary layer
thickness &4 . This can be obtained from equation (4-15) where the term
is obtained in Appendix IV as (-CP)

Ug
mrr<Y S d RT,, )
(5),” w/=

Substituting equation (3-13) into the equation (4-15), the expression for the stagnation
point boundary thickness in the transformed plane is

3
AZ = /lw A A _T; R T
° ", ) (5-14)

Once A has been determined at the stagnation point, the momentum thickness e
can be obtained from equation (4-23). The heat transfer at the wall as derived
in Section IV is

-9 ’;:_j hay b

(k-u7)
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and is applicable at the stagnation point when the expression for A is used.
Making the required substitutions

4
A7 g (B g b

R 4} (6-15)

As a check of the stagnation-point analysis two flight conditions and two tunnel
conditions were analyzed. Table I summarizes the results of the analysis. The
analysis of Case I was plotted in Figure 1k along with the results of references
27, 28, and 29. The over-all agreement between the integral analysis and the
above references is encouraging.

L

The parameter b"‘/A" appearing in equation (6-15) is basically the only
unknown quantity in that equatlon, the other terms will be known at a given con-
dition., The parameter ©w, A-. is plotted in Figure 15 against -'/h... A1l
the points analyzed fall on one %urve. This curve can be used in predlcting -\R-gw.
without resorting to the solutions of equations (6-8) and (6-9) to determine ®u,
and A, . This curve represents a rapid method for estimating two-dimensional
stagnation-point heat transfer.

VII. DISCUSSION

The analysis just presented is adequate to cover a wide range of conditions.
However, there are some conditions to which it cannot be applied directly, and
others to which it cannot be applied at all. The conditions at which the present
analysis is limited in scope can be considered to stem from two basic problem areas:

1. Presence of strong streamwise pressure gradients.
2, Presence of vorticity in the free-stream flow.

First, consider the problem of the strong streamwise pressure gradients. In
defining the velocity profile by the fourth-order polynominal in m  there is a
built-in limitation on A . For values of d\ greater than 12 the velocity profile
overshoots or exhibits a velocity somewhere in the boundary layer which exceeds
the free-stream value, This 1s physically unlikely, even under the strongest favor-
able pressure gradient. Yet, in analyzing high Mach number conditions there are
many times when the solution to the system of equations is possible with a A, > 12,
but, because of the inherent limitations on 4\ , the solution to the problem must
stop. Unfortunately pressure gradients sirong enough to cause A\ to exceed 12 are
possible in many situations, such as at the leading edge of blunt plates in hyper-
sonic flow, and consequently occur in regions of significant interest to warrant
an attempt at a solution within the framework of the basic integral analysis.
Fortunately such an approach does exist. The details of this solution will be
found in Appendix VI along with a summary of the pertinent equations. Only the
basic features of the analysis will be discussed here.

The significant step in obtaining a solution consists in a redefinition of

the basic velocity profile. Steiger (32) defines a velocity profile, which satis-
fies all the boundary conditions of equation (4-8), in the following manner,
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S T O
Qs l (7-1)

¥When this profile is used in the analysis, there are no limitations of the magni-
tude of & except that A &2 . Since this is being proposed as an alternative
solution for flow fields with strong streamwise pressure gradients, this is ef-
fectively no restriction because streamvise gradients sufficient to make 4\™\2
have values of Q- >4 . The fact that the problem of strong favorable pressure
gradients on cylindrical leading edges is more severe the higher the Mach number
can be shown in the following manner,

The data of Figure 6, for cylindrical leading edges, illustrate the indepen-
dence of the pressure distribution, when plotted as ¥/p, ; and free-stream Mach
number, This being the case, the maximum pressure graant expressed in the form
4 P/p“ /J ¢ mst also be independent of the free-stream Mach number and tbe term
WA which is used in the analysis as "léx , can be obtained from

dP - JVB; P
3% &3¢ (7-2)

Now B, increases with Mach number (for a given free-stream static pressure),
consequently the maximum pressure gradient 6?/&,"]““ is a unique function of
Mach number. Thus the problems associated with strong favorable pressure gradients
will become more severe at the higher Mach numbers.,

It might be noted that, contrary to the published results of reference (32),
there is no unigue relation betweenf\ and Q » but there are at least three re-
lationships which differ in all but one respect. The three equations between Q.
and /\ can be obtained by evaluating the following expressions:

LS, Gdn
>
. ().

q
5 gu
al-g “wr .
using both the polynominal profile (equation (4-10)) and the exponential profile
(equation (7-1)). Assuming that there is an unique expression between & and 4\ ,
then the above three expressions should be invariant with respect to the choice of

velocity function. Evaluating the above three expressions using both velocity pro-
files and equating like terms yields the following three equations:

aa-"
1. D= () (7-3)

22



2. A= o6(a-2). (7-4)
3. A = ala-) (7-5)

The one condition cormmon to all three equations is the fact they all pass through
the point A = 4, A = 12.

This is & very important fact when solving a numerical problem, as can be
illustrated in an example. Consider an analysis which, because of the strong
streamwise pressure gradient, has been started with the system of equations de-
veloped in Appendix VI. As the solution proceeds point by point around the body,
the value of & will reach a peak and then decline. Anytime X becomes less than
b, the analysis can be carried on by either method. This change from one system
of equations to another can be made because of the step-by-step nature of the
solution. The only fact of any consequence at station Xpn,, is the results of
the analysis at Xw , not the system of equations used to obtain the results. In
the discussion of the example it has been implicity assumed that the results ob-
tained by either method of analysis are essentially the same inthe region g2¢Qa <4 .

The second problem area, vorticity existing in the free-stream flow, has been
investigated by many authors (33, 34, 35). The basic facet of the problem is that
with vorticity in the inviscid flow field the boundary condition at the outer edge
of the boundary layer involving 3“/3«3 is no longer valid. The effects of vorticity
become appreciable when the velocity gradient )yag at the outer edge of the boundary
layer is of the same order of magnitude as % (22).

The region on the body where the inviscid velocity gradient becomes important
is that point on the plate where the streamlines entering the boundary layer have
passed through the highly curved portion of the shock wave. At low Reynolds numbers
this occurs in the stagnation point region, but at higher Reynolds numbers this
could occur on the aft portion of a long body. The vorticity problem is inherently
more severe at the leading edge region. Fortunately at the leading edge of a two-
dimensional blunt flat plate the vorticity interaction becomes a problem about the
same time that the assumption 51'. <4< O breaks down., Consequently the entire analy-
sis is invalid and there is little hope for a solution within the framework of an
integral approach. The applicability of this analysis can always be checked by
comparing the value of & at the stagnation point with the leading edge radius ¥ .
If 84 2| , then the integral approach as formulated in this analysis will not
apply.

Now the other region where vorticity can become a problem, on the aft ends of
long plates, can be treated within the framework of the integral analysis in the
following manner. For a constant energy flow field the vorticity at the outer edge
of the boundary layer can be expressed as a function of the entropy gradient normal
to the streamlines in the following manner (36),

P2
Ss = :'J—-: (R)S . (7-6)
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This co-ordinate “ is normal to the streamlines, On the aft end of very long
bodies the streamlines are very nearly parallel to the body surface and conse-
quently gradients normal to the streamlines in that vicinity would not differ
greatly from gradients normal to the body. In terms of the entropy gradient
normal to the body the vorticity at the outer edge can be expressed as

Te (&
35 - ‘-_*Ss (3‘88.

(7-7)
For two-dimensional flow the vorticity can also be written
£ - ) _@L‘)
€~ \ax 15 Layls (7-8)

where the term (}5“;)‘ >>(as‘;_‘_’ ): » therefore (g:i) g can be expressed as

Uy - _Tgp [ 23
(.3"3)5' T‘;(a‘a ' (7-9)

In the analysis presented in Section IV, L%‘\: was implicitly assumed to be
zero and consequently the velocity gradient at the outer edge of the boundary
layer was taken to be zero., With vorticity interaction, or entropy gradients, at
the outer edge of the boundary layer, equation (7-9) becomes the new boundary con-
dition on the velocity profile. The second derivative (3’“/&"‘ 5 will remain
zero for purposes of simplifying the analysis. The experimen data of reference
9, would seem to justify this assumption.

Equation (7-9) defines (%}6 in terms of the entropy gradient at the outer
edge of the boundary layer. In order to evaluate this derivative an entropy pro-

file of the form .
3 A
#.%é = é Oh>\ = S
=z

(PUS)y i= . (7-10)

is assumed, where >\ is the co-ordinate normal to the body such that,

R (7-11)

The subscript S refers to conditions at the shock wave. The boundary conditions
on equation (7-10) are:

1. Xa-\ é—sﬁ:‘-‘\ .
2. X =) %Ti: § (M, 60).
5 A=0 -Sé;,. = -2‘-'" (7-12)



The entropy behind the shock wave at the station in question can be found from
the thermodynamic parameters of the fluid at that point. The derivative “/do;
at A=\ can be determined from the shock-wave shape and the free-stream Mach
number. A good representation of the shock wave downstream of the leading edge
region is given by the blast-wave theory (14, 15, 16, 17, 18, 19) and there is
good experimental verification of its usefulness (37, 385. The third boundary
condition is connected to the basic boundary layer solution in that it is a
function of the parameter Pq.‘ . 'The fourth boundary condition is developed
from a conservation of entropy analysis. The streamline W, , in addition to
having a constant R, until it enters the boundary layer, is also isentropic.
Every other streamline crossing the shock wave with Y2 W, will cross the plane
normal to the body at Xw with the same entropy it had after it crossed the shock
vave, This represents & certain fixed entropy at the plane normal to the body at
Xa . Equating this fixed sum $§ to the integral of the assumed profile allows
the fourth coefficient to be determined from

2 - LEdn

(o 43, n (7-13)

The entropy behind the shock wave, F 3 S , and consequently the entropy of the flow
in the plane normal to the body at Xw , can be determined at the shock wave from
the following equation,

SES - S; PLyd uup 503) %‘é

2, (7-14)

The terms ) ,cey) , and SC“) are functions of flow conditions on the down-
stream side of the shock wave which can be determined once the free-stream con-
ditions and shock-wave shape are known. The integration indicated by equation
(7-14) can be carried out numerically or analytically depending on whether the
ratio of specific heats is the same on both sides of the shock wave. Consequently,
it is possible to determine the coefficients Q. of equation (7-10) by equating
equation (7-14%) to (7-13) and solving for Q. . The expression for the velocity
gradient at the outer edge of the boundary layer when the vortieity is present
(equation (7-9)) becomes

_‘}Ss.. SO é_?_ Q.Tg sn
(&), - 7% 574 Goupw

S T
\ - © S‘n s .
., RUs (7-15)

Equation (7-15) can then be used to define (Wb‘;j: . It might be noted that to
obtain a numerical value for (i )8 for any given problem conditions existing
at the outer edge of the boundary layer at Xw must be known. This information
would not be generally known and a straightforward solution would require adding
the pertinent equations of this section to the general analysis and determining
all the parameters by a simultaneous solution. This would be a lengthy procedure
and as much could be obtained by solving the zero vorticity problem first and then
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using the zero vorticity solution as the starting point to evaluate the effects
of vorticity using the analysis just presented.

The question might next be asked: when should the vorticity correction be
applied? The ansver can only come from a numerical soclution of a particular case.
When, in the course of a solution, the streamlines entering the boundary layer are
crossing the shock wave in the highly curved portion of the shock wave, it would
be well to examine the term (,‘Vdc‘)‘ to determine if it is of the order
If they are of the same order, the vorticity interaction analysis should be applied
to ascertain what effect, 1f any, the vorticity at the outer edge of the boundary
layer has on boundary layer parameters.

The analysis presented in this paper is also applicable to blunt flat plates
at angle-of-attack greater than zero. The only requirement is that the surface
temperature and pressure distributions be available., At non-zero angle-of-attack,
analytical methods for predicting pressures over the body are very unreliable and
it would be expected that the pressure distribution would have to be obtained ex-
perimentally. An analysis, in basically the same form, could be developed to de-
fine the compressible boundary layer characteristics on an axi-symmetric blunt
body. The essential features of such an analysis would be the same, except that
for an axi-symmetric body the analysis would not be applicable at angles-of-attack
other than zero because such a flow field is no longer two dimensional,

VIII. CONCLUSIONS

The Von Karman momentum integral has been extended to include prescribed wall
temperature and pressure gradients. The effects of entropy gradients in the in-
viscid flow have been considered and a first-order correction to account for en-
tropy gradients has been developed.

The analysis has been carried out for blunt flat plates with cylindrical
leading edges at zero angle-of-attack, The analysis itself, however, is valid
for any reasonable shape or angle-of-attack provided the pressure distribution
and surface temperature distribution are known. The basic features could be
applied to develop a similar system of equations valid for axi-symmetric bodies
at zero angle-of-attack.

The problem of very high favorable pressure gradients was considered and an
alternative solution developed based on & velocity profile which does not exhibit
profiles in which U >M8 .



APPENDIX I

Derivation of the Energy Integral Equation for
Use at the Stagnation Point

If equation (4-28) is differentiated with respect to x, the following equation,
can be written;

L+ 3(209..) = _%u

'odx (1-1)
Substituting for (-%J from equation (4-47), equation (I-1) may be written
u
2446, . BT\,
X Pe, A (1-2)

Equation (I-2) can also be written

39.. u ) = T
7435 * O ('f 5+ “’Sxe) %‘Z b. (1-3)

The compressible Bernoulli equation may be expressed as

udu. +d§e =0

and from the definition of the speed of sound it is possible to write

o.‘=‘§ff

Combining the last two equations in such a way as to eliminate df there results
‘ =
de . RMs du
dx U X

After substituting equation (I-4) into equation (I-3) and rearranging the terms,
one obtains the following equation

(1-4)

(1-5)



Then, if both sides of equation (I-5) are multiplied by 9.. , the following
equation is obtained

Aq, 26u Huwr Tn ") ZA ”“’-‘;[_M,.\
x T T Pre puths P ! (1-6)

.
where (’z;. ) : O has replaced O , with A‘ determined from equation (%-15)
and the Bernoulli equation. Factoring 2 4w % from both terms on
the right hand side of equation (I-6), one ﬁ’tms the equation

69:-; 3)1“'_‘.: Suf S +—9-9A Mg -1)
dax PsUs 4 {Ru’-rd a ( ¢ } (1-7)

Equation (I-7) is used in conjunction with equation (4-18) to define the stagnation
values for v, and A
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APPENDIX II

Approximate Relationship Between X and b-

.
In evaluating the terms Aand b.. at the stagnation point the term 8/4
ap?ears in the analysis in such a way that it is necessary to evaluate the integral

The assumed enthalpy profile implicitly det'ines the ratio {1 but
n

S.'Tld'\ N
J an

an explicit expression between VArg and ™A, § is not available, conseque
attempt is made to obtaln an approximate relationship.

The expression for the relationship betweenT/ T& and \"/ Wg was obtained from
a correlation of the data appearing in reference (25) and reference (31). The data
were analyzed in the following manner. First, for assumed values of “T¢ equal to
350°R, 9OCCR, 1300°R, and 2700CR, curves of T/vg Vs h/h g vere drawn for pressures
of .001 £ ¥/p, £ 10. It was observed that for each™Tg there was a region of the
curve which was independent of the pressure and which could bte adequately represented

by a straight line, of the form T"I‘{'A Vyﬁ‘ « 8 .

The values of the constants A and B which best fit the data of the real gas
tables are A = .92, and B = .03. The curve

;r = .92 ‘t\) +.08
Ts Fy (11-1,

along with date from references 2 and 31 are plotted in Figure 15. As can be
seen from Figure 10, the curve represented by equation (II-1) is a valid approxi-
mation for a relationship between"'/‘r‘ and WA, P The expression remains valiu

as long as:

”~
D,
1. .00| % "p"F < 10
L
2. 300 ¢ Ty £ 2700°R
3. 360°$ T = 2No0°R (11-2)

whereethe surface pressure is referenced to sea level standard pressure of 2116
lb/ft2,
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APPENDIX III

Derivation of —d—‘-:-:)
dX Jo

Let F(x), be defined as

Fex), = Geka6,cx,- K (2 + 40K, % 8.])

(111-1)
where
1. G.CK) = %(%"2)
e G < T
sx
3. G, (KX)b)= B : (I111-2)
The term K is a new variable defined as,
, o2
K = A(Z)
(111-3)
or Py
h Gulk) = A\ . (I11-4)

Using the definition of F:C"), (equation (III-1)), its derivative with respect to
X ,applicable only at the stagnation point, can be written

2F\ |, (2F)(8X) .(2k § (—-—-““"
{g‘i}“]°= (ﬁ), * (Si)o(dx)o* SG“ Py 4 x o) (111-5)
where 1t has been implied in equation (III-5) that:

1. Kr%:()() .

2. b, * 3‘00 . (111-6)



v
Each term in the expression [d x'] will be investigated separately.
°

ok
1. ,S—X-)o
(2 2%) Ly (28
s_ ) ( Bx)o K°(bx (III-T)
Now 6, - L 4T
Y3 Ts dX
a 26, e % (111-8)
* > 350 (37),.
Also from equation (6-7
X
§ f. A _.é_ b . h*’; “,
[Ak (-3¢ ‘u) o +.138 b, + %s_ ) —_
from which
] _I{AT-»- + 23 hy, \:“’13{“] i " Ce [DT) }
'S (111-10)

Substituting equations (III-8) and (III-10) into equation (III-7) one obtains

(RHERAE -2 4610

The term [dt‘?éx] will come from the known stagnation point wall temperature
distribution.

2. [_5? .
(] o, (32) kol w39,

(I11-12)

3], - (38). (-

where
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2N °l2 54 6 (.Gm
(III-14)
e
Now K= -A l%]
and
2 ey (4 %
5}_( = (_Q) - EA.(Z), (T)o
(d:\)o ’ (111-15)
The term - 4——-‘ is evaluated from equation (4-20) as,
% A Y
1 {if&} . -Li- S
(%). 184\ |, 37- ?.. S.“_Q} (I1I-15)

Substituting equations (III-14), (III-15) and (III-16) into equation (ITI-13) the
expression for (&'/bK) becomes

% 33 - AO :SA
( ax) . a7 - AN, - ;:‘_EAE _ (111-17)

The term (36’)0 in equation (III-12) can be written

( G' (jﬁ) [ (‘2)“-4—%} . (I11-18)

The partial derivatives of 8/4 and 9‘ with respect toA are obtained from
equations (IIT-9) and (III-16), respectively, and (##/dx)e comes from equation
(III-15). When the proper substitutions are made, equation (III-18), for (%5)
can be written

(28 = ok (O [ 228 = F - 5D)

37- N ...5 At
(111-19)

Substituting equations (III-17) and (III-19) back into equation (III-12) generates
the following equation for (F A,

- aA )
(BF) ...L[z\A ~lb] C°; K 37 \_444 l
37 - A _‘.454&
1 —39(9). 33 - :;A feA (111-20)
4 a o 37-4\ - ‘?ﬂl\,‘
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*-/u
('\
loe

0‘07
v

vhere (?f’:.) =
vwie

The derivative [ / asu]. can be evaluated by differentiating Equation (III-9)
with respect to b,, and is found to be

> )= 38 + 456 by (:&) 2‘;‘

With the above value for the derivative \-?aﬁ/ab“] the derivative (aﬁx
-

becomes w/o
&) - -A(3) [..ae.;;s o h;ﬂ.

(111-21)
dX
b, =
5]
o
Starting with equation (4-23) and rearranging it such that
8" /_f;_.r
K= SX T" (111-22)
enables the derivative (ék.) to be obtained as
| 4o - 4 “"")
(6K1=K° 31%9 A’u Au éw % ]
axl,
(111-23)

49, y
The term ( /dx)o is the parameter that is being sought and the term 4 /dx‘
is identically zero at the stagnation point,

T 3
The term [‘ ?i:?/d x] deserves a closer examination.
L J
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First

P

for - w7
(T11I-24)
and
_Ms T,
Hu = &
(111-25)

)
In the last expression the terms }-ll-z.c are treated as constant, since é‘f“:. are
only convenient reference quantities. Using the above definitions for /0., and /[_,
the term Pur Tur 4" cen be written ‘

W T2 o Rl
'E'/TJ R(ET )
Consequently 3
Pur Ter J &" L él:"‘
Rf_,‘_") e_'_“_":) = ’h‘<dx). Tw dX

The term dP‘ /dX is identically zero at a stagnation point and consequently
equation (III-23) reduces to

8 - <[5 -2 55

2 ( %l)o

(111-26)

It has been implicity assumed that a relationship exists such that b" - 3 D,
)

This relaetionship is
w?
Ny, by, L ] ,
hh e -

e AT 223, 52,

2620 3o0z4A

b, -

(6-9)

This expression results from setting the numerator of the energy integra.l equation
equal to zero and substituting for the stagnation point value of "/A . Differ-
entiating equation (5-9) once with respect to X one obtains



dby) -G, 4Ty ,(d) L L
b, (' A 6>&) ‘(iié%'.I:@ l}!? y:!@vl

= b e o1 4T, 1 dPe 1 A
(%3 25 dA
:::> :%%: \‘* \“'¥F‘I;‘§) Tw X &1‘ J‘,é‘;‘) }

(111-27)
d& aPQ é—T + a_.-R é—P
Now the term ax = >r ax () X

vhere again the term a-x" 4 at the stagnation point. Hence the term(‘l_e!)
x/0
can be written as

J?e.... 2R 4T

ax

o/
i
o

b
After the terms in equation (111-27) are rearranged the expression for -d-T:)
can finally be written as °

8] A% & 2 (R =]

T 12, e l\_&. _T bP! “-
+ (5 m-\r\.ic"" SEARE S ACE S 3] PRy
(III-28)
' AL
Using equations (III-15) and (111-26), (a—x ). can be found as
447, (48 (49
[dX]. (“‘)" dx /e (11I-29)

Combining the results from sections 1-5 of this Appendix there results an
expression for [4974,,] which has the form

f%%% ] i} JB’I, T

vhere f is some parameter dependent on b... » A. and X .

(11I-30)
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APPENDIX IV

Derivation of [%}o

The compressible Bernoulli equation can be written

QSAur_lA_.P

dx Fs ax (1v-1)

The pressure distribution appliceble to a blunt body as obtained from the modified
Newtonian theory is

P- cos 2Xa (_?"- |]

P (1v-2)

Differentiating equation (IV-2) with respect to X , the expression for the pres-
sure gradient is obtained as

dP- 2p sw4x, {_P—*‘»]
dx : (1v-3)
Combining equations (IV-1) and (IV-3), one obtains
dU) _ 2P W 4X, ?h. 0
ax| = :
P‘ Ug (Iv-4)

Now at the stagnation point both sin4X, and Us go to zero and the expression
for (_Aﬂ/‘,‘] . Uust come from L'Hospital's method for evaluating indeterminate
forms. Using the method of L'Hospital, the expression for du/dx at the stag-
nation point becomes

du = _E_p_'_ B".
{37‘]. d*Ps (. o ] (1v-5)

. . B\. ?‘3 . .
At the stagnation point the term -1 which allows the velocity
derivative to be written as P'

4], - 1eEE

Ug A . . . ‘l
The term ¥ J o comes up in obtaining an expression for de . It
can be eveluated from equations (IV-1) and (IV-6) as follows:

(Iv-5)
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APPENDIX V

Method of Numerical Solution

The equations developed in Section IV can be solved in the following manner.
First equations (6-8) and (6-9) are solved by trial and error to yield the stag-
nation point.values for b,, and A . Knowledge of By andA. enables one to
calculate 4, and F, from equations (6-14) and (6-15’, respectively. With A,
known, it is possible 2o define the stagnation point non-dimensional velocity pro-
file. This can be considered as e limiting profile, since at the stagnation point
Ugso . With b... known, the total enthalpy profile at the stagnation point can
be defined in terms of the non-dimensional transformed co-ordinate v . Since the
pressure at the stagnation point is known, the temperature profile can be obtained
from real gas tables (26) and the enthalpy profile. Integrating equation (4-22)
numerically, usinggthe temperature profile obtained from the enthalpy profile, and
substituting for ®©w, the value found from the solution of equations (6-8) and
(6-9), the term (&/4), can be found.

. [
The next step is to find the stagnation point values for O and J°/ax .
The term ©}ais obtained from equation (4-23) with A% defined in equatjon (6-1%4).
The term/Ts ob%ained from equation (6-11) where the terms F\¢¥)e and Ue, can
be obtained, once Ay and b, o have been defined for a given set of conditions,
from Appendix III and IV, respectively.

)

Once the stagnation point velues for og and “/dx are known the solution
can be extended to the next step. The step-by-step method of solution is necessary
because the differential equation in the system (the momentum integral equation)
does not have a solution in closed form. As in any numerical solution to a dif-
ferential equation, the accuracy of the final solution is an important function of
the step size.

e
The value of e at the first step is found from the stagnation point solution
using the following equation,

a n-) dg"
9:\ = gh-l + Ax"‘ [TX In-l
(v-1)

For the first step the subscript "N~) " would correspond to the stagnation point
values, Consequently the necessity of the stagnation point solution is apparent.
The stagnation point solution is the first link in a sequence of events that
eventually leads to the solution for the boundary layer characteristics on a
blunt flat plate. At the station Xn at which the analysis is being carried out
the parameters (- ‘de) , Twr, and Vs are known. With these parameters essentially
fixed, ©* can be obtained by a method completely different from equation (V-1).
The different method begins by arbitrarily choosing a value of ¢ . This estab-
lishes a trial value for ?4"- , the downstream total pressures, according to the
shock-wave analysis of section IV. Assuming 4P/gy 4 © , the ratio Peg/P; can
be computed and this, along with the total temperature, establishes the static
temperature consistent with the trial 2, . The static temperature, Vg , is
obtained from the following equation,
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$¢¥)
Ts= (B, | T

(v-2)

As it is written, 1t is not an explicit expression for-T: because V& is buried
in the exponent $¢¥g). But Tz can always be obtailned from (V-2) by a trial
and error approach. Once a trial Tg has been established, the static enthalpy
and hence the velocity can be obtained. The static enthalpy is obtained from a
set of real gas tables consistent with the trial V& and the D: which is fixed
by the choice of the station to be analyzed. The trial velocity, consistent with
the initial choice of Xw and arbitrary choice of 24 , is obtained from equation

(b-b5).

At this point the equation involving the continuitg of mass, equation (L-11),
is introduced iato the analysis. The expression for A" , eguation (4-15), is
substituted into equation (4-11), and the resulting equation becomes an expression
ford\ as a function of the initial choice of #B., and the trial values of T& and

U consistent with this choice of 4, . A trial-and-error solution of the re-
sulting equation will yield & va.l%e for 4\ consistent with the initial choice of
w . With 4\ so determined, ©°can be determined again, this time from equation
(4-23). This value of O is compared with the value obtained from equation (V-1),
Different values of &, are chosen and the whole_ process repested until a value
of ®s is chosen such that the trial value of " matches that obtained from equa-
tion (V-1). At this point the value of B, consistent with Xe , such that the
mess flow between \P, and P, is equal to the mass flow in the boundary layer at
Xw , has been determined, Also the temperature, toial pressure, ratio of specific
heats and velocity at the outer edge of the boundary layer has been established.

Next the value for 9“/A is determined. This is done by numerically inte-
grating, by some approximate technique, the heat transfer between the stagnation
point and Xw . Evaluation of J: " dX allows 9%/a to be evaluated from
equation (4-28)., With this value o '5&/4 equation (L4-43) becomes an expression
from which the parameter W, can be obtained. With this value of b and the
value of #\ already obtained, the heat transfer at the wall can be obtained from
equation (4-47).

The termA is next used to define the velocity profile using equation (4-10),
and both A and b,, are used to define the total enthalpy profile from equation
(4-42). Both profiles will be in terms of the transformed co-ordinate . To
obtain the profiles in the X"‘: plane the static temperature distribution is required.

The static temperature distribution is obtained from the total enthalpy and
velocity distributions using the energy equation,

T
noe Ny 4
(v-3)
With the static enthalpy determined from equation (V-3), the static temperature can

be obtained from a set of real gas tables as a function of P‘. and h, . The ex-
pression between 'a and n is obtained from
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(v-k)

Equation (V-4) can be numerically evaluated to obtain a tabular relationship
between \§ and n . This technique will have to be repeated at each station

for which plots of velocity, or temperature in the X-% plane are required,

The value of at n = is. by definition & and is exactly the integral appear-
ing in the expression for 87 . Hence, at each station at least the integral
S; ¥‘ dn  must be evaluated in order to evaluste §7a from equation (4-22).

» 3
With 5/0 evaluated, the expression for the derivative do/dx is now com-
puted for the station in question from equation (4-18). The term M: in equa-
tion (4-18) is evaluated from the values of Ug , Yg , and Tg obtained in the
beginning of the analysis,

At this point the boundary layer characteristics at the first station are
known. The entire analysis is then repeated at the next station starting with
equation (V-1) where this time the subscript n-1 would refer to the values of

©" and 80%4x just obtained. The analysis can be continued until the entire
body has been analyzed,
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APPENDIX VI

Derivation of the Equations for Use with Strong Favorable
Streamwise Pressure Gradients

Start by defining a new velocity function such that

8 - Un)
us (4-10]%  (VI-1)

Equation (VI-l) satisfies all the boundary conditions of equation (L-8) and, in
addition, d*w/jy4s mO where L 23 . This is & much stronger restriction on the
profile at the outer edge of the boundary layer than previously used. Evaluating

the integral
§ g Lo &

which is used in equation (4-5), the equation for Z4 from the conservation of mass
principle becomes

Uy Q.
2‘. 'Pfq. f Q-H

(vi-2)

{h-111 (Vi-3)

T
Utilizing equation (VI-1) in defining A from the momentum equation evaluated at
the wall (equation (4-9)) the new expression for A% results:

Az_ u‘ﬂw Tl‘

a(x-1)

- %f‘ ) (4-15]  (VI<k)

Introducing the velocity profile into the compressible momentum equation
(equation (4-16)), the following expression results:

40" --29 woall _(a-0c2rd-Mm})
dx u,ﬁ;' [1; % ’ ]- (4-18)  (VI-7)

At this point it might be stated that there are three relationships between
A and Q . The result is that, whenever a.ppears from (a"‘/a Vw , substitute
a (1) ; wheneverA appears in the form Q from ‘. , substitute
O. ; and vhenever the term },v ‘-“‘. a.ppears from ?‘Nv\ , substitute
. These are valid substitutions and adhering to them will convert all
the equations in the main body of this report to this new velocity profile of
equation (VI-1),

#Numbers in square brackets refer to the corresponding equation in main body of the
analysis,
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Hmrlng already evaluated .‘ Cic A'L using equation (VI-1), the expression
for 874 vecomes

* [L-22] (vi-8)

)
Applying the Dorodnitzyn transformation to the definition of 75 (equation (4-19))
and then evaluating the integral using the new velocity profile of equation (VI-1),
one obtains the following result:

Q
(an)(2an) . [4-20] (VI-9)

The parameter ,f; appearing in the profile for the adiabatic wall total
enthalpy distribution, can simply be converted by recognizing that %,z s Q or,
(3

he,- Ws o

h-baw (k-39]  (VI-10)

9
The term g_‘ does not change and is essentially zero when %-.:: 3O |,

$. = (1~ Poy)

The biggest change in the whole analysis occurs in evaluating 9"/4. It is
a tedious but straightforward procedure and when completed the following expression
for 9-/4 , applicable to heat transfer conditions, results:

hy-Yer ¢t 3 6 o 3
6, hmwia. e, 23]
a \n_\‘ § Q+3 Qr4 S

b 3.3 .58 .=
] 20 Q+t+y Q+4 1S

- (e @ ot hsy o2 1
Cw Thy, |30 an ovs “aw ]

{4-43] (VI-11)

The recovery factor for an adiabatic wall can be obtained from equation (VI-11) by

equating b“ = © and 9»/4- © as vas done previously. The resulting expression is
L2 oL

Gen o.m Q+S

v = a8 [1- R

[5-2] (Vi-12)
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The stagnation-point a.nalys;s as previously presented should be adequate for
all pressure gradients since '/d wo at the stagnatlon point. For comparison,
the equations to be solved for Q4 and b.. will be given below, ’

h-ha.[3 & , .8 _3
b“ - “‘l
A J

S  Qord Que4 Qpre
Pe, To Q0CQe-t o .8 _ 3
{ ° )} ao Qe WS Q.v4 Qo* Qo+ §

[(6-9] (VI-13)

and

e 8[24-1Q
ne WELRLTY 3Q:-8| o' Qe . ]
&v.‘- c " ) = Qgrt 29+ m SL (6-8] (VI-1k)

The equations presented above are proposed for use when the basic analysis
indicates that a solution lies in the regime where A 212 . This analysis of the
strong gradient case using the equations presented in this Appendix will never
generate velocity profiles where U4 »Ug . It is limited to conditions where the
profile parameter Q. 1is greater than 2,
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APPENDIX VII

Method for Predicting Adiabatic Wall Temperatures

The adiabatic wall temperature can be determined within the framework of the
Von Karman integral analysis. The following three conditions can be considered
as applicable for the flow over an adiabatic wall:

. (b),®o0

X
2, ““Z 4X=o.
o wr

SIS

For adiabatic flow over a plate hu'hmand, since bh' : , it is
obvious that ‘W, must be identically zero. In addition, if there is no heat
transfer to the wall at any point, then the heat transfer integrated over the plate
must also be zero. The condition N/A')s o follows directly from the second
condition and equation (4-20). The requirement that there be no heat transfer to
the wall eliminates the energy equation from the system of equations to be solved.
In its place the expression Y, = Q(A, R.,) (equation (5-2)) is used.

¢ N - Naur
' T,

The adiabatic wall temperature can be defined, consistent with a prescribed
pressure gradient, in the following manner.

1. Solve equation (6-3) for A.(noting 5..0-‘- o ),

2, Assuming that N =h,, , use equation (6-11) to

termi Y ° .
determine “_“/‘xlo .
3, With A. determined from equation (6-3) and the ( 4)°
used in calculating (4€/gx), , evaluate O} from
equation (4-23). .

L, Pick a reasonable value for ‘:Tﬁ']n and complete the
analysis of Appendix V to determine A ani Ug consis-
tent with the chioice of Tw]“ .

5. Using the value ofA , and Us obtained in step L,
calculate ‘:\'w]“ from equation (5-2).

6. Compare the value of [Tu],., obtained in step 5 with
the value of LT'”] o 2sumed in step k,

Lk



T. Repeat steps 4 and 5 at the same station until the value
of [Taw ) Obtained in step 5 is the same value as assumed
in step 4.

k
8. Calculate {%9 ] at the first station from equation
(4-18). X dn

t
9. Find O at the next step from equation (V-1).
10. Start back at step 4 and repeat the analysis until lows

and 80%/8x at this step and @ at the next step are
known,

In the above manner the adiabatic wall temperature may be determined on any body
over which the integral analysis may be applied.
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Table 1,

Summary of Stagnation Point

Heat Transfer Calculations

CASE I

Altitudel=200,000 ft
h‘yhtl
Qw,
CASE I1

Altitude= 250,000 ft

n"/ hgy
Qug
CASE III
515 psia
h"/ hgy
Qw,
CASE IV
T15 psia
h'/ hty
v,

Velocity=10,000 ft/sec,r = 12 in

k29 .215
5. 77 9.07

.07 .054

11.54

13.40

Velocity=15,000 ft/sec,r=12 in

.215 .107
15.70 19.56
2060°R M=12,28
.659 821
1.15 .53
1960°R M;=12.8L4
L2hk -
10.7h -

.05k .027
23.68 25,42
r=0,51in

971 1.000

.07 0.00
r = 0.375 in

1Atmosphere and thermodynamic data from Reference 30.
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