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AB~nSTRV~

An analysis is presented which can predict the ocmpressible laminar boundary
layer characteristics on a blunt flat plate with prescribed surface temperature
and pressure gradients. The analysis uses a Von Karmen integral method to solve
the compressible momentum and energy equations. Problems usually encountered
with very high pressure gradients are avoided by employing a new velocity profile
which rem•ins undistorted. A first-order analysis of the effect of entropy gradi-
ents in the inviscid flow on the boundary layer parameters is also given.

PUBLICATION REVIMM

This report has boon reviewed and is approved.

FOR TMI COUNWER

Ghief, Flight Branch
Flight DynamiOs Laboratory

ASD-LDR-62-962



TAML OF rU1!

PAGE

Nomenclature vii

SECTION

I INTRODUCTION 1

II ANALYTIC MKi'OD IOR PMICI TEE PHRESU1RE DISTRIBUTION
ADR BLU BODIES AT oR0 ANGLE-OF-ATTACK 3

III SELECTION OF THE MIUHM FOR PRU)ICTING THE SHOCK-WAVE SHAPE 5

IV THEORETICAL ANALYSIS 6

V SOLUTION FOR T1E ADIABATIC WALL CASE 16

VI STAGhNATION POINT ANALYSIS FOR TWO-DIMNUSIONAL BLUNT BODIES 17

VII DISCUSSION 21

VIII CONCLUSIONS 26

APPENDICES

I Derivation of the Energy Integral Equation for Use at the
Stagnation Point 27

II Approximate Relationship Between X and 29

III Derivation of 
30

IV Derivation of it 36

V Method of Numerical Solution 38

VI Derivation of the Equations for Use with Strong Favorable
Streamwise Pressure Gradients 41

VII Method for Predicting Adiabatic Wall Temperatures 44

Bibliography 46

ASD-TDR-62-962 1V



LIST OF ILUWSTUTIONS

FloURE PAGE

1 Pressure Distribution Over a Cylindrical Body at Ml = 6.86 50

2 Pressure Distribution Over a Cylindrical Body at M1 = 12.28 51

3 Effect of Angle of Attack on the Pressure Distribution Over
a Cylindrical Leading Edge 52

4 ypersonic Blast Wave Analogy 53

5 Effect nf Reynolds Number on Surface Pressure at M - 12.2 54

6 Correlation of the Pressure Distribution Over Cylindrical
Loading Edges 55

7 Effect of M1 on Correlation of Surface Pressures 56

8 Pressure Gradient Over a Cylindrical Body at M1 I 12.28 57

9 Pressure Gradient Over a Blunt Flat Plate at M1 - 12.2 58

10 Shock Wave Profiles at M1 - 12.28 59

11 Coordinate Systems and Body Geometry 60

12 Behaviour of the Recovery Factor at the Wall with P% 61

13 Behaviour of the Tocal Recovery Factor 62

14 Stagntion Point Heat Transfer Comparison 63

15 Stagnation Point Neat Transfer Correlation 64

16 Approximtion to the Behaviour of a Real Gas 65

TABLE

1 Sumry of Stagnation Point Beat Transfer Calculations 49

ASD-TR6-2 v



A,B Constants in tUs Approximat Teqperature-ntba.py Relationship

QCL; Coefficients in the Entropy Profile of Euation (7-10)
a. ((I ý ps of sowd(i Profile Paamter - Defined in dqation (7-1)

C Constant in Chayman-aubesin Viscosity Relationship

CO BNose Drag Coefficient

d Imading dse Diamter

E Energy Per Unit Mass

IF,* Defined. in Equation (6-10)

6,CK) Defined in Equation (111-2)

6C) Defined in Equation (111-2)

66MDefined in Equation (111-2)

W Defined in Equation (11-i4)

D efined in Equation (111-22)

Defined in Equation (6-9)

Enthalpy per Unit Ifsa

K.W KcmA1J=4.

K4 )~ 4c4z'

SCoefficient of Thermal Conductivity

WI IMach Number

�Y Mass Flow Per Unit Time

ASD-r.,UR-62-962 vi



WJ Co-ordinate Normal to the Streamline

fn Transformed Co-ordinate

P Pressure

t Prandtl Num~ber

3 Heat Transfer Parameter

r (Ni Recovery Factor
(ii) Leading Edge Radius

P. u.

S Entropy/hase

Z Entropy/Area

T Absolute Temperature

T. S..T--Iw

U Velocity

6x

dx

X. i ock Wave Co-orditna'tes

X 4, Xon-dimensional Shock Wave Co-ordinates

X& I• Co-ordinate System Defined in Figure 3.1

QtL Coefficient* in the Velocity Profile

OL Angle-of-attack

Defined In Equation (IV'-30)

Ratio of Specific Heats

Boundary Iayer Thickness

J Displaemnt Thickness

A. Pressure Gradient Poaameter In the Velocity Profile

4%. 4f Defined in Figure U1

AsD-TDR-62--962 vii



G Mmenum 'hickness

S81ok Wave Angle Defined in Figure 11

Energy Thickness

4 Radial Angle - Defined in Figure 11

SNorm l Shock Wave Density Ratio

'\ INon-dimensional Transformed Co-ordinate "tm

SIowa Oear Stress

,O Density

Coefficients in the Equilibrium Enthalpy Profile

3 Vorticity

f Coefficients in the Non-equilibrium Enthalpy Profile

, Transformed Boundary Layer Thickness

44. Coefficient of Viscosity

x x . 1Lý

Subscripts

•A Conditions at an Adiabatic Wall

e Conditions Pertaining to an Equilibrium Boundary Layer

1A.P. Conditions at the Match Point

S Conditions on Downstream Side of the Shock Wave

f Stagnation Conditions

Ur (i) Shock Wave Conditions
(ii) Wali Conditions

0 Stagnation Point Conditions

I Conditions Directly Upstream of a Normal Shock Wave

2 Conditions Directly Downstream of a Normal Shock Wave

, Conditions at the Outer Edge of the Boundary Layer

r% Pertaining to Conditions at Station X.

SConditions Downstream of the Shock Wave at Station )n

AsD-TDR-62-962 viii



I. INTRODUCTION

The use of blunt bodies to alleviate the severe heating problems associated
with atmospheric re-entry vehicles has generated a considerable amount of interest
in determining the boundary layer characteristics about blunt bodies in hypersonic
flow. During a large portion of the re-entry trajectory the boundary layer will
be entirely laminar and there is some hope for an analytic solution, at least in
the regime where the Prandtl boundary layer approximations are valid. This report
presents an attempt at solving the compressible laminar boundary layer equations
for a blunt flat plate at a zero angle-of-attack. The only attendant restrictions
are these:

1. Prandtl's boundary layer assumptions are valid.

2. The viscosity is linearly dependent on temperature.

3. The pressure distribution on the body is available.

4. The wall temperature distribution is defined.

5. The shock-wave shape can be predicted.

Consistent with the above restrictions, the analysis will be capable of predicting:

1. Boundary layer profiles for temperature, enthalpy and velocity.

2. Local skin friction coefficient.

3. Local heat transfer coefficient.

4. Total-pressure gradient along the outer edge of the boundary layer.

5. Variation of the boundary layer thickness along the plate.

6. Variation of the momentum, energy, and displacement thicknesses
along the plate.

The literature contains many special or restricted solutions to the laminar com-
pressible boundary layer equations. These solutions usually contain various
combinations of the following restrictions:

1. Zero pressure gradient.

2. Zero surface temperature gradient.

5. Prandtl number equal to unity.

4. Adiabatic wall condition.

5. Incompressible flow.

6. Very specific pressure gradients.

Manuscript released by author 19 October 1962 for publicationm as n AOD Technioal

Documentary Report.
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7. Lidnear viscosity-temperature relationship.

8. Boundary layer and shock wave coincide.

One of the earliest solutions of the compressible laminar boundary layer equations
was given by Chapman and Rubesin (1). * They were the first to use the linear
viscosity-temperature relationship

.E _ CT

to separate the energy and mumentum equations. Unfortunately their analysis does
not account for the effects of pressure gradient.

Basically the present analysis applies the Von Karman integral method to ob-
tain the solution of the compressible laminar boumidary layer equations for any
arbitrary pressure and temperature distributions. A good reference to previous
works utilizing the integral approach for a solution to the laminar boundary layer
equations as well as a critical analysis of their short-coming is contained in the
introductory section of a paper by Beckwith (2). The analysis of Beckwith has the

disadvantage that it cannot be applied to a problem with a surface temperature
gradient. The introductory section of NACA TN-3157 by Libby and Morduchow (3)
gives another good review of the papers using the integral method to solve the
compressible laminar boundary layer equations. The analysis of NACA TN-3157 is
only valid for an axial pressure gradient with a uniform wall temperature or a
zero pressure gradient with an arbitrary wall temperature distribution.

The analysis of this paper, in addition to being valid for a flat plate with
a wide range of pressure and temperature distributions, can be extended to encompass
the solution of three-dimensional axially-symmetric blunt bodies at zero angle-of-
attack, as well as blunt (or sharp) flat plates at moderate angles-of-attack.

The only severe restriction on the solution is the linear dependence of the
viscosity on temperature. The analysis by Chapman and Rubesin (1) to define the
error involved by using the linear relationship instead of the more accurate
Sutherland law concluded that "regardless of Mach number, free-stream temperature,
or average surface temperature, the approximation

can be made to yield nearly correct values for the viscosity in the important
region near the surface." They then show that the approximate viscosity law does
not introduce an error of more than 5 or 6 per cent over the range of free stream
temperatures from 72 0 R to 648°R and a Mach number over the plate of 5. The maximum
error in the boundary layer parameters obtained by the analysis of this paper attri-
buted to using the linear viscosity-temperature relationship instead of the Suther-
land equation could be expected then to be around 5 or 6 per cent since in hyper-
sonic flow the Mach number over the plate never gets much higher than 5 and there
is reason to believe that the error is not a strong function of temperature.

*'Numbers in parentheses denote references listed in the bibliography.
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To start the analysis the shock-wave shape, the surface temperature distri-
bution, and the pressure distribution existing on the body must be known. Part
of thu problem of solving for the boundary layer characteristics is to define
both the pressure distribution and shock-wave shape consistent with the body
shape and free-stream Mach number. One method of obtaining the pressure distri-
bution about a blunt flat plate at very high free-stream Mach numbers is taken up
in Section II. A method of predicting the shocx-wave shape is discussed in
Section III. The methods selected for defining the shock-wave shape and pressure
distribution will be pointed towards applications in hypersonic flow where at
present the greatest interest seems to lie. This does not in any way detract from
the usefulness of the analysis at any steady-state supersonic flow condition.

II. ANALYTIC METHOD FOR PREDICTING THE PRESSURE DISTRIBUTION
ABOUT BLUNT BODIES AT ZERO ANGLE-OF-ATrACK

The pressure distribution over the body must be known before the boundary
layer equations can be solved by the Von Karman integral method. In the past an
integral analysis itself, to which another constraint has been added, has been
used to predict the pressure distribution (4). This added constraint was to
assume that the shock wave lies right on the boundary layer. This constraint has
been criticized by some (5) as not being representative of the physical conditions,
consequently it is not used in this analysis. Instead, a method of predicting the
pressure distribution will be used which has been found to be very successful (6).
The method basically consists of predicting the pressure distribution on the cylin-
drical leading edge using the Prandtl-Meyer plus Newtonian analysis as proposed by
Lees and Kubota (6) and using the hypersonic blast-wave analogy to define the
pressure distribution on the afterbody.

In the nose region it has been found experimentally that the Newtonian corpus-
cular theory as modified by Lees adequately predicts the pressure distribution on
a cylindrical leading edge up to a point about 350 from the shoulder. Lees and
Kubota (6) in attempting to predict the pressure distribution to the shoulder tried
matching a Prandtl-Meyer expansion to the Newtonian solution. The point at which
t4e ,two methods were Joined was defined to be that point at which the pressures and

i/! 4 predicted by both analyses are the same. The above conditions together with
the condition that the total pressure was assumed constant around to the shoulder
allowed one to calculate the angle #, and Mach number IAAp at the match point as
a function of the free-stream Mach number. A plot of the variation in #mp and Mop
with free-stream Mach number is found in reference (7). Fortunately the pressure
distribution generated by such an analysis has been shown experimentally to predict
the inviscid pressures about a blunt body around to the shoulder. It will not
account for any induced pressure effects.

A comparison of the non-dimensional pressure distribution, P/p, as predicted
by the Prandtl-Meyer plus modified Newtonian analysis, is made in Figures 1 and 2.
The experimental data at M1 - 6.86 (Figure 1) were obtained from reference (8) and
the experimental data at M1 = 12.28 (Figure 2) from reference (9). Fran Figures 1
and 2 it can be seen that the iodified Newtonian plus Prandtl-Meyer analysis can be
considered as a satisfactory approximation of the pressure distribution around the
cylindrical leading edge. It might be noted that in both cases, the blunt body was
a complete cylinder and the effect of an afterbody is not well known. In reference
(9), a cylindrically blunted flat plate was tested at moderate angles-of-attack;



Figure 3 presents a portion of the data showing that the forebody pressures are not
influenced by these angles-of-attack. Somewhat conflicting results were obtained
in reference (10), a series of tests on a flat plate of slightly different config-
uration than the blunted slab of reference (9). As shown in Figure 3, it appears
that the distributions are affected by the afterbody at angles-of-attack. Whether
these differences can be attributed to experimental scatter, Reynolds number, or
to model configuration, or whether the forebody pressures are indeed influenced by
afterbody shape will have to be resolved by further experiment.

It must be kept in mind, however, that this representation neglects the effects
of Reynolds number as well as surface temperature distribution. Extreme care must
be taken to insure that a method of predicting pressures around blunt leading edges
is not used in situations where it is not applicable, i.e., flow conditions where
severe merging of the boundary layer and shock wave caused an induced pressure to
alter the inviscid (Prandtl-Meyer plus Newtonian) solution appreciably. Along this
line the analysis of reference (11) will prove invaluable.

The pressures on the afterbody can be determined from the hypersonic flow-blast
wave analogy. It has been demonstrated (12) that the equations of motion of the
hypersonic small disturbance theory (13) are analogous to the equations of motion
for unsteady shock wave flow (14, 15, 16, 17, 18). The analysis of Lees and Kubota
(6) indicates that in particular the analogy is a valid one for the case of hyper-
sonic flow over a flat plate with a cylindrical leading edge. The analogy is an im-
portant one when it is recognized that the blast-wave equations (equations of motion
for unsteady shock waves) have been solved many times (14, 15, 16, 17, 18) and as a
consequence of the analogy these solutions represent a solution to the equation of
motion of the hypersonic small disturbance theory. Lukasiewicz (19) develops equa-
tions for defining the surface pressures and shock-wave shape applicable to a blunt
flat plate from the solution of the blast-wave equations of Sakurai (14, 15). The
paper by Lukasiewicz is also an excellent survey paper pertaining to the hypersonic
flow-blast wave analogy.

Sakurai presents two solutions to the blast-wave equations. In both solutions
the basic property of the analysis is the power series representation for P, O and
Lt in terms of the inverse shock wave Mach number[ ,i,J For very strong ex-

plosions the speed of sound, CL, will be very much smaller than the wave speed, (.,
The first solution keeps the linear terms in Cu,/i.LJ (14) and the second solution
the terms up top,/. (15). In addition to the approximate solutions of
Sakurai (14, 15) the blast-wave equations have an exact solution which was deter-
mined by Sedov (16). The exact solution of Sedov agrees with Sakurai's first-order
solution, being 5.2 per cent larger at all values of x/d, but does not agree nearly
as well with Sakurai's second-order solution. A comparison of the solutions of
Sedov (16) and Salurai (14, 15) with experimental data is made in Figure 4. It is
evident from Figure 4 that the exact solution of Sedov does not represent the data
as well as Sakurai's second-order solution. This is not too alarming, however, since
in developing the hypersonic small disturbance theory the linearization process
could easily account for the discrepancy between the experimental data and the exact
solution of the linearized equations of motion. It might also be noted that the
over-all agreement is the poorest in the vicinity of the nose region. This is what
might be expected because it is in the nose region that the assumption that the
body slopes be small, which effectively means that the velocity disturbances are
small, is invalid. All available correlation of theory with experimental data in-
dicates that the blast-wave theory is valid approxinately for XK t 2 or 3.

4



The equation which best defines the pressure distribution over a blunt flat
plate, as obtained from Sakurai's second-order solution, is

, 0(2-1)

The term Colin equation (2-1) is analogous to the initial energy of the explosion
in the blast-wave equations and its full significance is explained in reference (6).
The above theory as applied to hypersonic flow has the disadvantage that it does
not account for any effects of heat transfer or surface temperature distribution.
Fortunately it seems from an analysis of experimental data that this is not too
severe a limitation, at least not of the order of magnitude of the next problem.
The initial hypersonic analysis assumed inviscid flow and at low free-stream Rey-
nolds numbers it might be expected that an interaction between the boundary layer
and shock wave could alter the inviscid pressure distribution over the plate. This
Reynolds number effect is illustrated in Figure 5, where experimental pressure data
from reference (9) have been plotted. It can be seen that the experimental data at
a Reynolds number of 11,900 do not agree with the second-order blast-wave theory as
well as the data taken at the higher Reynolds numbers.

The pressure distribution in the vicinity of the shoulder, where both methods
discussed are not applicable, is obtained by joining the data from the Prandtl-Meyer
expansion with that of the blast-wave theory with a reasonably smooth curve. It is
noteworthy to mention that if the data for the pressure over the plate from both
theoretical analyses are expressed in the form F/17 VS X, , they will generate one
curve for Ma 8. This would lead one to the conctasion that the predominant para-
meter defining the pressure on the blunt flat plate is the impact pressure down-
stream of the normal shock and not the free-stream Mach number. This conclusion
is borne out for the leading edge region by the experimental data as shown in Figure
6. The pressures on the afterbody do not correlate .n quite the same manner as
shown in Figure 7 where the data of reference (9) are plotted for three different
Mach numbers all with the same R and T. . The correlation is not as Mach-number
independent as the theory would indicate."

In addition to the pressure distribution on the body the pressure gradient
term AV/jx must also be known in order to obtain a solution. In analyzing the
gradient term from the Prandtl-Meyer plus Newtonian analysis it was noticed that,
although the pressure gradients at the match point are equal, the curvature or
second derivative of the pressure with respect to x is not continuous. In the non-
dimensional plot of the pressure gradient dJ/Cxg'1 versus X* (Figure 8) this appears
as a discontinuity in the slope. Figures 8 and 9 present a comparison between ex-
perimentally and theoretically determined pressure gradients. From a comparison of
the data presented in Figures 8 and 9 it can be concluded that for the purposes of
a boundary layer analysis the theoretically determined pressure gradients are an
acceptable approximation to the experimental data.

III. SELECTION OF THE METHOD FOR PREDICTING
THE SHOCK-WAVE SHAPE

As previously mentioned, in order to arrive at a numerical solution for the
boundary layer characteristics the shape of the shock wave in the vicinity Qf the
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stagnation point must be known. Mhe stagnation region is of primary interest
because all the mass flow in the boundary layer will have passed througRL the
strong portion of the shock wave, that portion of the shock wave which is in the
vicinity of the forward stagnation point. Three methods were examined in detail
before one was selected to predict the shock-wave shape around the test body
(20, 21, 22). A plot of the shock wave in the vicinity of the stagnation point
as predicted by the methods of references 20, 21, and 22 is shown in Figure 10.
Fortunately the three methods, although differing in complexity, predict basically
the same shock-wave shape near the stagnation point. Consequently, since there
was no appreciable difference among the three methods, the one easiest to adapt
to our particular situation was selected. This was the method of reference (20).
The shock-wave shape is represented by

2 = 2.x,, i
'W ('•-I (3-1)

where X is the normal shock denaity ratio.

References 20, 21, and 22 are by no means the only papers available for
predicting shock-wave shapes. These references were selected because each satis-
fied the high Mach number restriction. If an analysis is to be carried out at a
lower Mach number, the particular method chosen to predict the shape at Mach 12
cannot be applied since it is an hypersonic approximation. But there are other
methods for predicting shock-wave shape (23) which would work equally well with
this analysis.

IV. THEORETICAL ANALYSIS

This analysis presents a method of solving the compressible boundary layer
equations for a blunt flat plate at zero angle-of-attack. The main purpose of
the analysis is to determine the boundary layer characteristics on a blunt flat
plate, without referring to any experimental data if possible. The only restric-
tions imposed on the analysis are the following:

1. The pressure distribution on the body is available.

2. The shock-wave shape can be predicted.

3. The wall temperature distribution is defined.

4. The viscosity is linearly dependent on temperature.

5. Prandtl's boundary layer assumptions are valid.

The restrictions (1) and (2) were anticipated in sections II and III where ana-
lytical methods for obtaining the shock-wave shape and the pressure distribution
on the body were discussed. Restriction (3) can be relaxed if the adiabatic wall
condition is analyzed and in effect the adiabatic wall temperatures can be defined
for a flat plate with a pressure gradient. Restriction (4) was discussed in Section
I and it was shown that the error to be expected is less than 6 per cent. Inherent
in (5) is the fact that 0. This expression for fails in the region

6



where the boundary layer thickness is large compared to the local radius of curvature
of the body. The cylindrical leading edge of the blunt flat plate under analysis
is highly curved, aand consequently the analysis to follow will be vdlid only for
conditions where 4 4t I •

Consider the flow model shown in Figure U1. All the mass in the boundary layer
at the station )(n has passed through the shock wave between the stagnation stream-
line %#s ard the streamline %V,, . Since the streamline is being followed from the
point where it crosses the shock wave to the point where it enters the boundary
layer, the mass in the stresatube crossing the shock wave between YO and W, must
be equal to the mass in the boundary layer at X(n. If the mass crossing the shock
wave between %, and %f, is

and the mass in the boundary layer at X is

VYIY=4oPU alD (4-2)

then by equating the two expressions for mass flow the following equation is
obtained,

'Ps LAS(4-3)

where the subscript "i" refers to conditions at the outer edge of the boundary
layer. The term "S can be taken under the integral sign because it is not a

y' -dependent term.

In order to make the analysis effectively one of constant density, the
Dorodnitzyn transformation is used. It can be written,

or if I•- , where A is the boundary layer thickness in the transformed co-
ordinate syibem, it can be written as

P-9 -&JL .(4&-5)

Transforming the co-ordinates in equation (4- 3 ) in accordnce with equation (4-5)
the following equation results:

I

LAS (4i-6)

Now following the method of Von FArman the velocity ratio MY in assumed to be
expressible as US

71



.(4-7)

In effect the unknown boundary layer profile has been traded for five unknown con-
stants in a fourth-order polynominal in rX . To solve for the five coefficients
five boundary conditions on the profile are needed. It has been shown (3) that
it is advantageous to distribute the boundary conditions equally between the wall
and the outer edge. For this analysis the boundary conditions will be chosen as

1. v s ," ) , L, =I

3. Cr 1 uI

4. LA WO (r-"0 U o (4-8)

The fifth boundary condition is obtained by evaluating the momentum equation at
the wall. If this is done, one obtains the following expression:

The first three boundary conditions of equation (4-8) state that the velocity at
the outer edge of the boundary layer is Qc and that there is no change in the
first or second derivative of u with respect to y at the outer edge of the bound-
ary layer. When there are entropy gradients in the inviscid flow field, the second
and third boundary condition will have to be modified. This will be further dis-
cussed in Section VII. The fourth boundary condition states that the velocity
adjacent to the wall is identically zero.

As is usually done, the boundary conditions of equation (4-8) are used to
define coefficients 0,D, , ,,%and C4 as a function of aKt and then equation
(4- 9 ) is considered the defining equation for *L. If this is done, the follow-
ing polynominal for % is obtained,

%A 6~ -

where - =A, Introducing the expression for 4 of equation (4-10) in
equation (4-6) and evaluating the resulting integral, the following equation is
obtained,

d_ 2 1.. (4-11)



In evaluating the integral S, M it has been assumed that A*#
This will now be shown to be the case by evaluating the fifth boundary condition,
equation (4-9). It is at this point in the analysis that the Chapman-Rubesin
viscosity-temperature relationship is used.

The most accurate viscosity relationship with which the term ,ol
be determined is that of Sutherland, at least in the range of temperat es likely
to be encountered on a blunt body in hypersonic flow; however, it is difficult to
incorporate into the integral analysis. The problems presented by the Sutherland
law can be circumvented by using the Chapman-Rubesin viscosity-temperature relation-
ship. It is expected that their relationship will introduce errors no larger than
5 or 6 per cent.

Using the result that / (obtained from an order of magnitude analysis
of the y-momentum equation), the Dorodnitzyn transformation, equation (4-5), can be
written

(4-12)

Utilizing the Chapman-Rubesin viscosity model,

.AA4.C r (4-13)

in conjunction with the Dorodnitzyn transformation, equation (4-12), and the poly-
nominal expression for the velocity, equation (4-10), the momentum equation at
the wall, equation (4-9), can be used to defineA*. in the following manner,

-"( UQ). It (4-14)

It is evident from the above equation that A , the velocity boundary layer shape
parameter, is only a function of x and not y and consequently the integration per-
formed to obtain equation (4--1) is valid. In many applications equation (4-14)
will be used as an expression for 4 as a function of x in the following form,

e~a= AUI/AVT*(4-15)

The compressible momentum integral equation can be written, following the
analysis of Schlichting (24), as

dX -- J" 11 (4-16)

where A is the momentum thickness and & the displacement thickness. Evaluating
Ow/Y• Nfrom equation (4-10) with the help of the Dorodnitzyn transformation,

9



equation (4-12), using the compressible Bernoulli equation,

U4; _ x (4.17)

to eliminate the velocity gradient and then multiplying both sides of equation
(4-16) by the momentum thickness, 0 , results in the following equation:

dX AtQ_ - (4-18)

Equation (4-18) is the compressible momentum integral equation in the form it will
be used in the numerical calculations.

The terms S/0 and G/A which appear in equation (4-18) have yet to be evalu-

ated. Then momentum thickness, 0 , can be defined as

'FuS (4-19)

Applying the Dorodnitzyn transformation in the form of equation (4-5) and then

evaluating the resulting integral, one obtains the following expression for the

momentum thickness:

~ [3 7 -i~ 4 (4-20)

where it is noted that - *has the same form as in incompressible flow. If the

term S is written as M/A/O11 , then it is evident that an expression for
the non-dimensional displacement thickness r/A is still needed.

The evaluation of 8ý4 is not as straightforward as was the evaluation of
The displacement thickness in the rL-plane can be written as

S =h Thcn S in the k-

where again the fact that 0 has been used. The integralIh

already been uhown to equal s. and with this the displacement thickness

may be written, LIO "ol

s LT A 7
T,, rL -To T% 0 -(4-.22)

This is the expression that will be used to evaluate S/4 for use in the numerical

calculations. More will be said later concerning the evaluation of the integral
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The term 9 which appears in the momentum integral equation is evaluated
from the expresnions for (equation (4-20)) and 4' (equation (4-15)) in the
following manner,

10 u = 4 (4-23)

Again consider the sketch shown in Figure 11. Since the total enthalpy of
the flow is unaffected by passing through the shock wave, the streamline Y,
enters the boundary layer at )A, with free-stream total enthalpy. In contrast
to the conservation of mass analysis, where the free-stream mass and the mass
at X. were equated, the energy in the free stream between 4?, and to, cannot be
equated to the energy in the boundary layer at Xn because there has been a net
heat transfer to the wall. It can be accounted for by summing up the energy lost
to the wall between X-O and XCw X, . The energy balance can then be written

0 U f Pc4 4 J X (4-24)

where P.(. a. is the free-stream energy in the unit streamtube bounded by
y and .9 5' p u is the energy contained in the boundary layer at station
• and " *, i the heat lost to the wall (or added to the boundary layer

depending on the •Tall temperatures). If both sides of equation (4-24) are divided
byJ 4 , and then the Dorodnitzyn transformation (equation (4-4)) is applied,
the resulting equation is

LA 1,P~ý14f7 (4-25)

where equation (4-6) has been used to simplify the above expression.

If the energy thickness is defined as

cb 3 P84&~ (4-26)

then can be obtained, by applying the transformation from I to rL (equation
(4-4)), as

. 1 (4-27)

This definition of allows the energy equation (equation (4-25)) to be written
as

0 SX (4-28)
d _ j I~.._ _
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The parmeter t will be evaluated after a suitable polynominal expression
for /%0# has been defined. As it stands, equation (44.28) is basically the
energy integral equation and will be used to define the heat transfer character-
istics of the body.

For purposes of evaluating the parameter. - the total enthalpy in the
boundary layer can be assumed to have the form

where

Equation (4-30) represents the total enthalpy distribution for the situation where
the wall is at the adiabatic temperature. The expression for the total enthalpy
profile through a boundary layer with heat transfer is represented as perturbation
of the adiabatic wall condition in equation (4-29).

The function IWO is assumed to have the form

4

The following boundary conditions define the coefficients in equation (4-31):

i.n ,a ,.

2. '

4. CYO-o) , =0 (4-32)

Physically the first boundary condition expresses the fact that at the outer
edge of the boundary layer the total enthalpy of the equilibrium boundary layer is
equal to the free-stream total enthalpy. The secondary boundary condition is tied
into the first in that it says all of the fluid beyond the outer edge of the boundary
layer has a constant total enthalpy equal to the free-stream total enthalpy. The
third boundary condition states that equilibrium total enthalpy of the fluid ad-
jacent to the wall is obtained by considering the fluid at the wall temperature and
pressure. The fourth boundary condition arises from the fact that for zero heat
transfer to the wall the temperature gradient at the wall JT/ I so , and con-
sequently 6 h1*/ =0 •

12



Applying the boundary conditions of equation (4-32) to the expression for the
equilibrium total enthalpy distribution the following equation is obtained for V

The term f- arises because there were only four boundary conditions specified to
determine five coefficients, and just as was done with the velocity profile four
of the coefficients were determined as a function of the fifth.

Again a fourth-order polynominal of the form

UM9 0- (4-34)

is used to evaluate the distribution of total enthalpy through the boundary layer.
The boundary conditions which define the coefficients in equation (4-34) are:

1.1

3. 0- (-r,-o5 ý1 -h. (4-35)

The first boundary condition stems from the fact that at the outer edge of the
boundary layer the total enthalpy of the boundary layer reaches the free-stream
value. The second condition indicates that the local rate of change of the total
enthalpy is zero at the outer edge of the boundary layer. The third condition
states that at the wall the total enthalpy of the fluid may be obtained from the
surface pressure aid wall temperature. This time there are only three boundary
conditions with which to solve for five unknown coefficients. Consequently any
three of the coefficients can be determined as a function of the other two. Carry-
ing out the indicated calculation the expression for 14C.%) becomes,

h+•~K -, K..[ %+, - .] . IK.,.Ot[ V,•-V,, '

(•4-36)

where equation (4-33) has been substituted for ýW (-"-) . There are three coef-
ficients in equation (4-36) which still must be determined, P , and

The expressions for S and S can be obtained by considering the energy
equation evaluated at the wall,

13



Expanding equation (4-)•.), using the Clpuan-Rubesin expression to represent the
thermal conductivity, k, and applying the Dorodnitzyn transformation (equation
(4-12)), the expression that will be used to determine a. . becomes

40J (1-38)
C-= -'••. t'a•J (4-m

At this point in the analysis the above equation will be used to determine 4
Using the basic definition for the specific heat at constant pressure, CP = 1T
to convert from a temperature derivative to a enthalpy derivative and then using
the equilibrium enthalpy distribution (equation (14-33)) to evaluate the enthalpy
derivative at the wall the expression for h becomes

h+SVUW r I )(4-39)

where (ý2ýL vwas evaluated.using the velocity distribution function (equation
(4-10)). Applying the same procedure but using the enthalpy distribution of equa-
tion (4-36) to evaluate the enthalpy derivative the expression for I becomes

16T (4-40o)

If

VA (11,-1)

then the total enthalpy distribution through the boundary layer may be expressed
as a function of the coefficient b0 and r in the following manner,

The functions l. ,) , C-M and 14(.) are the only terms dependent on the
variable t in the expression for the total enthalpy distribution. If equation
(4-42) is divided by hi and the resulting expression substituted for'%4f,/ in
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equation (4-2 7 ), then the expression for carn be developed to the point whereit can be written as

1O 144 2~ ~
-~A \1

The expression for the shock-wave shape, which was developed in Section III,
will now be used to obtain some relationships which are necessary to complete a
numerical solution. The equation defining the shock wave, equation (3-1), can be
differentiated once to obtain the slope,

4A XVC W- 7--(4-44)

where R is defined in Figure 11. Equation (4-44) can be considered as a relation-
ship between 9w and Z , wit'. another relationship between 6 and Ps existing
in the oblique shock tables (25), or effectively there exists a definite dependence
of Pt. on , . Consequently, given a 7_ , the total pressure drop across a bow
wave experienced by a streamline passing through the shock wave at •* can be deter-
mined. Now at any station X" that is being analyzed the static pressure at the
edge of the boundary layer is known. From the total and static pressure at the
edge of the boundary layer and the free-stream total enthalpy, the static tempera-
ture at the edge of the boundary layer can be determined. As yet the total pres-
sure has not been defined as a unique function of X" (i.e., the relationship be-
tween Z., and X. is not yet known). Consequently, at each station Xf for which
the analysis is carried out, a curve of Eu vs Ts must be drawn. Such a curve is
effectively one equation in the two unknowns '. and-rT . With a knowledge of -tr
and P reference 26 can be used to define h such that LIS can be obtained from

Equation (4-45), in conjunction with the curve of Z* vs Mr is sufficient to per-
mit a curve of Z# vs LAS to be drawn at each station. Continuing in basically
the same manner, and employing reference 26, it is possible to plot a curve of'4.
vs P and MS vs 7_, at each station. Such curves come in very handy when a
numerical solution is being obtained by use of a desk calculator.

The local heat transfer 9 at any point can be determined from the following
equation,

1T
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Applying the Dorodnitzyn transforuation and converting the temperature derivative
to an enthalpy derivative, the heat transfer at the wall can be written

where the enthalpy derivative has been evaluated using the enthalpy distribution
of equation (4-36).

The local shear stress at any point can be determined by considering the
equation

(4-46)

Evaluating 0/b from the polynominal expression for the velocity profile
(equation (4-10)) the local shear stress can be written

V. SOLUTION FOR THE ADIABATIC WALL CASE

In Section IV an expression for GI/A as a function of A was developed
(equation (4-43)) for a condition of heat transfer to the wall. This term could
also be developed starting with the total enthalpy distribution applicable for
zero heat transfer (equation (4-33)). The integration of equation (4-27) leads
to the following expression for application to the case of zero heat transfer:

By examining the energy integral equation it can be shown that s for the
adiabatic wall solution. For the condition of zero heat transfet the term involving
the integral of of in equation (4-28) is identically zero and hence must
also be zero . ThJ6 being the case, equation (5-1) becomes the second ekression
for S2 , the first being equation (4-39). If& is eliminated from both equations
the following equation results,

ale b@m4
IS (5-2)

where r the recovery factor at the wall, has been defined as
'nss

6(5-3)
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On a blunt body, such as the one being analyzed, the pressure gradient parameter
j*. is always positive. This is shown in equation (4-14) wherecA is expressed
as a function of, among other terms, /-61 4 , . The term -&4*/Ai). is positive
everywhere on the plate (see Figures 6 and 9) as are the other terms in the ex-
pression for A , consequently A itself must always be positive. A plot of the
recovery factor at the wall is shown in Figure 12 for Prandtl numbers of .67, .72,
and .77.

The local recovery factor V varies through the boundary layer as a function
of where

e rssohnt, la r v f o b

Substituting the enthalpy distribution for zero heat transfer into equation (5-4),
the following expression for the local recovery factor is obtained

v '•+K-• ..)K,• ). +.- ..l * • K, (5-5)

where equation (5-1) has been used to replace TZ in equation (4-33). A plot of
the local recovery factor for Pk.= .72 is shown in Figure 13 for 4j of -6, 0,
and 6.

Equation (5-2) can be considered an expression between " T, T- , and
Employing it in the system of equations derived in Section IV, it becomes possible
to define the adiabatic wall temperatures consistent with a given pressure distri-
bution. Consequently, the integral analysis can be used to predict the surface
temperature distribution for flow over an adiabatic flat plate with a finite pres-
sure gradient. One such method is outlined in Appendix VII.

VI. STAGNATION POINT ANALYSIS FOR
TWO-DIMENSIONAL BLUNT BODIES

In order to start the step-by-step solution of the system of equations derived
in section IV it is necessary to evaluate the parameters 6Q0/aC and 98 at the
stagnation point. The momentum integral equation for a compressible fluid can be
expressed as

The energy integral equation as developed in Appendix I (a different form, but a
more classical expression than that of section IV) can be written

A - (6-1)
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Equations (4-18) and (6-1), as they stand, are not applicable at the stagnation
point because "S , which appears in the denominator of both equations, is zero at
a stagnation point. Consequently the derivatives take the indeterminate form

a X 0
IgA 9 (A .6s..X

S644

d X 0 (X-2)

The only possible way for equation (05-2) to have a finite value at X = 0 would be
eor 6'l3X and •D•' 1j/x to be of the form 0/0. The valuesA and b,, which force
the numerator of equations (4-18) and (6-1) to go to zero simultaneously will be
the stagnation point solution for A and bk . With the values of A and In so
determined, values for the derivatives in equation (.6-2) can be determined in the
limit (if they exist) by applying L'Hospital's rule.

Two equations in the two unknowns, A. and %,, can be obtained by setting
the bracketed terms in equations (4-16) and (6-1) equal to zero. The resulting
equations are

b ,i=l Pt , r A f L ) (6-4)

where the PA terms have been dropped because they are zero at the stagnation
point.

In order to solve equations (6-3) and (6-4) for b and &.,an analytic ex-
pression must be developed for SO/ . An expression has to be obtained for ;Arl
in terms of \ in order to evaluate the integral in equation (4-22). This cholce
cannot be an arbitrary one since an expression for "T/Tg has already been defined.
That is, we actually define the boundary layer temperature profile when the total
enthalpy (equation (4-35)) and velocity distributions (equation (4-10)) are defined.
At the stagnation pcint where h+w a , since %AS is everywhere zero, the tempera-
ture distribution is only a function of the total enthalpy distribution. The problem
now arises of finding an expression forT40 as a function of V4/h4, so that the
integral of equation (4-22) can be analytically integrated. Now in the most general
case, enthalpy is a complicated function of both pressure and temperature and an ex-
plicit relationship -rw T(%) is not generally available. However, it is always
possible to arrive at some good approximate expression for T'-TCIi when certain
restrictions are placed on the range of temperature and pressure variation.

An approximate expression of this type has been developed in Appendix II. The
resulting equation has the following form

1: = .1-ahL+.oa e-5



and has the following restrictions:

2. 36e 'T ~ cdF

5. .0O0i . 0O (6-6)

Applying equation (6-5) to the integral in equation (4-22) and then substi-
tuting for the enthalpy ratio the enthalpy profile function (equation (4-35)),
there results the following expression for &4 , valid only at a stagnation
point,

• zo •P;" (6-7)

Substituting for from equation (6-7) and for from equation (4-204
equation (6-5) becomes

79A .
0 aoJ 63 (-1)

Equation (6-4) for bn. can be rewritten as

137 A-.
A " 4 ao A144

- 014 (6-9)

where 9 (equation (4-43)) evaluated at the stagnation point has been substi-
tuted for the CP*/A. term in equation (6-4). It might be mentioned that the
simplest form of the equation formed by eliminating V.* from equations (6-8) and
(6-9) will be a seventh order polynominal in A. , and even then the term involving
bep/Twas considered small compared with one in order to simplify the resulting

expression.

Equations (6-8) and (6-9) do not generate the final value for Ao and 6,
The final values are obtained by an iteration process as follows. First solve
equations (6-8) and (6-9) forK. and %b%% Using these values for Ao and h.,o
calculate 3% from equation (4-22). The temperature ratio in equation (4-22) is
determined from the enthalpy distribution of equation (4-42) as a function of
and A,. as determined from equations (6-8) and (6-9). This value of is
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substituted into equation (6-3) which then becomes the equation from which •
is determined. With this value of A. equation (6-9) can be used to solve for

, .The iteration process can be continued until the values for l o and
Ajiare obtained to the accuracy desired.

With A, and N*.o obtained such that •4Og is in the form 0/0, it is possi-
ble, by the method of L'Hospital, to evaluate the limit if one does exist. If, in
equation (4-18), V'icx) is defined to be

I - QA ý? e I
(6-10)

then, taking the derivative of the numerator and denominator of equation (4•-18)
with respect to X, the following equation is obtained

T b 'zA i : s (5-n)

The above expression is used to determine the initial slope First, how-
ever, the terms IF, () and Ug* must be evaluated. The term V 30 is defined
in Appendix III, and can be reduced to a relatively simple form for a given set of
conditions. The term L4 can be written

and its derivation will be found in Appendix IV.

Also of interest at the stagnation point is the transformed boundary layer
thickness 4 . This can be obtained from equation (4-15) where the term oz
is obtained in Appendix IV as-a'

Substituting equation (6-13) into the equation (4-15), the expression for the stagnation
point boundary thickness in the transformed plane is

Once Ae has been determined at the stagnation point, the momentum thickness 9
can be obtained from equation (4-2 3 ). The heat transfer at the wall as derived
in Section IV is

(4-47)
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and is applicable at the stagnation point when the expression for CD is used.
Making the required substitutions

~, (.T.~ (-15)

As a check of the stagnation-point analysis two flight conditions and two tunnel
conditions were analyzed. Table I summarizes the results of the analysis. The
analysis of Case I was plotted in Figure 14 along with the results of references
27, 28, and 29. The over-all agreement between the integral analysis and the
above references is encouraging.

The parameter .-- appearing in equation (6-15) is basically the only
unknown quantity in that equation; the other terms will be known at a given con-
dition. The parameter ,o/f is plotted in Figure 15 against -/+.,. All
the points analyzed fall on one curve. This curve can be used in predicting-Ir9,
without resorting to the solutions of equations (6-8) and (6-9) to determinelbit.
and A*. . This curve represents a rapid method for estimating two-dimensional
stagnation-point heat transfer.

VII. DISCUSSION

The analysis just presented is adequate to cover a wide range of conditions.
However, there are some conditions to which it cannot be applied directly, and
others to which it cannot be applied at all. The conditions at which the present
analysis is limited in scope can be considered to stem from two basic problem areas:

1. Presence of strong streamwise pressure gradients.

2. Presence of vorticity in the free-stream flow.

First, consider the problem of the strong streamwise pressure gradients. In
defining the velocity profile by the fourth-order polynominal in ft there is a
built-in limitation on A . For values ofA greater than 12 the velocity profile
overshoots or exhibits a velocity somewhere in the boundary layer which exceeds
the free-stream value. This is physically unlikely, even under the strongest favor-
able pressure gradient. Yet, in analyzing high Mach number conditions there are
many times when the solution to the system of equations is possible with a,&7 12,
but, because of the inherent limitations on A , the solution to the problem must
stop. Unfortunately pressure gradients strong enough to causeA to exceed 12 are
possible in many situations, such as at the leading edge of blunt plates i.n hyper-
sonic flow, and consequently occur in regions of significant interest to warrant
an attempt at a solution within the framework of the basic integral analysis.
Fortunately such an approach does exist. The details of this solution will be
found in Appendix VI along with a summary of the pertinent equations. Only the
basic features of the analysis will be discussed here.

The significant step in obtaining a solution consists in a redefinition of
the basic velocity profile. Steiger (32) defines a velocity profile, which satis-
fies all the boundary conditions of equation (4-8), in the following manner,
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L4A

When this profile is used in the analysis, there are no limitations of the magni-
tude ofr except that 0a. . Since this is being proposed as an alternative
solution for flov fields with strong streamvise pressure gradients, this is ef-
fectively no restriction because streamvise gradients sufficient to make A,'12
have values of Oe4 . The fact that the problem of strong favorable pressure
gradients on cylindrical leading edges is more severe the higher the Mach number
can be shown in the following manner.

The data of Figure 6, for cylindrical leading edges, illustrate the indepen-
dence of the pressure distribution, when plotted as P/p, , and free-stream Mach
number. This being the case, the maximum pressure gradient expressed in the form
41 P" /4-+ must also be independent of the free-stream Mach number and the term
•pTb/SYwhich is used in the analysis as Ap/1 ) , can be obtained from

do 44, (7-2)

Now P. increases with Mach number (for a _iven free-stream static pressure),
consequently the maximum pressure gradient 16P/&Xs4. is a unique function of
Mach number. Thus the problems associated width strong favorable pressure gradients
will become more severe at the higher Mach numbers.

It might be noted that, contrary to the published results of reference (32),
there is no unique relation betweenA and CL , but there are at least three re-
lationships which differ in all but one respect. The three equations between .
andA can be obtained by evaluating the following expressions:

1. S L" a al

2. (1

3.

using both the polynominal profile (equation (4-lO)) and the exponential profile
(equation (7-1)). Assuming that there is an unique expression between o. andA
then the above three expressions should be invariant with respect to the choice of
velocity function. Evaluating the above three expressions using both velocity pro-
files and equating like terms yields the following three equations:

A = L +1(7.. 3 )
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2. A = ((Q.-a) . (7-4)

3. A = .(a- (7-5)

Mhe one condition common to all three equations is the fact they all pass through
the point L. = 4, A = 12.

This is a very important fact when solving a numerical problem, as can be
illustrated in an example. Consider an analysis which, because of the strong
streamwise pressure gradient, has been started with the system of equations de-
veloped in Appendix VI. As the solution proceeds point by point around the body,
the value of 0. will reach a peak and then decline. Anytime OL becomes less than
4, the analysis can be carried on by either method. This change from one system
of equations to another can be made because of the step-by-step nature of the
solution. The only fact of any consequence at station n+,1 is the results of
the analysis at Xn , not the system of equations used to obtain the results. In
the discussion of the example it has been implicity assumed that the results ob-
tained by either method of analysis are essentially the same inthe region ?!0$4

The second problem area, vorticity existing in the free-stream flow, has been
investigated by many authors (33, 34, 35). The basic facet of the problem is that
with vorticity in the inviscid flow field the boundary condition at the outer edge
of the boundary layer involving WMN41 is no longer valid. The effects of vorticity
become appreciable when the velocity gradient KVb4 at the outer edge of the boundary
layer is of the same order of magnitude as ' (32).

The region on the body where the inviscid velocity gradient becomes important
is that point on the plate where the streamlines entering the boundary layer have
passed through the highly curved portion of the shock wave. At low Reynolds numbers
this occurs in the stagnation point region, but at higher Reynolds numbers this
could occur on the aft portion of a long body. The vorticity problem is inherently
more severe at the leading edge region. Fortunately at the leading edge of a two-
dimensional blunt flat plate the vorticity interaction becomes a problem about the
same time that the assumption 5/ r. 0 breaks down. Consequently the entire analy-
sis is invalid and there is little hope for a solution within the framework of an
integral approach. The applicability of this analysis can always be checked by
comparing the value of 5 at the stagnation point with the leading edge radius T.
If 4 - I , then the integral approach as formulated in this analysis will not
apply.

Now the other region where vorticity can become a problem, on the aft ends of
long plates, can be treated Vithin the framework of the integral analysis in the
following manner. For a constant energy flow field the vorticity at the outer ede
of the boundary layer can be expressed as a function of the entropy gradient normal
to the streamlines in the following manner (3),

23



This co-ordinate MI is normal to the streamlines. On the aft end of very long
bodies the streamlines are very nearly parallel to the body surface and conse-
quently gradients normal to the streamlines in that vicinity would not differ
greatly from gradients normal to the body. In terms of the entropy gradient
normal to the body the vorticity at the outer edge can be expressed as

SC (7-7)

For two-dimensional flow the vorticity can also be written

-- "r•).(7-8)

where the term h ,, , )• ) therefore can be expressed as

In the analysis presented in Section IV, was implicitly assumed to be
zero and consequently the velocity gradient at the outer edge of the boundary
layer was taken to be zero. With vorticity interaction, or entropy gradients, at
the outer edge of the boundary layer, equation (7-9) becomes the new boundary con-
dition on the velocity profile. The second derivative (•v/,), will remain
zero for purposes of simplifying the analysis. The experimental data of reference
9, would seem to Justify this assumption.

Equation (7-9) defines (3%) in terms of the entropy gradient at the outer
edge of the boundary layer. In order to evaluate this derivative an entropy pro-
file of the form

S(7-10)

is assumed, where X is the co-ordinate normal to the body such that,

(7-11)

The subscript S refers to conditions at the shock wave. The boundary conditions
on equation (7-10) are:

1. _ •

2. X.oS
X__ - (7-12)
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The entropy behind the shock wave at the station in question can be found from
the thermodynamic parameters of the fluid at that point. The derivative akan
at Xw I can be determined from the shock-wave shape and the free-stream Mach
number. A good representation of the shock wave downstream of the leading edge
region is given by the blast-wave theory (14, 15, 16, 17 18, 19) and there is
good experimental verification of its usefulness (37, 381. The third boundary
condition is connected to the basic boundary layer solution in that it is a
function of the parameter P* . The fourth boundary condition is developed
from a conservation of entropy analysis. The streamline %# , in addition to
having a constant Rg until it enters the boundary layer, is also isentropic.
Every other streamline crossing the shock wave with tP.! 4 will cross the plane
normal to the body at Xv with the same entropy it had after it crossed the shock
wave. This represents a certain fixed entropy at the plane normal to the body at
, . Equating this fixed sum 4 to the integral of the assumed profile allows

the fourth coefficient to be determined from

.A5 
(7-15)

The entropy behind the shock wave, • •, and consequently the entropy of the flow
in the plane normal to the body at Xv , can be determined at the shock wave from
the following equation,

!

(7(-14)

The terms YL•) , Ca) , and :SC) are functions of flow conditions on the down-
stream side of the shock wave which can be determined once the free-stream con-
ditions and shock-wave shape are known. The integration indicated by equation
(7-14) can be carried out numerically or analytically depending on whether the
ratio of specific heats is the same on both sides of the shock wave. Consequently,
it is possible to determine the coefficients O., of equation (7-10) by equating
equation (7-14) to (7-13) and solving for 0., . The expression for the velocity
gradient at the outer edge of the boundary layer when the vorticity is present
(equation (7-9)) becomes

-~

VU (7-15)

Equation (7-15) can then be used to define CŽ$/i)S . It might be noted that to
obtain a numerical value for (qKh)s for any given problem conditions existing
at the outer edge of the boundary layer at Xv must be known. This information
would not be generally known and a straightforward solution would require adding
the pertinent equations of this section to the general analysis and determining
all the parameters by a simultaneous solution. This would be a lengthy procedure
and as much could be obtained by solving the zero vorticity problem first and then
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using the zero vorticity solution as the starting point to evaluate the effects
of vorticity using the analysis Just presented.

The question might next be asked: when should the vorticity correction be
applied? The answer can only come from a numerical solution of a particular case.
When, in the course of a solution, the streamlines entering the boundary layer are
crossing the shock wave in the highly curved portion of the shock wave, it would
be well to examine the term (A to determine if it is of the order
If they are of the same order, the vorticity interaction analysis should be applied
to ascertain what effect, if any, the vorticity at the outer edge of the boundary
layer has on boundary layer parameters.

The analysis presented in this paper is also applicable to blunt flat plates
at angle-of-attack greater than zero. The only requirement is that the surface
temperature and pressure distributions be available. At non-zero angle-of-attack,
analytical methods for predicting pressures over the body are very unreliable and
it would be expected that the pressure distribution would have to be obtained ex-
perimentally. An analysis, in basically the same form, could be developed to de-
fine the compressible boundary layer characteristics on an axi-symmetric blunt
body. The essential features of such an analysis would be the same, except that
for an axi-symmetric body the analysis would not be applicable at angles-of-attack
other than zero because such a flow field is no longer two dimensional.

VIII. CONCLUSIONS

The Von Karman momentum integral has been extended to include prescribed wall
temperature and pressure gradients. The effects of entropy gradients in the in-
viscid flow have been considered and a first-order correction to account for en-
tropy gradients has been developed.

The analysis has been carried out for blunt flat plates with cylindrical
leading edges at zero angle-of-attack. The analysis itself, however, is valid
for any reasonable shape or angle-of-attack provided the pressure distribution
and surface temperature distribution are known. The basic features could be
applied to develop a similar system of equations valid for axi-symmetric bodies
at zero angle-of-attack.

The problem of very high favorable pressure gradients was considered and an
alternative solution developed based on a velocity profile which does not exhibit
profiles in which U 24.
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APPENDIX I

Derivation of the Energy Integral Equation for
Use at the Stagnation Point

If equation (4-28) is differentiated with res~,ect to x. the following equation,
can be written;

Substituting for (-L from equation (4-47), equation (I-i) may be written

ax (1-2)

Equation (1-2) can also be written

aek+(~ + __? 6-1:6

The compressible Bernoulli equation may be expressed as

1A 46 + =0

and from the definition of the speed of sound it is possible to write

L .= a

Combining the last two equations in such a way as to eliminate if there results

L& (I-4)

After substituting equation (1- 4 ) into equation (I-3) and rearranging the terms,
one obtains the following equation
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Then, if both sides of equation (1-5) are multiplied by O , the following
equation is obtained

37 =1 W -t.

I4 P. (. L (1-6)

where •' has replaced 0I, , with 4 determined from equation (4-15)
and the Bernoulli equation. Factoring 2 Mrv It from both terms on
the right hand side of equation (1-6), one lortats the equation

Equation (1-7) is used in conjunction with equation (4-18) to define the stagnation
values for 6, and A
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APPENDIX II

Approximate Relationship Between M and

In evaluating the terms A and b, at the stagnation point the term
apears in the analysis in such a way that it is necessary to evaluate the integral

The assumed enthalpy profile implicitly defines the ratio . but
an explicit expression between and and / is not available, consequently an
attempt is made to obtain an approximate relationship.

The expression for the relationship between-r/T", and %/%& was obtained from
a correlation of the data appearing in reference (215) and reference (31). The data
were analyzed in the following manner. First, for assumed values of "i equal to
3600 R, 900°R, 1600°R, and 2700OR, curves of T/TG vs • were drawn for pressures

of .001 46 _ 10. It was observed that for eachT -there was a region of the
curve which was independent of the pressure and which could be adequately represented
by a straight line, of the form "C%.-A 4,

The values of the constants A and B which best fit the data of the real gas
tables are A = .92, and B = .0d. The curve

T .qZba +.08
"r(s-l

along with data from references 2- and 31 are plotted in Figure 16. As can be
seen from Figure 10, the curve represented by equation (II-1) is a valid approxi-
mation for a relationship between - 1.• and h . The expression remains valia
as long as:

1. .00 1 P. 4- I0

2. b0 Tr' Z'o

where the surface pressure is referenced to sea level standard pressure of 2116
lb/ft 2 .
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APPENDIX III

Derivation of ! •( )

Let be defined as

where

2. G x) - T.-'

3. 6 LK~.)C , (1112)

The term K is a new variable defined as,

(111-3)

or

4. G4 - - (1-4)

Using the definition of F:.i$C)o (equation (III-1)), its derivative with respect to
X,applicable only at the stagnation point, can be written

16 x

where it has been implied in equation (111-5) that:

1. K V lacx) "

2. be - CK) . (111-6)

30 0,



Each term in the expression ar.1 will be investigated separately.

•[T 0o

(L.P

°- b o (111-7)

Now I dT.m
bx T d•x

and L6 ~ Iia ( )< (111-8)

Also from equation (6-7)

from which

Substituting equations (111-8) and (iI-lO) into equation (III-7) one obtains

'a0 . 0 S' ?'

The term o-n• , will come from the known stagnation point wall temperature
distribution.

2. far.

where

I i~ (a. •A,( "6. / (IIli



and (afX GIj -L I

(Iii-iS)

Nov r1

and a .(~)0 (~) ~(111-15)

Te term _ is evaluated from equation (4-20) as,"1/4

M t 4 0 3?- L%.. S (1116

Substituting equations (I11-14), (111-15) and (111-16) into equation (111-13) the
expression for ( K'/(), becomes

o46(z
" 7 - A. - (I-17)
to ~~144q11-7

The term in equation (111-12) can be written

The partial derivatives of and and with respect to A are obtained from
equations (111-9) and (111-16), respectively, and (0/64)0 comes from equation
(111-15). When the proper substitutions are made, equation (111-18), for k
can be written

(~~i)*= A( ) 3
144 (111-19)

Substituting equations (111-17) and (111-19) back into equation (111-12) generates
the following equation for (bF., 7-I

(ýI r A . .,[ 3 ai4 4I. 16 C- XJ--

' _ _"3A __-_I (III-20)
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3. L•)

where (.a) -

The derivative can be evaluated by differentiating Equation (111-9)
with respect to b, and is found to be

With the above value for the derivative the derivative
becomes ti

Starting with equation (ii-2 3 ) and rearranging it such that
Kx (111-21)

enables the derivative • to be obtained as

(111-23)

The term iZ is the parameter that is being sought and the term &I"

is identically zero at the stagnation point.

The term X1 deserves a closer examination.
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First

(111-24)

and

(rr'1-25)

In the last expression the terms "r• are treated as constant, since are

only convenient reference quantities. Using the above definitions for and
the term Pr can be written

Consequently ___3 . Aj.

The term 44% /6X is identically zero at a stagnation point and consequently
equation (111-23) reduces to

d X• T. (111-26)

5. ax

It has been implicity assumed that a relationship existr such that W ,w c .
This relationship is

- 47
4ZO

26LO . aoa4 (6-9)

This expression results from setting the numerator of the energy integral equation
equal to zero and substituting for the stagnation point value of QUA . Differ-
entiating equation (6-9) once with respect to X one obtains

34



4, -r)(~ 1445:

4Z* 144 1

(111-27)

Now the term i V ŽT _ _ F (12

where again the term 0 at the stagnation point. Hence the termnt

can be written as

TTJ. bT dx

After the terms in equation (111-27) are rearranged the expression for A61 1

can finally be written as

+~ - 14&A
P6r4Z * a T' ilk -7 ,,

(111-28)

Using equations (111-15) and (111-26), cX can be found as

L1'- , Jo "K . (111-29)

Combining the results from sections 1-5 of this Appendix there results an

expression for [Ae/G 4,i which has the form

- Jo•X i(111-30)

where2 is some parameter depenennt on , , and X
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APPENDIX IV

Derivation of' r J*

The compressible Bernoulli equation can be written

The pressure distribution applicable to a blunt body as obtained from the modified
Newtonian theory is

(Iv-2)

Differentiating equation (IV-2) with respect to X , the expression for the pres-
sure gradient is obtained as

CSX (Iv-3)

Combining equations (IV-l) and (IV-3), one obtains

Now at the stagnation point both sin4Xy and US go to zero and the expression
for must come from L'flospital's method for evaluating indetervinate
forms. Using the method of L'Hospital, the expression for &41/dX at the stag-
nation point becomes

At the stagnation point the term -which allows the velocity
derivative to be written as w

[ J(Iv-6)

The term g-L' IJ* comes up in obtaining an expression for A. . It
can be evaluated from equations (IV-l) and (IV-6) as follows:
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or

d Y.
[i~~j* -Pi ~(IV-7)
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APPINDIl V

Method of Numerical Solution

The equations developed in Section IV can be solved in the following manner.
First equations (6-8) and (6-9) are solved by trial and error to yield the stag-
nation point values for bl, and A . Knowledge of I,,. and A. enables one to
calculate 41 and %,, from equations (6-14) and (6-157, respectively. With A.
known, it is possible to define the stagnation point non-dimensional velocity pro-
file. This can be considered as a limiting profile, since at the stagnation point

Sa o . With bI,,, known, the total enthalpy profile at the stagnation point can
be defined in terms of the non-dimensional transformed co-ordinate V . Since the
pressure at the stagnation point is known, the temperature profile can be obtained
from real gas tables (26) and the enthalpy profile. Integrating equation (4-22)
numerically, using the temperature profile obtained from the enthalpy profile, and
substituting for to, the value found from the solution of equations (6-8) and
(6-9), the term (o/ý). can be found.

The next step is to find the stagnation point values for 16 and •40 .
The term G,4•s obtained from equation (4-23) with Ae. defined in equation (6-14).
The term/"-oa•ined from equation (6-11) where the terms F.'Ox), and Ui. can
be obtained, once A. and bl,, have been defined for a given set of conditions,
from Appendix III and IV, respectively.

Once the stagnation point values for 0 and dX are known the solution
can be extended to the next step. The step-by-step method of solution is necessary
because the differential equation in the system (the momentum integral equation)
does not have a solution in closed form. As in any numerical solution to a dif-
ferential equation, the accuracy of the final solution is an important function of
the step size.

The value of 9 at the first step is found from the stagnation point solution
using the following equation,

(V-l)

For the first step the subscript "n-1 " would correspond to the stagnation point
values. Consequently the necessity of the stagnation point solution is apparent.
The stagnation point solution is the first link in a sequence of events that
eventually leads to the solution for the boundary layer characteristics on a
blunt flat plate. At the station ), at which the analysis is being carried out
the parameters , 4 Vd) , T%., and Re are known. With these parameters essentially
fixed, 0% can be obtained by a method completely different from equation (V-l).
The different method begins by arbitrarily choosing a value of a, . This estab-
lishes a trial value for We , the downstream total pressures, according to the
shock-wave analysis of section IV. Assuming AP&'" 0 , the ratio P 5 ý/pr can
be computed and this, along with the total tempera ure, establishes the static
temperature consistent with the trial i, . The static temperature, T" , is
obtained from the following equation,
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(v-2)

As it is written, it is not an explicit expression for-" because "r& is buried
in the exponent fc.vY). But "Tý" can always be obtained from (V-2) by a trial
and error approach. Once a trial Ta has been established, the static enthalpy
and hence the velocity can be obtained. The static enthalpy is obtained from a
set of real gas tables consistent with the trial Tr" and the %- which is fixed
by the choice of the station to be analyzed. The trial velocity, consistent with
the initial choice of X)4 and arbitrary choice of Z , is obtained from equation
(4-45).

At this point the equation involving the continuit 4 of mass, equation (4-11),
is introduced into the analysis. The expression for 4 , equation (4-15), is
substituted into equation (4-11), and the resulting equation becomes an expression
forA as a function of the initial choice of B.,, and the trial values of T- and
LAS consistent with this choice of L. . A trial-and-error solution of the re-

sulting equation will yield a valie for A consistent with the initial choice of
.w. With A so determined, e can be determined again, this time from equation

(4-23). This value of 01 is compared with the value obtained from equation (V-l).
Different values of az are chosen and the whole process repeated until a value
of 2P is chosen such that the trial value of 94 matches that obtained from equa-
tion (V-l). At this point the value of 2 0 consistent with i , such that the
mass flow between Y. and Y,, is equal to the mass flow in the boundary layer at
Xw,, has been determined. Also the temperature, total pressure, ratio of specific

heats and velocity at the outer edge of the boundary layer has been established.

Next the value for '0/a is determined. This is done by numerically inte-
grating, by some approximate technique, the heat transfer between the stagnation
point and )X4 . Evaluation of J'-% dX allows Q*/M to be evaluated from
equation (4-28). With this value of lw& equation (4-43) becomes an expression
from which the parameter 6,, can be obtained. With this value of 6., and the
value of-A already obtained, the heat transfer at the wall can be obtained from
equation (4-47).

The term A is next used to define the velocity profile using equation (4-10),
and both A and 6., are used to define the total enthalpy profile from equation
(4-42). Both profiles will be in terms of the transformed co-ordinate rf . To
obtain the profiles in the X* plane the static temperature distribution is required.

The static temperature distribution is obtained from the total enthalpy and
velocity distributions using the energy equation,

(v-3)

With the static enthalpy determined from equation (V-3), the static temperature can
be obtained from a set of real gas tables as a function of '. and " The ex-
pression between I and r is obtained from
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(v-4)

Equation (V-4) can be numerically evaluated to obtain a tabular relationship
between % and nl . This technique will have to be repeated at each station
for which plots of velocity, or temperature in the X-It plane Are required.
The value of % at r. a I is by definition 6 and is exactly the integral appear-
ing in the expression for 5/ . Hence, at each station at least the integral

5' &," must be evaluated in order to evaluate 6>a from equation (4-22).

With 154/1 evaluated, the expression for the derivative A@/4X is now com-
puted for the station in question from equation (4-18). The term MtA in equa-
tion (4-18) is evaluated from the values of US , 'G , and T" obtained in the
beginning of the analysis.

At this point the boundary layer characteristics at the first station are
known. The entire analysis is then repeated at the next station starting with
equation (V-1) where this time the subscript n-l would refer to the values of
0' and AW14&X just obtained. The analysis can be continued until the entire

body has been analyzed.
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APPENDIX VI

Derivation of the Equations for Use with Strong Favorable
Streamwise Pressure Gradients

Start by defining a new velocity function such that

(4-i10A (VI-l)

Equation (VI-l) satisfies all the boundary conditions of equation (4-8) and, in
addition, 0"M/j. A .O where A. X'S . This is a much stronger restriction on the
profile at the outer edge of the boundary layer than previously used. Evaluating
the integral

@ @ (VI-2)

which is used in equation (4-6), the equation for Zjfrom the conservation of mass
principle becomes

[4-111 (vI-3)

Utilizing equation (VI-l) in defining A from the momentum equation evaluated at
the wall (equation (4-9)) the new expression for A' results:

a' U= taiT, aca.-,o
S [4-15] (VI-4)

Introducing the velocity profile into the compressible momentum equation
(equation (4-16)), the following expression results:

(4-18] (vI-7)

At this point it might be stated that there are three relationships between
A and 0. . The result is that, whenever ti appears from. ( 0%V)% , substitute

. (Ap.-) ; whenever A appears in the form 4 t+2] from k k , substitute
0,, an4d whenever the term R, •* appears from IN.tedv4 . , substitute

These are valid substitutions and adhering to them will convert all
the equations in the main body of this report to this new velocity profile of
equation (VI-1).

*Numbers in square brackets refer to the corresponding equation in main body of the
analysis.
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Havi~ng already evaluated d' Cis using equation (VI-1), the expression
for V/A becomes

T oL -- • [4-22] (vi-8)

Applying the Dorodnitzyn transformation to the definition of 4/ (equation (4-19))
and then evaluating the integral using the new velocity profile of equation (VI-I),
one obtains the following result:

- (Ca,)Ca ,) 1[4-20] (M-9)

The parameter S, appearing in the profile for the adiabatic wall total
enthalpy distribution, can simply be converted by recognizing that e, .a or,

: •, • 4-39] MV-10)

The term !. does not change and is essentially zero when ;LC P M

D 1

The biggest change in the whole analysis occurs in evaluating it is
a tedious but straightforward procedure and when completed the following expression
for Qa/ 4 , applicable to heat transfer conditions, results:

- ' I - -

-_ . ,, C3 Q4 " ,sG

- ~ [aOQ-rsoA 4 "tS]

-bo "•-S -4 -

[4-43] (vM-l)

The recovery factor for an adiabatic wall can be obtained from equation (VI-11) by

equating a, w O and g/ 0 as was done previously. The resulting expression is

. 1 . ,1 _ - . - I
KO 6-A a 7-3

i-+' '014 CI'
6- 5-2] (VI-l2)
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The stagnation-point analysis as previously presented should be adequate for
all pressure gradients since 2Wo at the stagnation point. For comparison,
the equations to be solved for •*-and V% will be given below,

4.-, 6~q- 4-- .} 3 _ _

a* QQ* eqo4 QOQ.

[6-9] (VI-13)

and

S0, j ! )'c-8[ 1 Q " . [6-8] (VI-14)

The equations presented above are proposed for use when the basic analysis
indicates that a solution lies in the regime where A LQ . This analysis of the
strong gradient case using the equations presented in this Appendix will never
generate velocity profiles where L IAtaU . It is limited to conditions where the
profile parameter C. is greater than 2.
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APPENDIX VII

Method for Predicting Adiabatic Wall Temperatures

The adiabatic wall temperature can be determined within the framework of the
Von Karman integral analysis. The following three conditions can be considered
as applicable for the flow over an adiabatic wall:

1.

2.

For adiabatic flow over a plate •-- ,ew and, since N" , it is
obvious that 1, must be identically zero. In addition, if there is no heat
transfer to the wall at any point, then the heat transfer integrated over the plate
must also be zero. The condition a follows directly from the second
condition and equation (4-20). The requrrement that there be no heat transfer to
the wall eliminates the energy equation from the system of equations to be solved.
In its place the expression ', v j (,& R%.) (equation (5-2)) is used.

The adiabatic wall temperature can be defined, consistent with a prescribed
pressure gradient, in the following manner.

1. Solve equation (6-3) for A*(noting , ).

2. Assuming that hro.., , use equation (6-11) to
determine [W• X1

3. With-o determined from equation (6-3) and the (A)o

used in calculating (JA1/,4). , evaluate 0,, from
equation (4-23).

4. Pick a reasonable value forZI-mI'in and complete the
analysis of Appendix V too determine A and Us consis-
tent with the choice of L'I., .

5. Using the value ofA , and US obtained in step 4,
calculate 5o"I, from equation (5-2).

6. Compare the value of I obtained in step 5 with
the value of assumed in step 4.
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7. Repeat steps 4 and 5 at the same station until the value
of r ) obtained in step 5 is the same value as assumed
in step 4.

8. Calculate X at the first station from equation

(4-18).

9. Find 0% at the next step from equation (V-i).

10. Start back at step 4 and repeat the analysis until -;21-
and 60@VX at this step and QL at the next step are
known.

In the above mamer the adiabatic wall temperature may be determined on any body
over which the integral analysis may be applied.
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Table 1. Summary of Stagnation Point
Heat Transfer Calculations

CASE I

Altitudel=200,000 ft Velocity=10,000 ft/sec,r = 12 in

wv/hti .429 .215 .107 .054

qwo 5.77 9.07 11.54 13.40

CASE II

Altitude= 250,000 ft Velocityl15,000 ft/sec,r=12 in

.215 .107 .054 .027

q,,j0  15.70 19.56 23.68 25.42

CASE III

515 psia 20600 R M1 =12.26 r = 0.5 in

hw/htl .659 .621 .971 1.000

qvo 1.15 .58 .07 0.00

CASE IV

715 psia 1960°R M1=12.84 r = 0.375 in

hw/htl .244 - - -

qwo 10.74 - - -

iAtmosphere and thermodynamic data from Reference 30.
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