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ON SLENDER BODIES OF MINIMUM DRAG
IN NEWTONIAN FIOW
by
(*)
DAVID G, HULL

SUMMARY

In recent papers by Miele (Refs. 1 through 3), the problem of mini-
mizing the pressure drag of alender bodies in Newtonian flow was considered
in general and, then, solved for those particular cases in which, of the
four geometric properties being considered (thickness, length, enclosed area,
and moment of inertia of the contour for two-dimensional shapes and diameter,
length, wetted area, and volume for axisymmetric shapes), two are prescribed
and the remaining two are free., In this paper, the analysis of Refs. 1
through 3 is extended to the class of problems in which three quantities are
prescribed and the remaining is free, After the variational problem is re-
formulated in order to account for the fact that the pressure coefficient must
be nonnegative everywhere, special attention is devoted to those particular
cases in which two of the three prescribed quantities are the thickness and
the length. In each case, a one-parameter family of extremal solutions is
obtained, the parameter being related to the three prescribed quantities,
Furthermore, each family of extremal solutions contains three classes of
body shapes: (I) an infinitely thin plate or a spike followed by a regular
shape, (II) a regular shape only, and (III) a regular shaps followed by a

constant thickness contour or a cylinder, In all of the cases considered,

(')sufr Associate, Astrodynamics and Flight Mechanics Group,



analytical expressions are obtained for the geometry of the optimum shapes

and the associated drag coefficients.
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1, INTRODUCTION

In the previous reports by Miele (Refs., 1 and 2), the problem of mini.
mizing the pressure drag of slender bodies in Newtonian flow was formulated
in general and solved for those particular cases in which, of the four geo~
metric properties being considsred (thickness d, length £, enclosed area A,
and moment of inertia of the contour M for two-dimensional shapes and
thickness d, length £, wetted area 5, and volume V for axisymmetric shapes),
two are prescribed and the remaining two are free. In this report, the
analysis of Refs, 1 and 2 is extended in order to cover the case in which
three of the geometric properties are specified and only one is free.
However, in order to do so, it is necessary to reformulate the variatiomal
problem and include the condition that the pressure coefficient must be
nonnegative everywhere. In the interest of brevity, the approach of Ref. 3
is employed, that is, the two-dimensional problem and the axisymmetric
problen are considered simultaneously. In particular, attention is devoted
to those cases in which two of the three prescribed quantities are the thick-

ness and the length,
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2o MINIMUM DRAG PROBIEM
According to Refs, 1 through 3, the Newtonian pressure coefficient for

a slender body in an inviscid hypersonic flow at zero angle of attack is
given by

where x denotes a coordinate in the flow direction, y a coordinate norml

to the flow direction, and y the derivative dy/dx. With reference to the
portion of the body betwsen stations O and x, the drag per unit span, the
enclosed area, and the moment of inertia of the contour of a two-dimensional

shape and the drag, the wetted area, and the volume of an axisymmetric

shape can be written as

Two~dimensional case Axisymmetric case

n(x)-hqroi}dx D(x)-mfzﬁ’u

A(x)-aj':yax " s(x)-anj:yax (2)
X 2 X 2

H(x)-Zon dx V(x)-wjoy dx

After the definitions

Two-dimensional case Axisymetric case
o = D(x)/lq o = D(x)/vm
p = A(x)/2 P = 5(x)/2n )
y = M(x)/2 Y = V(x)/n
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are introduced and after both sides of Eqs., (2) are differentimted with
respect to the independent variable, the following differential constraints

are obtained (Ref. 3):

&-yn. -o

B-y=0 (4)

where n = O in the two-dimensional case and n = 1 in the axisymmetric omse.
Since the condition that the pressure coefficient must be nomnegative can

be expressed in the form
Q 2
y-p =0 (5)

where p denotes a real variable, the system of differential equations (4)
and (5) has one independent variable (x), five dependent variables

(s By Yy ¥y P)y and one degree of freedom. Consequently, if it is assumed
t&t

xi:yinqispisyino (6)

and that some, but not all, of the remaining state variables are specified
at the final point, the minimum drag problem is stated as follows: In the
class of functions afx x X X x) which are consistent with

the differential constraints (4) and (5) and the initial conditions 6),

find that special set which minimizes the difference A = (3f 3-01' where

G = &
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3« NECESSARY CONDITIONS

This problem is one of the Mayer type with separated end-conditions,
80 that, after the Lagrange multipliers \1 through 1“ are introduced, the
extremal arc is governed by the following Euler-lagrange equations (Refs, 8

and 9):

Ay = O (7
d 2 nels
£ g e = ™Y o, -y

0= = ZXQP

Integration of the first three equations leads to the results

M=C s A=Cyhy x3sc3 (8)

*

where cl, Ca. 03 are constants. Furthermore, since the independent variable

does not appear explicitly in the constraining equations, the additional

first integral
ne 2
- 2y 13 + 0y +Cy = C 9)

is valid, vhere C is a constant.
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As the fifth Euler equation indicates, the extremal arc is generally

discontinuous and is composed of the subarcs

Ay =0 and/or p=0O (10)

Along the former subarcs, called regular shapes, the pressure coefficient is
always positive or, at most, zero at a single point., Along the latter sub-
arcs, the slope of the body is always zero; hence, they are called zero-
slope shapes.

When a discontinuity occurs, the Erdmann-Weierstrass corner conditions
must be applied, They require that the constants cl. Cz. C

3
same value for all of the subarcs included in the extremal arc and that

s C have the

M= 3PP+ 3) = 8G7P) = 0 1)

Consequently, Eqs. (11) imply that ), = O at a corner point, Furthermore,
a discontinuity in the slope is not possible in the two-dimensional case
(n = 0) but is possible in the axisymmetric case (n = 1) if y = O,

The end-conditions are partly of a fixed end-point type and partly of
the natural type. The latter must be derived from the transversality com-
dition

[— Cdx + (01 +1) da + cada + c3dy + (= }clyniz + \“) d,]f- 0 (12)

vhich is to be satisfied for all systems of differentials consistent with
the prescribed end-conditions and implies that cl = -l
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The application of the Legendre-Clebsch condition indicates that the
drag is a minimum if the following inequalities are satisfied:

Yy 20, along the regular shape
3)

x,, £ 0, along the zero-slope shape

Froa the previous discussion, it appears that the multiplier )‘,’ plays
an important role in determining the composition of the extremal arc and,
hence, is called the switching function. Its properties are summarized as

follows:

1‘* =0, along a regular shape
\y <O, along a zero-slope shape (14)

M =0, ata corner point
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% GENERAL BOLUMION
After introducing the nondimensional variables

gs -:- ' = ﬁ (15)
and the definitions
-n l - 21
K =C/2)7 ", x,=cyd2) """, Ky = C5(4/2) (16)

one can rewrite the first integral (9) in the form

PP KN+ Kt =y (a7

in which v = d/¢ denotes the thickness ratio. Due to the fact that the
pressure coefficient must be nonnegative everywhere, the application of
this first integral at both end points of the extremsl arc leads to the

basic inequalities
K20, K -K -K 20 Q18)

Furthermore, the general equations for the regular shape and the sero-

slope shape can be written as

g.#f]ﬁ-"zr' K}}, an + Const (19)

N = Const

respectively,
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It 1" denotes the ordinate of a corner point between a zero-slope

shape and a regular shape, the transition equation
KN, + K}‘ﬁ -5 (20)

holds, Furthermore, after the nondimensional switching function is defined

le-n
le“%l (21)

the integration of the fourth Euler-lagrange equation along a zero-slope

shape yields the relationship

o=K(E =€, K=K+ 2,7 (22)

This equation supplies the proper sequence of subarcs as follows: (a) If
K > O, a regular shape precedes the corner point, and a zero-slope shape
follows; furthermore, owing to the monotonic nature of the switching functionm,
no subarc may follow the zero-slope shape, (b) If K < O, a zero-aslope
shape precedes the corner point, and a regular shape follows; also, no sube
arc may precede the zero-slope shape.

In view of these statements and the transition equation, the maximum 1
possible number of subarcs composing the extremal arc is three (one regular
shape and two zero-slope shapes) with one of the two possible cornmer pointe
lying along N = O and the other, along T = 1. If the coordinates of these
two corner points are denoted by go, O and ;1, 1, the general equations for

the shape of the optimum body can be expressed as
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P

L !,,,.,Mvc 'M_

L S——

Osgsgo, =0

s k=T

Leeeh. Tor e
1" % fl -
o xl-xaﬂ-*s*?

§1‘§$1, n.l

For extremal arcs involving only one corner point or no cormer points at
all, the shape of the optimum body can be formally obtained from Eqs. (23)
by setting &, =0 and/or g = 1. It must be understood, however, that the
corner conditions need not be satisfied at these pointes,

Once the shape is known, the following nondimensional integrals can be

evaluateds
ID-J‘;n“T‘Pdg.IA-Is-J‘:m;. 1,,-1‘,-]11?4; (24)

so that, after the corresponding dimensional quantities are written as

Two-dimensional case Axisymmetric case
3 Y
a d
D= D= mz—
g? ™ 1Y) &
A=ds 1, S =me I (25)

2 2

“'121114 V'Eﬂ'&lv




it is posaidble to express every unknown quantity in terms of the knowm
quantities and the nondimensional integrals (24), Finally, if the refer-
ence area for the drag coefficient is chosen to be the frontal area evaluated
at x = 4, the following relationship can be established between the drag

coefficient and the thickness ratio:

D (26)
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5 OPTIMIM TWO-DIMENSIONAL BODIES

In the previous sections, the minimum drag probles was solved in general
for arbitrary boundary conditions., Here, two particular cases associated
vith the two-dimensional problem (n = O) are analyzed in detail, and the
results are summarized in Mgs, 1 through 7,

Sele QGiven Thickness, length, and Enclosed Area

If the thickness, the length, and the enclosed area are prescribed
vhile the moment of inertia of the contour is free, the transversality com~
dition leads to 03
equalities (18), the transition equation (20), and the switching functiom

= O vhich implies that l(3 = 0, so that the basic in-

(22) reduce to

K20, K -K,20
27)

B/, o=K(g -0

These results indicate that the corner point go. O exists vhen Kl = O, which
implies that K, <0, On the other hand, the corner point gl. 1 exists when
Kl s xz, which implies that xz > 0. Consequently, these two corner points
cannot coexiat, Murthermore, for K:I. >0 and Kl - Ka > 0, no corner points
exist,

In conclusion, three classes of bodies enter into the one=parameter
family of extremal solutions (Fig, 1): (I) an infinitely thin flat plate
followed by a regular shape, (II) a regular shape only, and (III) a regular
shape followed by a constant thickness contour, The parameter vhich governs

these solutions, called the sha ameter, can be defined as




1%
w-ﬁ-IA (28)

Bodies of Class I, This class of bodies, which is composed of in-
finitely thin flat plates followed by regular shapes, is characterized by
the conditions

kK, =0, XK,<0, Osg <sl, §-=1 (29)

which are valid for

Osq>s§ (30)

Consequently, use of Eq, (23) yields the following expression for the shape
of the optimum body (Fig. 2):

Osgsgo. N=0

€-¢ /2 (1)

o8l “'(1-'-_{'
o

vhere, from Eq. (28), it is seen that the abecissa of the transition point

is related to the shape parameter by (Fig, 3)

g =1-2F (32)

Finally, from Eq. (26), the minimum drag coefficient can be written in:the

form (Fig. 4)
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%..il, (33)

T 250 o

Bodies of Class II. The next class of bodies is composed of regular
shapes only and is characterized by the conditions

>0y K=-K,>0, £ =0, 8§ =1 (34)
which hold for
§¢¢s§ (39)

Thus, the shape of the optimum body is given by

2/3
ocesl, g.l:JL:JQbr (36)
1-(1-4)

vhere
1=K/, ~es4s<l 7)

is a constant which is related to the shape parameter through the expression

3. (3 D nZ/}
= 1 - + 2 1 - (”)
M l1«(1-4)

The drag coefficient can then be writtem as follows:
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3.
3

nRlve L-a- ¢)5/3] L-a- 0)2/3]2 (39)

Bodies of Class III. The last class of bodies is composed of regular

shapes followed by constant thickness contours and sstisfies the comditions
k>0, K=K, g=0, 0sg <1 (k0)
vwhich are valid for
é <<l (41)

The equation for the shape of the optimum body is then given by

osegse 1\-1-(1-%);/2

glsgsl. =1

(h2)

where the abscissa of the transition point and the shape parameter are re-

lated as follows:

G =519 (43)

The associated drag coefficient can be expressed in the foram

% -, (4)
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The above results can be employed in order to understand the effect
of changing any one of the given quantities on the shape of the optimum
body and its drag while the other two are kept constant. As an example,
if the thickness and the length are constant and the enclosed area is
varied, then the pressure drag (Fig. 4) is an absolute minimum when ¢ = 1/2,
The corresponding optimum shape is a wedge, which is precisely the result
obtained by Miele in Ref. 1 for problems where the thickness and the length
are given while the enclosed area and the moment of inertia of the contour

are free,

5.2, Given Thickness, Length, and Moment of Inertia of the Comtour

If the thickness, the length, and the moment of inertia of the contour
are prescribed while the enclosed area is free, the transversality condition
leads to C,=0 vhich means that K, = O, Thus, the basic inequalities, the
transition equation, and the switching function become

K20, K -K 20
N on e, - O

(43)

and imply the following: (a) The corner point €,+ O occurs when K=0
(b) The corner point ;1. 1 occurs when R1 = x3; and (¢c) These corner points
cannot coexist,

Again, one obtains a one-parameter family of extremal solutions which
is composed of the three classes of shapes mentioned in the previous section
(rig. 1)¢ The shape parameter, which governs these solutions, is defined as




Bodies of Class I. The conditions to be satisfied for this class of

bodies are

K=0, K <0, O0sg <1, gl (47)

and are valid for

Osws%- (48)

Consequently, Eq. (23) yields the following expression for the optimum

Bl‘lp. (1"18. 5) 3

°5g$§°o N=0
49)

where the abscissa of the transition point is related to the shape parameter

by (rig. 6)

& =1-7 (50)

Furthermore, the minimum drag coefficient is given by (Fig, 7)

.°% - 21, (51)

+ 6860
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Bodies of Class II. This class of bodies is characterized by the ocon-
ditions

Q>0 K-K>0, §e0, gl (32)
which are valid for

%sq;s; (53)

Thus, the expression for the optimum shape is as follows:

osgs1, ¢-4ffy (%)

vhere
K,so Ogcé o
..;E, (55)
szo O<ecl
and where
A(n, ¢) -*[ %H@%—lr(o. k) - J5 R0, k) (56)
SFrralay

In these and the subsequent formulas of this section, the upper signs are
toboclployodvhonxsso\vhich-oma that 1/? < ¢ £ 1/3, and the lower
signs, vhen l(3 2 O vhich means that 1/3 < ¢ <€ 3/7. Furthermore, the symsbols
7 and E denote the incomplete elliptic integrals of the first and second

kind, respectively, vhose argument 0 and parameter k are defined as
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Q-uccogw (57)
ﬁ:uluf

k = 2—;—&

Next, the constant ¢ is related to the shape parameter through the expression

RN, o

where
B(My ) = of 72 ¢ 410027 (59)

Finally, the minimm drag coefficient is given by

3
:z Mﬂ}* [‘”‘&""}“..] (60)

Bodies of Class III. The bodies of this class must satisfy the follow=~

ing conditions:

K, >0, K;=K g, =0, 0s¢f <1 (61)
which are valid for

;S¢s1 (62)
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Consequently, the shape of the optimum body can be expressed as

2l

osese . f- iy

g <t

where the abeocissa of the transition point is given by

The drag coefficient for the optimum body can then be writiten as

<1, 1N=1

G=f01-0

Cp 86k Q1,1

T

Q-9

(63)

(64)

(65)




J

§ -

| S |

6. OFT 18 IC_BODIES

In this section, two particular cases associlated with the three-
dimensional problem (n = 1) are considered, and the results are summarized
in Figs. 8 through 13,

6.1, Given Thickness, length, and Wetted Area

If the thickness, the length, and the wetted area are given while the

volume is free, the transversality condition leads to C, = O and implies

3

that K, = O, 80 that the basic inequalities, the transition equation, and

>
the switching function reduce to expressions (27). Consequently, the

corner point go. 0O exists for l(l = O,and the corner point gl. 1 exists when
l(1 = Ka. Incidentally, these two corner points cannot coexist, Further-
more, for K, >0 and K, - K, >0, no corner points exist (Fig. 1).

It is evident from the previous discussion that three classes of bodies
enter into the one-parameter family of extremal solutions: (I) a spike
followed by a regular shape, (II) a regular shape only, and (III) & regular
shape followed by a cylinder. The shape parameter governing the solutions

is defined as
g
Ak T (66)

Bodies of Class I. For this class of bodies, which is composed of

spikes followed by regular shapes, conditions (29) must be satisfied and are

valid for

Os‘ps% (67)
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Consequently, use of Eq. (23) ylelds the following result for the optimum
shape (mo 8

o‘g‘go' 'n-O

(68)
t-g,

;osgsl. ‘ﬂ'r-_—!:

The abscissa of the transition point can be obtained from Eq. (66) and is
given by (rig. 9)

goll-ZQ (69)

Fimelly, the minimum drag coefficient can be expressed as (Fig, 10)

4,\‘63

1
. =2y (70)
8¢
Bodies of Class I]. This class of bodies, which is composed of regu-

lar shapes only, is characterized by the set of conditions (34) which are
valid for

% <9 s§ (71)
The expression for the shape of the opt:l.m body is given by

oses1, ;-9&-3 (72)



where

and vhere

3
A(T, ¢) = -Joﬂ(l- m)z +§los [W\*ﬁ- HI]
(73)
1 aro tap — 0240
+ - AYC
N 2 W= - U4

The constant § is related to the shape parameter through the expression

o-3(5- 120 ) m

B(n, 9 = (2 - P 75)

The associated drag coefficient can be expressed as

3
3.2 03 3 2ug) o

Bodies of Class III. The set of conditions to be satisfied by this
class of bodies, which is composed of regular shapes followed by cylinders,
is represented by Eqs. (40) and hold for
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%scpsl
The equation for the optimum shape can thenm be written as follows:
osese é-%
g s€<1l, N=1

where the abscissa of the transition point is given by

g - 31 - o)

Finally, the drag coefficient can be expressed as

3-(3) 2T

6.2, Given Thickness, Length, and Volume

(77)

(78)

(?9)

(80)

If the thickness, the length,and the volume are given while the wetted

area is free, the transversality condition leads to Cy = O and implies that

Kz = 0, 80 that the basic inequalities, the transition equation, and the

switching function reduce to expressions (45)., These results indicate that

the corner point £ , O exists when = O and the corner point €., 1 exiats
o

when K3 = Kl. As in the problem of Section 5.2, the two corner points can-
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not ocour simultaneously. Furthermore, the three classes of bodies which

were discuseed in the previous section enter into the one-parameter family

of extremal arcs, the shape parameter being defined as
Ly
o= = (81)
e’

Bodies of Class I. For this class of bodies, the conditions (47) must

be satisfied and are valid for
Ososx % (82)

Thus, the equation of the optimum shape reduces to (Fig. 11)

0<g<f , M=0

-\ &)
&, 581, ﬂ'(r:-'go-)
where the abscissa of the transition point is given by (Fig. 12)
go 2] = "FQ (8“)

Finally, the drag coefficient can be written as (Fig. 13)

fg .22, (85)

T 512 ¢
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Bodies of Class II. The bodies of this class are characterized by
the conditions (52) which are valid for

$socd (86)

The geometry of the optimum shape can be obtained from Eq. (23) and is

given by

osesl, g-A°H*A ot (87)
where
VKK eyl (88)
and where
ATy o) = % 241 =1

8
ﬁ+1-~£-(1-20;f)§

- ﬁz# F(8, k) + 5 x(0, k)

(89)

The symbols F and E denote the incomplete elliptic integrals of the first

and second kind whose argument 0 and parameter k are defined as
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'-uccosi——'&'l*. '(!L'aj;)
Se1-h-qa-2ifr

Furthermore, the constant ¢ is related to the shape parameter by the relation-

(90)

ship

o= % [1 - i) (5)

vwhere

B 0 =f[1-a- ame)z]m (92)

The drag coefficient is given by

3. ;22-3, [s0, 0 #act, 0] [a0, 0 =22 0 + 32, 9] (93)

L 4

In the above expressions, the upper signs are valid for all values of 1

providing that /bt < @ < @,+ vhere

1
?, = 1 - 5X05, 17 ()

Otherwise, if o, < @ < 1/2, the upper signs are valid for 1) < 1//2¢, and the
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lower signs, for 1 2 1/,2¥. In closing, it is worth noting that some previous
work on bodies of Class II was done by Strand using partly analytical and
partly numerical procedures (Ref, 4).

Bodies of Class I1I., For thisclass of bodies, the conditions (61)

smust be satisfied and are valid for

1/2 cp <l (95)

Hence, the equation of the optimum shape is given by

oever. § -3 e 40R]

(96)

g £g<l, N=1

where the upper sign is valid for 1| < 1/2 and the lower saign,for 1 2 1/2,
Finally, the abscissa of the transition point and the shape parameter are

related by the expression

£ =201 - o) (97)

The drag coefficient is given by

27 (0, 1
.‘:g Izu_‘_%u-,) (98)
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CONCLUS IONS

In this report, the problem of minimizing the pressure drag of slender
bodies in Newtonian flow is considered. Attention is focused on the class
of problems which involve, in addition to the thickness and the length,
the enclosed area and the moment of inertia of the contour for two-
dimensional shapes and the wetted area and the volume for axisymmetric shapes.

When three of the four quantities under consideration are specified,
one obtains a one-parameter family of optimum shapes, the parameter being
a function of the three prescribed quantities, Generally speaking, this
family of solutions is composed of three classes of shapes: (I) a flat
plate or a spike followed by a regular shape, (II) a regular shape only,
and (III) a regular shape followed by a constant thickness contour or a
cylinder,

The above results can be employed in order to understand the effect
of changing any one of the three given quantities on the minimum drag while
the other two are kept constant. In each case, the drag has an absolute
minimum, and the corresponding optimum shapes are those derived by Miele
in Refs. 1 through 3, For example, if the thickness, the length, and the
enclosed area of a two~dimensional shape are prescribed, thoA drag is an abso-
lute minimum when A/df = 1/2, which corresponds to the wedge solution, Miele
found the wedge to be the optimum body for the case where the thickness and
the length are specified, while the enclosed area and the moment of inertia
of the contour are free,

In cloeing, three remarks are important:

(a) Some of the optimum shapes obtained in this analysis are concave;
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consequently, these bodies should be restudied using the Newton-Busemamn
pressure coefficient law in accordance with the method developed an Ref, 5.

(b) When the thickness ratio becomes very large, the average walue of
the alope may become such that the slender body approximation is violated;
consequently, this case should be reinvestigated using the exact Newtonian
expression for the pressure coefficient, that is, the sine aquare law (Ref. 9).

(c) When the thickness ratio becomes very small, the friction drag
(wvhich was neglected here) may have the same importance as the pressure drag.
Consequently, it is of interest to formulate a nev minimal problem in which
the total drag (the sum of the pressure drag and the friction drag) is ex-
tremized (Refs, 6 and 7).
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Fig. 1. Relation between characteristic constants and various classes of
solutions.
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Fig. 2. Optimum shapes for given thickness, length, and enclosed area.
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