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ON SIUDDP BODIES OF MINIMUM DRAG

IN NEWTONIAN FIDW

by

DAVID G. HURLL(

i SUMKARY

In recent papers by Miele (Refs. 1 through 3), the problem of mini-

[1 aiming the pressure drag of slender bodies in Newtonian flow was considered

in general and, then, solved for those particular cases in which, of the

four geometric properties being considered (thickness, length, enclosed area,

and moment of inertia of the contour for two-dimensional shapes and diameter,

length, wetted area, and volume for axisymmetric shapes), two are prescribed

and the remaining two are free. In this paper, the analysis of Refs. 1

through 3 is extended to the class of problems in which three quantities are

proescribed and the remaining is free. After the variational problem is re-

formulated in order to account for the fact that the pressure coefficient must

be ncnnegative everywhere, special attention is devoted to those particular

cases in which two of the three prescribed quantities are the thickness and

the length, In each case, a one-parameter family of extremal solutions is

H obtained, the parameter being related to the three prescribed quantities.

Furthermore, each family of extreml solutions contains three classes of

body shapes: (I) an infinitely thin plate or a spike followed by a regular

shape, (II) a regular shape only, and (III) a regular shape followed by a

constant thickness contour or a cylinder* In all of the cases considered,

(*)Staff Associate, Astrodynamics and Flight Mechanics Group.
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t eana~itlaal expressions are obtained for the geometr'y of the optimum lshapoe

and the asgoojated drag coefficient..
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1. INTRDUMOTIG

In the previous reports by M4i.le (Refs* 1 and 2), the problem of mail-

mizing the pressure drag of slender bodies in Newtonian flow was formulated

in general and solved for those particular cases in which, of the four geo-

Snmetric properties being considered (thickness d, length A, enclosed area A,

and moment of inertia of the contour M for two-dimensional shapes and

thickness d, length A, wetted area 6, and volume V for axisymnetric shapes),

two are prescribed and the remaining two are free. In this report, the

analysis of Refe. 1 and 2 is extended in order to cover the case in which

I three of the geometric properties are specified and only one is free.

However, in order to do so, it is necessary to reformulate the variational

problem and include the condition that the pressure coefficient must be

nonnegative everywhere. In the interest of brevity, the approach of Ref. 3

is employed, that is, the two-dimensional problem and the axisymmetrio

problem are considered simultaneously. In particular, attention is devoted

to those cases in which two of the three prescribed quantities are the thick-

ness and the length.

ii
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II ~2. NIIID(UI DRAG PROBME
According to ets. 1 through 3, the Newtonian pressure coefficient tor

II a slender body in an inviscid hypersonio flow at zero angle of attack I.

II given by

IIcp .2i 2  (1)

II where x denotes a coordinate in the flow direction, y a coordinate norusl

to the flow direction, and y the derivative dy/dx. With reference to the

[I portion of the body between stations 0 and x. the drag per unit span, the

enclosed area, and the moment of inertia of the contour of a two-dimensional

shape and the drag, the wetted area, and the volume of an axdsymmetric

shape can be written as

Two-dimensional case Auxi.,metric case

D(x) 4q JO j3dx D (x) 4,nqJ'o W dx

ANX) 2joy dx S(x) 2wJroy dx (2)

)(x) 2 2 dx V(x) .f'y dx

After the definitions

Two-dimensional case Axiammietric case

a D D(x)/Aq a - D(x)/4-¶q

1 -A(x)/ 2  p - S(x)/2 ()

y 1(x)/2 a V(x)/vf



are introduced and after both sides of Eq.. (2) are differentiated with

respect to the independent variable, the following differential constraints

are obtained (Refe 3):

n- 3 -0

Y2 2S+y-y =0

where n a 0 in the two-dimensional case and n * 1 in the axisymnetric oase.

Since the condition that the pressure coefficient must be nonnegative can

be expressed in the form

* 2 (5)-p z

I: where p denotes a real variable, the system of differential equations (4)

"[ and (5) has one independent variable (x), five dependent variables

(i, P0 y9 y, p)9 and one degree of freedom* Consequently, if it is assumed

that

Sx a y iU O'iU a 0.o (6)

Sand that some, but not all, of the remaining state variables are specified

at the final point, the minimum drag problem is stated as follows: In the

class of functions ;(x), B(x). v(x). y(x). p(x) which are consistent with

the differential constraints (4) and (5) and the initial conditions (6),

find that secial set which minimizes the difference W -Gf -_ O 1 here

10 a-cto
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S3. NEMSARY CONDITIONS

This problem is one of the Maer type with separated end-conditions,

Sso that, after the Lagrange multipliers 11 through ), are introduced, the

extremal arc is governed by the following Euler-lagrange equations (Refs. 8

and 9):

Ii .0

-(-3' +2 X4) - "2 " 2X3-

I - Integration of the first three equations leads to the results

ii l" C1 X2 "0C2  X3- C3  (8)

where C1 , C2 , C3 are constants. Furthermore, since the independent variable

does not appear explicitly in the constraining equations, the additional

I first integral

( 2C Iy Y + C2Y +c * 2 C (9)

is valid, where C is a constant.

Ii
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As the fifth Euler equation indicates, the extremal arc is generally

discontinuous and is composed of the subarceI
4 ,. 0 and/or p. o (10)

II Along the former subares, called regular shapes, the pressure coefficient is

always positive or, at most, zero at a single point. Along the latter sub-

JJ arcs, the slope of the body is always zero; hence, they are called zero-

lop. shapes.

1'When a discontinuity occurs, the Erdmann-Weierstrass corner conditions

mast be applied. They require that the constants C1 , C2 , C3, C have the

- same value for all of the subarcs included in the extremal arc and that

M- 74)* ~n-l3 ) . 0 (U1)
A(- 3)'iyn + )'4)" -€n• "o Y-

Consequently, Eqs. (11) imply that X a 0 at a corner points Furthermore,

I -a discontinuity in the slope is not possible in the two-dimensional case

V (n = 0) but in possible in the axisyemetric case (n = 1) if y a Oe

The end-conditions are partly of a fixed end-point type and partly of

iithe natural type. The latter must be derived from the tranavereality con-

dition

Cdx (C + 1) da + C2 dO + C dy+ (- 3CIYV. + %) dy]- 0 (12)

which is to be satisfied for all systems of differentials consistent with

the prescribed end-conditions and implies that C1 . - 1.
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fl The application of the Legendre-Clebech condition indicates that the
drag is a minimum if the following inequalities are satisfied:

jzO , along the regular shape

X4 c 0, along the zero-slope shape

From the previous discussion, it appears that the multiplier X4 plays

San important role in determining the coposition of the extremal arc and,

hence, is called the switching function. Its properties are summarized as

11 follows$

X4 0, along a regular shape

A :C , along a zero-slope shape (14)

X 4 0, at a corner point

I



After Introducing the nondimnsional variables

and the definitions

[ �_. C(d/2)" , K2  C2 (d/2)1 n, K3•.c• 3 (d/2)2 "n (16)

one can rewrite the first Integral (9) in the foam

in which v r d/A denotes the thickness ratio* Due to the fact that the

pressure coefficient must be nonnegative everywhere, the application of

this first Integral at both end points of the extremal are leads to the

basic inequalities

Y. a 0o , •- XZ-• X3 *
U

Furthermore, the general equations for the regular shape and the sere-

U slope shape can be written as

d¶j + Coast (9

e�te 1 - Conet
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It denotes the ordinate of a corner point between a sero-slope

shape and a regular shape, the transition esu~ation

holds. Furthermore, after the nondimensional switching function is defined

as

the integration of the fourth Euler-Lagrange equation along a zero-slope

shape yields the relationship

KQ -c K-K2 + 2K3 % (22)

This equation supplies the proper sequence of subaros as follows (a) If

K > 0, a regular shape precedes the corner point, and a zero-slope shape

followls furthermore, owing to the monotonic nature of the switching function,

no subaro my follow the zero-slope shape* (b) If K < 0, a nero-slope

shape precedes the corner point, and a regular shape follows; also, no sub-

U arc my precede the zero-slope shape.

P In view of thes statements and the transition equation, the muium

possible number of subarce composing the extremal are is three (one regular

shape and two zero-slope shapes) with one of the two possible corner points

lying along ¶ a 0 and the other, along 1. - 1 If the coordinates of these

two corner points are denoted by %, 0 and %9 1, the general equations for

the shape of the optimum body can be expressed as



fi

fl o

For extremal ares involving only one corner point or no corner points at

al. the shape of the optimum body can be formally obtained from Eqs. (23)

by setting•o 0 and/or •1*=l It must be understood, howeverg that the

corner conditions need not be stisfied at these points.

Once the shape :is known, the followiLng nondimensiLona]. integ~rals cana be

! evaluated:

so that, after the corresponding dimensional quantities are written as

Two-dimensional case Axisymmtrio case

21 4z

A - dl IA S - dA1 (25)

I.
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fI it is podsible to express ever unknown quantity in terso of the kmowm

quantities and the nondimensional integrals (24). Fin&aUy, if the refer-

t! once area for the drag coefficient in chosen to be the frontal area evaluated

at x a A, the following relationship can be established between the drag

coefficient and the thickness ratio:

CD ID (26)

=i

/I

U

[I
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In the previous sectional the miium drag problem was solved in general

for arbitrary boundary conditions. Here, two particular cans associated

with the two-dimensional problem (n = 0) are azalyzed in detail, and the

Sresults are sumrized In Figs. 1 through 7.

S5elo GiLven Thickness, Length, and EnclosedAre
SIf the thickn~el the lengthq and the enclosed area are proscribed

while the moment of inertiLa of the contour in freeg the tranevereality can-

[ dition leads to C3= 0 which implies that K3= 0, so that the basic In-

equalities (18), the transition equation (20), and the switching function

(22) reduce to

i- (27)

Theme results indicate that the corner point %1 0 exists when I-= 0, which

implies that 12 < O. On the other hand, the corner point 9l' 1 exists when

K, a K29 which implies that K2 > o. Consequently, these two corner points

cannot coexist. Furthermore, for K_ > 0 and K1 - K2 > 0, no corner points

exist.

In conclusion, three classes of bodies enter into the cue-parameter

i family of extremel solutions (Fig. 1)t (1) an infinitely thin flat plate

followed by a regular shape, (II) a regular shape only, and (III) a regular

shape followed by a constant thickness contour. The parameter which governs

1 itheme solution., called the shape parameter, can he defined as



"11

~ *l* 1 A(28)

fBodies of Claus I This class of bodieo, which is composed of in-

finitely thin flat plates followed by regular shapoe, is characterized by

the conditions

K 1 O K2 <0 0 S Cl ~1 i1 (29)

! vwhich are valid for

0 ! t ic 2 (30)

Consequently, use of Eq. (23) yields the following expreesson for the shape

of the optimum body (Fig. 2):

where, from Eq. (28), it is seen that the abscissa of the transition point

I { is related to the shape parameter by (Fig. 3)

~ (32)

Finallyt from Eq. (26), the minimm drag coefficient can be written in- the

form (Fig. 4)



(33)

Bodies of Class n. The next class of bodies is composed of regslar

shapes only and Is charaoterized by the conditions

Vý K>O0 K, K2 >0, to .0 (34)

which hold tor

lhus, the shape of the optimum body is given by

2/3 0-)

where

t-x 2AC 1 , -- S$~l (07)

Is a constant which in related to the shape parameter through the expWession

2 ~3 -Q+ 20)(U ,20 (38)U ( - O)W/

- The drag coefficient can then be written as followsj
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Bodies of Class III° The last class of bodies is composed of regular

shapes followed by constant thickness contours and satisfies the conditions

K >o, K2 a. , go.O, o 1 (40)

which are valid for

!C C t 1(41)

The equation for the shap. of the optimum body is then given by

where the abscissa of the transition point and the shape parameter are re-

lated as follows.

(1- (435)

The associated drag coefficient can be expressed in the form

I('" -



The above results can be employed in order to understand the effect

of changing any one of the given quantities on the shape of the optimum

body and its drag while the other two are kept constant. As an emaple,

if the thickness and the length are constant and the enclosed area is

varied, then the pressure drag (F•g. 4) is an absolute minmmm when i a IA.

The corresponding optimm shape is a wedge, which ii precisely the result

obtained by Miele in Ref. 1 for problems where the thickness and the length

are given while the enclosed area and the moment of inertia of the contour

ar~e fr~ee*

3.2. given Thickness. Lenath. and Moment of Inertia of the Contour

If the thickness, the length, and the moment of Inertia of the contour

are prescribed while the enclosed area is free, the traneversality condition

leads to C2 a 0 which means that K2 - 0. Thus, the basic inequalities, the

transition equation, and the switching function become

and Imply the followingt (a) The corner point 9o9 0 occurs when K 1 0 O

(b) The corner point C,9 1 occurs when K. a K3; and (c) Thes corner points

cannot coexist.

is Ap!ing one obtains a one-parameter family of extremal solutions which
is composed of the three olamsse of shapes mentioned In the previous section

(Fne 1). The shape parameter, which governs them solutions, is defined as

Ii
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dI

Bodies of Class I. The conditions to be satisfied for this class of

V. bodies are

and are valid for

o !C (48)
7

Consequently, Eq. (23) yields the following expression for the optiom

shape (Fig. 5)t

where the abscissa of the transition point is related to the shape parameter

by (Fig. 6)

t -1 7m (50)

Furthermore, the minimum drag coefficient is given by (Fig. 7)

0 8
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80"04e of Class 11. This class of bodies is characterized by the oem-

ditione

1( >o, 0 1 -K•3 o, >o.O, 0., (52)

which are valid for

Thuas the expression for the optiwmu shape is as followas

iO 0U (#T

and where

A(L + -L- P9 k) 1. O k] (56)

In these and the subsequent formulas of this section, the upper sisns are

to be employed when K3 a0 which mesans that i/? sy 1/3, W and the lower

signs, when K3 a 0 which means that 2/3 s p t 3/7. Furthermore, the symbols

F and X denote the incomplete elliptic integrals of the first and seco=d

kind, respecti:vel9 whoe argument 0 and parameter k are defined as
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S i arc corn (37)

ku~j

Next, the constant * is related to the shape parameter through the expression

I
1! 1 -'`1 (58)

B(11, rK) *q22/3 (59)

FinallUl the mininum drag coefficient is given by

CD [4A(l + ~.0(0

Bodies of Class II. The bodies of this class must satisfy the follow-

ing conditions:

, •>o, 0.• , K 3• Kl !C(61)

which are valid for

(P (62)
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Consequentlyq, the shape of the optima body can be expressed as

Ii o.,.c .i.
(63)

where the absoissa of the transition point is given by

a - 0(64)

"The drag coefficient for the optimum body can then be written as

CD-' 6 1 (65)

1:

I'i
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Ii 6. on~mt Axisiuemic aw=
In this section, two particular cases associated with the three-

1dimensional problem (n - 1) are considered, and the results are summarized

in Figs. 8 through 13.

6.1. Given Thickness, Lenath, and Wetted -Area

If the thickness, the length, and the wetted area are given while the

Svolume is free, the trannvereality condition leads to C u 0 and implies

that K13 0, so that the basic inequalities, the transition equation, and

the switching function reduce to expressions (27)o Connequently, the

corner point Co, 0 exists for K 0, and the corner point !, 1 exists when

• =2, Incidentally, these two corner points cannot coexist. Further-

more, for K > 0 and K, - 12 > 0, no corner points exist (Fig. 1).

It Is evident from the previous discussion that three classes of bodies

enter into the one-parameter family of extremal solutionst (I) a spike

followed by a regular shape, (II) a regular shape only, and (III) a regular

shape followed by a cylinder. The shape parameter governing the solutions

in defined as

i N M Is (66)

.Bodies of Class I. For this class of bodies, which is composed of

I espikes followed by regular shapes, conditions (29) must be satisfied and are

valid for

0 1 f s (67)Ii
I:



Co•usquently, use of Zq. (23) Yields the followlng result for the optlma

shape (F•g. 8)1

0 4 to 1-0 •I0

liih abscissa of the transition point can be obtained from Eq. (66) and ±i

given by (Fig. 9)

to "- 20 (69)

rinmall, the minimum drag coefficient can be expressed "s (FIg. 10)

C~l (70)

ltdies of Class Ij. This clss of bodies, which is composed of regu-

lar shapes only, is characteriued by the set of conditions (34) which are

valid for

I? The expression for the shape of the optimmm body Is given by

o, S.AM (72)
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where

V and where

A(¶, 0) --#70(- + log .log I + 4

2C~-

The constant i is related to the shape parameter through the expression

CP 2 D~l 0(74)

where

I(I D(i,, i) - (,fl) 4 /3 (1 - i,)#j(7•)

The associated drag coefficient can be expressed as

i 3(1 <*" "[lI DU 01i-! (76)

Bodies of Class III. The set of conditions to be satisfied by this

class of bodies, which is composed of regular shapes followed by cylinders,

is represented by Eqs. (40) and hold for



H 25

2 (77)

The equation for the optimum shape can then be written as foflowas

Ii T (78)

where the abscissa of the transition point is given by

-3(1 - p) (79)

i Finally the drag coefficient can be expressed as

cD C ~ 3 [=i- 2

I: - - 1)) I~~J(80)

6.2. Given Thickness. Length, and Volume

If the thickness, the length, and the volume are given while the wetted

area is free, the traneversality condition leads to C2 a 0 and implies that

( a 0, so that the basic inequalities, the transition equation, and the

switching function reduce to expressions (45)o Them results indicate that

the corner point go, 0 exists when K a 0 and the corner point 919 1 exists

whenK3 K1 9. As in the problem of Section 5.2, the two corner points can-

i
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not ocour simultaneously. Furthermore, the three classes of bodies which

wore discussed in the previous section enter into the one-parameter family

i V of extreml. ares, the shape parameter being defined as

4v

Bodies of Class I. For tise class of bodies$ the conditions (47) must

li be satisfied and are valid for

I 0 , , (82)

Thus, the equation of the optimum shape reduces to (Fig. 11)

where the abscissa of the transition point is given by (Fig. 12)

go .i 4c (84)

Finally, the drag coefficient can be written as (Fig. 13)

CD
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Bodies of Class n. The bodies of this class are characterised by

the conditions (52) which are valid for

1 19 (86)

The geometry of the optimum shape can be obtained from Eq. (23) and is

given by

o! g: A(76 (87)li ~AMo. AU,. ,)

where

I'ALII iD , . 23, -- •,•1(

(89)

- F(0, it) + 5E (0, k)

The symbols F and E denote the Incomplete elliptic integrals of the first

and second kind whose argument 0 and parameter k are defined as

I
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Ii
ms ar co + . -U - 2t,77

i5 +J*l -(IL- 2#•)
(90)

Furthermore, the constant , is related to the shape parameter by the relation-

ship

where

3(11, [1* (1 - 2 *If)2 2/3 (92)

The drag ooefficient is given by

[gOs, ,#) ,Ti, #]2 [A(O, f) ,,, (•. f) +,B3(1 f)] (93)

In the above expressions, the upper sips are valid for all values of

providing that 2/4. q# ! cpt, where

*~ 1~7~(94)

Otherwise, if s, !9 ! 1/29 the upper signs are valid for s s q/T,", and the

'i
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lover sips, for ?1 2 14A. In closing, it is worth noting that sowe previous

work on bodies of Class II was done by Strand using partly analytical and

partly numerical procedures (Ref. 4).

Bodies of Class III. For thisclass of bodies, the conditions (61)

must be atisfied and are valid for

V1/2 g 1l (95)

ence, the equation of the optimum shape in given by

S[*](96)

where the upper sign is valid for !9 s1/2 and the lover aip, for ¶7 a 1/2.

Finallyl the abscissa of the transition point and the shape parameter are

related by the expression

.2(1 - •) (97)

The drag coefficient in given by

A(0.- 1) (8
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CONCLUSIONS,

In this report, the problem of minimizing the pressure drag of slender

bodies In Newtonian flow in considered. Attention is focused on the clans

of problems which involve, in addition to the thickness and the length,

the enclosed area and the moment of inertia of the contour for two-

dimensional shapes and the wetted area and the volume for axisymmetric shapes.

When three of the four quantities under consideration are specified,

I one obtains a one-parameter family of optimum shapes, the parameter being

a function of the three prescribed quantities. Generally speaking, this

family of solutions is composed of three classes of shapes: (I) a flat

¶" plate or a spike followed by a regular shape, (II) a regular shape only,

and (III) a regular shape followed by a constant thickness contour or a

cylinder.

The above results can be employed in order to understand the effect

of changing any one of the three given quantities on the minimum drag while

the other two are kept constant. In each case, the drag has an absolute

minim-, and the corresponding optimum shapes are those derived by Mieli

in Refs. 1 through 3. For example, if the thickness, the length, and the

enclosed area of a two-dimensional shape are prescribed, the drag is an abso-

lute minimum when A/dA a 1/2, which corresponds to the wedge solution. Miele

p found the wedge to be the optimum body for the case where the thickness and

the length are specified, while the enclosed area and the moment of inertia

of the contour are free.

In closing, three remarks are important:

(a) Some of the optimum shapes obtained in this analysis are concave;
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oonsequently, thee bodies should be restudied using the fewtcn-Bumemann

pressure coefficient law in accordance with the method developed in 3ef. .5

( When the thickness ratio becomes very large, the average value of

the slope my become such that the slender body approximation in violated;

consequently, this came should be reinvestigated using the exact Nevtonian

expression for the pressure coefficient, that is, the sine square law (Ref. 9).

(a) When the thickness ratio becomes very inll, the friction drag

(which was neglected here) my have the same importance as the pressure drag.

I Consequently, it is of interest to formulate a now minimal problem In whioh

[ the total drag (the sus of the pressure drag and the friction drag) is ex-

tremized (Refs. 6 and M).

I7

U
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