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PREFACE

In this Memorandum the authors discuss a competitive

situation arising in economic theory, using some concepts

and techniques from the mathematical theory of games.

Dr. Shubik is an economist at the Thomas J. Watson

Research Center of the International Business Machines

Corporation and a consultant to The RAND Corporation.
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SUMMARY

A classical formulation of the marketplace is

examined from three different theoretical viewpoints,

and the three solutions that result are contrasted.

When the number of participants is small, the solutions

are very different, both in their form and in their

quantitative predictions. As the size of the market

increases, however, they all converge to a common

solution, despite the wide disparity in the underlying

assumptions.

The first model supposes all individuals to be

price-takers, acting in isolation to maximize their

private utility; the result is the "competitive

equilibrium," or Walras solution. The second model is

a fully cooperative game, with no restrictions on

communication, negotiation, or collusion; the result

is the "core," or Edgeworth solution. The third is an

asymmetric, noncooperative game, in which half the

players (e.g., the consumers) are passive price-takers,

while the others have strategic freedom to exploit this

passivity, individually but not collusively. The

"equilibrium point" of this game corresponds to the

oligopolistic solution of Cournot.
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CONCEPTS AND THEORIES OF PURE COMPETITION

1. INTRODUCTION

Underlying much of basic economic theory concerning

the formation of prices and the operation of markets is

the idea that if the number of individuals trading in all

markets is sufficiently large, and if there are no

institutional bounds, or opportunities for cooperative

arrangements between groups, then a competitive price

system will emerge. Each individual may proceed to

maximize his own welfare, utilizing only his knowledge

of the price levels and of his own desires and assets,

with the overall result that all markets will be cleared

and the resulting imputation of goods and services will

meet certain broad requirements of optimality.

At the other end of the spectrum Edgeworth (1], and

many others since, have observed that in bargaining among

a few individuals (of more or less comparable strength),

there will be a whole range of outcomes that are optimal,

in the appropriate sense, and economic conditions alone

will not determine a specific outcome.

A third possibility is a situation in which individuals

of one type are few in number, or are organized in some

manner, while the others are not. In this case it has been

observed that the few can employ "monopolistic practices"

against the others, and that the resultant outcome will
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be determinate, but not optimal. Institutionally, such

a situation may arise when a few firms confront many

customers in a market; the natural setting for this type

of analysis is within the framework of the theory of

oligopoly.

An interpretation and unification of these three

different viewpoints is presented here in terms of the

theory of games. The results described are based

primarily upon the joint findings of Shapley and Shubik

[21, but also upon recent papers by Shubik [3], Shapley [4],

Scarf [5], Aumann [61, and Debreu [7].

2. BILATERAL MONOPOLY

2.1. The Edgeworth Model

For simplicity we consider a market with two traders,

trading in two commodities. The initial holding of the

first trader is (a, 0) and that of the second is (0, b).

Let their preferences be represented by two families of

continuously differentiable, convex indifference curves,

denoted by Y(x,y) and cp(x,y), respectively, where x

and y are the amounts held of the first and second

commodity. By superimposing the two families of curves,

with coordinates oppositely oriented, we obtain the

familiar "Edgeworth box" [1], as illustrated in Fig. 1.

Any point in the box represents a jointly attainable trade

and will have coordinates (a-xp b-y) for the first



-3-

trader and (x,y) for the second. The point R represents

the initial position of both players, prior to trading.

The first trader's zero point is at 0', and his initial

holdings are represented by the vector O1R, which

has length a. His goal is to carry out trades that

move the outcome in a "south-west" direction as far as

possible, i.e., away from 0'. The zero point for the

second trader is at 0, and OR represents his initial

stock of b units of the second commodity. He wishes

to trade in a manner that moves the outcome in a "north--

east" direction as far as he can.

a

R D' 0

/

O(R)

0

0

Fig. I



There are three basic models, or "games," which can

be formulated in bilateral monopoly to illustrate three

strategically very different trading procedures; we shall

denote them by the symbols (1, 1 )0, (1, 1)I and (1, 1)2.

In Fig. 1 they will lead to the outcomes indicated by

the point P, the point M, and the curve CC', respectively.

2.2. The Game (1, 1)0: The Competitive Equilibrium

The essence of the economic model of pure competition

is that all participants act as price-takers. One assumes

that in some manner or other a schedule of prices has been

established in the market, and that each individual takes

note of these prices and buys or sells accordingly. He

does not actively control or influence the prices. Uhen

the number of participants in the market is large, it is

usually assumed either implicitly or explicitly that a

dynamic market mechanism produces the prices, but in our

"game," which at present has just two players, we shall

unrealistically assume that the omniscient referee performs

his calculations and names an appropriate set of prices,

then acts as a clearing house for all transactions. By

the rules of the game, the players are strategically

constrained to act as price-takers. The subscript on the

symbol (1, 1)0 is meant to convey that neither of the

two traders has sufficient freedom of strategy to manipulate

price.
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We know from basic economic theory [8] that when

consumers? tastes are independent and can be represented

by convex indifference sets (as is the case here), then

a competitive equilibrium will always exist. This is

illustrated in Fig. 1 by the equilibrium price line RP

and the competitive allocation point P. In this two-

commodity example, the slope of the line RP gives the

relative price of one commodity in terms of the other.

If prices in this ratio are announced by the referee,

then trading will continue until the point P is reached.

No further gain can be made by either side because of the

tangency between the price line and each trader's

indifference curve. This so-called "competitive" solution

exists under quite general conditions, but it is not

necessarily unique.

The point P is Pareto optimal, which means that,

given the final distribution of resources, it is not

possible to improve the welfare of any one individual

without decreasing the welfare of another. The extended

curve ODD'O' describes the full Pareto--optimal set in

Fig. 1. (The interior portion DD' is the locus of the

*Somewhat unfortunately, the term "competitive" has
been attached by established usage to just that solution
concept-out of the three or four that we shall be
considering-that has the least to do with game theory.
Paradoxically, the competitive equilibrium involves no
interplay between the 'competitors,' and might better be
described as an "administered-price" solution.
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points of tangency between the two sets of indifference

curves.) Any point off this curve can be dominated by

a point on it. For instance, M and W in Fig. 1 are

indifferent to the second trader, but W is preferred

to M by the first trader. Hence M is not Pareto

optimal, since the welfare of at least one trader can be

improved without damage to the other.

2.3. The Game (1, 1)1: The Monopolistic Solution

The second case we consider is (1, 1)1, where one of

the traders, say the first, is strategically empowered

to name the price, while the other is restricted to

maximizing his own welfare, taking price as given. Any

ray through the initial point R represents a set of

(relative) prices. The object of the first trader will

be to select a ray such that the final trade is as

favorable as possible to himself, knowing that the second

player will trade up to the point of tangency between

the price ray and his family of indifference curves.

This is indicated in Fig. 1 for the ray RQ at the

point M. A monopolistic trading curve may be drawn-

the curve MP in the figure-which is the locus of points

of tangency between the price rays and the indifference

curves of the second trader. (There will be a similar

"response curve" for the first player# intersecting the

other at P.) The optimun for the first player is in
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fact the point M, where his indifference curve is

tangent to the second player's response curve.

We see that this "monopolistic" solution is not

Pareto optimal, and that it favors the price-naming

monopolist as compared to the solution P of the previous

case.

2.4. The Game (1, 1)2: The Contract Curve

In the third case, denoted by (1, 1)2, we assume

that both players are strategically capable of naming

price, and may negotiate in any manner they choose. There

is no specification of the dynamic process-the particular

"rules of the game"---beyond noting that any bargaining

or haggling is permitted. The solution propounded by

Edgeworth to this model of bilateral monopoly was the

contract curve CC' in Fig. 1. This is not the entire

Pareto-optimal set, but just that part of it where neither

side can force a more favorable distribution by a refusal

to trade. The two indifference curves through R provide

the bounds C and C'.

This Edgeworth solution does not yield a unique

prediction of the imputation of resources; it merely

indicates a range. The price-taking model (1, 1 )0o

on the other hand, did produce a determinate, Pareto-

optimal outcome; the latter was located on the contract

curve but it was obtained by imposimg somewhat unrealistic

restrictions on the trading possibilities considering the

small number of traders.



3. MARKETS WITH MANY TRADERS. THE GAME (nn)0

Implicitly or explicitly in all models of trading,

assumptions have to be made concerning the institutional

nature of the market. In the broad sweep of economics,

when many individuals are involved, we expect markets to

be more or less insensitive to minor institutional

differences, but when two individuals engage in face-to--

face bargaining we suspect that personality, cultural

factors, psychological details, the fine structure of

moves and timing, etc.,all play a major role.

This being the case, it is entirely appropriate to

use the "game" (1,1)2 when we deal with bilateral monopoly.

When we discuss markets with many traders on each side,

however, we often tend to use something like (m, n) 0

as the model under investigation. In other words, we

effectively assume that in markets with many participants

on all sides, the individual is constrained to act as a

price-taker. There are many good reasons for this, such

as the cost of comnunication, the lack of time to talk

to everyone, and other organizational factors that drive

toward impersonal mechanisms of trade.

On the other hand, a sociologist or anthropologist

might point out that in spite of numerical size and

communication problems, patterns can exist and persist

in a society that rely on the overt or covert coordination

of many individuals. There may be stable configurations



involving the compliance of large groupings or coalitions

within the society. Furthermore, both long-run socio-

economic considerations and a study of information processes

indicate that although many costs and much expenditure of time

and energy may be incurred in creating a set of intricate

coalitions ab initio, yet given their existence, little

effort need be spent in maintaining them. In view of these

considerations, it will be worth investigating the

characteristic properties of games of the form (m, n)l

and (m, n) 2 , as well as (m, n)0 .

For simplicity in the sequel,we shall not only

restrict our attention to bilateral markets, but we shall

assume m - n. Traders of the same type are assumed to

have identical preferences and initial holdings. Under

these assumptions, the discussion of (n, n) 0 becomes

especially easy.

Indeed, in going from (1, 1)0 to (n, n)o, the form

of the solution remains the same, since the competitive

equilibrium point (illustrated for the two-person case

as the point P in Fig. 1) has a direct 2n-dimensional

analogue. In fact, the outcome will be the same (under

our highly symmetric assumptions) as though n games of

the form (1, 1 )0 were being conducted independently and

simultaneously. As n becomes large the competitive

equilibrium point, from the viewpoint of the economist,

will be much more "reasonable" as a solution than it was
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in the case of bilateral monopoly, for the reasons

already given.

4. COOPERATIVE GAMES. THE GAME (n, n) 2

4.1. Cores and Solutions

Before we proceed to (n, n)I or (n, n) 2 , a brief

digression into the subject of cooperative n-person game

theory will be necessary. For ease and clarity the

exposition will be mostly in terms of games where the

players have transferable, measurable, and comparable

utilities. (It is as though the players all attach the

same worth to money, and have a constant marginal utility

for it.) It must be emphasized that the results we shall

give concerning (n, n) 2 , are independent of these utility

restrictions.

In order to explain the concepts of cooperative

solution and core, we must also define what is meant by

the following terms: the characteristic function of a

game, an imputation, an effective set of players, and

domination of one imputation by another.

The characteristic function specifies the worth that

a coalition can achieve if they limit their trades strictly

to themselves. Mathematically it is a function v(S)

defined on sets of players S, with the properties

v(e) - o,
v(S U T) Z v(S) + v(T), whenever s n T - 0.
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The first condition merely states that the amount

achievable by the null set is nothing. The second

condition is the fundamental economic property of super-

additivity: if two separate groups having commerce only

amongst themselves are joined together, the resultant

group is at least as effective as were the two independent

groups. Beyond these two conditions there is nothing

more than can be said a priori about a characteristic

function.

If we denote the set of all players in a game by

N, then v(N) specifies the total amount that the whole

group can obtain by cooperation. A reasonable form of

"cooperative" behavior would be for the players to agree

to maximize jointly, and then to decide how the proceeds

are to be apportioned, or "imputed." We define an

imputation a to be a division of the proceeds from the

jointly optimal play of the game among all the n players:

a - (al,a2,a3,... an)

where
-- n

ai > v(i) and E i " v(N).
i-i

Their utilities being transferable, this is properly
represented by a single number,which denotes maximum
obtainable welfare. If utilities were not transferable,
v(N) would instead have to represent the Pareto-optimal
surface, and similarly for smaller coalitions. (See [6),
(41.)
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The condition ai-Ž v(1) embodies the principle that no

individual will ever consent to a division that yields

him less than he could obtain by acting by himself. It

is often convenient to normalize the individual scales

so that v(r) - 0.

A set of players is said to be effective for an

imputation if by themselves they can obtain at least as

much as they are assigned in that imputation. Symbolically,

S is effective for a if and only if

v(S) > E aiicS

If ">" rather than "-" holds, we shall say that S

is strictly effective.

An imputation a dominates an imputation P if

there exist an effective set S for a such that for

all members of S, ai > P•i Following the notation of

von Neumann and Morgenstern [9], we write

a .

In other words, if a set S of players is in a position

to obtain by independent action the amounts that they are

offered in the imputation a, and if, when they compare

the amounts offered in a to the amourts offered in 3,

all of them prefer the former, then a dominates •.

There is a potential coalition that prefers a to

and is in a position to do something about it. Note that
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S is necessarily strictly effective for @, the

dominated imputation.

Finally, we may define two "solution" concepts. The

core of an n-person game is the set of undominated

imputations, if any. A von Neumann-Morgenstern solution,

on the other hand, consists of a set of imputations which

do not dominate each other, but which collectively

dominate all alternative imputations. There is at most

one core, but there may be many solutions. All solutions

contain the core, if it exists.

4.2. Some Examples

A series of simple, three-person games will illustrate

these concepts. Consider first the game in which any

player acting by himself obtains nothing, but any pair of

players acting in concert can demand three units to share

between them, while all three players in coalition are

also awarded three. The characteristic function of this

game is

v(9) - 0,

v(1) - v(2) - v(3) -0,

v(U7) - v(fl) - v(2-3) - 3,

v(123) - 3,

where 12 means "the set consisting of players 1 and 2,"

etc.
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We may represent the imputations in this game by

triangular coordinates, as shown in Fig. 2. The vertices

Pip P2 j P3 represent the imputations (3, 0, 0), (0, 3, 0),

and (0, 0, 3), respectively. The point w - (1, 1, 1)

is the center of the triangle. Consider the two

imputations a - (1.9, 0, 1.1) and P - (0, 1.5, 1.5).

The set 23 is effective for 0, and furthermore both

2 and 3 are better off in P than in a. Hence

I a.

a(1.9, 0, 1. 1)

(,.s, .•,-o (1. 5, ol 5. )

P2  P3

(0, 1.5,1.5)

Fig. 2
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The trio of imputations p, y, and 6 forms a

solution set to this particular game. Any other

imputation gives two of the players less than 1.5 apiece,

and thus is dominated by one of these three imputations,

but the three do not dominate each other. (There are

other solution sets, which we need not discuss.) This

game has no core, since the imputations P, y, and 6,

dominating all the rest, are themselves dominated by

others. For example, the imputation a, which was

dominated by P, in turn dominates 6 via the effective

set 13. Note that domination is not a transitive relation:

.-4 a and a *. 6 do not entail P 4 6.

We now consider three closely related games,

differing from the previous one only in what the two-person

coalitions obtain. In the first variant we have

v(I ) - v(13) - v23) - 0.*

In this case, all imputations are in the core. The only

*This all-or-nothing type of characteristic function,

like the previous one, is associated more with political
than economic processes [10]. The previous game was a
majority-take-oll situation; the present one is a veto
situation, since if one member wishes to be the "dog in
the manger," he can prevent the others from obtaining
any payoff. In economics such extremes--called e
aam.s--re not typical. We shall presently consider-
vaiints in which the two-person coalitions obtain
intermediate amounts, reflecting the more usual situation
in which any new adherent to a coalition means added
possibilities for profit.
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set of players that is effective, for most imputations,

is the three-person set; however, this is useless for

domination, since on examining the distribution of welfare

from the viewpoint of all three players we see that if

one player prefers one of two imputations, then at least

one of the other players will prefer the other, the sum

of the allotments being constant. In fact, it suffices

to point out that no set of players is strictly effective

for any imputation-hence there is no domination. The

core is therefore as large as possible, and is also the

unique von Neumann-Morgenstern solution.

In our third example we assume

v(12) - v(13) = v(23) - 2.

As shown in Fig. 3, the lines which describe the amount

obtainable by each coalition of two players intersect

in a single point, the imputation w with coordinates

(1, 1, 1). This is the only undominated imputation of

the Same, and thus constitutes a single-point core.

Since w fails to dominate the three small triangles

adjoining it in the diagram, however, it is not a

von Neumann-4*orgenstern solution by itself. To get a

solution we must add some more or less arbitrary curves,

as shown, traversing the three triangular regions

(see [91, pp. 550-554).
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P,

Sore a2+Cl3:2

Fig. 3

PI,

A~a2+03=1

', ,
Core

/p

Fig. 4
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In the final variant, we assume that the two-person

coalitions are only half as profitable as in the preceding

example. That is, we have

v(12) - v(13) - v(23) - 1.

The lines indicating the ranges of effectiveness of these

coalitions are spread apart, as shown in Fig. 4, revealing

a large, hexagonal core. All imputations in that area

are undominated. As in the second example, this core is

the unique solution.

A superficial examination of these four examples

suggests a relationship between the size of the core and

the "fatness" of the coalitions in a game, i.e., how

much they can promise their members per capita as compared

to the per-capita amount available in the whole game. In

all four instances, the latter amount was v(12•3)/3 - 1.

Denote v(iJ)/2 by f 2 " In the first game, f 2 was 1.5,

which is greater than 1, and there was no core. In the

third game, f 2 was exactly 1, and the core was a single

point. In the fourth game, f 2 was 1/2, and there was a

large core, while in the second game f 2 was Oand

every imputation was in the core.

Of course, in a less symmetric situation, this

principle would not reveal itself in such a clean-cut

manner. However, a general rule of thumb seems to persist:

the more power there is in the hands of the middle-sized
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groups, the more narrowly circumscribed is the range of

outcomes of the cooperative game. This rule, vague as

it is, applies to solutions as well as cores.

When we do not permit the transfer of utility, we

can no longer talk about the amount attainable by a group

of players as a single number; nevertheless cores [6] and

solutions [11] can still be defined, and the idea of the

per-capita gain in one coalition being larger than in

another can still be utilized in a vectorial sense.

4.3. The Edgeworth Market Game, (n, n) 2

Let us return to the Edgeworth bilateral-monopoly

game (1, 1)2. Even without the simplifying assumption

of transferability of utility, it is not hard to see

that the Edgeworth contract curve is the "cooperative

solution," in the spirit of the von Neumann-Morgenstern

definition but with weaker utility assumptions [11].

It is also the core. The reason is simply that with

just two players, there are no coalitions of intermediate

size, between the individual and the whole group, and

hence no domination occurs between outcomes that are

both Pareto optimal and individually rational.

It can be shown that the whole contract curve

(considered in the higher dimensions) will remain as a

cooperative solution to the game (n,n)2  for any number

of traders* However, it will no longer be the core if
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there are more than two players, and there will be many

other von Neumann--Morgenstern-type solutions, which may

in general be quite difficult to compute (see [4]).

It has been shown that as the number of players

increases, the core shrinks down upon the competitive

equilibrium point (or set of points) [3, 5, 12]. Hence,

if we regard the core as our concept of cooperative

solution, the game (1, 1)2 has the contract curve as its

solution, while the game (n, n) 2 , as n grows large,

has an increasingly determinate solution consisting of

a small neighborhood of the competitive equilibrium.

Figure 5 illustrates the shrinking of the core as

the number of players is increased. It is similar to

Fig. 1 of Edgeworth ([1], pp. 20-25). The line RP is

the competitive price ray on the exchange diagram for

2n traders, consisting of n of each type. The arc

CC' is the range of the two-person contract curve, and

I is a typical point on that curve. The shaded area

between I and I1 indicates a domain that is preferred

to I by a player of the first type; similarly the

shaded area between I and 12 is preferred to I by

a player of the second type. These areas are bounded by

the two indifference curves which are tangent at I; each

area includes a portion of the price ray RQ only if I

is not the competitive allocation P. We shall describe
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R D '

0

Fig. 5

the conditions under which I (or more precisely, the

imputation associated with I) is dominated by the outcome

of some trade among a subset of the players.

When only two traders enter into contract, exchanging

x units of the first good for y of the second, the

final distribution of assets between them is given by

(a-x,y) and (x,b-y). This can be represented by a single

point on the Edgeworth diagram. Suppose that a coalition

of k traders of the first type and m traders of the

second type forms, and suppose that traders of the same

type decide to divide their gains equally. Together the
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coalition controls ka units of the first commodity and

mb of the second. After trade, a player of the first

type will have (a x *) and a player of the second

type will have , b - Y-), for some xpy. This outcome

can be represented on the Edgeworth diagram by two points,

corresponding to the two types of players, which fall on

the line RQ, one on either side of the contract curve.

If k - m, the two points coincide at I. If the ratio

of k to m is only slightly different from unity, it

will be possible for the point corresponding to each type

of player to lie in the shaded region in which that type

of player gains, in comparison to the distribution offered

at I. The imputation corresponding to I will

therefore be dominated. As n grows larger, the

available ratios k/m become denser around 1, and the

portion of the contract curve that escapes domination

shrinks down to an arbitrarily small neighborhood of the

competitive equilibrium point. (If the latter is not

unique, the convergence will be to the set of competitive

equilibria.)

It is remarkable that such widely different sets of

modeling assumptions as were used in (n,n)0  and (nn)2

should lead, in the limit, to the same solution. In the one

case, the participants operate on a minimum of information,

they have essentially no strategic initiative, and they

are prevented from cooperating or even interacting with
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their fellows. In the other case, information is freely

available, exchanges of goods may be made in all possible

ways, without regard for prices, and collusion not only

is permitted, but is in fact essential to the maintenance

of stability.

Viewed as a limit of cores, the competitive equilibrium

for large n is seen to be "sociologically neutral." No

coalition is effective against it. It is not a von Neumann-

Morgenstern-type solution by itself, even in the limit,

since it does not dominate the other points on the contract

curve; nevertheless, every such solution will include the

competitive imputation. Thus, without any dynamic

assumptions regarding prices or other mechanisms of the

market place, and without special hypotheses concerning

costs of communication, information, and so forth, the

competitive equilibrium plays an important and distinctive

r8le purely on the grounds of social stability.

5. NONCOOPERATIVE GAMES. THE COURNOT OLIGOPOLY GAME

5.1. Noncooperative Equilibrium Points

An approach highly different from that of cooperative

game theory, and connected less directly to welfare

considerations than to problems of oligopoly and control

of industry, is the idea of the noncooperative solution

to a game. The spirit of much of the classical discussion

of oligopoly behavior and equilibrium in monopolistic



-24-

competition has been to regard the firms as powerful and

their customers as weak. This conforms to our commonsense

notions of the oligopolistic market place. The automobile

or tobacco companies, for example, have some form of

control over output, prices, brands, and so forth, but

their customers are, for the most part, price-takers.

Both the classical and many of the more recent works

in oligopoly theory have made use of "open" models, in

the sense that they investigate the behavior of a group

of firms or an industry, taking the behavior of customers

and suppliers as given. Underlying the writings of

Cournot [13], Bertrand [14], Edgeworth [15], Hotelling

[16], Stackelberg [17], Chamberlin [18], and others, is

the concept of the attainment of a noncooperative

equilibrium by the firms in competition. On the mathematical

side, Nash [19] was first to develop the basic idea of

noncooperative solution in the abstract framework of the

theory of games. The crucial concept in the noncooperative

theory is that of "equilibrium point," which may be defined

as follows:

Consider a game with n players. Let player i

have a class of possible "strategies" Si, and let si

denote a particular strategy belonging to the class. The

payoff to the i-th player is denoted by Pi(sl* s20 s31...Dsn)I

a function of the strategies of all the players. A strategy

vector (OV '2' "3"*'" On) is said to constitute an

equilibrium point if, for all i, the function
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Pi(S1 -' 0-,i - sip-,)l S

is maximized by setting si I si In other words, a set

of strategies, one for each player, forms an equilibrium

point if each player, knowing the strategies of all others,

will not be motivated to change. If the equilibrium point

is unique, as it proves to be in many of the classical

economic models, it is termed the "noncooperative solution"

to the game.

5.2. The Cournot Model

An early economic example of noncooperative equilibrium

was presented by Cournot [13]. Suppose that two firms are

constrained to name amounts ql' q2  offered for sale.

These quantities are their strategic variables. Further-

more suppose that there is a market mechanism of some sort

which selects a price that exactly clears the market,

say p - D(q1 + q2 ). Let the cost functions of the two

firms be Cl(ql) and C2 (q2 ), respectively. The payoffs

are then

P1 " ql D(q1 + q2 ) - Cl(ql)s

P2 - q2 D(q1 + q2 ) - C2 (q2 ),

respectively. An equilibrium point will be a pair of

strategies (41' j2 ) such that
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Pl(ql, j2) is maximized at ql - ql

P2 (qI, q2 ) is maximized at q2 - i2

This is the "Cournot" solution (20].

In the game described above, the welfare of the

customers was included only implicitly, through the

workings of the demand relation; it is thus an open model.

Considering only the welfare of the two duopolists, it is

easy to see that the noncooperative equilibrium is not

Pareto optimal in the open model. They could both improve

matters by joint action, restricting the amounts offered

to be sold.

It is nevertheless conceivable that the noncooperative

equilibrium might be Pareto optimal in the closed model,

in which the welfares of the customers are also taken into

account; however, even this is not the case in general.

We already have a simple example of this in the game

(1, 1)1, which can Le viewed as a monopolist dealing with

a compliant, price-taking customer. In this case,

quantity naming is usually equivalent to price naming.

Referring to Fig. 6, we see that if the monopolist (origin

at 01) offers the amount e to be sold, for example,

the price mechanism will determine the price ray RQ

that just clears the market when the other player optimizes,

selecting the point M, where the ray intersects his

response curve ST. Under suitable assumptionsp this
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derived price ray will be unique, for any value of e,

giving the monopolist effective control over prices.

Returning to our point about optimality, we note

that the best outcome from the viewpoint of the monopolist

is the point Ml, which is clearly not Pareto optimal in

the closed model since it lies off the contract curve.

In this instance of monopolistic exploitation, all could

have their welfare improved by negotiation.

e D' 0'

IS
D

Fi(R)

0

Fig. 6
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5.3. The Game (n, n)i

In order to define the game (n, n) 1 we must specify

the market mechanism more fully, making explicit the scope

of strategic choice. There are many ways in which this

can be done. We might assume that the firms playing the

r6le of oligopolists are in a position to name price.

This is the manner in which Bertrand and Edgeworth

handled oligopoly. Though complicated, it is possible

to specify a mechanism whereby each oligopolist names

both a price and a limit to the amount he is willing to

trade. In order to complete the specification, the

nature of the market-clearing process, in the presence

of possibly different prices, would also have to be made

explicit.

An easier model to define, involving fewer arbitrary

institutional assumptions, is the analogue to Cournot's

approach, in which the oligopolists are free to specify

the amounts to be offered for trade, but not the prices.

A mechanism then sums together all the offers and

calculates the prices that will exactly clear the market.

The traders of the second type are constrained to be

price-takers, as before. We shall adopt this quantity-

naming model as the most natural generalization of the

game (1, 1)1, in which, as already noted, price naming

and quantity naming are essentially equivalent.
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Let us assume that the "response curve" (ST in

Fig. 6) of the second player in the two-person game

(1, 1)1 can be expressed as a single-valued function

y - r(x), where (x, y) is that player's final holding,

after trade. In addition, we shall assume that r(x)

has a bounded derivative. (The purpose of these

assumptions is to exclude certain difficulties related

to the possibility of different prices yielding the

same demand.) Then, in the game (n, n) 1 , the price that

clears the market is given by

p M .

where - Eiqi/n is the average quantity offered of

the first good. The final holdings will be

(a --qjs Pqi)p i - l, 2,...,n,

for the players of the first type, and

(q, b - pq)

for each player of the second type. The noncooperative

equilibrium is found by requiring the function

Y(a-qi, pqt) to be a maximum with respect to qi, for

each i.

This maximum will generally not be found at the

point Ml in Fig. 6, where r(x) is tangent to the
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family T. The reason is that when a player varies his

offer qi' the average offer q, which is what determines

the price, varies by only 1/n as much. In fact, the

oligopolists will tend to offer larger quantities than

they would if they were in monopolistic collusion, and

the noncooperative equilibrium outcome Mn will be

displaced along the response curve in the direction of

the competitive equilibrium outcome P. (See Fig. 6.)

To see why Mn converges to P in the limit, we

merely set 6T(a-qi, pqi)/aqi - 0, and obtain

p x_ p Tx qi
P "•y qi ýqi2n +-(r + p),

y 'i y niq

a relation which must hold at Mn. But r' is bounded

by assumption, as is qi, and it can be shown that -

does not go to zero; therefore

p -0 Yxy as n •

y

This implies that M. lies on the response curve of the

players of the first type as well as of those of the

second type. Hence M. - P.

The intuitive idea behind this argument is that when

n becomes large, the effect of one individual on the price

structure becomes negligible; i.e., bp/bqi - 0.

More precisely, since uniqueness is not assured, any
limit point of any sequence (M.) of noncooperative
equilibria is a competitive allocation. Our assumptions
regarding r(x) are essential to this result.
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6. CONCLUSION

We began with three different models of bilateral

monopoly, based on the same data. Three different

solution concepts were advanced, each appropriate to one

of the models, and three qualitatively different outcomes

were predicted. As the number of traders on both sides

of the market was increased, the three solutions merged

into one as regards predicted outcome, but their rationales

remained quite distinct. A relationship was thereby

demonstrated between (1) administered price stability

(the competitive equilibrium), (2) noncollusive oligopolistic

exploitation (the equilibrium point of a noncooperative

game), and (3) unrestricted bargaining between coalitions

(the core of a cooperative game).

Each model embodied radically different assumptions

concerning the strategies and information available to

the participants. A scrutiny of the differences would

reveal many places where sociological and institutional

assumptions might be slipped in, perhaps inadvertently,

in the construction of models of markets.
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