Improved High Mass Range Resolution with an Omegatron Mass Spectrometer

J. H. BLOOM
C. E. LUDINGTON
R. L. PHIPPS

MAY 3, 1963
Requests for additional copies by Agencies of the Department of Defense, their contractors, and other government agencies should be directed to the:

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

Department of Defense contractors must be established for ASTIA services, or have their 'need-to-know' certified by the cognizant military agency of their project or contract.

All other persons and organizations should apply to the:

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES,
WASHINGTON 25, D. C.
Improved High Mass Range Resolution with an Omegatron Mass Spectrometer

J. H. Bloom
C. E. Ludington
R. L. Phipps
Abstract

The influence of changing the magnetic field on the resolution and sensitivity of the omegatron mass spectrometer is shown for krypton. Good resolution may be extended through the mass range of the xenon isotopes (mass number 138) by carefully selecting the operating parameters of the omegatron. The resolution is plotted against the magnetic field strength for \textit{Kr}^{84+}, and follows the theoretical predictions within experimental error. The effect of varying the other parameters of the omegatron with krypton is shown and discussed. A summation of the work with xenon is also given.

Acknowledgment

The authors wish to express sincere appreciation to Miss Olive N. L. Denniston and Mr. Lawrence C. Mansur for their critical review of this paper.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. EXPERIMENTAL SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td>3. PROCEDURE</td>
<td>4</td>
</tr>
<tr>
<td>4. CONCLUSION</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>Bibliography</td>
<td>11</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>15</td>
</tr>
</tbody>
</table>
Improved High Mass Range Resolution with an Omegatron Mass Spectrometer

1. INTRODUCTION

The need for identifying residual gases occupies a place of first importance in the advancement of ultra-high vacuum research. A low pressure measurement alone does not assure gas ambient purity. At least one harmful constituent may still remain. Identification of residual gases is essential to the study of many phenomena in vacuum with a sensitivity to surface contamination.

The omegatron mass spectrometer is a practical tool in fulfilling this need. Unfortunately, much of the literature states that the instrument is useful only through mass number 44. One notable exception to this purported limitation will be found in the works of Dummler, who reports good resolution through mass number 100.

The work performed in our laboratory extends the range of the omegatron still further. To date, good resolution is achieved through mass number 136. The omegatron clearly resolves seven of the xenon isotopes in the correct percentages of natural abundance, within experimental error.

The magnetic field parameter had the greatest influence on the resolution of the omegatron in the high mass range. An increase in the magnetic field res-

Figure 2. Variation of Resolution with Magnetic Field

Multiple isotopes in the high mass region.

Magnetic field had a pronounced effect on the resolution, as can be seen in Figure 2. Note the spectra of krypton at different magnetic field strengths, as illustrated. The upper portion of the figure shows almost complete separation of the singly-ionized peaks at 6435 gauss. Based on later studies with xenon in which complete separation of the isotopes was obtained by increased precision in setting the trapping and r-f voltages, it is evident that similar results would have been achieved with krypton, if time had permitted. The percentages of the natural abundance of the mass peaks were approximately in the correct propor-
tion. Both experimental and handbook values of the natural abundance of the krypton isotopes are listed in the table of Figure 2. With the experimental data agreeing so closely with the handbook values, it is apparent that the omegatron is suitable for more than rough measurements of residual gases. The lower portion of Figure 2 shows a similar relationship for the doubly-ionized krypton isotopes. Complete separation between each mass peak was observed at 6260 gauss.

Figure 3 presents a plot of the resolution versus the magnetic field, with each plotted point representing an average of six runs. Arrows designate the range of the data. The straight line is a square-law plot (that is, R versus B^2).
multiple isotopes in the high mass region.

Magnetic field had a pronounced effect on the resolution, as can be seen in Figure 2. Note the spectra of krypton at different magnetic field strengths, as illustrated. The upper portion of the figure shows almost complete separation of the singly-ionized peaks at 6435 gauss. Based on later studies with xenon in which complete separation of the isotopes was obtained by increased precision in setting the trapping and r-f voltages, it is evident that similar results would have been achieved with krypton, if time had permitted. The percentages of the natural abundance of the mass peaks were approximately in the correct propor-
tion. Both experimental and handbook values of the natural abundance of the krypton isotopes are listed in the table of Figure 2. With the experimental data agreeing so closely with the handbook values, it is apparent that the omegatron is suitable for more than rough measurements of residual gases. The lower portion of Figure 2 shows a similar relationship for the doubly-ionized krypton isotopes. Complete separation between each mass peak was observed at 6260 gauss.

Figure 3 presents a plot of the resolution versus the magnetic field, with each plotted point representing an average of six runs. Arrows designate the range of the data. The straight line is a square-law plot (that is, $R \propto B^2$).
Figure 4. Variation of Resolution with r-f Voltage

The experimental points agree within the estimated error.

The importance of precise changes in the r-f and trapping voltages as scans are made in the high mass region is evident in Figures 4 and 5. Figure 4 shows some spectra of the krypton isotopes at various r-f voltages. The optimum setting for the singly-ionized krypton isotopes was 0.8 volt, while 1 volt seemed to be the best r-f voltage setting for the doubly-ionized isotopes. One can readily see that the identity of the isotopes is lost if the setting is either too high or too low.

Figure 5 is a series of plotted curves showing ion current versus trapping voltage for krypton. The optimum trapping voltage for Kr⁺ was between 0.75 and 0.8 volts, and between 0.85 and 0.9 volts for Kr++. Figure 6 shows a series of curves of the ion current versus the accelerating...
The ion current was maximum between 60 and 70 volts. This corresponds to the point of maximum ionization efficiency for krypton. The appearance potential can also be estimated from this curve.

With the knowledge gained from the study of the omegatron with krypton, the experiment was extended to include some tests with xenon. Complete separation of seven of the xenon isotopes was obtained by increasing the magnetic field to 6486 gauss and tuning the r-f and trapping voltages one against the other. A very slight change in either the trapping or the r-f voltage had a marked effect on the xenon pattern. Figure 7 shows a spectrum of the xenon isotopes at the
Figure 6. Ion Current vs. Accelerating Voltage

best settings. The table included in Figure 7 shows that the percentages of natural abundance were approximately correct.

4. CONCLUSION

The range of an omegatron may be extended through mass number 130 with good resolution by increasing the magnetic field and decreasing the r-f and trapping voltages. The settings of the r-f and trapping voltages are very
critical; they should be tuned one against the other. Time did not permit these later findings with xenon to be repeated with krypton. If the r-f and trapping voltages were tuned as precisely for the krypton tests as for the xenon tests, complete separation of the krypton isotopes would have been achieved.

This experiment also shows that R_N is proportional to B^2. The omegatron has proved to be a practical tool for the analysis of partial pressures through mass number 136. Continued studies, undoubtedly, will extend this range even further.
References

Bibliography

Dummler, S., "The Use of the Omegatron for Quantitative Partial Pressure Analysis in High Vacuum" (Institute of Applied Physics, Mains University, Germany [Vakuum-Technik, Part I, V, Part II, VI, December, 1960]), 131, 184.

References

Bibliography

Berry, C. E., "Ion Trajectories in the Omegatron" (Consolidated Engineering Corp., Pasadena, Calif. [Journal of Applied Physics, XXV, January, 1953]), 38.

Dummier, S., "The Use of the Omegatron for Quantitative Partial Pressure Analysis in High Vacuum" (Institute of Applied Physics, Mains University, Germany [Vakuum-Technik, Part I, V; Part II, VI, December, 1960]), 131, 184.

Figure A-1 is a block diagram showing the functional relationship of the components of the system. A few comments about some of the components follow.

A mechanical forepump, block 1, is used for the initial pumpdown of the system. A clean copper-foil trap, block 2, placed between the pump and the system eliminates the risk of oil contamination. These components are sealed off once the Vac-Ion pump, block 3, starts.

The laboratory-built electromagnet, block 8, is capable of producing a variable magnetic field up to 7000 gauss. The magnet slides in and out of the oven on an adjustable mount.

The omegatron power supply,* block 9, also built in the laboratory, is a modified Raytheon design. The circuit diagram is shown in Figure A-2.

A strip chart and an X-Y recorder, block 13, are used for recording the test data. Advantages can be cited for each.

V1, V2, V3 and V4 are Granville-Phillips Type C bakeable metal valves.

The system is pumped on continuously to prevent build-up of any contaminants that may be present. The continuous flow of gas is controlled by a Granville-Phillips Type C valve.

*Design modified by Ernest Owen.
Figure A-1. A Block Diagram of Experimental Setup
Figure A-2. Omegatron Power Supply

TUBE CABLE COLOR CODE
PLUG BELDEN NO 8447 SOCKET AN 3106A 145 6P
A B TRAP ORANGE NO. 22
B FIL. RED NO. 18
C FILL. GREEN NO. 22
D FIL. BLACK NO. 18
E CT. YELLOW NO. 22

LEGEND
A GRIND BROWN NO. 22
B TEST JACK
HILIPOT
540V 450V
10 MFD.
200 MIMF 5M
FROM ONGATOR
BNC TO COUNTER
V T.V. M.
2M1%
115VAC
115VAC
10 MFD.
AF Cambridge Research Laboratories, Bedford, Mass. Electronics Research Directorate

UNCLASSIFIED

1. Residual gas
2. Mass spectrum analysis

UNCLASSIFIED

The influence of changing the magnetic field on the resolution and sensitivity of the omegatron mass spectrometer is shown for krypton. Good resolution may be extended through the mass range of the xenon isotopes (mass number 136) by carefully selecting the operating parameters of the omegatron. The resolution is plotted against the magnetic field strength for Kr⁺, and follows the theoretical predictions within experimental error. The effect of varying the other parameters of the omegatron with krypton is shown and discussed. A summation of the work with xenon is also given.

AF Cambridge Research Laboratories, Bedford, Mass. Electronics Research Directorate

UNCLASSIFIED

1. Residual gas
2. Mass spectrum analysis

UNCLASSIFIED

The influence of changing the magnetic field on the resolution and sensitivity of the omegatron mass spectrometer is shown for krypton. Good resolution may be extended through the mass range of the xenon isotopes (mass number 136) by carefully selecting the operating parameters of the omegatron. The resolution is plotted against the magnetic field strength for Kr⁺, and follows the theoretical predictions within experimental error. The effect of varying the other parameters of the omegatron with krypton is shown and discussed. A summation of the work with xenon is also given.

AF Cambridge Research Laboratories, Bedford, Mass. Electronics Research Directorate

UNCLASSIFIED

1. Residual gas
2. Mass spectrum analysis

UNCLASSIFIED

The influence of changing the magnetic field on the resolution and sensitivity of the omegatron mass spectrometer is shown for krypton. Good resolution may be extended through the mass range of the xenon isotopes (mass number 136) by carefully selecting the operating parameters of the omegatron. The resolution is plotted against the magnetic field strength for Kr⁺, and follows the theoretical predictions within experimental error. The effect of varying the other parameters of the omegatron with krypton is shown and discussed. A summation of the work with xenon is also given.