6117

AFCRL-62-1131

RESEARCH ON AEROSOL SCATTERING IN THE INFRARED

Scientific Report 10
Atlas of Scattering Diagrams for n = 1.5

Prepared by
Rudolf B. Penndorf
RESEARCH AND ADVANCED DEVELOPMENT DIVISION

AVCO CORPORATION
Wilmington, Massachusetts

Technical Report
RAD-TR-63-9
Contract AF19(604)-5743

November 1962

o

Prepared for

GEOPHYSICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
Bedford, Massachusetts




AFCRL-62-1131 This document consists of 60 pages,
. 259 copies, Series A

4

RESEARCH ON AEROSOL SCATTERING IN THE INFRARED

Scientific Report 10
Atlas of Scattering Diagrams for n = 1.5

Prepared by

Rudolf B. Penndorf

RESEARCH AND ADVANCED DEVELOPMENT DIVISION
AVCO CORPORATION
Wilmington, Massachusetts

Technical Report
RAD-TR-63-9
Contract AF19(604)-5743

November 1962

APPROVED

&W'

S. C, Coroniti, Manager
Space Science Department

Prepared for

GEOPHYSICS RESEARCH DIRECTORATE
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH
UNITED STATES AIR FORCE
Bedford, Massachusetts




NOTICE

Requests for additional copies by agencies of the Department of Defense, their
contractors, and other Government agencies should be directed to:

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA,

Department of Defense contractors must be established for ASTIA services or
have ‘their ''need-to-know' certified by the cognizant military agency of their
project or contract.

All other persons and organizations should apply to:
U. S. DEPARTMENT OF COMMERCE

OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.

-ii-



ABSTRACT

Angular scattering diagrams are constructed for spherical aerosols of refra.c-
tive index n = 1,5, They show the intensity functions il' i,, and 1

functions of the scattering angles for size parameters o= & 5 (0. 5)10 The
basic data have been computed using Mie's theory, and a graphical interpola-
tion technique (altitude-chart technique) has been used to determine accurately
the position and numerical value of the maxima and minima.,

The scattering diagrams presented in this atlas allow to determine the intensity
functions i), i,, and i, + i, for any desired scattering angle with a high degree
of reliability, The basic data limit the construction of reliable scattering
diagrams to o< 10.
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I. INTRODUCTION

Theoretical data for angular scattering functions for spherical aerosols are needed
for refractive indices n between 1.0 and 2.0. For n = 1,33, scattering diagrams
have been published in an earlier report (Penndorf, 1961b), Herein, samples are
given in the form of an atlas for n = 1.5, so that the user can take the needed in-
formation, from the curves, which is more reliable than a numerical interpola-
tion of tabulated values. The interpolation technique is the same as in the last
report, It had occurred to us that the samples given in steps of Ax = 0,5 may not
be sufficient; hence, a large number of workers in this field have been asked as
to their preference of the steps to be selected, It turns out that for most practi-
cal application an atlas in steps of Ax = 0,5 seems to be sufficient; however, for
more detailed evaluations, the original tables are desirable. It is planned to
publish these in the future also.

Computations of scattering functions for isotropic spherical nonabsorbing aerosols
are based on Mie's theory, which leads to exact numerical values. The basic
quantities are the intensity function iy and i3, They have the following meaning:
the intensity function i] and i are proportional to the magnitude of the two in-
coherent, plane-polarized components scattered by one particle; i) is propor-
tional to the intensity whose electric oscillations are perpendicular to the plane

of scattering; i.e., polarized light in the horizontal plane; i, is proportional to
the intensity whose electric oscillations are in the plane of scattering; i.e.,
polarized light in the vertical plane.

The number of diagrams in the atlas is limited to the range a = 0,5 to 10,0, be-
cause the reliability for interpolation decreases above o = 10, as has been dis-
cussed in the last report, so that it does not seem justified to construct diagrams
for large a values although numerical data exist up to a = 30 for scattering angles
1 (1) 10 (10) 180° (Penndorf-Goldberg, 1953),
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II. DATA

The atlas is based on numerical values for the intensity functions i} and i, which
have been computed using an IBM 701 (Penndorf-Goldberg, 1953). They are
available for a refractive indexn = 1,5, size parameters & = 0.1 (0.1) 30, and
scattering angles 8 = 0 (1) 10 (10) 180°, where 8 = 0° defines the scattering angle
in the forward direction,

A detailed table containing i} and i in the same steps of A8 but for a= 0,2 (0.2)
159 has been published by Giese et al (1962) and used for comparison and detail
above a = 30 in the range 8= 0 to 10°. The listed values for i} and i; agree very
well with our table. In addition, Olaf and Robock (1961) and Robock (1962) have
published scattering diagrams for n= 1,5 and a= 2, 8, 10, 20, 26, and 30, Their
basic computations have been quite detailed; namely, steps of A8 = 2° for @ < 10
and A6 = 1° for a > 12, The scattering diagram for o = 8 has been found useful,
that for a = 10 is very difficult to read and could be used only partially,

The investigation of our data shows that the steps of Aa = 0.1 in the size param-
eter are sufficient, but the choice of scattering angles; namely, a constant step
of A9 = 10°, was unfortunate. While this step is sufficient to describe the in-
tensity functions up to about a = 3, it is in general insufficient for larger values
of & as far as simple numerical interpolation is concerned. Only with the help
of sophisticated graphical interpolation techniques is it possible to extend the
useful limit of the tabulated values to about & = 10, It is not recommended to
interpolate our tables for o > 10 except for the first diffraction minimum.
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. III, RESULTS

3.1 ALTITUDE CHART FOR INTENSITY FUNCTION i,

The interpolation methods have been discussed in detail in the last report.
Hence, there seems to be no need for repeating them, The altitude charts have
been constructed for i, and i,, and the basic features appear similar to those

; for n = 1, 33, The altitude chart for i, for the range of <10 is shown in fig-

: ure 3-1, for the range 20 < @ <40 in figure 3-2, For the range 10 < < 40, an
altitude chart for 0°< @ <10° has been plotted,

Two completely different types of contours appear on figure 3-1,one for 8 <90°
and another for 90 <§ < 180° In the forward scattering area, large, wide, and
flat ridges are found, the peaks of which (indicated by the letter H) occur at
larger p values* the larger u. For u = 0, a peak occurs at p= 6; for u = 3,6, at
p= 6.5and 7. 5; and for u = 6. 0, at p= 8. 8; while the fourth peak is situated out-
side of this chart. The peaks are situated on ridges, which are cut off by quasi-
vertical running valleys into which deep trenches are embedded. The valleys
show some meandering around the classical diffraction values; namely,

u= 3,83, 7.02, and 10. 17, which they approach asymptotically for very large
values of p. Deep trenches occur systematically in each valley. Investigating
the first diffraction minimum up to o= 40 (figures 3-1 and 3-2), which can be
done because data for i) and i, are available in steps of AG=1°up to 8=10° it
was found that these trenches occur atp= 7.2, 10.6, 19.6, 23.4, 26.3, 29.8,
32,2, 36.1, and 38.8, The range 10< o <18 is difficult to evaluate, and the
trench position is not very accurate. Therefore,we have not estimated any values
in this range now but will do so as the next step. Hence, the trenches are
formed at intervals of Ap~m, whenever u reaches an extreme value (maximum
or minimum). This again is an important result because the position of the
deepest points of the trenches can be estimated without additional computations,

The position of the trenches has been investigated further, For p >6, the first
diffraction minimum occurs at scattering angles § < 20°. The cross section
theorem relates the total scattering coefficient K and i; %0% . Hence, the question
arises whether a useful relationship exists between K and i, 18t min{. It turns
out that K reaches a maximum or minimum at the same size parameter pat which
the deepest point occurs in the trenches of the first diffraction minimum, This
particular p value is independent of n in the range 1.0 < n <1,5, It has not been
checked for larger n values, but it is believed that this rule is valid up to about
n= 2,

%*pis the normalized size parameter and defined as p=2a(n - 1), In the case
ofn=1,5 p=a. The diffraction parameter is defined in the last report.



The results are shown in table 3-1, The running integer y indicates the first,
second. .. trench. The first group shows the trench position related to u< 3,83
when K reaches a minimum, the second group contains those where u > 3. 83

and K reaches a maximum. The position for K when n1. 0 is given in the first
column (after Penndorf, 1958), the second column the trench position for n = 1, 33
{Penndorf, 1961 a), and the last column for n = 1, 5 as obtained from figures 3-1
and 3-2 and unpublished parts of our altitude charts, Itis seen that the position
of the trench is systematic and can be expressed as

where p is the position of a trench (or a maximum and minimum in K). The
plus sign refers to u< 3, 83 and a minimum in K; the minus sign refers to

u > 3,83 and a maximum inK. Interpolatedvalues are shown in parentheses { ).
In the case when K reaches a maximum,the agreement is very good; in the case
of K reaching a minimum, the trench occurs a bit earlier (Ap~0.3 - 0.5). The
agreement for y = 1 is always poor, as expected.

TABLE 3-1

POSITION OF TRENCHES FOR FIRST DIFFRACTION MINIMUM

Kmin andu < 3,83 Kmax and u > 3, 83

K il il K 11 il
Yy |n=1.0 1. 33 1.5 n=10 1, 33 1.5
1 7.6 6.9 7.2 4,1 .- c--
2 114.0 13.5 (13.5) 10. 8 9.9 10. 6
3120.3 19. 8 19, 6 17.2 16. 8 (17, 0)
4 | 26.6 26.3 23.5 23. 4
51 32.9 32.2 29. 8 29. 8
6 | 39.2 38.8 36.1 36.1

P =2a(y + 1/4) o = 2nly - 1/4)

The table lists the value pat which the maxima and minima in K occur foru=1.0
and the deepest point of trenches fori} and n=1, 33 as wellas n= 1,5,
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For the second diffraction minimum, the first trench is found at pP= 6.5 and
u= 5,5, and the nextat p= 9.0. Because of the interval AG=10° in this domain
of the altitude chart, the last one cannot be exactly located.

Other diffraction minima have also been identified and can be seen on the chart,
Basically, the system is similar to that of n = 1, 33 and the minima start between
8 = 80 and 90°and move toward smaller angles as pincreases.

However, there are differences in the charts for n = 1. 33 and 1. 50, which are
based on a more careful investigation for n = 1, 40, 1.44,and 1,50, and which have
led to several improvements, One point is the merging of diffraction minima,
Whenever the first diffraction reaches a trench where uis a maximum, the first
and second diffraction minima merge, This is seen on figure 3-1 atuy = 4, 6 and
p= 9.5, and even better on figure 3-2. In the area p> 23, both diffraction
minima come close together and run parallel for a while, The two valleys are
definitely separated by a ridge of higher values with a peak around p= 24. 6. It
is drawn as if the first minimum ends near p= 25.5, but it could have been con-
tinued and both connected at p= 26.3. From a practical point of view, it is un-
important whether they actually merge or run parallel for a while, The distance
between the two minima is about 1° for p= 20 to 30 and could not be distinguished
on a scattering diagram. The same thing happens again around p= 29. 8, where
both minima run parallel for a while finally to merge at about p= 31,4, From
this detailed study, based on figure 3-2, it is concluded that the actual merger
of minima takes place and our interpretation at p= 9, 5 is probably correct, The
consequence of such mergers is a gradual reduction of the number of minima
indicating the incorrectness of our earlier extrapolation (table I, Penndorf, 1961b),
Rowell (private communication) has completed studies for n = 1, 486 in steps of
1°and his interpretation does not show mergers as we have discussed them,

but a termination of the first minimum whenever it reaches its lowest value of u.
It seems important to us to check this point further and clarify the interpretation
of the data to see whether our interpretation or that of Rowell is correct,.

The backscatter area (§ >90°) shows an entirely different pattern of the contours.
Deep, long valleys occur in nearly straight lines into which deep trenches are
embedded at regular intervals, The valleys meander somewhat around a straight
line, but much less than the diffraction minima. The position and depth of the
valleys are more difficult to establish than for n = 1, 33, because the selected
spacing of A8 = 10°is too wide for large o. However, basically, the interpolation
problem up to o= 10 is not too difficult. The distance between the centers of the
trenches for a particular valley is about Ap~ 0.8, This value is somewhat larger
than for n = 1, 33, where it was found to be about 0. 65 to 0. 75.

For p= 8.0, our data can be compared with the scattering diagram published by
Olaf and Robock (1961), and it is believed that they agree more or less with our
evaluation (figure 3-1 and the appendixes). However, the curve for g¢= 10. 0
published by Robock (1962) is difficult to evaluate and could not be used.



The minima shown in figure 3-1 are redrawn on figure 3-3a, where the dots
indicate the position of the trenches., It seems possible to us to explain the
position of trenches as well as the system of the minima (dark rings), In our
last report, we have already indicated a plausible interpretation of the position
of the dark rings for i, and n = 1, 33 as a combination of diffraction minima and
reflection minima, Tﬁis line of investigation is now pursued further, The term
reflected ray is used for those rays which hit the spherical particles and undergo
internal reflections and refractions at the surface (see figure 37 in van de Hulst,
p. 201 (1957) ).

A very detailed and careful analysis of the original data in the altitude chart
(figure 3-1 only shows selected isolines) leads to two systems, which are in-
dicated on figure 3-3b, The solid line system (diffraction minima) always starts
at @ = 180°, it moves toward the 90°area more or less at a constant p value,

and then with a sharp knee downward, The second system of dashed lines (re-
flection minima) runs more or less parallel to the 8 = 180°line, These two systems
intersect each other at the trenches (dots on figure 3-3b, which are identical with
those on figure 3-3a). We interpret this finding in the following way. The solid
lines represent the minima caused by diffraction and the dashed lines those by
internal reflection and refraction., Whenever these two systems cross each
other, a trench is created, This seems plausible because the trenches are then
caused by interference.

We have inthe past, and also in figure 3-1, tried to follow the deepest minimum
and, therefore, found some strange movements of the dark rings and sometimes
extreme difficulties in deciding how to connect the minima, The suggested inter-
ference of the two systems explains our difficulties, It shows that sometimes the
diffraction effect is a bit larger than the reflection effect,and the overall effect
follows the solid lines in figure 3-2; at other times, the reverse is true, In
addition, the interference can also lead to very weak minima when both systems
arrive at opposite phase but equal amplitude. Furthermore, the meandering of
the minima in the backward area can be explained as the interference of the two
systems leading to a deviation from the straight reflection system. If, however,
the minima follow a straight line with no meandering, then one system predom-
inates and the other system contributes very little,

If another type of altitude chart were used in which the angles 90° to 180° were
distributed according to another formula than the presently used one, such that
8 = 180° were plotted along the abscissa for p = 0, then the diffraction minima in
the backward area would follow a vertical straight line similar to the forward
area. Such a different altitude chart might be useful and should be explored to
simplify the interpretation,

3.2 ALTITUDE CHART FOR INTENSITY FUNCTION i,

The pattern on this altitude chart is generally similar to that for i) although less
contour lines appear (figure 3-4), Hence, most of the statements and conclusions
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made for i) apply. The description given for n = 1,33 is also valid and need
not be repeated. Here again, figure 3-5a shows the minima taken from figure
3-4, and figure 3-5b contains the two intersecting systems, A comparison of
figures 3-5a and 3-5b reveals the interaction of the two systems as discussed
in section 3. 2 for i,.

3.3 POSITION OF DARK RINGS

Based on the altitude charts, new graphs for the position of the dark rings have
been constructed and are shown in figures 3-6 and 3-7 up to o= 10, These
figures supersede the curves given in an earlier report (Penndorf, 1961b) and
are basically similar to those for n = 1, 33. The dashed line indicates inflection
points only and no real minima. In addition, the two systems described in sec-
tion 3,1 are added, The system for diffraction minima is indicated by thin
dashed lines going from the lower right-hand side to the upper left-hand side,
and the system for reflection minima by thin dotted lines going more or less
perpendicular to the first system, In general, the actual minima follow one or
the other system, Meandering indicates that both systems are of about equal
magnitude, In these cases, our interpretation of the continuous, predominant
minimum may not always be correct, and a more detailed investigation based

on data available in smaller steps than A8 = 10° may change our interpretation,
especially around § = 90°, Hence, we are convinced that the dividing zone
between forward and backward movement is not of great importance and not
fixed, Thus, it is believed that our earlier interpretation that the dividing zone
is situated around 8 = 80° to 90° is erroneous, Data analysis for other refractive
indices; for example, n=1.10, 1,20, 1,40, and 1, 44, support our present view-
point,

Rowell (private communication) has completed similar studies for n = 1, 486
and finds a much more complicated pattern, such that nearly all of his dark
rings move to larger scattering angles with increasing size parameter. Hence,
the question of the true pattern is not yet solved. Only computations in smaller
steps of § can prove or disprove our interpretation.

3.4 DIFFRACTION MINIMA

A careful investigation of the diffraction minima can also lead to an improvement
of the scattering diagrams because the angular position and the depths for a
particular diffraction minimum changes systematically as seen on the altitude
charts. The depth of the valley for a particular ovalue is defined by

‘ i {m, o }
i Dlo (43 == H
Ir 3 iy {o°, a
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namely, the ratio of i) at the lowest point of the valley for a given § value to the
value i} in the forward direction (6= 0°). The parameter Dl means first diffrac-
tion minimum. An analog definition applies to the higher orders of diffraction
minima (D2, D3, and so on) as well as for '12.

Data of such i}, and i r have been computed for all diffraction minima and
plotted in a coordinaté system, using u as abscissa and log i, as ordinate.

For the first diffracion minimum, data up to g= 40 are availa%le; for the rest,
only up to o= 10. Since all diagrams are similar, only that for Dl is shown as
an example in figure 3-8 because it is the most complete one. The data for
0=10to o= 19 are less certain than the restbecause A8>10° in this size range.
Therefore, they are left out, also the data from g= 2 to ¢¢= 5.5 are omitted
because, for such small o values, the pure diffraction pattern is not yet estab-
lished.

From o= 5.5 to 6, 5, a counterclockwise motion begins followed by a clockwise
motion to ¢= 9. 5. The next curve begins at ¢= 19 in a counterclockwise motion
to 19, 6, is followed by a clockwise motion to o= 23.4, and so forth, The minima
for u > 3,83 are lower than those for u < 3. 83, The lowest values of i}, (the
trenches on the altitude chart) occur always when u reaches a maximum or

minimum for the counterclockwise motion. This simple system of clockwise
and counterclockwise motion has been proven first for n = 1, 33 and can be estab-
lished now also for n = 1,5 and to higher values of p. It has been suggested in
the report for n = 1, 33 that the relation given in section 3, 1 exists, and this is
now proven, For all n's, the minima of iy follow the relation

pp =2mly £ 1/4)

except for y = 1, and some slight deviation from this expression may be real,
For the other diffraction minima, the same relation should hold, but more data
in smaller steps of § are needed to prove it,

3.5 SCATTERING DIAGRAMS

To visualize the numerical results and to show the correct interpolation of the
tabulated data, a graphical presentation of the intensity functions 11s 1, and

i; +ip has been prepared in the form of scattering diagrams for o= 0'to 10 steps
olf Ao = 0.5; they are given in appendix 6, 1. The logarithmic scale chosen was
such to allow reasonable interpolation.

The method of construction is the same as for n = 1, 33 and, therefore, not
repeated,
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IV. CONCLUSIONS

Twenty scattering diagrams of the intensity functions i1, i2, and i] + i) are
given in the form of an atlas forn = 1,5 anda = 0,5 (0.5) 10, They are based
on computations in steps of Ax = 0.1 and 8 = 0 (1) 10 (10) 180°,

Since a linear interpolation is not allowable for a > 3, interpolation methods
have been investigated. The altitude-chart technique allows to interpolate the
functions graphically for any set of o - 6 values, Furthermore, the position
and depth of the minima are determined correctly. The dark rings may clearly
be divided into the two groups: those due to diffracted light, and those due to
reflected and refracted light, For the first group, the diffraction parameter u
for each particular dark ring meanders around the classical diffraction param-
eter which it approaches asymptotically for very large spheres, For the second
group, the diffraction parameter u increases proportional to p. The center of
the deep trenches occur for the first group in steps of Ap~ 7, for the second
group in steps of Ap=0.81. The two systems can be separated, and the inter-
action of the two systems determines the direction in which the predominant
minimum moves. This interaction also explains the position of the trenches
and the areas where the minima suddenly become indistinguishable,

The scattering diagrams have been constructed using all available interpolation

techniques in addition to the computed data and represent the most reliable data
up to @ = 10. They allow interpolation for any set of & -6 values.
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6.2 TABLE OF DARK-RING PARAMETERS FOR INTENSITY FUNCTIONS i,
AND i, n= 1.5 ANDa = 0.5 (0.5)10

Symbols used in tables 6-1, 6-2, and 6-3 are as follows:

a = Size parameter

[ = Normalized size parameter

8 = Scattering angle in degrees (0°* = forward)

u = Diffraction parameter

ilmin = Intensity function at minimum

e = Relative intensity function for'particular dark ring

D = Dark ring due to diffracted light

T = Dark ring due to transmitted (reflected and refracted)light,

=-43-



TABLE 6-1

DATA FOR INTENSITY FUNCTION i; AND DI

=0 0 u ilmin ilr{Dl} o=p e u ilmin

2.0 | 123 ] 2,30 | 3.6-3 | 3.8-4 26,0 7 | 3.33 | 1,52

2.5 | 90} 2,50 | 3.2} | 1.0-2 26.5| 7 | 3.16 | 1.52

3.0 74 2.88 [ 1,5°1 | }1.9-3 27.0| 7 | 3.10 | 6.02

3.5 | 61]3.05 | 2.19 1,272 27.5| 7 | 3.18 | 1.53

4,0 | 53|3.19 | 3,50 1,3°2 28,0 7 | 3.33 | 4.0 2.1°2
4,5 | 41| 2.89 | 4,80 1,172 28.5| 7 | 3.48 | 3.03 | 1.4-2
5,0 | 35| 2.87 | 1.5 2.5-2 29.0| 8 | 3.8 | 1.5 | 6.5-3
5.5 | 343,07 |1.1} 1.7-2 29.5| 8 | 4,05 | 4,02 | 1.5-3
6.0 | 29| 2.91 | 2.0! | 2.5-2 30,0 8 | 4,00 | 1.52 | 4.,0-%
6.5 | 23 2.54 | 1.60 2.3-2 30,4 7 | 3.67 | 4.0%2 | 1.4°3
7.0 | 19| 2.28 | 3.59 | 5.6-3 31,0 7 | 3.68 | 6.02 | 1.9-3
7.5 | 18] 2.32 | 4.20 | s5,7-3 31,4 7 | 3.62 | 6.02 | 2.0-3
8.0 | 20| 2.73 | 4.4} | s5.4°2 32,0 6 | 3.35 | 3.52 ] 1,2-3
8.5 | 24| 3.45 | 4.0! 3.1-2 32.4| 6 | 3.30 | 3.02 | 1.0-3
9.0 | 284,07 |7.80 | 3,7°3 33.0| 6 [ 3.30 | 8,02 | 2,73
9.5 | 28| 4.60 | 3.30 | 1,03 33,4 6 | 3.40 | 2.53 | 7.6"3
10,0 | 26 | 4.37 | 5.09 | 9.5-¢ 34,0 | 6 | 3,78 | 5.03 | 1.3-3

34,4 7 | 3.92 | 4.0 1.0°2

19.0 [ 113,60 [ 3,52 | g.8-3 35,0 7 | 4.02 | 9.52 | 2,0-3
19.5 | 10| 3.30 |4.0! | 1.0°3 | 35.4| 7 | 4.07 | 6.02| 1.1°3
20.0 913.00 [ 1.0 | 2.43 | 36.0| 7 | 4.08 | 5.01 | 8 7-¢
20,5 913,12 | 2.52 | 6,23 36,4 6 | 4.05 | 8.0 | 1.4-4
21.0 9(3.21 |9.0% | 1.7°2 37.0| 6 | 3.87 ] 1.52 ) 2.4-4
21,5 | 10| 3.58 | 2.63 | 4.2-2 37,4 6 [ 3.73 | 6.02 | 1.0°3
22.0 | 103,94 [1.13 | 1.5°2 38.0( 5 | 3.55 | 9.02 | 1.4°3
22.5 | 11]4.18 | 4,02 | 4,43 38.4| 5 | 3.50 | 5.0% | 8.2-%
23,0 | 114,23 |8.0! | 8.0°4 39.0| 5 | 3.53 | 7.9 | 1.3°3
23,5 | 10 3.92 | 9.0! | 8.2-4 39.4| 5 [ 3,57 | 1.3 2.5°3
24.0 | 10 3.96 [ 1.02 | 7.7-4 40.0] 5 | 3.70 | 5.03 | 7.5-3
24.5 9| 3.80 | 1.62 | 1.3°3 ‘
25.0 8|3.65 | 9.0! 7.0-3
25.5 8[3.40 | 4,01 3,13
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TABLE 6-2

DATA FOR INTENSITY FUNCTION i), DIFFRACTION

D2 D3 D4 D5 D6

@=0 C] u 6 u 6 u 0 u 2] u

4,5 |82 4, 45

5.0 173 4. 77

5.5 |69 5.12

6.0 |63 5,34

6.5 |57 5. 45 76| 6.30

7.0 |49 5. 28 671 6.45| 80 | 6, 88

7.5 | 42 5,02 60 6,41 | 74| 7.22

8.0 |37 4, 82 50| 5.04| 67 | 7.35

8.5 |35 4, 86 40| 5.45) 61 | 7.42 |61 | 7.42 |79 8,32

9.0 |32/35 | 4.74/5.14| 36 5.27}54]|7.28|56|7.44|738.58

9.5 |29/35 | 4.60/5.44 | 35| 5,44 | 46 | 6.85 | 54 | 7.68 | 67 | 8. 74
10.0 |34 5. 65 34| 5.65|46 | 7.18 |54 ]8.04]64]8.98
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TABLE 6-3

DATA FOR INTENSITY FUNCTION i, REFLECTION SYSTEM

Tl T2 T3 T4 TS

a=p ] u [} u 8 u 95 u d u
2.5 | 138 3.33

3.0 | 145 4,28

3.5 | 151 5.31 105 3.63

4,0 | 156 6.38 104 4.14

4,5 | 157 7.25 122 5.20

5.0 | 157 8.05 123 5,81 95 5.00

5.5 | 161 9,22 130 6.80 101 5.62

6.0 | 162 |10,18 131 7.44 109 6.34 87 5.97

6.5 | 164 |11,22 139 8.68 114 7.07 91 6.55

7.0 | 167 |12.30 139 9.44 125 8.20 101 7.15

7.5 | 168 |13.45 141 (10.25 121 8.60 103 7.70| 92| 7.55
8.0 | 171 |14.85 143 |11,30 130 9.85 111 8.55| 90| 8,02
8.5 | 171 |15.70 149 |12.60 126 |10,15 116 9.38| 98| 8,61
9.0 | 168 [16.20 149 (13,30 133 |11.48 116 9.95(101 | 9.20
9.5 | 169 [17.32 149 |14.10 135 |12.35 124 | 11.15]111 10,15
10.0 | 173 |18.80 152 |15.30 135 (13,00 125 | 11.78 113 ]10.80
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