NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SEVENTH QUARTERLY REPORT
ON
PRODUCTION ENGINEERING MEASURE
FOR SUBMINIATURE TEMPERATURE-COMPENSATING
CERAMIC CAPACITORS
PERIOD: 13 DECEMBER 1962 THROUGH 12 MARCH 1963

SPRAGUE

CONTRACT NO. DA-36-039-SC-85966
ORDER NO. 0021-PP-61-81-81

Placed by

U.S. ARMY SIGNAL SUPPLY AGENCY
PHILADELPHIA, PENNSYLVANIA

SPRAGUE ELECTRIC COMPANY
NORTH ADAMS, MASSACHUSETTS
PRODUCTION ENGINEERING MEASURE

FOR SUBMINIATURE TEMPERATURE-COMPENSATING

CERAMIC CAPACITORS

Seventh Quarterly Report

Period: 13 December 1962 through 12 March 1963

Object of Study: To establish facilities and competence to produce subminiature temperature-compensating ceramic capacitors

Contract No. DA-36-039-SC-85966
Order No. 6021-PP-61-81-81

Controlling Specifications:
Signal Corps Technical Requirements SCL-6415, 6 February 1961
Signal Corps Technical Requirements SCS-107, 24 February 1961
Specification MIL-C-20, 11 September 1959

Report Prepared by:

J. H. Fabricius
J. H. D. Folster
T. I. Prokopowicz
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 1 - ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>SECTION 2 - PURPOSE</td>
<td>2</td>
</tr>
<tr>
<td>SECTION 3 - NARRATIVE AND DATA</td>
<td></td>
</tr>
<tr>
<td>3.1 Selection of Ceramic Materials</td>
<td>3</td>
</tr>
<tr>
<td>3.2 Development of Spraying Capability</td>
<td>3</td>
</tr>
<tr>
<td>3.3 Development of Dip Method</td>
<td>4</td>
</tr>
<tr>
<td>3.4 Qualification Test Samples</td>
<td>4</td>
</tr>
<tr>
<td>3.5 Approval of Case Size III Qualification Samples</td>
<td>4</td>
</tr>
<tr>
<td>3.6 Pilot Production</td>
<td>4</td>
</tr>
<tr>
<td>SECTION 4 - CONCLUSIONS</td>
<td>5</td>
</tr>
<tr>
<td>SECTION 5 - PROGRAM FOR NEXT QUARTER</td>
<td>7</td>
</tr>
<tr>
<td>SECTION 6 - PUBLICATIONS AND REPORTS</td>
<td>8</td>
</tr>
<tr>
<td>SECTION 7 - IDENTIFICATION OF PERSONNEL</td>
<td>9</td>
</tr>
<tr>
<td>SECTION 8 - DISTRIBUTION LIST</td>
<td>10</td>
</tr>
</tbody>
</table>
SECTION 1

ABSTRACT

The temperature coefficient of capacitance (TC) requirement for the NP0 capacitors was achieved as a result of work during this period. A recapitulation of areas investigated in the study leading to this attainment is presented herein.

Approval of the Case Size III qualification samples was received, and pilot production on the three formulations of this case size will begin as soon as authorization is received. The status of pilot production for Case Sizes I and II is given in this report.
SECTION 2
PURPOSE

The purpose of this contract is as follows:

(1) To provide the production engineering to establish capability to manufacture subminiature temperature-compensating ceramic capacitors ranging from $22 \, \mu\text{uf}-100 \, \text{VDC}$ to $6800 \, \mu\text{uf}-100 \, \text{VDC}$ ratings on a pilot-run basis.

(2) To design, develop, procure, or manufacture special tooling required for successful pilot-run production.

(3) To obtain limited production equipment necessary to manufacture 3000 units per eight-hour shift.

(4) To produce and submit for approval to the U. S. Army Electronics Materiel Agency preproduction samples prior to the initiation of the pilot run.

(5) To manufacture a pilot run of 3600 subminiature temperature-compensating ceramic capacitors.

(6) To provide monthly and quarterly progress reports.

(7) To prepare production engineering measure final reports in accordance with Step II of SCIPPR No. 15, Paragraph 3.8.
SECTION 3

NARRATIVE AND DATA

3.1 Selection of Ceramic Materials

Characteristic CF, the TC requirement for NP0 capacitors, was attained for all three case sizes during this period. This attainment followed months of concentrated experimentation, which involved investigation of various approaches, including the following: varying the quantities of ceramic constituents; adding rare earth oxides or other oxides to the ceramics; calcining the formulation before fabrication into ceramic parts; firing the ceramic in a gas kiln; and varying the composition of mixes which contain a smaller particle size than the powder formerly used.

The capability of the Sprague Electric Company to make miniature NP0 capacitors is shown in Table 1. TC data from temperatures of -55°C and +85°C only are presented, but experience has revealed that a material within limits at these critical temperatures is always within limits over the rest of the temperature range. The test results in Table 1 are average test results gained from a series of TC runs. All units measured on these runs met Characteristic CF.

Pilot production of Case Sizes I and II of NP0 capacitors, which was held up pending the attainment of Characteristic CF, was begun immediately. Pilot production on all three formulations of Case Size III will begin as soon as authorization is received.

The TC requirements for the N750 and N1400 formulations were previously attained.

3.2 Development of Spraying Capability

The current spraying capability is as follows:

(1) Spraying slips of the NP0 and N750 formulations made with the preferred binder system are satisfactory.
TABLE 1

One Hundred Kilocycles/Second Capacitance Change with Temperature From Capacitance at 25°C for NP0 Capacitors in Case Sizes I, II, and III Monolythic® Form and Characteristic CF (Parts per Million)

<table>
<thead>
<tr>
<th>Case Size</th>
<th>Group Designation</th>
<th>Capacitance Limit ((\mu F))</th>
<th>Limits</th>
<th>-55°C</th>
<th>+85°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Characteristic CF</td>
<td>Max.</td>
<td>2800</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Min.</td>
<td>-900</td>
<td>-900</td>
</tr>
<tr>
<td>I</td>
<td>E</td>
<td>25</td>
<td></td>
<td>30</td>
<td>-30</td>
</tr>
<tr>
<td>II</td>
<td>5*</td>
<td>330</td>
<td></td>
<td>456</td>
<td>-558</td>
</tr>
<tr>
<td>III</td>
<td>4</td>
<td>1500</td>
<td></td>
<td>136</td>
<td>-384</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>1500</td>
<td></td>
<td>-160</td>
<td>-84</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>1500</td>
<td></td>
<td>-240</td>
<td>-6</td>
</tr>
</tbody>
</table>

This TC run was at 1 Mc/sec.
(2) Spraying slips of the N1400 formulation made with the alternate binder system are satisfactory.

3.3 Development of Dip Method

Dipping slips for the three formulations are satisfactory.

3.4 Qualification Test Samples

3.4.1 Case Size II

Qualification test results from Test Groups I-IV of the Case Size III units (Contract Item 1-3-9) were reported in the Sixth Quarterly Report. Results from the final group are given below:

Test Group V

All testing is completed. All units passed.

Test reports and samples were submitted to the U. S. Army Signal Materiel Support Agency February 19, 1963.

3.5 Approval of Case Size III Qualification Samples

Technical Action Request FEB-4 deeming acceptable the 128 Case Size III units which underwent qualification testing (Contract Item 1-3-9) was received March 14, 1963.

3.6 Pilot Production

Pilot production of Case Size I of Formulations N750 and N1400 (Contract Items 1-3-2 and 1-3-3, respectively) and of Case Size II of Formulations N750 and N1400 (Contract Items 1-3-5 and 1-3-6, respectively) is now completed. Pilot production of Case Size I and Case Size II of the NPO formulation (Contract Items 1-3-1 and 1-3-4, respectively) is underway. Pilot production of Case Size III of all three formulations (Contract Items 1-3-7, 1-3-8, and 1-3-9) will begin as soon as authorization is received.
SECTION 4

CONCLUSIONS

(1) Characteristic CF, the temperature coefficient of capacitance requirement of NP0 capacitors, has been attained for all three case sizes.

(2) Test results from qualification testing of Group V of the Case Size III capacitors of the N1400 formulation are satisfactory.

(3) Pilot production of Case Size I of Formulations N750 and N1400 (Contract Items 1-3-2 and 1-3-3, respectively) and of Case Size II of Formulations N750 and N1400 (Contract Items 1-3-5 and 1-3-6, respectively) is now completed.

(4) Pilot production of Case Size I and Case Size II of the NP0 formulation (Contract Items 1-3-1 and 1-3-4, respectively) is underway.

(5) Pilot production on Case Size III of all three formulations (Contract Items 1-3-7, 1-3-8, and 1-3-9) will begin as soon as authorization is received.

(6) The estimated percentages of the overall progress on the major elements of the program are as follows:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Relative Weight</th>
<th>% Completion</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Production Design Engineering</td>
<td>25</td>
<td>98.0</td>
<td>24.5</td>
</tr>
<tr>
<td>2. Engineering and Design of Special Tooling and Refining Equipment</td>
<td>15</td>
<td>98.0</td>
<td>14.7</td>
</tr>
<tr>
<td>3. Preproduction Sample Approval</td>
<td>15</td>
<td>95.0</td>
<td>14.2</td>
</tr>
<tr>
<td>Factor</td>
<td>Relative Weight</td>
<td>% Completion</td>
<td>Percentage</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>4. Pilot Run</td>
<td>25</td>
<td>51.5</td>
<td>12.9</td>
</tr>
<tr>
<td>5. Monthly & Quarterly Reports</td>
<td>10</td>
<td>81.3</td>
<td>8.1</td>
</tr>
<tr>
<td>6. Final Report, Step II Study and Inspection Test Report</td>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TOTALS</td>
<td>100</td>
<td></td>
<td>74.4</td>
</tr>
</tbody>
</table>
SECTION 5

PROGRAM FOR NEXT QUARTER

(1) Pilot production will continue.

(2) The effort toward producing satisfactory spraying slips of the N1400 formulation and the preferred binder will continue.
The following reports were submitted to the U. S. Army Electronics Materiel Agency during the quarter:

(1) The sixth quarterly report, covering the period 13 September 1962 through 12 December 1962, was submitted for U. S. Army Electronics Materiel Agency approval. This approval was received, and the report was distributed per USAEMA instructions.

(3) Monthly reports for January, 1963, comprising the same.

(4) Monthly reports for February, 1963, comprising the same.
SECTION 7
IDENTIFICATION OF PERSONNEL

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Baker</td>
<td>1.5</td>
</tr>
<tr>
<td>D. Bellows</td>
<td>12.0</td>
</tr>
<tr>
<td>J. Dziok</td>
<td>3.0</td>
</tr>
<tr>
<td>W. Estes</td>
<td>122.5</td>
</tr>
<tr>
<td>J. Fabricius</td>
<td>19.0</td>
</tr>
<tr>
<td>R. Fisher</td>
<td>15.0</td>
</tr>
<tr>
<td>W. Hatch</td>
<td>67.5</td>
</tr>
<tr>
<td>R. Immediato</td>
<td>31.3</td>
</tr>
<tr>
<td>T. Jammallo</td>
<td>107.0</td>
</tr>
<tr>
<td>E. Jamros</td>
<td>1.5</td>
</tr>
<tr>
<td>E. Jones</td>
<td>8.5</td>
</tr>
<tr>
<td>L. Lamore</td>
<td>5.5</td>
</tr>
<tr>
<td>J. Ledoux</td>
<td>6.3</td>
</tr>
<tr>
<td>R. Lee</td>
<td>5.5</td>
</tr>
<tr>
<td>L. Lemoine</td>
<td>2.0</td>
</tr>
<tr>
<td>P. Moriarty</td>
<td>116.0</td>
</tr>
<tr>
<td>J. Newman</td>
<td>32.0</td>
</tr>
<tr>
<td>G. Olsen</td>
<td>3.0</td>
</tr>
<tr>
<td>T. Prokopowicz</td>
<td>15.5</td>
</tr>
<tr>
<td>H. Raithel</td>
<td>5.0</td>
</tr>
<tr>
<td>D. Reid</td>
<td>16.0</td>
</tr>
<tr>
<td>R. Trottier</td>
<td>12.0</td>
</tr>
<tr>
<td>K. Whitney</td>
<td>17.0</td>
</tr>
<tr>
<td>J. Willey</td>
<td>72.0</td>
</tr>
<tr>
<td>M. Zedalis</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Total: 697.6
SECTION 8
DISTRIBUTION LIST

Copies

1
Commanding Officer
U. S. Army Signal Research and Development Agency
Fort Monmouth, New Jersey
ATTN: Mr. A. Lunchick
SIGRA/SL-PEP

1
Commanding Officer
U. S. Army Signal Materiel Support Agency
Fort Monmouth, New Jersey
ATTN: Mr. R. Gonzalez
SIGMS-PSM-1

1
Commanding Officer
U. S. Army Signal Materiel Support Agency
Fort Monmouth, New Jersey
ATTN: Mr. Adolph Pohl
SIGMS-PFE-2

1
Commander
Air Materiel Command
Wright-Patterson Air Force Base, Ohio
ATTN: Mr. Arthur Lord
Code MCPBIM

1
Commander
Wright Air Development Center
Electronic Components Laboratory
Wright-Patterson Air Force Base, Ohio
ATTN: Mr. Albert Speake
Code WCLKC-3

1
Chief
Bureau of Ships
Washington 25, D. C.
ATTN: Code 691B2E
(Mr. E. J. Kaputa)
Commander
Aeronautical System Division
Wright-Patterson Air Force Base, Ohio
ATTN: Mr. Carl K. Greene
Code ASRNEM

Allen Bradley Co.
136 W. Greenfield Ave.
Milwaukee 4, Wis.

Astron Corp.
255 Grant Avenue
E. Newark, New Jersey
ATTN: Mr. Robert Black

Centralab Division
Globe-Union Inc.
900 E. Keefe Avenue
Milwaukee 1, Wis.
ATTN: Mr. W. S. Parsons

Cornell-Dubilier Electric Corp.
1605 Rodney French Blvd.
New Bedford, Mass.
ATTN: Mr. Robert Grove

Erie Resistor Corp.
644 W. 12th St.
Erie 6, Pa.
ATTN: Mr. Nello Coda

General Electric Co.
Specialty Electronic Component Dept.
W. Genessee St.
Auburn, N. Y.

Good-All Electric Mfg. Co.
112 W. First St.
Olgallala, Neb.

Gudeman Co.
340 Huron St.
Chicago 10, Ill.
ATTN: Leo Grimm
Copies

1
Gulton Industries, Inc.
212 Durham Ave.
Metuchen, N. J.
ATTN: Mr. Glen Howatt

1
Maida Development Co.
214 Academy St.
Hampton, Va.

1
P. R. Mallory & Co., Inc.
42 S. Gray St.
Indianapolis 6, Ind.
ATTN: Mr. David Bell

1
Micamold Electronic Mfg.
65 Governeur St.
Newark, N. J.
ATTN: Mr. A. Digiacomo

1
Muter Co.
1255 S. Michigan Ave.
Chicago, Ill.

1
Hi-Q Division
Aerovox Corp.
Olean, N. Y.
ATTN: Dr. A. Rodriguez

1
John E. Fast & Co.
3580 Elston Ave.
Chicago 41, Ill.
ATTN: Mr. Wm. Franklin

2
The Advisory Group on Electron Devices
340 Broadway
New York 13, New York

1
Naval Research Laboratory
Code 6170, Washington, D. C.
ATTN: Mr. James Romans

1
Navy Dept.
New York Naval Ship Yard
Brooklyn, N. Y.
ATTN: Mr. Murray Rogosky
Code 912B
Copies

1
Western Electric Company
3300 Lexington Road
Winston-Salem, North Carolina
ATTN: Mr. W. Banzof, Dept. 214

10
Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Va.
ATTN: TICSCA/42740

2
U. S. Army Electronics Materiel Agency
Production Development Division
225 S. 18th Street
Phila. 3, Pa.
ATTN: Mr. Raymond Thompson

1
Radio Kemetel Industries
666 Garland Place
Des Plaines, Illinois
ATTN: Mr. J. A. Lytle

1
Radio Corporation of America
Astroelectronic Division
Princeton, N. J.
ATTN: Mr. A. Lunchick
Engineering Product Assurance Dept.