NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TRANSLATION

BINARY PARALLEL SUMMATOR WITH THROUGH TRANSFER

By

L. P. Afinogenov and V. G. Kolosov

FOREIGN TECHNOLOGY DIVISION

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE

OHIO
UNEDITED ROUGH DRAFT TRANSLATION

BINARY PARALLEL SUCCESSION WITH THROUGH TRANSFER

BY: L. P. Afinogonov and V. G. Kolosov

English Pages: 4

(Ref. in) 8/19-61-0-22

THIS TRANSLATION IS A RENDITION OF THE ORIGI-
MAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR
EDITORIAL COMMENT. STATEMENTS OR THEORIES
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESSARILY REFLECT THE POSITION
OR OPINION OF THE FOREIGN TECHNOLOGY DI-
VISION.

PREPARED BY:

TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-APS, OHIO.

FTD-TT- 63-175/1+2

Date 25 March 19 63
Binary Parallel Summator with Through Transfer

By

L. P. Afinogenov and V. G. Kolosov

We know of binary parallel summators with through transfer utilizing the impedance principle of ferrite work, consisting of paraphase ferrite registers of the first and second addends, connected with census bus-bars for the realization of the logical function of addition according to a "two" modulus with summator ferrites, and census bus-bars, the state of which for obtaining a sum in a given place, transfer and its inversion in the following place passes through the ferrites of the register of the sum and is connected with the reversed and direct yield of the transfer of the preceding place.

In the summator being described, the realization of the impedance principle of ferrite work is distinguished from what is known by the fact that we introduce compensation bus-bars which insure the census of units and the ferrites needed with simultaneous notation of zero in the remaining (non-working) ferrites.

The described binary parallel summator insures addition and subtraction of two binary digits simultaneously in all places.

The principal place diagram of the binary parallel summator with through transfer is shown in the figure.
Ferrites 1--4 constitute one place of the summator, ferrites 5, 6 -- one place
of an algebraic sum, ferrites 7, 8 -- the place of the register of the first addend
and ferrites 9, 10 -- the place of the register of the second addend. Addends a and
c are given in direct code. The work of the circuit in simultaneous summation takes
place in four cycles.

In the first cycle, addend a, given at input 11, is recorded in the register
of the first addend (ferrites 7, 8), and addend c, given at input 12, is recorded
in the register of the second addend (ferrites 9 and 10). In the second cycle the
pulse of the current is given at input 13. Depending on the state of the ferrite
of the registers of the addends this pulse passes to bus-bars 14, 15 or 16, revers-
ing the magnetism of the corresponding ferrites of the summator, in addition the
pulse of the current not only has its magnetism reversed to state "1" of the corre-
sponding ferrite, but the "0" state is also recorded in the remaining ferrites.

In the third cycle the pulse enters input 17 or 18 depending on the presence
or absence of a transfer from the previous place. Depending on the state of the
ferrites of the summator the pulse is commuted to bus-bars 19, 20, 21 or 22, recor-
ding the corresponding information in the sum register (ferrites 5, 6).

In the fourth cycle we are given a pulse of sum subtraction at input 23. In-
formation corresponding to the state of ferrites 5 and 6 is taken from the output
terminals 24 and 25. For improving the amplitude of spurious pulses through the
windings of the barrier ferrites of the summator and enlarging the work reliability
of the circuit, a compensation bus-bar 26 is introduced.

Object of invention

A binary parallel summator with through transfer, utilizing the impedance pri-
nciple of ferrite work, composed of paraplane ferrite registers of the first and
second addends, connected by census bus-bars for realization of the logical function
of addition according to the "two" modulus with ferrites of the summator, census
bus-bars the states of which for obtaining sum in a given place, the transfer and
and its inversion in the following place pass through the ferrites of the sum register and are connected with the inverted and direct output of the transfer of the preceding place, are distinguished by the fact that for the purpose of enlarging the reliability, through the ferrites of the registers and the sumator pass compensation bus-bare.
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>DEPARTMENT OF DEFENSE</th>
<th>Nr. Copies</th>
<th>MAJOR AIR COMMANDS</th>
<th>Nr. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFSC</td>
<td></td>
<td>SSD (SSF)</td>
<td>2</td>
</tr>
<tr>
<td>SCOFDD</td>
<td></td>
<td>AFGC (FGF)</td>
<td>1</td>
</tr>
<tr>
<td>ASTTA</td>
<td></td>
<td>ESD (ESY)</td>
<td>1</td>
</tr>
<tr>
<td>TFBM</td>
<td></td>
<td>RADC (RAY)</td>
<td>1</td>
</tr>
<tr>
<td>TTBMP</td>
<td></td>
<td>AFSC4C (SWF)</td>
<td>1</td>
</tr>
<tr>
<td>APO IN-3D2</td>
<td></td>
<td>AFMC (MTW)</td>
<td>1</td>
</tr>
<tr>
<td>ARL (ARB)</td>
<td></td>
<td>ASD (ASYIM)</td>
<td>1</td>
</tr>
<tr>
<td>HEADQUARTERS USAF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APO IN-3D2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARL (ARB)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER AGENCIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C^2S)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAFEC</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>