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TURBULENT BOUNDARY LAYER WITH PRESSURE GRADIENTS

ON A POROUS SURFACE

A.I. Tolstykh

(Moscow)

Existing methods of calculating a turbulent boundary layer with

the transport of a substance through the surface are restricted only

by the case of zero pressure gradients and are based on the use of the

same semiempirical relationships as in the case of an impermeable

plate [1]-[4], [8], [9].* Because of the lack of the' required experi-

mental data the latter unavoidably results in the assumption that cer-

tain quantities are independent of the mass-transfer parmneters and to

a somewhat arbitrary approach in the selection of the necessary con-

stants.

The purpose of the present work is to investigate the more gen-,

eral case, i.e., a turbulent layer on a porous surface in the presence

of pressure gradients, without the introduction of any semiempirical

relationships and with the utilization of only that information which

can be obtained from the known prior history of the flow.

Initially an incompressible boundary layer is considered in the

absence of diffusion, and then a formal generalization is carried out

for the case of a heterogeneous mixture of compressible gas.

1. To derive the required relationships we mill proceed from the

case of an idealized two-layer model and will assume a turbulent layer

consisting of a wall region in which the equations of laminar motion
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and a turbulent core are valid. In accordance with this, one part of

the flow may be determined by assuming the required number of boundary

conditions, and with respect to the other part of the flow (because

the equations of the turbulent boundary layer are open) it becomes

necessary to make certain assumptions.

Flow in the wall region (a viscous sublayer) within the scope

of the boundary-layer equations may be described by a system of the

following form:

S~(i)U~ ~~~~z L.+V U. ,VM
EX dy

with boundary conditions at y 0

uo0, u-=, Qt
is ---0, U, 0, "•Y. , , .

Here v = v - w; u and v are velocity components in the conven-

tional boundary-layer coordinates x and y; w is the normal velocity at

the surface; Tw, p, and v is the stress at the wall, and the density

and kinematic viscosity; Qi and Qiw are, respectively, certain func-•

tions characterizing the flow and their value at the wall. For exam-

ple, in the presence of a pressure gradient ZQ Q1 = -(1/P)Px/6p),

as a gas is passed through the surface .Qi = q2 w(6u/ýy), etc.

At given values of T w and Qiw System (1) fully determines the mo-

tion near the wall and in view of the smallness of the nonlinear mem-

bers is reduced to the following equation:

V-'Z .Qi0

with the corresponding boundary conditions. From the concept of dimen-

sionality it follows that the solution to the above equation has, the.

following form:

-2-
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where v, W/p) is the dynamic velocity.

In particular, when air is forced through a surface along which

there is, the following pressure gradient:

* *•

where y. = (yv*/v), and a and f are the dimensionless parameters of

the pressure gradient and the air injection:

Iap
P (2)

The wall boundary layer in which the flow is described by a "lam-:

inar" solution is naturally defined as a line along which laminar

friction covers a definite and fully established portion of the turbu-

lent layer; let us say that it is defined as' the line along which

VT/V const, where vT is the turbulent (virtual) viscosity that is

associated with turbulent friction by the relationship VT = PvT(3u/ýY)"

This representation, accurate to the constant, defines the "laminar

sublayer" on the impermeable plate, since the relationship VT/V must

be a function only of y.. In the general case, this relationship may

be a function also of the parameters Qiw" However, if instead of T w

the local value of total friction T is taken as one of the determining

parameters, the effect of Qiw must make itself felt, apparently, only

by changing the value of t. Indeed, on the one hand ' t - -0

while on the other hand, as a result of evaluating the various terms

in the balanced equation for pulsating energy [10], (VT/V)( u/Zy) 2 M

(s denotes those terms which correspond to the averaged viscous dissi-

pation of pulsation), only if convection transfer of the pulsating en-

-3-
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ergy by the lateral velocities is not too great (if the injection ve-

locity w is not too great) and y, is not too small.

In view of the fact that e is not an explicit function of Qiw and

is most likely determined by T (by changing the velocity scale for

major pulsations), the ratio VT/V is a function only of z, T, p,' and

v,I i.e., the condition vT/T = const is equivalent to the relationship

= const. Since in an idealized two-layer model the total

stress near the wall is only viscous, we require that at the boundary

of the viscous sublayer the following relationship be satisfied:

O = const, (3)
V

where the constant in the right-hand part is independent of the x co-

ordinate and, consequently, it is independent of the parameters of in-

jection and the gradient. This constant can be determined if the. re-

quired magnitudes pertaining to some "initial" section are known; in

particular, if the boundary layer on the impermeable plate has been

thoroughly studied in the prior history of the given flow, const = a,

where a is a universal constant. In view of the universality of a we

can maintain that the following is valid regardless of the existence

of such a prior history:

'im Y v dvd =const=a,

Thus Condition (3) can be written in the following form:

y, •q = . (4)

where Y is the value of y. at the boundary of the viscous region, and

YO= .*

Let us now examine the turbulent portion of the boundary layer.

Restricting the classes of flows being studied somewhat, we will as-
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sume that the velocity profile in any section can be presented in the

"single-parameter" form

-- - f f[ , r (Qj.) - (5)

where 6 is the thickness of the boundary layer; .ue is the velocity at

the outer limit of the boundary layer; r is some parameter. In the

"initial" section the velocity distribution must, thus, be described

by a function of the form of (5) at some initia.l value of 'r. In order

to clarify the nature of the function r(Qiw) we will use the concepts

of dimensionality. The only magnitudes determining the flow in the

vicinity of the boundaries of these regions will, evidently, be the

total momentum flux T at this boundary, density p, and the distance Z;

from these parameters we can make only the single combination having

the dimension of the derivative 6u/6y, and namely A = const -- n
y Y

therefore at the boundary as a consequence of Relationship (3) and. the

condition of' momentum-flux continuity we find the following equality
A = const ,,q I(6)

which is accurate to the higher derivatives of the velocity u and

yields the function r(Qiw).

With respect to the form of the function. f let us note that For-

mula (5) must determine the velocity profile even in the case in which

the "initial" section corresponds to the flow on the impermeable

plate; it is evident that Assumption (5) will be satisfied if the cor-

responding functional relationship will have the same form as in the

initial section, i.e., for example,

I--,n • or• U jp_ -(Q,.)()-- = --- , In . . . .-u 7
U. kh(Q 1 ) u,

where the parameter r, denoted, respectively, by k and m, aSsumes the.
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known values k(O)= k0 and m(O) = mo.

As shown by the experimental data, the second of the functions

(7) describes an extremely extensive class of flows (in particular,

flows with nonpositive pressure gradients and flows with the movement,

eOnerally speaking, of a foreign gas through the porous surface of the

plate [5-7]). It is good that the step distribution of velocity is

preserved to substantial injection, intensities [5], [7]. Subsequently

we will use the step function which results in comparatively simple

finite results; the exponential values will be found from Relation-

*ship [6), in which the constant, as a result of the universality of

the initial value of m0 , is determined as a result of the limit tran-

bition for 0:*

qn m.Y- (8)

In the derivation of this. formula we used the condition of ve-

locity continuity which can also be written in the following form:

2 (9)

2

where (cf/2) = (v./ue) and R (ue6/v). Relationships (4), (8), (9),

and (2) make it possible to calculate the local coefficient of fric-

tion and the exponent m, which when using the integral momentum~rela-

tionship fully solves the problem.

Let us examine certain special cases.

a) Let, for example, f = 0, and a < 0 (the negative pressure.

gradient on the impermeable wall). In this case the velocity profile

has a step shape, and Formulas (4) and (8) are transformed, respect-

ively, to
SY&(a-Y +I)= Y1, M=.O a'Y +t

I aY 4--
2



These relationships yield the theoretical relationships between

the coefficient of friction and the exponent and the pressure gradient,

which are of some interest. Figure 1 shows these functions together

with the experimental points pertaining to the coefficient of friction

(12) in the following coordinates: cf/Cfo, rm/m 0 and a* (the subscript-
0

0 denotes the absence of a gradient).

b) Let f > 0 and a = 0 (injection on a porous plate). Then ac-

cording to (4), (8), (9), and (2)

m =mM Y),
2 - T Y-

where

Y|

Y:= -, M (Y) 2 In YV (I.-Y
ye

The.values of • are found, from the following equation:

W~) • . 2 1 nP I iM (P) 11+6 Y , F"TLO ÷

in which the left-hand part is assumed to be given.

I'I.

the*~~:ne of = exert-

Fig. 1 Fig. 2..

The calculations that have been carried out showed that despite

the absence of some degree of freely selected constants, the experi-

mental values of m in the most varied of cases are in satisfactory
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agreement with the theoretical values, provided the injection velocity

is not too great (at high injection velocities discontinuity phenomena

are observed and the corresponding relationships do not accurately

describe the.velocity distribution); an analogous comparison of fric-

'' t~on-coeffiolent values is difficult in view

/ of the substantial scattering of the experi-
4'4

, mental points. As an example, Figs. 2 and 3

42 show the data pertaining to Reference [5]; the
a.

*1 curve in Fig. 2 has been constructed in a con-

.fol ventional system of coordinates cf/cf and
Fig. 3 2w/UeCf (the subscript 0 denotes the imper-

ef0
meable surface) and corresponds to the constant Reynolds number Rx =

= (UeX/V).
e *

c) Let f > 0 and a < 0 (injection on' a surface streamlined by

an accelerated flow).* In this case the sought quantities can be pre-

sented In the form of m = m0 M(Y; Zl, Z2 ),
S. T (V; Z,, Z.) V -- , M,

where M =Z(I--'V -,Y')-', T = V'M', .Z, = YI',. Z, " Ya, and' the values of

•, Z1 and Z are determined from the following equations:

1 2/

W (÷X- t)-
I ap

p dx2

and Condition (4), Solutions taking this form can be used, for exam-

ple, in investigating flow in the vicinity of the critical point. Fig-

ure 4 shows the results obtained in the calculation of the friction

coefficient for various local values of the pressure gradient In the

4
case of the same Reynolds number R = (Ue6/V) =. 10 (the subscript 0

denotes the zero- values of the parameters f 'and a*). It should be'ý
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pointed out that the values of the coefficient of friction, pertaining

*to the same R number (for example, to one and the same point on the

surface), will increase substantially more intensely with an increase

in ýp/ax than shown in Fig. 4 as a result of the reduction in the R

number.

Is .2. The outlined concepts can be used

C to calculate the rather general case of a

, I .~ turbulent boundary layer in the presence

of diffusion and heat transfer. The. ques-

tion is resolved particularly simply if we

have a condition of similarity between the..

.1. 2• .1 .4 ; velocity, temperature, and concentration

fields, i.e., if there is a "generalized"

Fig. 4 Crocco integral (derived, for example, in

Reference [8]). In the general case, if the functions governing the

changes in the physical properties of the gas are known (viscosity,

thermal conductivity, etc.), it is always possible to solve the system

of equations which describes the flow near the wall (the equations in

Reference [13] evaluated for low values of Z); for this it is suffi-

cient to pose the Koshi [sic] problem, assuming inadequate boundary

conditions at the surface (for example, the magnitudes of friction,

heat flow, and concentration). The solutions found with the aid of re-

lationships of the type of (4), (8), and (9), and Assumption (5), if

it actually is valid, make it possible to determine the wall re-

gion and the velocity profile in the turbulent part. With respect to

the determination of the sought magnitudes on the surface we would

point out that the equations of turbulent flow in a known velocity.

field and given known functions governing changes in "turbulent"

Prandtl, Schmidt, etc. numbers, make it possible to associate the "ex-'



ternal" boundary conditions with the conditions prevailing at the

boundary of the viscous. region; the latter, however, in view of the

continuity of the corresponding magnitudes (velocity, temperature,

concentration, and flows of momentum, heat, and matter) are expres'sed

in te•ns of the boundary conditions at the wall.

As an example let us consider the flow of a binary mixture in a

boundary layer on a porous surface with a nonzero negative pressure

gradient; for the sake of simplicity we will assume that there is no

heat transfer.* .The solution for the viscous region in this case will

be written in the following form:

etru1.P6q ,A . exp(, ,--A)da- (-A)I,

1+.IA-1)C= 11-F (I&-l))Ciuexp[- A(eD.*-I.J,. (10

where 2="... (Pw is the density at the wall), Sc isV 70 V. 7.-,

the Schmidt number, "l- -14 (14 -1)C.J (p.= pr'-.) is the parameter of

the pressure gradient, A=(pi--I) (C and C is the concentra-
(-1) C, w

tion and its value at the wall, . = MI/M2 is the ratio between the

"molecular weights of the basic and introduced gas). In the derivation

of these expressions we made use of the balance equation for diffusion

flows PwW•(.C) ) P ,D,,•..I (DI 2 'is the coefficient of diffusion);

for the sake of simplicity it was assumed that Sc = v/D12 = const and

*.0 4as a result as well as in view of the fact

that DI2 calculated by the Enskog [1l] method

is a weak function of the mixture proportion,

it was assumed that v = donst.,

"- In simplified terms, in the equations of

0 1... W •-•turbulent motion we will assume 0/ýx = 0

Fig. 5 .(for example, let this be as a first approxi-
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mation); then, -using the condition at the boundary of the regions, we.

will obtain

"Pv W "'+"-(n
rnuCv (1)C

where

ScT = const is the turbulent Schmidt number.

Integrating the second of the equations in (11), we will find

the concentration distribution which as a result of the condition C =

= 0 in the case of y = 6 yields the relationship

, '(12)

where.

B ,
,+*_ . 0_ _

ax pYWU, PV!WU,

For a given distribution of w(x) and ue(x) Formulas (4), (8),

(9), (10), and (12) make it possible to determine all of the unknown,

flow parameters contained in them. The results of the calculations

carried out in the assumption that op/6x = 0 and Sc = ScT = 1 for a

mixture of air and helium are shown in Fig. 5. All of the values

(cf/2 = ¶w/peUe) pertain to. the same Reynolds number R = 10 4. Figure 5,

illustrates the sharp reduction in the coefficient of friction in the

case of the injection of a8 light foreign gas; however, it should be

pointed out that the final results of the relationship between the

- 11 -



physical properties of the mixture and the concentration (D12 = const,

V= pScD1 2 = p const) that were assumed for the sake of simplicity re-

suit in a somewhat too rapid change in viscosity, and this contradicts

the results of kinetic theory. Formally this indicates that with the

introduction of light gases (p. > 1) in the vicinity of y~f = 0 the

derivative 62 u/y 2 is always negative, In which connection, given

small flow rates for the gas being introduced, there is observed the

unlikely-increase in the ratio cf/lcf0
*0

Received 10 July 1961

[Footnotes]

Manu-
script
Page

No.

1 In Reference [4] it has been suggested, however, that the
obtained solutions be used to describe the flow in the vi-
cinity of the critical point.

4 A special case of Relationship (4) was used in the work of

Van Dreist [4].

6 The value of m0 in view of Assumption (5) need not be a
function of the Reynolds number, and for this reason Formula
(8) does not take into account the insignificant evolution
of the velocity profile in the case of constant parameter
values (for example, on the impermeable plate).

7 The region of positive pressure gradients is not considered,
since in this region, generally speaking, the assumption of
a single-parameter velocity profile is not satisfied.

10 Qualitative evaluations have shown that in accordance with
experimental data and various theoretical works the effect
of heat transfer on cf/cfo and St/St 0 (St and St 0 are the

Stanton numbers) as functions of the corresponding dimen-
sionless mass flow rate (see Fig. 5) are generally not great.
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THE PROCESSES OF IONIZATION AND RECOMBINATION IN HOT AIR

V.A. Bronshten

(Moscow)

In the passage of extremely powerful shock waves, not only molec-

ular dissociation can take place in the air behind the shock-wave

front, but the ionization of the atoms. An example of such a shock

wave is the wave formed by a meteorite flying through the atmosphere

(as is well known, the velocity of meteorites in the atmosphere ranges

between 11 and 72 km/sec).

To calculate the processes of ionization and recombination in the

hot air behind the front of a wave, the air in a plasma state, we must

know the coefficients of ionization Zr and recombination Cr (r is the

degree of ionization). In order to obtain ,hese coefficients we must

evaluate the comparative role played by the various elementary proc-

esses, and in contemporary scientific literature this is, by no means,

done in a uniquely defined manner.

1. Ionization. The basic mechanism of ionization in hot air is

the impact of electrons. The general expression for the coefficient of.

ionization resulting from electron impact, as used in courses in astro-

physics [1, 2], takes the following form:

Z 4k 4 2WkT, , . dv.

Here v is the velocity of the colliding electron, v0 is the mini-

mum velocity resulting in ionization, ar, k(v) is the effective cross
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section of the r-th ionization from the k-th level, at velocity v.

In this case it is generally assumed that the

ionization-takes place primarily from the base

level, since the population of excited levels

in the case of the Boltzmann distribution is

Fig. 1 negligibly small. Let us try to calculate the

coefficient of ionization Z from the base level. Generally [1, 2)r,1
the concept of the mean effective ionization cross section a isr, v

used to calculate the integral in (1), placing this mean value outside

of the radical sign. Then

A /, k,.- (2)

S2)

Here it has been taken into consideration that Ir = (meVO/2).

potential Ir, i.e., a function of vO. It is therefore more convenient,

as was-done by S.B. Pinkellner [3], to make use of the'circumstance that

in the energy integral of interest to us the quantity ar v increases

almost linearly in the v2 function. (Fig. 1).

In this case

So . . - - - - ( 3 )
0V

where a 0 is the effective ionization cross section at an energy of

2 1 rt i.e., at a velocity of v0 42. Substituting (3) into (1) and cal-

culating the integral, we will find the following expression for the

ionization coefficient.*

2/ Ar, T7/'"T (4)

From a comparison of (2) and (4). it follows directly that

- 16 -



2kT,
1++

Substituting the numerical values of the constants into Formula

(4), we will bring it to a form convenient for calculations:

r . The values of the coefficients

" ' of ionization from the base level,

. calculated for air according to For-

mula (4a) are presented in Fig. 2.*

. However, the ionization from

6711the base level by no means determines

1 j 6 7 " N t X'0
. the general course of the ionization.

As has been shown by the Works of G.S.

Fig. 2 Ivanov-Kholodnyy, G.M. Nikol'skiy,

and R.A. Gulyayev [4, 51, as well as in the works of L.M. Biberman and

his coworkers [6, 7], the chief contribution to ionization is made by

the upper levels. Indeed, despite the fact that the, population of these

upper levels is small in comparison with the base level, the coeffi-

cient of ionization from the upper levels increases sharply as a result

of the reduction in the binding energy of the levels.

Inrparticular, the probability of ionizing hydrogen from the n

level is equal [6] to

Z = ,1.t --'T'n {- EI(- u)), ( 6 )

where un M (Ir/kTnf2 ), and -Ei(-un) is the integral exponential func-

tion. The shape of the product of., n(-Ei(-_uj) with the number of the

n level for various values of u, = (Ir/kT) is presented In Fig. 3.
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To determine the over-all coefficient
of hydrogen ionization (from all levels) Z

to - n

is Summed in accordance with the Boltzman

43• distribution:
"W Z Z=e•

U M n . (7)
N

-,L,, -L L where g, is the statistical weight, U(T) is

Fig. 3 the sum of the given atom or ion according

TABLE 1

lBOIA nJa3Mu Jn, r 1BKnJna3MhI r

2 raaonwe Iyia..OCT. 1C' 10' 870 I'lpory6eP8HXUU' 6 [t0o 7,5.100' 40
j~owiea10' 10' 420 iiropqMA B03AYX 7 01tO 10' 8-10O.eq~aR Kopo~a 10" !1 190 To0 T e IN I10 10' t-2

5 Xpoo pa 10 510 58

1) Type of plasma; 2) gas nebulae; 3) ionosphere; 4)
solar corona; 5) chromosphere; 6) protuberances; 7)
hot air; 8) the same.

to state. Sum (7) exhibits a divergence if we do not take into consid-

eration the deviation of the distribution over the levels from the

Boltzmann distribution, as a result of the mutual excitation of the

ions (the effects of preionization and supercharging). This phenomenon

was examined in the classical Tomson [sic] approximation by G.S.

Ivanov-Kholodnyy et al. [4] and in the Bethe-Born approximation by L.

M. Biberman, Yu.N. Toropnik and K.N. Ul'yanov [6]. The qualitative

results of these two works coincide and can be reduced to the fact

that levels above sum n0 in a real gas cannot be achieved. However, an

evaluation of nO for hydrogen in Reference [4] is somewhat underesti-

mated (i.e., the effect of supercharging is exaggerated), as is shown

by a comparison against experimental data [6],

For purposes. of evaluating no Reference 14] proposes the follow,
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ing formula (close to the analogous Unzol'd [sic] formula)

log n,=21,65-6 log ( 0 + 1), (8)

where ne is the electron concentration. For the various types of plas-

ma in [4] the following values of no have been found, and to these we

have added the values for hot air (Table 1).

As can be seen, a comparatively small quantity of levels can ac-

tually be achieved in hot air. On the one hand this circumstance fa-

cilitates the summing and makes it possible to do entirely without the

integration of Formula (7) with respect to the upper levels, as is

generally done. However, the small number of levels imposes greater

requirements upon the correct evaluation of nO.

L.M. Biberman and his coworkers [6] obtained the following ap-

proximate expression for Zr (in the interval from 0.01 < u 0 < 5, where
r0

u0 = Ir/kTnO) as a result of integrating Formula (6) with respect to

the Boltzmann distribution.(O < n < no):

Z, = 2,2.io-sT"'' /-' e.

which can be transformed to

Z, = 2,2.io- , ... (10)

In the astrophysical examples collected in Table 1 an error of

2-3 units in the evaluation of the n0 number has little effect on the

result, since n0 is great. However, in our case when n0 is small an

error of even a single unit results in a change in Zr by an entire

order of magnitude, since n0 enters the formula raised to the fifth

power. At the same time, in a real gas n0 levels will never be achieved

for all gas atoms simultaneously. There will be a certain statistical

distribution of atoms over n0 and, generally speaking, the effective

value of n0 will be expressed by a fraction. Below we discuss the me-
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thod of evaluating it.

2. Recombination. Now let us examine the phenomenon of recombina-

tion. The latter may take place in one of two ways: with the emission

of a radiation quantum and as a result of triple collisions, in which

case the third particle which transmits the excess energy will almost

always be an electron.

I'fOU 2 1 4 $ 6 2#$0 I$ l#iS J OIOU '

PWI

Fig. 4

For the coefficient of recombination with radiation in the hydro-

gen-similar approximation we can use the following well-known formu-

la [8, 9]:*

Cr=2zA, I O I -'~(5)

where z is the ion charge (in proton-charge units), Ar is the capture

constant:

A, 16 he_' I

I3 mC' k.T,

y(p) is the function presented in tabular form by Spitser [9] and

equal to:

(12)

The quantity' P(p) for the required interval Te is of the order of
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unity, as can be seen from Fig. 4. Evidently, P/n2 = un.

The comparative role of the various'levels is here determined by

the temperature. With an increase in temperature the relative quantity

of recombinations at the base level will increase [4]. Therefore the

above-mentioned restriction of the number of levels has little effect.

on recombination with radiation (see the curves in Fig. 5 for the co-

efficients of recombination with radiation for air).*

1 4 $ J" V I 'SI 'S w o'.N4

Fig. 5.

For the third recombination (or recombination with triple colli-

sions) in Reference [6] there is derived the formula which determines

the probability of recombination at the n level:

'-," - . {-EI(-- )), (13)

and after integration with respect to the levels we obtain
-4 =.15.,J6-110- r . (i•).

or, after substitution of (10) into (14):

C ( ) - 9 .0.iO-T' (5

However, we must, in this case, take into consideration that a

portion of the upper levels is not attained as a. result of oncoming

ionization, and therefore the effective coefficient of triple recom-

bination takes the following form:
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l+ ZRnn#A '(16)

where An is the probability of spontaneous transition from the n

level (An = 1.6.1010 nh4' 5).

The authors 'f Reference [6) suggest the summing to some level

MI< n0 beginning from which the terms in Sum (16) sharply diminish,

and the units in the denominator can be neglected. The remainder is

determined by means of integration from nI ton0 .

For the purposes of our problem, however, this method is not

suitable because of the considerations described above. Therefore we

will employ the concept of the effective boundary level with the quan-

tum number nef which we will define as the quantity, which after being

substituted into Formula (15) in the place of no, will yield the exact
*

.value of C r calculated according to Formula (16) by direct summation.
r*

As an example we will sum the values of Cr in the case of quadru-

ple air ionization (14 = 77 ev) at Te = 105°K,.assuming for the time

being that all of the levels are "hydrogen-similar" (this is necessary

.for purposes of illustrating the method).

As we can see from Table 2 the effect of oncoming ionization re-

sulting in the disruption of the upper levels is particularly pro-
*

nounced in the case of great ne. The maximum value of Cr, with an in-

crease in ne, transfers from the third level to the second, and then

to the base level. The value of nef for ne > 120 is close to unity

or, in other words, the "lifespan" of the upper levels is rather small.

Figure 6 shows the effective coefficient of triple recombination.

(3:)ne"(solid line) and nef (dashed lines) to be functions of the elec-

tron concentration ne (1- hydrogen, Te = 17,500°, I = 13.56 ev;: 2-

air, Te = 100,0000, Ir = 77 ev, quadruple ionization). The ratio Ir/kTe

is equal for both of the examples. We obtain the following pattern
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(Fig. 6). In the case of rather small concentrations the quantity

C()n increases slowly - there is a transition of the recombination

maximum from the upper levels downward, to the base level. Then there

is a rapid rise in C()ne, since despite the weakening of the role

played by the upper levels the oncoming ionization from the base level

still does not play any particular role and.C(3) remains almost con-

stant as ne increases. Finally, with a further increase in ne a satu-

ration sector sets in, and this can be attributed to the oncoming

ionization. In this same Fig. 6 is also shown the shape of nef which

approaches unity. With a drop in T, nef increases approximately as

T-l/7.

TABLE 2

CM

-- -Z. 0.

1 4,2"10"12 \8,4.10-32 8,4.10-" 8,4.10-- 8,3.10-32
2 2,4.:10- 2,3.10-" 2,2.10- 5,1•.10-91 6,5.0-38
3 2,3. 10-' 14.10-" 4,7. 10: 7,0.10-, " 7,0110-U4
4 7,0:10-" 4,9.10-" 2,1.10-" 2,2.10-32 2,2.10-85 1,4.10-' 1,2.10-" 1,0.10-"8 1,0.10-3 1,0. I0-_.6 2,2.10-1 2,6.10-1 5,8.10-21 5,8.10-" 5,8.10-" "

CO- ; C. 1,3.10-29 7,2.10-81 9,1.t10-"

3,23 1,86 1,24

Fig. 6

The comparative role of recombination with radiation and triple
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recombination depends on the value of ne and the magnitude of ioniza-

16
tion. For example, at ne 10 for the ions NV and OV the triple re-

combination is 1-2% of the recombination with radiation and it can be
neglected. At ne = 18 it amounts to 7-13%, and at ne = l0O it

amounts to 120% of the recombination with radiation. With transition

to the lower ions the role of triple recombination increases.

3. Transition to complex atoms. Up to this point we have regarded

all levels in the atoms and ions to be "hydrogen-similar" although in

actual fact this is by no means always the case. In order to make the.

calculation formcomplex atoms and ions more exact we can use the con-
.

cept of the effective quantum number n1 , determined from the following

condition [8, 10):

,n. (17)

where Inl is the binding energy of the level defined by the quantum

numbers n and 1; 1= 13.56 ev represents the potential of ionization

for the hydrogen atom; z = r + 1 is the charge of the atomic remainder

(z I for neutral atoms, z = 2 for single ions, etc.). The difference

n - n = ., referred to as the quantum defect, Vanishes with an in-

crease in levels, converting the upper levels into "hydrogen-similar"

levels.

In the works of L.M. Biberman and his coworkers [6, 7, 11, 12)

there are developed the formulas by means of which we can take into

consideration the quantum defect for the actual levels of complex

atoms, and these formulas also make it possible to find for these

atoms the coefficients of recombination and ionization. The work by

Burgess and Seaton [10] presents the general formula for the photo-

ionization section of complex atoms and numerous examples of how this

formula can be used.
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4 Orly11 4Ii

Fig. 7 Fig. 8

The formula for the coefficient of recombination with radiation

for complex atoms takes the following form.:

1 0

C, =1,04.1("T' 7 (V, T) *- e'1) d10, (18)
V

.where the frequency v is determined by the energy of the recombining

electron (hv = MV /2), u' = hv/'/kT, v' = v, if v < v and v, = vg if

V > g where vg is the frequency corresponding to the lower excited

state ng9 from which the integration begins (regarding the selection

of flg and vg see [111).

The difference from "hydrogen-similarity" is expressed by the

function a(v, T), which for'various atoms and ions exhibits a varied

shape [11]. For atoms of-oxygen and nitrogen ý(v)' < 1 is not a func-

tion of temperature and diminishes almost linearly with v(for v <

< 1-1 se-1).But for various ions of oxygen'the shape of ý(v) va.-

ries substantially, and in this case this quantity may be more or less'

than unity (1.2]. However, with an increase in the multiplicity of' the

ions the shape of e(v) is smoothed, approaching the straight line -

=1, and this is explained by the fact that the levels of ions of high

multiplicity approach ever closer to the "hydrogen-similar"' levels.
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At the high temperatures taking place in the air in the case of

shock waves in front of a flying meteorite [T = (5-20)-104.K], the

first ionizations take place quickly and do not make a great contribu-

tion to the specific heat, whereas the recombination of ions of small

multiplicity is negligibly small. Therefore, in this problem the uti-

lization of the exact Formula (18) is not Justified by need, and we

can assume everywhere that • = 1. The possible errors for the 01-0111

ions partially compensate each other, since the difference • - 1 for

these ions is opposite in sign.

For our calculations we will, therefore, employ Formulas (11) and

(i2).

With respect to ionization and triple recombination, the applica-

tion of Formulas (10) and (16) to the complex atoms need also not re-

sult in large errors [6]. However, the factor Fr must be introduced

into Formula (10), since this factor makes it possible to take into

consideration the multiplicity of the atoms:

2U,_•.

where Ur is the sum over the states.

Figures 7 and 8 show the values, respectively, of the coeffi-

cients of ionization from all levels and of the coefficients of triple

recombination for air, calculated according to the indicated formulas

for the' electron-temperature interval Te 4 (K.

e.= 3-30) K.
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wishes to express his thanks to S.B. Pikel'ner for his valued advice.
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[Footnotes]

Manu-
script
Page

No.

16 In Reference [3], in the'place of the factor (1 + 2 (kTe/Ir))

there is simply kTe/Ir and this is, apparently, an error.

Therefore the coefficients Zr are underestimated in this work

approximately 0.5 orders of magnitude, which, by the way, has
little effect on the results of this work because of the pre-
dominant role played by the electron excitation in nebulae.

17 In all calculations air was assumed to be a monocomponent
gas, and the potentials and coefficients of ionization for
nitrogen were averaged in accordance with the relative con-
tents of these gases, i.e., 0.78 and 0.22, respectively.

20 In the work by Seaton [8] this formUla has a slightly dif-
ferent form but it is not difficult to modify it to the
form of (121. However, this 'formula is suitable, strictly
speaking, only for the isoelectron hydrogen series.

21 The question of recombination with radiation for oxygen and
hitrogen is also discussed in Reference [13].
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AERODYNAMIC CHARACTERISTICS OF DELTA WING WITH DEFLECTED AILERON,

FLAP, AND OTHER SECONDARY CONTROL SURFACES IN SUPERSONIC FLOW

Yu.I. Krasil'nikov

(Moscow)

In this work we obtain the aerodynamic characteristics of a delta

wing with a deflected aileron, flap, and other secondary control sur-

face, when streamlined by a supersonic flow of gas.

'ai .'

Fig. 1

The theoretical determination of the aerodynamic coefficients is

based on the linear theory of a wing of finite span in a supersonic

stream, as developed in Reference [1].

1. Statement of the problem. Let us consider the movement of a

supersonic gas stream past a thin delta wing with deflected aileron.,

flap, or other secondary control surface., The wing plane will form a

small angle of attack a with the direction of the veloc.ty U of the

approaching stream. The aileron, flap, or other secondary control sur-

face is deflected from the plane of the wing through the small angle 6

(Fig. 1). The leading edges of the wing are supersonic.
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Let the flow' being formed satisfy the conditions of the linear-

ized theory [1]. Given the indicated streamlining conditions we will

determine the aerodynamic characteristics of the wing.

Let us introduce the basic rectangular system of coordinates oy'-z,

connected to the wing, and the system of characteristic coordinates

xoyz (Fig. 1). The connection between the characteristic coordinates

and the basic coordinates is accomplished in accordance with the iol-'

lowing formulas known from [1i]:

*. 'x=x-hky y=x+ky. z=hi (1.1)

where-k =/M2 -2 1 = cot s; M > 1 is the Mach number of the approach-

ing stream and e is the Mach angle.

The velocity-disturbance potential q satisfies the wave equation.

In accordance with the linear theory for the wing, the boundary condi-

tions for the potential q in the characteristic coordinates, after

linearization, will be the following:

on the projection of the basic part of the wing onto the xoy

plane

Uc tge;

on the projection of the aileron, flap, or secondary control surface
/

(J~p /&P-- =-U (a + 6) re.( .g

Since the boundary conditions (1.2) are constant, the value of

the potential. c on the projection of the wing (on the basis of the

general formula for the determination of the potential) in the charac-

teristic coordinates is written in the following form:

4P(x, Y) - 2x_____- _____ +

U (a +6 ) tgs - (1.3)+ 2x ••e)•x ) e-.

- 30 -
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where Sl(x, y) is the integration region with respect to the projec-

tion of the basic part of the wing falling within the characteristiQ

cone whose apex is situated at the point M(x, y); and S2 (x, y)is the

integration region with respect to the aileron, flap, or secondary

'control surface projection, falling within the same cone.

I a " Ar

Fig. 2

To determine the forces and moments acting on the wing, it is

necessary to know the distribution of the pressure differences across

the wing. In accordance with the Bernoulli integral, the difference

between the pressure beneath and above the wing is associated with the

velocity-disturbance potential • by the following relationship:
AP = 7 2pU (T. + q,,), (1.4)

where p is the density of the gas in the undisturbed stream and T and

qy are the derivatives of the potential ý With respect to the charac-
y

teristic coordinates.

Thus in order to resolve the posed problem it is necessary to de-

termine the velocity-disturbance potential pand then to find the dis-

tribution of the pressure difference across the wing.

2. Determination of the pressure difference. a) Distribution of

the pressure difference across a wing. with an aileron. In flow past a

delta wing with a deflected aileron (Flg. la) two cases are possible.

In the first case (Fig. 2a) the aileron falls completely within the

head Mach cone, whereas in the second case (Fig. 2b) the aileron pro-
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trudes from the head cone. In both cases the disturbance (perturba-

tion) lines emanating from points 0, 01, and 02 divide the entire flow

region on the wing into regions I, II, III, IV, V, and VI, and flow in

these regions 'differs in nature. The equations of the wing and aileron

generatrices are assumed to be in characteristic coordinates when the

potential is, sought in these regions.

The flows in regions I and II are known. The distribution of the

pressure difference in these regions is determined on the basis of the

following formulas:

API=4qatgeF((T, ), (2.1)

APil =4qa t'eFg(T )(, e) 0 1 (y e, T). (2.2)

where..we have denoted
tgTYýg T i- (2'. 3) :

S Co 2 tg T-- tgB r ]
, - 2 tg' -tg J' (2.4)

( is the polar angle of the point in region II counted off from the

ox axis, and here q > 0 in the region 0 4 0E and q < 0 in the region

04 OF; _ is themvelocity head.

Using Formulas (1.3) and (1.4), we obtain the following expres-

sion for the pressure difference in region III:

AP111 = 4q. tg e + 4qa tg eF (T,, ) (p (y, e, , (2.5)

where y is the polar angle ofr the point in region III counted off from

the ox axis.

In seeking the potential piv(x, y) in region IV, we do not take

into consideration the effect of the slit, but we do take into con-

sideration the leakage of the gas from one half of the region to the

other. Integration in the region IV is more conveniently carried out

in characteristic coordinates whose origin is situated at the point
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01. For the pressure difference in region IV we obtain the fbilowing

formula:

+AP+ t4q8(tg) i aretgV/l +(

+4qtCF(Te) aretgmIx,+(B-b)- -hI + (2.6)

where + re. ctit J + ( - -j- kiS al! y,, + (B -- h) + MAI

ty7--tge C (2. 7)
tgT+tge Al

x and yl are the characteristic coordinates of the point (the origini

is at point 01) in region IV; B, b, and h are the geometric parameters

shown in Fig. 1.'

The connection between the

characteristic coordinates (x, y)

whose origin is situated at point 0

ff L and the characteristic coordinates

AK. (Xl, yl) whose origin is situated at

point 01 is achieved by the follow-

ing formulas:

Fig. 3 x=x,+'(B _-b)-kh, y y,.+ (B--b)+kh. (2. 8)

On the basis of (2.8) Formula (2.6) can be rewritten in the fol-

lowing form:

APIV ==4q6' t9 e '2 arc tg'• -

4q t, F ft ) arc t --- + arc ctg(

Y Y

Rearranging and introducing the denotation

M (r. ,'g ' arc t gj/ tey - (2. 10 )

for the pressure difference in region IV we will obtain the final ex-

pression

iv =,Iq tg e, (, ,) + 4q" tg • , (T, E, w), (2,(2.11)
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where T is the polar angle of the point in region IV, counted off

from 01D (the pole is situated at point 01), and (i > 0 in the region

ODG; (1 < 0 in the region OIDK; q is the polar angle of the same

point in region IV, counted off from the oi axis (the pole is situ-

ated at point 0). For the remaining regions the pressure difference is

determined by the following formulas:

APV - lqo tg PF (T, 9)+ 4q0 tg9 (D,(C, TO), (2. 12)

Pvj -i qo tq F t (. P) + 4qa tk 0 (2.13)

* taking into consideration (2.3) and (2.4).

, b) Distribution of pressure difference across a wing with flap

and secondary control surface. In the case of flow past a delta wing

with a flap or secondary control surface the entire flow region is

divided into eight characteristic regions I, II, III, IV, V, VI, VII,

and VIII by perturbation (disturbance) lines emanating from points 0,

01, and 02. (Fig. 3) in the general case.

In regions I and II of a wing with a flap, the pressure differ-

ence is determined according to Formulas (2.1) and (2.2), taking into

consideration (2.3) and (2.4). For a wing with a secondary control

surface we will have
API = 4q (a J- 6) tgrF (T, P),

Apjj = 4q.a + - ) t eF (T, OX'< (2. 14)

X 0Q, (2.15)

The pressure difference in region VII of a wing with a f'lap is de-

termined according to Formula (2.14) and according to Formula (2.1) in

the case of a wing with a secondary control surface. In region III of

a wing with a flap the pressure difference is determined on the basis

of Formula (2.5).

For a Wing with a secondary control surface, we will obtain
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AP,, 4q (a+ 6) tg ,F (T. 9) 01 (ft, (f ) - 4q6 tg (2.16)

In region VI of a wing with a flap the pressure difference is de-

termined according to Formula. (2.13). For a wing with a secondary con-

trol surface we will have

APv, =4q (a -+- 6) tgeF (ft,) - 4q6 tg e.,. (2.17)

For the pressure difference in the region V of a wing with a flap

we obtain the expression

.APv = 4qa tR ITf, P,) - 4 q4l P (4r,(, q ) , -F(, e)ft--.(,, e, wi)h (2. 18)

where
.e €, , ,•o••2 , 3' |/tR + ,g 8) OR• P t, •

(tgr•- tg ,).(tgi + tgq',) (2.O9)

9i is the polar angle of the point in region V (the pole is situated

at point 01). For a wing with a secondary control surface we will have

APv=4q(a-+?4t geF(Q, P) - 4qfg, Rc(4)t ,)(, q{ )±F T, + )1 -- D-•(T. E, 1,). (2.20)

For the pressure differences in regions IV and VIII of .a wing

with a flap we obtain the following formulas:
APIv = 4qa tg eF (T, e) 01 (ft, e, ip) +

+ 4q6 tg c (al (e, wt) -F F (T, 9) [1 -- (D , e, 8 ,)T), (2.21)

I&P\,1 =-- 4qc tg CF (T, ) i (T, C, p•)r-+'1q0 tg e ( C. (6, TO) +" F (T, 9) 11 - (,(,Y', i. ,)P -7,

+ 102, (r, q,) -- f -+ F (7 , 0) 11 - ('D(T , C,)TO, (2.22)

where q *is the polar angle of the point. in region VIII, counted off

from the oi axis (the pole is situated at point o), ql is the polar

angle of the same point in region VIII, counted off from the line 0 1 D

.(the pole is situated at point 01), ½2 is the polar angle of the same

point in region VIII, counted off from the line 02C (the pole is situ-

ated at point 02), and 2> 0 in the region 02 CM and (p < 0 in the re-

gion 0 2 CN.

In order to derive the formulas for the pressure difference in

regions IV and VIII of a wing with a secondary control surface, it is,
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sufficient to replace a by (a + 6) and 6 by -6 in Formulas (2.21) and

(2.22), which follows from an analysis of the formulas derived above.

3. Determination of forces and moments acting on the wing. The

forces and moments acting on a wing are determined by integration with

respect to all regions on the wing, and this is most conveniently car-

ried out in polar coordinates.

a) Characteristics of a wing with an aileron. Since in all of the

formnulas for the determination of the pressure difference in various

regions of a wing with an aileron there are terms that are functions

only of a, we will separately calculate the force acting' on the wing

and determined by these terms. In either case (Fig. 2a and b) we will

obtain
Z, 4qa tg ,B tgT. ( .i

Using Formulas (2.5) and (2.13) we will find the force acting on

the. region 0 1 02 0 4 K and dependent on 6. Carrying out the calculation,.

we will obtain

Z,=4q6tg,( bh-- ,tg \
' 2/ (3.2.)

The exact same force acts on region 02 03 0 4 N. On the basis of

S(2.11) and (2.12), with (2.10) taken into consideration, we will de-

termine the force acting on region KO 1 G and dependent on 6. Carrying

out the integration, we will find

Z; =4q8 ,,, t" (3.3)

The force acting on the region GO1 0 2 M and dependent on 6 is de-

termined from the following formula:

ZI =-4qb (g 2bh. (3. 4)

For the total force acting on the wing we will obtain the.follow-

ing expression:
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Z =4qatg02 g -FJqbtgP 2 ,(3-5)

The coefficient for this force has the following form:

4a a K+ (3.6)

where Se = 2bh is the total aileron area, Sk = B2 tan 7 is the total

area of the wing,

Let us determine the moment of forces with respect to the o7

axis. The moment of forces (3.1) is determined in accordance with the

following formula:

2 B.- Z,-3 (3.7)

For the moment of forces (3.4) we obtain the following expres-

sion:

W-. ~4qbtg 2bh (38S(,- 4 .2 (3.8)

The total moment of all forces with respect to the o• axis takes

the following form:

M otte 1t9 T + 4q6 tg e 2Bbh -- "-.(3.9)

For the coefficient of this moment we obtain the following for-

mula:

VW, V---Il 2 -- -L-L t (3.10)4a. 3 Ck'2BJK

Dividing (3.10) by (3.6), we will obtain the dimensionless coord-

inate for the center of pressure of the central chord. Carrying out

this division, we will obtain,

- 2.
XK~ +AAIA (3. i1)

where
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I b S,

Az"-- ). (3.12)
AILA

Let us determine the moment of forces acting on one half of the.

wing, about the' ox axis. The total moment of forces acting on this

half of the wing, about the o•, axis, takes the following form

-1 tg rtge tgr tgs 1M_ 4qd tga--'t'-[j-+VgTt' arc cS +

--496 tg e b-L [ I b )2 tg, el.(3 3

For the coefficient of this moment we will obtain the following

expression:

_ tgi-T -=rcos]J
4 3 X2 tgr .V tg2 .•r atoe tg ,.

- 1e r /I• S (3 .1 4 )
+-7 +2 -6 H, S

where S2 F bh is the area of one half of the aileron, S1 - (B 2 /2) tan

is the area of one half of the wing, and H = B tan y is the half-span

of the wing; X b/h.

Formula (3.13) can be used for the determination of the moment of

forces of a rotating wing or control surface about the side chord in

the case of flow past a wall. At a = 0 we will obtain the moment pro-

duced by the deflection of the aileron.

The dimensionless coordinate of the center of pressures of the

forces acting on the half of the wing, about the half-span, is found

from the following expression:

- _ , (3.15)

b) Characteristic of a wing with a flap or secondary control sur-

face. Let us determine the forces and moments acting on a wing with a

flap. Using the formulas for the pressure difference, obtained for a
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wing with a flap, we will, through integration, find the force

Z=4qm tgeB' tg- + 4q6 tg s 2bh +ýb'tg~j. (3. 16)

For the coefficient of this force we will obtain the expression

________ . t, s,) (3.17)..,

where S z = (2bh + b2 tan y) is the area of the flap.

The moment of force (3.16) about the oy axis takes the following

form:

IM-=4qctg e 2 B ) T
I3 3 3 (3-18)

For the coefficient of the moment (3.18) we obtain the following

formula:

M- Y .- Iis

-MB 3BY (3.19)

where S 2bh.

Dividing (3.19) by (3.17), we will obtain

- 2 -

+(3. 20)

where

* _1b) S b S3.ft
AX A - (3.21)

The total moment of forces acting on one half of the wing about

the central chord, takes the following form:

"* M% . =4q•.tg, ,,gl Vtgtyr trcco + (3.22) .

For the coefficient of this moment we obtain the following ex-
pression: m11'M'-i 2 [tg. tgT tg '

M- 39 - aTrcos-+

n t9L~T YtgI'r--tgl _ tg T
b 9



where we denote

B? b2- b
S, t = 7 r . 2 th S, b/ -, S1 tg ,. 11 - Btg'r, ; ="

2h

The dimensionless coordinate of the center of pressure of the

forces actirng on the halfwing about the half-span can be found frofm

Formula (3.15).

In order to determine the aerodynamic coefficients of a wing with

a secondary control surface it is necessary to replace a by (, + 6)

and 6 by -6 in the formulas found for a wing with a flap. Carrying out

this operation in Formula (3.16), we will obtain

z =4q ( + 6) tg B-t"r- 4q4 tg F (2bh +'b2 tg -). (3.24)

Hence we find that

Z liqa lg ,S.', lqbtg esn (3. 25)

where Sp [B2 tan y -(2bh + b2 tan y)] is the area of the secondary

control surface.

For the coefficient of force (3.25) we will obtain the following

expression:

S--. U -z •(3.26)

Using Formula (3.18), we will find

M-=4qatg' fgTI- B-+ q tge tg ' -- 2bh3+b't (3. 27)
•I I "

-(2bh -+ bI g ) -!- (-B - b) --- bh
3.

For the coefficient of the moment (3.27) we will obtain the fol-

lowing expression:

.~ ~ m- -L + 3 6 8 SKI ~ .L+

The formula for the determination of its.d takes the following

form:

-40 -

FTD- TT-62-1694/1+2



7 2 (3.29)

where

8n (3.30)

Carrying out the substitution in (3.22), we will obtain
6 tg I tg, + tgT tge]

3M-4AQ(+6)tg -jB t - tg } ' tg 'r-tg'9 'arccms T
"4 M I+b I(3.31)

-4)q tgeh

For the coefficient of the moment (57) we will obtain the follow-
ing expression: m='M - 2 g----T"

-tR +arc cos- -4a . -- .)u I - tg---Tr )tgI•j-tgI. arco tg T

S6 hF I3.32)

-H IL2 (1~ S1-L,] 1

Dividing (3.32) by (3.26), we will find the dimensionless coord-

inate of the center of pressure of the forces acting on the half wing

about the half-span.

According to the found formulas for cz and ts.d we carried Out

the calculations which were then compared against the experimental re-

sults. The comparisons showed that the calculated data are in good

agreement with the experimental within the following range of numbers:

2 < M < 4.1.

Received 2 November 1961

Manu-
script [List of Transliterated Symbols]
Page

No.

37 . m ts.d = tsentr davleniya center of pressure

37 3 = e = eleron = aileroh

37 K = k = krylo = wing
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39 3 z =zakrylok = flap

39 =.n z.p = zakrylok predkrylok =flap and other control
surface
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