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_TURBULENT.BOUNDARY LAYER WITﬁ PRESSUREYGRADIENTS
ON A POROUS SURFACE
CA.I. Tolstykn
A N (Moscow)
ﬁxisting methods of calculating a turbulent boundary layer with
the transport of a substance through the surface are restricted only
by the case of zero pressure gradients and are based on the ﬁse of ﬁhe
same semiempiriqal relationships as in the case of an‘impermeable
plate [1]-[4], [8], [9].* Because of the lack of the ‘required experi-

mental data the latter unavoidably results in the assumbtion that cer-

- tain quantities are independent of the mass-~transfer parameters‘and'to,

a somewhat arbltrary approach in the selectlon of the necessary con-
stants. | L -

The purpose of the present work 1s to investigate the more gén-,
eral case, 1l.e., a turbulent layer on a porous surface in thé‘preSencé
of pressure gradients, without the introduction of any semiempirical
relationships and with the utilization of only that 1nformatioﬁ WHidh :
can be obtained from the known prior ﬁistory of thé flow.

Initlally an incompressible boundary layer is considered in the
absence of diffusion, and then a formal generalization is carrigd out
for the case of a heterogeneous mixture of compressible gas. '

1. To derive the required re%ationships we will proceed fromfthe

case of an 1dealized two-layer model and will assume a turbulent layer

.consisting of a wall reglon in which the equations of laminar motidn
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and a turbulent core are valid. In accordance with this, one part of

‘the flow may be determined by assuming the required number of boundary
‘conditions, and with respect to the other part of the flow (because
' the equations of the turbulent boundary layer are open) it becomes

',rnecessary to make certain assumptions.

Flow in the wall region (a vlscous sublayer) within the scope
of the boundary layer equations may be described by a system of the

following form.

“E+““=Z@ . o
;'35+3ﬂéouf L (1)
oy . BN
with. boundary conditions at y = O
) ' Ou ¢
ll=0, =\), —
. »0.'0 dy - vp'Q‘ Q"
Here v, = v — w; u and v are velocity components in the conven-

1
tional boundary-layer coordinates‘f and y; w is the'normal velocity at

the surface; T? p,-and v 1s the stress at the wall, and the density
and Kinematic viscosity; Qi and in are, respectively, cértain func-
tions characterizing‘the‘flow and their value at thé wall. For exam-
= -(1/p)(3%/3p),
w(au/oy), ete.

ple, in the presence of a pressure gradient ZQi

as a gas 1s passed through the surface ZQi = QQ
At glven values of T, and Q  System (1) fully determines the mo-
tion near the wall and in view of ohe smallness of the nonlinear mem-

bers is reduced to the following equation:

d'u' + EQI . s

with the corresponding boundary conditions. From the concept of dimen.
sionality it follows that the solution to the above equ.at:ifl.On,vha.:;iiv\t‘:ﬁef'3

folloﬁing form:




'by changing the value of t. Indeed, on the one hand 1-—pv(l-L T)

- where v, =,/(7 /p) is the dynamic velocity.

In particular, when air 1s forcec through a surface along which

there is the following pressure gradlent:
T EEE ey
0-'7,—(6.' —.1)‘

‘a
—==Y .

* * ‘
where y, = (yv*/v), and a and f are the dimensionless parameters of

‘the pressure gradient and the air injection:

dp v

.a_._

a = ." . -
N @
= '

<le =l

The wall boundary layer in which the flow 1s dcscribed by & "lame:

'inar" solution is naturally defined as a line along which 1aminar

friction covers a definlte and fully established portion of the turbu-
lent layer; let us‘say‘that 1t is defined as the line along which

vT/v = const, where v,, is the turbulent (virtual) viscosity that 1s

T :
associated with turbulent friction by the relationshipfyT = va(Bu/ay).
This representation, accurate fo the constant, defines the "laminar -’.
sublayer" on the impermeable pXate, since the relationship vT/v musfil?
be a function only of y,. In the general case, this relatibnship mayf:“'
be a function also of the parameters in. However, if 1nséead cf Twhk

the local value of total friction v is taken as cne of the determininé,.

parameters, the effect of Q1 must make itself felt, apparently, only }
u "
au Yy ‘
while on the other hand, as a result of evaluating the various terms

in the balanced equation for pulsating energy [10], (vT/v)(au/ay)a g

(e denotes those terms which correspond to the averaged viscous dissi-

pation of pulsation), only if convection transfer of the pulsating en- -

-3 -
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ergy by the lateral velocities is not too great (if the 1nJection>ve-
locity w is not too great) and y, is not too small.

In view of the fact that e is not an explicit fupction of'Q1w and
is mo§t 11kely.determ1ned by { (by changing the velocity scale fqr
m;Jor pulsations), tﬁe ratio vT/v is a funotion only of y, 7, p, . &and
v, l.e., the cbndition’vT/T = const 1s equivalent po the relatioﬁship
(y/v) ﬁ/(T/p‘b= const. Since in an idealized two-layer model the total
stress near the wall is only viscous, we require that at the boundary

of the viscous sublayer the followling relationship be satisfied~
' du.q -
yl{v dy ' (3)

~ where the constant in the right-hand.part is independent of the x co-
ordinate and, consequenéﬁy, it 1is indépendent Qf the parameters of in-
| Jectlion and the gradient. This constant can be determined if the. re-
quired‘magnitudes pertaining to some "initial" section are known; in

‘ particular, 1f the boundéry layer on the 1mpermeable plate has been
thoroughly studied in the prior‘history‘of the given flow, const = a,

_ where a is a universal constant. In view of the universality of a we

can maintain that the following 1s valid regardless of the existence

of such a prior history:

at—p

o ; ‘ © lim —~y V ""*” = const = a,
. atse ‘

Thus Condition (3) can be written in the following form:

ys % ) =Y}, (4)
ay Iy,..v

where Y is the value of 'y, at the boundary of the viscous region, and

N . o .* H .
Y=o

Let us now examine the turbulent portion of the boundary layer.

Restricting.the‘classes of flows being studied.somewhat,.we will as-

: .



sume that the velocity profile in any section can be presented in the

single-parameter" form

i) morea- o 09)

e

ewhere 6 is the thickness of the bdundary layer;.ue 1s the velocity at

the outer limit of the boundary layer; r 1is some parameter. In the

"initial" section the velocity distributlon must, thus, be described

':by a function of the form of (5) at some initial value of r. In order

to clarify the nature of the function r(in) we will use the concepts

of dimensionallity. The only magnitﬁdes determining the flow in the
“vicinity of the boundaries of these regions will, evidently, be the

- total momentum flux Tt at this boundary,Adensity ps and the distance y;

from these parameters we can make only the single combination_geving
h 4

)

the dimension of the derivative du/dy, and namely 4 _ const P and
‘ 9

therefore at the boundary as a consequence of Relationship (3) and the

condition of momentum-flux continuity we find the fo;lowing‘equality

S . const -2

oy 0y y,=Y'

(6)

which 1s accurate to the higher derlvatives of the veloclty u and
yields the function r(in)

w1th respect to the form of the function £ let us note that For-
. mula (5) must determine the velocity profile even in the case 1n which
the "initial" section corresponds to the flow on the 1mpermeab1e-

plate; 1t is evident that Assumption (5) will be satisfied if the cor-

responding functional relationship will have the same forﬁ as 1n the
initial section, i.e., for example,

u—u, .i‘

.‘v. k(Q}.)

In _g_ ox‘;“ia(_og_)"(ol-) (7)

where the pafameter r, denoted, respectively, by k and Q,~asSumes_thee'



. known values k(0O) = k., and m(0) =m

‘0 (0}
As shown by the experimental data, the second of the functions
(7) describes an extremely extensive class of flows (in particular,
flows withunonnositive pfessure gradients and flows witn the movement,
gonerally speaking, of a foreign gas through the porous surface of the.
plete [5-71). It is good that the step distribution of velocity is
preserved to subsfantial injection intensities [5], [7]. Subsequently
Awezwill use the'step function which results in comparatively simple
finite results; the exponential values'will be found from Relation-
‘ship [6], in which the constant, as a result of the universality of

“ the initial value of m is determined as a result of the limit tran-

OJ
Bition for inﬁ~ Q:%*

| AN :
'.",;—MY (TEZ)y.-v' . (8)

In the derivation of this formula we used the condition of ve-

locity continuity which can also be written in the following form:
‘//17q (=) |
2 ey "/fLR' (9)
B ' l/ 2 ’ .

where (c./2) = (v*/uz) and R = (u_8/v). Relationships (4), (8), (9),

and (2) make it possible to calculate the looalicoefficient of‘fric-
tionaand the‘éxponent m, which when using tne integralnmomentum;rele—
tionship fully solves the problem.

| Let us examine certain snecial cases.

a) Let, for ekample, f*-= 0, and a* <0 (the negative pressure
gfadient»onithe impermeable wall). In this case the velocity'profile
has a step shape, and Formulas (4) and (8) are transformed, respect-
ively, to | S

a'Y 41 .

Y3 (a'Y ;}-l) =Y, m= me

1 . .
— Y 41
oY

.-6-



These relationships yleld the theoretical relationships between
the coefflcient of friction and the exponent and the'preséufe gradiént,
" which are of some interest. Figure 1 shows these functionsitogether
" with the experimental points pertaining to the cbefficient of friction
‘[12] in the following coordinates: cf/cf s m/mO and a’ (the subscript
. 1o oS E
0 denotes the absence of a gradient), ‘
* * : : '
b) Let £ > Oanda =0 (inJectiqn on a porous-plate). Then ac-
cording to (4), (8), (9), ana (2) |
| m = meM (Y),
C' _..l:-m— _’-L
5 =TV, BmR =,
where

F=L M@ =2V 0Py,

T(Y) = Vt[M(Vilifi.

.The .values of ¥ are found from the following equation:

w(x)
ll‘ -

;.— . —"_’__ _‘_ ,'r‘"‘":'
r 1,/—5 =21 InY | (M (V)]F~ Y, R A
in which the left-hand part is assumed to be given.

C

Sje
E

Fig. 1 ' Fig. 2

The calculatlons that have been carried out showed thétydespite |
the absence of some degree of freely selected constants, the experi-".'
mental values of m in the most varied of cases are 1n‘satisféctory

-7 -



‘sented in the form of m = mg M(Y; Z

agreement with the theoretical values, provided the injection velocity

‘is not too‘great (at high injection velocitles discontinuity phenomena

are observed and the corresponding relationships do not accurately

, describerthe‘velocity distribution); an analogous comparison of fric-

tion-coefficient values is difficult in view

n“ I \‘ )
, . ’ s . . . .
o // %' .of the substantial scattering of the experi-

o I / ” : ’ ) ‘

. M / . - mental points. As an example, Figs. 2 and 3
82 "' .. -+ " show the data pertaining to Reference [5]; the
A S S curve in Fig. 2 has been constructed in a con-
: LU T Y 55 , ' .

DR A ventional system of coordinates cf/‘cf and
Fig. 3 “2w/u eCr (the subscript O‘denotes the‘imper-
0O

'meable surface) and corresponds to the constant Reynolds number R

= (u x/V)

c) Let £>0and a <0 (inJection on a surface streamlined by -

A an accelerated flow).* In this case the sought quantities can be pre--'

1" 2) 2’
1—m ~
%ﬁ(VAMYiF[WF
where M= . Z,(1— V1 — 2,7, T T"MFF'". Zi=Y[', Z:=Y8, anq’the values of

Y, Z1 and Z2 are determined from the following equations:

1

££L=r(ﬂ)?

e 2

and Condition (4). Solutions\taking‘this form can befused ‘for exam-
ple, in investigating -flow in the vicinity of the critical point. Fig-.
ure 4 shows the results obtained in the calculation of the friction
coefficlent for various local values of the pressure gradient 1n the )

case of the sanejReynoldS'numberlﬁ =‘(ue6/v)‘=.104 (the subscript 0

‘ . * *. . s . .o
denotes the zero. values of the parameters f ‘and a ). It should bve .

-8 -




pointed out that the values‘of the coefficlient of friction, peftaining
‘to the same Rx number (for example, to one and the same point on the -
surface), will increase substantially more intensely with an 1n¢reéée
in 3p/dx than shown in Fig. 4 as a result of the reduction in the R
rmen“v' | ) | o
2. The outlined concepts can‘be'uéed :
to calculate the rather general case of a
turbulent‘boundary layef in the presence
: of diffuslon and heat transfer. The ques- '
tion 1s resolved particularly simpl& if we .

have a conditlon of similarity between the

‘'velocity, temperature, and concentration

fields, i.e., if there is a "generalized"

Fig. 4

Crocco integral (deriQed, for example, in
Reference [8]). In the general case, 1if the functions govérnihg thé
éhanges in the physical properties or‘thg‘gas are known (viscosity,
thermalkconductivity, ete. ), 1t 1s always possible to solve‘thé systeﬁ‘

of equations which describes the flow near the wall (the equations in

'Reference [13] evaluated for low values pf X)5 for this it is suffi-

clent to pose the Koshi [sic] problem, assuming inadequéterboundary
conditions at the surface (for example, the magnitudes ofifriction,
heat flow, and concentration). The solutions fbﬁnd with the aid of re-
lationships of the type of (4), (8), and (9), and Assﬁmption (5); ir
it actually is valid, make it possible to determine the wail re—.

glon and the veloéity profile in the turbulent parﬁ. With respect to
the determination of the sought magnitudes on the surface we would
péint out that the equations of tqﬁbulent flow in a known velociéyf
field and given known functions gdvernihg changes in "turbulent"
Prandtl, Schmidt; etc. numbers, make 1t possible to associate‘thev"éi;'

-9 -



ternal" boundary cenditione with the conditions prevalling at the
boundéry of the Viscous_region; the latter, however, in view of the
continuity of the corresponding magnitudes (velocity, temperature;
‘concentration, and flows of mementum, heat, and matter) are expressed
in tefms of the boundary conditions at the wall.

As an example let us consider the flow of a binary mixture in a .

Hboundary layer on a porous surface with a nonzero negative pressure

gradient; for the sake Of‘simplicity we will assume that there is no

;heat transfer.* The solution for the viscous region in this case will

be written in the following form:

) ¢+,‘ !lny.r )
9e.7-1,;—~e‘ g exp(—-Ag“‘)da—f-F;-s—c-e tEi(— Aes“"’)-—Ec(—-A)l. (‘10:)‘

I+ m=NC=1+ (u—l)c.lexpl—A(e""' —y,

-

where y= Bt o2 "‘z.l/i (P 15 the densi‘ty at the wall), Sc is

' : e _ 13 '

‘the Schmidt number, @ = o ; JIIF(H~4)Cd(m==ph_n is the parameter of

' the pressure gradient, A-—u;..)_J_JﬂL_ (C and C_ is the concentra-
1+w-1)C, W ‘

"tion and its value at the wall, b= Ml/M2 1s the ratio between the

“molecular weights of the basic and introduced gas). In the derivation

‘fof these expressions we made use of the balance equation for diffusion

flows pew(l— .,)==—p.D..~—, is the coefficient of diffusion);

12

for the sake -of simplicity it was assumed that Sc = v/D = const and
0 ' 'j *" . _as a result as well as in view of' the fact
zf‘ that D,, calculated by the Enskog [11] method
- . i1s a weak function of‘the miiture ppopoftion,
“r it was assumed that v =:éousﬁ.. 4
. - In simplified terms, in the equatiou3~of
‘(‘ 'y  ‘ turbulent motion we will assume d/dx =

§ :(for example, let this be as a first approxi-A

Fig. . 5
| - 10 -




mation); then, using the condition at the boundary of the regions, we.

willl obtain

L o Y I
pVy = = o,
muy " '

. - dc o - - (11)
_pyeC s PV:T-;,;-‘-.I-Do . : :

where
a= . B = 0’ * ._.._egn.
PY P"c"‘y ’pY (f q a,‘ +alyo L‘-y.
- Py( f. Sc 0y.)ly.=¥' y 8’
Se, = const 1s the turbulent Schmidt numBer.

T . .
Integrating the second of the equations in (11), we will find

the concentration distribution which as a feéult of the condipion'c =

= 0. in the case of y = 6 ylelds the relationship

D L?;G%Pﬁ{

"" ,,v._vy"‘. wa - ] v‘_‘ A . » (12)
‘where

Moo dt

)= Sc; | —

A'. ,. ! { ’+.i—-o—"—'—_L

oo - Or pywu, . pywu,

For a given distribution of w(x) and u,(x) Formulas (4), (8),
(9), (10), and (12) make it possible to determine all of ﬁhe uﬁknoﬁﬁi '
flow parameters contained in them. The results of the calqulatiohs
carried out in the assumption that dp/dx = O and Sc = Seq = 1 for a-
ﬁixture‘of air and'helium are shown 1n'F1g; 5. All of the values ‘

:, (cf/e = rw/peui) pertain to.the same Réynqlds number E = 10%, Figure 5
11llustrates the sharp reduction in the §oerricient of friction in the .
‘vcase of the injection of a 11ght foreign gas; however, 1t shogld bgL 

pointed out that the final results of the relationship between the

- 11 -~
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"physical‘propertiés of‘the ﬁixture andvthe concehtration,(Dlé = cons¢t,

pScD =p const) that were éssumed for the sake of simplicity re-

sult in a somewhat too rapid change in viscosity, and this contradicts

the results of kinetic theory. Formally this indicates that with the

. . ‘ ' %*
introduction of light gases (K > 1) in the vicinity of y,.f = O the
derivative 52u/5y2 1s always negative, 1n which conneqtioh, given

small flow rates for the gas being introduced, there 1s observed the

‘unlikely .increase in the ratio cf/qf .

0 y
: Received 10 July 1961

[Footnotes]
Manu-
script
‘Page
No. o _
1 ‘ In'Référence [4] 1t has been suggested, however, that the
'~ . obtained solutions be used to describe the flow in the vi-
cinity of the critical point. ,
4 . A special case of Relationship (4) was used in the work of
Van Dreist [47. ‘ )
6 .  The value of my in view of Assumption (5) need not be a
- functlon of the Reynolds number, and for this reason Formula
" (8) does not take into account the insignificant -evolution.
of the veloclty profile in the case of constant parameter
values (for example, on the.impermeable plate).
7 A  "The region of positive pressure gradients 1is not considered
since in this region, generally speaking, the assumption of
- . a 8ingle-parameter velocity profile is not satisfied.
10 - g Qualitative evaluations have shéwn that 1n accordance with

experimental data and various theoretical works the effect
of heat transfer on cg/c £o 2nd St/Sto (St and Sty are the

"Stanton numbers) as functions of the corresponding dimen-
sionless mass flow rate (see Fig. 5) are ‘generally not great.
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THE PROCESSES OF IONIZATION AND RECOMBINATION IN HOT AIR
| V.A. Bronshten '
(MosCOW)

In the passage of extremely powerful shock waves, not onl& molec-
ular dissociation can take place in the air behind the shdck—waye
front, bﬁt the 1lonization of the atoms. An example of such‘a shockA
wave 1s the wave forﬁed by a meteorite flylng through thé'atmosphere

(as 1s well known, the velocity of meteorites in the atmosphere ranges

between 11 and 72 km/sec).

To calculate the processes of lonizatlion and recomblnation in the

' hot alr behind the front of a wave, the air in a plasma state, we must

know the coefficients of ionization Z, and recombinationvcr (r is thev1
degree of ionization). In order to obtain these coefficients we must

evaluate the comparative role played by the various elementary proc-

esses, and in contemporary scientific literature this 1is, by no means,f”

done in a uniquely defined manner.

1. Ionization. The basic mechanism of lonization in hot air is

the impact of electrons. The general expression for the coefficient‘éfx

ionization resulting from electron impact, as used in courses in astro=-

physics [1, 2], takes the following form:

s . mgvt E

N e
2nkT, ) _(S;“r.k (v?u'( dv. (1)

Z, ,=4n (

Here v 1s the veloclty of the colliding‘electron,'vo is the mini-

mum velocity resulting in lonlzation, o

r, k(v) 1s the effective cross
- 15 - ‘
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' However, ©

section of the r-th lonization from the k-th level, at velocity v.

. _ In this case it 1s generally assumed that the
ionization takes place primarily from the base

level, since the population of excited levels

A Y in the case of the Boltzmann distribution is

Fig. 1 négligibly small, Let us try to calculate the

coefficient of 1onization.zr 1 from the base level. Generally [l, 2]
‘ , ,

the concept of the mean effective ionization cross section“&r v is
N 3
used to calculate the integral in (1), placing this mean value -outside

of the‘radicél'sign; Then
‘ T kT .t 1, C
.Z“‘=2L/r7?°”7(7ii)i‘ (1 kT.) (2)

Here 1t has been taken into consideration that Ir = (mevg/2).

r.v is a function of the temperature Te and the lonization
]

potential Ir’ i.e., a function of Ve It is therefdre more convenieht,

~as was-done by S.B. Pinkel'ner [3], to make use of the'circumstance that

in the energy integral of interest to us the quantity L increases
. ) E)

2

almost linearly in the v° function (Fig. 1).

In this case

6/,g=°. "":": ’ (3)
Yy . .

where % 1s the effective ionization cross section at an energy of:

-éIr, i.e., at.a velocity of voﬂ/z. Substituting (3) into (1) and cal-

culating the integral, we will find the following‘expréssion for the

ionization coefficient.
. s _ e

L e . F

¢ r

From a comparison of (2) and (4) it follow3'direptiy that
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ar,

o 1y 2T
' 1 AT, 1, + 2T
- r
G =% =0y L ,‘ . ( 5)
o, I, 1,+AT, . =2
AT :

A
Substituting the numerical values of the constants into Formula

(4); we will bring it to a form convenient for calculations:

f I, - ’
‘ z,.‘=5.5.10°"1‘,‘/'( 1+ _;.'.)c e, "(4a)

Zre The values of thelaoefficients
"'t of ionization from the base level,
ol ' caléu;atéd for alr according to For-
mula (4a) are presented in Fig. 2.%
wr However, the fonization from
ol / / the base levél by no means determines
MWy .‘; SETEI 151025 ent ‘

) '~ the general course of the 1onization;
As has been showh‘by the Works of G.S.

Fig. 2 Ivanov-Kholodnyy, G.M. Nikol'skiy, .

‘and R.A. Gulyayev [4, 5], as well as in the works of L.M. Biberman and

his coworkers [6, 7], the chief contribution to lonization is made by
fﬁe upper levels. Indeed, desplte the fact that therpopulation of these
upper levels is small in comparison with the base level, the coeffi-
clent of lonization from the upper levels increases sharply as a result
of the reduction in the binding energy of the levels.

In particular, the probability of 1onizing.hydrogen from the n
level is equal [6] to '

2, =1,1-40T ~13y (—El(— u4y)}, _ (6)

where u_ = (Ir/ana), and -Ei(-u ) 1is the integral exponential func-
tion. The shape of the product of .  a{—Ei(-u4,)) with the number of the

n level for various values of uy = (Ir/kT) is presented in Fig. 3.
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100 To determine the over-all coefficlent

7]
1s summed in accordaﬁce with the Boltzman
distribution:

'U,, Z = U(T) zlnguc . (7)

' —

where g, 1is the statistical weight, U(T) is

- the sum of the given atom or ion according’

1 Ban naasmu . a, T r e

" A “ Bra naasun n,

2T azopwe TYMaHHOCTH i 100 18704 I V

: po-ry6epauuu 101 17,5.10% 40

Hovocdepa 100 | 108 | 420 Topsuni noanyxg 101 | '108  [8—10

Conneunan xopoua 108 1 1190 To- e 10 | 10 j1—2
SXpouoc(pepa 1ot | 5.10° | 58 |

1) Type of plasma; 2) gas nebulae; 3) ionoaphere; 4)
solar corona; 5) chromosphere; 6) protuberances, 7)
hot air; 8) the same.

to state. Sum (7) exhibits a divergence if we dc not take into consid-

‘eration the deviation of the distribution over the levels from the

Boltzmann distributlon, as a result of the mutual excitation of the

lons (the effects of preionization and supercharging). This phenomenon

was examined‘iﬁ the classical Tomson [sic] approximation by G.S.
_Ivanov;Khélodnyy et al. [4] and in the Bethe-Born approximation by L.
M. Biberman, Yu.N. Toropnik and K.N. Ul'yanov [6]. The qualitative
results of these two works’coincide and can be reduced to the fact
that levels above sum nq in a real gas cannot be achieved. However, an
. evaluation of ny for hydrogen in Reference [4] 1is somewhat underesti-
mated (i.e., the'effect of supercharging 1s exaggérated), as is shown

by a comparison against experimental data [6].

For purposesrof‘evaluating‘no Referenrice [4] proposes the follow-

- 18 -
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ing formula (close to the analogous Unzol'd [sic] formula) '
log n, =28~8 log (ny +1), (8)

where ng is the electron concentration. For the various types of plaé-

ma in [4] the following values of ng have been found, and to these we

" have added the values for hot air (Table 1).

As can be seen, a comparatively small quantity of leVels can ac-
tually be achieved in hot air. On the one hand this circumstance fa-
cllitates the summing and makes 1t possible to do entirely without the

integration of Formula (7) with respect to the upper leveis,las is

.. generally done. However, the small number of levels lmposes greater

>requirements upon the correct evaluation of Ny

L.M. Biberman and his coworkers [6] obtained the following ap-
proximate expression for Zr (in. the iﬁterva1>from 0.01 <‘uo < 5, where
Uy = Ir/ang) as a result of integrating Formula (6) with respect to
tﬁe Boltzmann distribution (0 < n < ng):

N Vg =M “
L=mwﬂ”"¢" o ‘m
which can be transformed to
i PR/ SUPRPIN o
. - " Tar r\ ¢ . ) To)
Z,=2240T% ¢ "(7;) . (1®l

In the astrophysical examples collected in Table 1 an error of

2-3 units in the evaluation of the n, number has little effect on the

‘result, since n, 18 great. However, in our case when n, 1s small an

error of even a single unlt results in a change in Zr by an entire
order of magnitude, since n, enters the formula ralsed to the fifth
power, At the same time, in a real gas Ny levels will never be achileved
for all gas atoms simultaneously. There will be a certain statistical
distribution of atoms over Ny and, generally speaking, the effective
value of Ny will be expressed by a fraction. Below we discuss the mea’f
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thod of evaluating it.

2. Recombination. Now let us examine the phenomenon of recombina-

tion. The latter may take place in one of two ways: wlth the emission
of a radiation quantum and as a result of triple collisions, in which
case the third particle which transmits the excess energy will almost '

always be an electron.

i
‘.-

e S Y YU B 25 900
- (4
For the coefficient of recombination with radiation in the hydro;
gen-similar approximation we can use the following well-known formu-
la [8, 9]:*%
T, \ L

Cr= 24, (%—) 1 Be (B),

(11)

where z is the ilon charge (in proton-charge units), Ar is the capture

constant:

A tE_HE o om e I,
- e 22 1040718 ut; = ‘
T3V mies t B ar,

?(B) is the functlon presented in tabular form by Spitser [9] and
equal to: .

v (®)= % i L) (12)

The quantity @(B) for the required interval Te is of -the order of
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unity, as can be seen from Fig. 4, Evidently, ﬁ/n22= u .

The comparative role 'of the \various'leveis 1s here determined by
the temperature. With én__ increase in temperature the reiative quantity
of recombinations at the base level will increase [4]. Therefore the ‘
a;bove-mentionéd restriction of the number of levels has little effect -

on recombination with radiation (see the curves in Fig. 5 for the co-

_efficients of recombination with radiation for air).*

. den 1 1 bl 0 4 1} n PR T |
A Fi S 4 557890 5 22 ’mo‘
* (]

Fig. 5.

For the third recombination (or recombilnation _wd._th‘ triple colli-
sions) 1n Reference [6] there is derived the formula which_d‘etex.'mines
‘the probability of recombination at the n level:

€l = 884070 ™ (—Ei(— u)), | | (13)
and after integration with respect to the levels we obtain
| O =415.40" g~ 7 o (14) .
or, after substitution of (10) into (14): |

c(’s) _9"3,‘0—137-1(‘;';_)‘__' L (15)

),

However, we must, in this case, take into consideration that a
portion of the upper levels 18 not attained as a result of oncoming
ionization, and therefore the effective doefficient of' ﬁriple r’ecom-.

bination takes the followlng form:

-2] -



R c
CC = 2 —_— _
" 142, 40,74, (16)
whereAn is the probability of spontaneous transition from the n
level (A_ = 1.6-1010 n~Hs 5y,

The authors of Reference [6] suggest the summing to some level

.ni <fno‘beginning from which the terms in Sum (16) sharply diminish,

and the units in the denominator can be neglected. The remainder is
determinéd by means of integration from ﬁl to n,.

For the purposes of our problem, however, this method is not
sultable be&ause of the considerations described above. Thepefofe’we
will employ fhe;concept_of the effective boundary level with the quan-
tuﬁ number N, p which We will_define as the quantity,'which after being
substituted into Formqla (15) in the place of no,will yleld the exact

: * , :
-value of C, calculated according to Formula (16) by direct summation.

i ‘ *
As an example we will sum the values of.C‘r in the case of quadru-

ple air ;6nizafioﬁ (Iy = 77 ev) at T = 10°°K, .assuming for the time
being that all of the levels are "hydrogen-similar" (this 1is necessary
for purposes of illustrating the method).

As we can see from Table 2Athe effect of oncoming ionization re-
sulting in the disrﬁption of the upper levels 1s particularly pro-
nounced in the case of great n,. The maximum value of C:; with an in-

transfers from the third level to the second, and then
0

crease in ng,

to the base level. The value of Ngp for‘ne 2 lO2 ‘;s close to unity

~or, in other words, the "lifespan" of the upper levels 1is rather small.

Figure 6 shows the effective coefficient of triple recombination.
C(3)ne'(5011d‘line) and n_. (dashed 1ines) to be functions of the elec~

1tron concentration.ne (1 - hydrogen, Te-= 17,5000, Ir = 13.56 ev; 25—,

air, T, = 100,000°, I, = 77 ev, quadruple ionization). The ratio I./kT,
is equal for both of the examples. We obtain phe‘following.pattern.‘
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(Fig. 6). In the case of rather small concentrations the quantity
0(3)ne increases slowly — there is a transition of the recombination
maximum from the upper levels downward, to the base level. Then there

is a rapid rise in 0(3)ne, since despite the weakening of the role

. played by the upper levels the oncoming ionization from the base level

8till does not play a.ny particular r'ole and,C(3) remainsA almost con-
stant as n, increases. Finally, with a further increase in n, & satu-
ration sector sets in, and this can be attributed to the oncoming
ionization. In this same Fig. 6 is also shown th.e.shape, of nef which '

approaches unity ‘With a drop in T, N.p increases approximately as
p-1/7, |

TABLE 2 .
e
n z, () °
ne =10 ne —10' ny=10%
1 | 4,240 | \8,4.10-1 8,4-10-0 8,410-2 " | 8,3.10-3
2 | 24100 [ 2.3.40-® 2,2.10-% 54107 | 6,510
3| 2340~ 174, 40-m 7.0 | 00w | 700.40-m
4 | 70040~ 419.40-1 2,4.10-% 22401 | 2;2.40-%
5 | 114107 1,2.10-1 1,0.10-% 1,0.10- 1,0. 103
6 | 2:2.10 2,6.10-% 5,840~ 5,810 |  5.8.10-0
c'=§’|c; 13400 [ 7,200 9,1.10-1
n= ' 3
nay 3,23 1,86 1,24

The comparative role of recombination with radiation and triple
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recombination depends on the value of ng and the magnitude of ioniza-
tion. For example, at n ‘= 1016
combination is 1—2% of the recombination with radiation and it can be

18 20 .

neglected. At n, = 1010 1t amounts to 7-13%, and at ng = 10
amounts to 120% of the recombination with radiation. With transition
to the lower ions the role of triple recombination increases.

3; Transition to complex atoms. Up to this point we have regarded

all levels in the atoms and ions to be "hydrogen-similar“ although in
actual fact this is by no means‘always the case. In order to make the

calculation for complex atoms and ions more exact we can use the con-

. ’ *
cept of the effective quantum number n,, determined from the following

’condition.[B, 10]:
. , - B
| l=lu s . (17) -

where I is the binding energy of the level defined by the quantum

numbers n and 1; I = 13.56 ev represents the potential of lonization

for the hydrogen atom; z = r + 1 1is the charge.of the atomic remainderu

(z =1 for neutral atoms, z = 2 for single lons, etc.). The difference

*‘
n—-n =H, referred to as the quantumkdefect, vanishes with an in-

crease in levels, converting the upper levelsvinto "hydrogen-similar"

levels. _
' In the‘wofks of L.M. Biberman and his coworkers [6, 7, 11, 12]
there are developed the formulas by means of which we oan take into
consideration the quantum defect for‘the actuai levels of complex
atoms, and these formulas also make it possible to find for these
atoms the coefficients,of‘recombination‘and ionization.ﬁThe work bj
Burgess and Seaton [10] presents the general formula for the photo-
1onization section of complex atoms and numerous examples of how this

formula‘can be used.

- 24 o
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The formula for the coefficlent of recombination with radiation

for complex atoms takes the following form:

S -1 ® . : \
¢, =t.06107 7 { BT muwyg)gy, (18)
o v . . '

where the frequency v 1s determined by the energy Qf the recombining

electron (hv = mv2/2), u' = hv'/kT, v' = v, if vis'vé'and v' =y _, 1f

g’
v 2 vg, where vg'is the frequency corresponding to the lower exclted

state ng from,which the integration begins (regarding the éelection

of ng‘and Vg see [11]).

The difference from "hydrogen-similgrity" 1s expressed by the

" function £(v, T), which for various atoms and ions exhibits a varied

shape [11]. For atoms of- oxygen and nitrogen £(v) < 1 1s not a  func-
tion of temperature and diminishes almost linearly with v(for v <

< 10712 sec'lL

But'for various ions of oxygen the shape of &(v) va- o
ries substantially, and in this case this quantity may be more or less
than unity [121. However, with an increase in the multiplicity of the
ions the shape of &(v) 1s smoothed, approaching the straight line g =
= 1, and this 18 explalned by the fact that the levels of lons of high
mulfiplicity approach ever closer to the "hydrogen-similar" levels.
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At the high temperatures téking‘ﬁlace in the air in the case of
shock waves in front of a flying meteorite [T =v(5-29)-104°K], the
first lonizations take place quickly and do not make a great contribu-

tion to the specific heat, whe}eas the recombination of ions of small
'multiplicity is négligibly small. Therefore, in this probleﬁ the uti-
‘lization of the exact Formula (18) is not justified by need, and we
can assume everywhere that £ = 1. The pcssible errors for the OI-OIII
ioris partially compensate each other, since the difference § — 1 for

tﬁese lons 1is opposite in sign.

For our calculations we wlll, therefore, employ Formulas (11)'and.

(12). _

With respect to lonization and triple recombination, thé applica-
tion of Formulas (10) and (16) to the complex atoms need also not re-
sult in large errors [6]. Howevef, the factor I, must be introduced
into Formula (10), since this factor makes it possible to take into
consideration the multiplicity of the atoms:

U
F’=*.-.
Spt

where Ur is the sum over the states.

Figures 7 and 8 show the values, respectively, of the coeffi-
| cients of ilonization from all levels and of the coefficients of triple
recombingtion for air, calculafed according to the indicated formulas
for the electron-temperature interval Te.='(3'30) lQu°K.

The author wishes to express his gratitude to K.P. Stanyukovich
for his continuous attention to the WOrk, and to L.M. Biberman and G.E.
Norman for their useful discussioné and the fact that they made it
possible for the author té‘familiarize.himself with materials con-
ﬁainéd_in the manuscripts of articles [6, 7]; in addition, the.auﬁhdr
wishes to express his thanks to S.B. Pikel'ner for his valued,adviée;'
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Receilved 27 November 1961

[Footnotes]

Manu-
script
Page
No. A
16 In Reference [3], in the place of the factor (1 + 2 (kT /1))
there 1is simply kTe/Ir and this 1s, apparently, an error.
Therefore the coefficients Z are underestimated in this work
approximately 0.5 orders of magnitude, which, by the way, has
little effect on the results of this work because of the pre-
dominant role played by the electron excitation in nebulae.
17 In all calculations alr was assumed to be a monocomponent
gas, and the potentials and coefficlents of ionilzation for
nitrogen were averaged 1in accordance with the relative con-
tents of these gases, 1l.e., 0.78 and 0,22, respectively.
20 In the work by Seaton [8] this formula has a slightly dif-
ferent form, but it is not difficult to modify it to the
form of (115. However, this formula 1s suiltable, strictly
speaking, only for the isoelectron hydrogen series.
21 The question of recombination with radiation for oxygen and
nitrogen is also discussed in Reference [13].
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AEROD&NAMIC CHARACTERISTICS OF DELTA.WING‘WITH'DEFLECTED AILERON,
FLAP, AND OTHER SECONDARY CONTROIL SURFACES IN SUPERSONIC FLOW
Yu. I. Krasill'nikov
(Moscow) .
In this work we‘obtain the aerodynamic characteristics of a delta
wing with a deflected alleron, flap, and other secondary control sur-

face, when streamlined by a supersonic flow of gas.
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The theoreticalvdetefmination of the aerodynamic coefficients 1is
based on the llnear theory of a wing of finite span in a supersonic
stream, as developed in Reference [1].

1. Statement of the problem, Let us conslder the movement of a

supersonic gas stream past a thin delta wing with deflected alleron,
flap, or other secondary control surface. The wing plane will form a
small angle of attack a with the direction of the velocity T of the
approaching streamn. The aileron, QIap, or other secondary controi sur-

face 1s deflected from the plane of the wing through the small angle 6

'(Fig. 1). The leading edges of the wing are supersonic.
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Let the flow beilng formed satlisfy the conditions of the linear-
ized theory [1]. Given the indicated streamlining conditions we w;ll
détermine the aerodynamic characteristics of the wing.

Let us introduce the basié rectangular system of coordinaﬁes'id?i,
connected to the wing, and the system of characteristic coordinates
xoyz (Fig. 1). The connection between the characteristic coordinates
'and the basic coordinates is accomplished 1n4accoraance with the rol-~
iloWing formulas known from [1]:

eSFekg y=THAE 1= ()
where k ==Q/M2 — 1 =<cot €; M > 1 1s the Mach number of the appnogch-,
ing stream and & is the Mach angle. ' ' :

The velopity;disturbance potential ¢ satisfies the wave equation.
In.accordance'with the linear theory for the wing, the boundary condi-
tions for the potential @ in the characteristiC‘cgordinates, after
lineafizati'bn‘, will be the following: |

) on the projection of the basic part of the wing onto thé Xoy
pléne ' ‘
' o9

— . Ud tge;
02 ¢ ge.»

on the projection of the éilerOn, flap, or secondary control surfacé
/ .

s

’ s
-%'—:—=—U(a+6)tge _ (1.2)

Since the boundary conditions (1.2) are constant, the value of
the potential,é on the projection of the wing (on the basis of the
' general formula for the determination of the potential) in the charac-
teristic coordinates is written in the following form: V

Ua tge ) ) .__ﬁ‘_d.g__.__.
P ) =""gg s.Sx.Sy) Vie=l—n

L Uad)tge  dndp : (1.3)
+ 2n s;(sx.si,i Va=—tw—m '

+
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‘where Sl(x, y) is the integration regilon with respect to the projec-

tion of the basic part of the wing falling within the characterlstiae
cone whose apex 1s situated at the point M(x, y); and SQ(x, y) 1s the
integration region with respect to the aileron, flap, or secondary

‘control surface projection, falling within the same cone.

Filg. 2

To determlne the forceé and‘moments acting on the wing, it is
necessary to know the distribution of the pressure differences across
the wing. In accordance Qith the Bernoulll integral, £he differenée
between the pressure beneath and above the wing 1s assoclated with .the
velocity-disturbance potential ¢ by the followiﬁg'relationship:

AP=—29U (q’x+ @y). (l. LI')

where p 1s the density of the gas in thelundisturbed streém and ¢x and
wy are the derivatives of the potential_Q1W1th respect to the charac-
téristIC‘coordinates. - |

Thus in order to resolve the posed problem it 1s necessary to‘ae-
termine the velocity-disturbance‘potentiai‘@gand then %o find the dis-
tribution of the pressure difference acfoss the wing.

2. Determination of the pressure difference. a) Distribution of

the pressure difference across a wing with an aileron. In flow past a

delta wing with a deflected aileron (Fig., 1a) two cases are possible,
In the first case (Fig. 2a) the aileron falls completely within the

head Mach cone, whereas in the second case (Fig. 2b) the aileron pro-
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trudes from the head cone. In both cases the disturbance (pérturba-

tion) lines emanating from points O, 01, and O2 divide the entire flow
reglon on the wing into regions I, II, III, IV, V, and VI, and flow in
these regiohs'differs‘in‘nature. The equations of the wing and aileron

generatrices are assumed to be in characteristic coordinates when the

potential 1s sought in these regions.

The flows in-régions I and II areée known. The distribution of the
pressure difference in these regions 1s determined on the basis of the

following formulas:

APy = 4qatgeF (1, e), (2' 1)
AP}, = hqa tg eF (1, £) Oy (1, & @), (2.2)
where..we have denoted
‘ : C Fw.wé=7??g%???“ (2
er—tgle (2.3)

wi—tee )]
tgty—tete

'(2-.4)

1 ,
@y (1, &0 ‘v)=—;‘arc cos [1—2(

'¢ is ﬁhe polar angle of the point in region II counted off from the
"ox axis, and here ¢ > O in the region 040E and ¢ < O in the region

_OMOF g 1s the .velocity head

Using Formulas (1.3) and (1. 4), we obtain ‘the following expres-
sion for the preésure difference in region III:
APy =dgdtge + dqutgef (1,e) Dy (v, 0, @), (2.5)
where ¢ 1s the polar angle of" the point iﬁ region IITI counted off-froﬁ
the ox axis. ‘
In seeking the potential ¢Iv(x,Ay) in region IV, wé do not take

into consideration the effect -of the slit, but we do take into con-

sideration the leakage of the gas from one half of the region to the

other. Integration in the region IV is more conveniently carried out

in characteristic coordinates whose origin is situated at the point
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For the pressure difference in region IV we obtain the fbilowing”

01.
formula:
' - 2 E7
AP“,.-4q{)tge_;m:!'g]/-yl +
: 2.6)
2 mixy 4- (B—b) —kh| ( .
+ateerr, o 2wt )/ TRER=RL
o : 7%, L (B — b) — kh] }~
vhere rucis )/ P
~ter—tge 1 | 2.
e = (2.7)

Xy and y, are the characteristic coordinates of the point (the origin
1s at pqint Ol) in regidn IV; B, b, and h are the geometric.parameters
shown 1in Pig. 1.

'The connectioﬂ between the
characteristic coordinates (x, y)

whose origin is situated at point O

and the characteristic coordinates

.(il’ yl) whose origin is situated at

point 0, 1s achileved by the follow-.

1l
Iing formulas:

F_ig' 3 x = xy (B —b)y— kh, y=un+(B-b)+h. (2,8).

On the basis of (2.8) Formula (2.6) can be rewritten in the fol-

lowing form:

a2 Xy
APy = 4q0 tge —_arctg ol B
v =490t e — o

‘ . ‘ . (2.9)
"t 4qatgeF(r, e)-?‘-[ 2 +arcctx]/_,"—y"-}', '
Rearranging and introducing the denotation
tge—tg ' 2. 10
l(v.'l‘n)’= Z.arc ‘“V e z: o ( )

for the pressuré difference 1n region‘IV we will obtain the final ex-

pression

APy =48 tgea(e, ¢1) +4qu tgedy (1, 2, @), (2.11)
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where @1 is the polér angle of the point 1in reglon IV, counted off
from 0,D (tﬁe pole is situated at point 01), and 9 > © in the region
OlDG5~¢1 < 0 in the region O;DK; @ is the polar angle of the same
point in region IV, counted off from the ox axis (the pole is situ-

ated at point 0). For the remaining regions the pressure difference is

-determined by the following formulas:

| APy = fge tg eF (1, &) + 448 tg Dy (e, @) (2.12)
APy, =4qu tRoF (1. &) +Agd tge (2.13)

taking into' consideration (2.3) and (2.4).

b) Distribution of pressure difference across‘a wing with flap

" and secondary control surface. In the case of flow past a deltavwing

withva.flap or secondary control surface the entire flow region is
divided into eight characteristic regions i, 11, 111, IV, Vv, VI, ViI,
and VIII by perturbation (disturbance) lines emanating from poiﬁts 0,
0,, and 02-(Fig. 3) in the general case.

In regions I and ITI of a wing with a flap, the pressure differ-

~ence 1is determined according to Formulas (2.1) and (2.2), taking into

consideration (2.3) and (2.4). For a wing with a secondary control

%

surface we will have
APy =4q(a -|- O)tgeF (1, &), ]
Apn¥4ﬂa+ﬁ)mffﬁ.n% ‘ (2.14)

. X0 (1. e @) (2.15)

The pressure difference in region VII of a wing with a fiap is de-
termined according to Formula (2.14) and according to Formula (2.1) in

the case of a wing wlth a secondary control surface. In region III of

a wing with a flap the pressure difference 1s determined on the basis

of Formula (2.5).

For a wing with a secondary control surface, we will obtain
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H

APy =49(a -+ O)teeF (1. &) Du(r. £ @) —dgd tge., (2.16)

In region VI of a wing with a flap the pressure difference 1ls de-
termined according to Formula (2.13). For a wing with a secondary con- ‘
trol surface we wlll have

' APV; =4q(a | d)tgeF (r.e)—4gdtge.. ° .o (2. 17)

For the pressure difference in the region V of a wing with a flap

we obtaln the expression

APy =AqutgeF (1, 0) - 4gdtg e (Dy(e, @) - F(1, &) [t — Dy (1. e, Py))) (2.18) . -
where
O ol arcte 1/ &7 tee) (tge —tg ) ; .
Oy (1, &, ) s arc ig l/(tg T—Tee) (gt Fig ‘P:) . L (2 19)

¢, is the polar angle of the point in region V (the pole 1is situated

at point 01). For a wing with a secondary control surface we will have

N

APy = 4q (a - B)MUG eF (1. &) — Agd tg e (s (v, @) + F (1, )1 — Dy, £, @]} . (2-20) B
For the pressure differences in regions IV and VIII of a wing

wlth a flap we obtain the followilng formulas:
) APIV = 4qa tng (T' E) ml ('fv e, (P) +

* o+ 4gdtg e (Mo (e, 1) - F (1, &) [1 — Ds (y, &, I (2.21)

AP\’lll‘ = 40“ tg EF(T- e)'®, (Tv €, W):T}" "'Go tg e (D, ("r ‘Pn) - F (T' a) “ - 03'(7- e, ‘Pn)) -+

‘ 2,22
H 1@y (e, @2) = 1] -+ F (1, 2) [1 — D3 (1, e, 9a)]), ( )

where @ 1s the polar angle of the point in region VIII, counted off
from the ox axis (the pole 1s situated at point o), ¢, is the polar

angle of the same point in region VIII, counted off frbm the line OlD

. (the pole 1is situated at point Ol), ?, 1s the polar angle of the same

point in region VIII, counted off from the line OQC (the pole 1s situ-.
ated at point 02), and ¢2 > 0 in the region'OQCM and @2 < O in the re-
glon OQCN. . \

In order to derive the formulas for the pressure difference in

regions IV and VIII of a wling with a secondary control surface, 1t is;
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sufficierit to replace a by (a + 8) and 6 by —8 in Formulas (2.21) and

(2.22), which follows from an analysis of the formulas derived above.

3. Determination of forces and moments acting on the wing. The

forces and moments acting on a wing are determined by integration with

respect to all regions on the wing; and this is most conveniently car-

.ried out in polar coordinates.

a) Characteristics of a wing with an aileron. Since in all of the

formulas for the determination of the pressure difference in various

regions of a wing with an alleron there are terms that are functiens

only of a, we will‘separately calculate the force acting on the wing

and determined by these terms. In elther case (Fig. 2a and b) we will

. obtain

Z,-'—-4qati_(eﬂi’tg'r. (3‘.1)

Using Formulas (2.5) and (2.13) we will find the force acting on

the region 010204K and dependent on 6. Carrying out the calculation,

‘we will obtain

2, = lgh tg‘a‘,(bh—n-,?-'tg“e). (3.2)

The exact same force acts on region 020304N. On the basis of
(2.11) and (2.12), with (2.10) taken into consideration, we will de-
"f . Coas

termine the force acting?on region KOlG and dependent on 8. Carrying

out the integration, we will find

. b
Z'=4q6tgz7’tge. (3-3)

The force acting on the region GOIOQM and dependent on 6 is de-

termined from the followling formula:

(3.4)

Zy=:4q0tg e 2bh.
! : Co .
For the total force acting on the wing we will obtain the follow-

ing expression:
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2 =4qa tg_eB’tg‘r-i—Aqo tg e 2bA, (3. 5)

The coefficlent for this force has the followlng form:

=T [ .8 S ‘
C, V=1  3(LLJL3¢) ~ (3.6)

4a boa

2 tan v 1s the total

wheré Se = 2bh is the total alleron area, Sk =B
area of the wing,

Let us determine the moment of forces with respect to the oy
axils. Thg moment of forces (3.1) is determined in accordance with the
followiné formula: o

(3.7)

2
M- =Z|— B
n J

For the moment of forces (3.4) we obtain the following expres-

sion:

M. == fqd tg e 2bh (B-—

wle

) (3.8)
The total moment of éll forces with respect‘to the oy axis takes
the following‘fofm:
' ‘ 2 . b :
M = qa tge ?B’tg7+4qotge2Bbh(l-—2§-)._ = (3.9)

For the coefficient of thlis moment we obtain the folloWing for-

mula:
om VI —T 2 .8 b ) S, -
‘ ,__.”_‘_/.47_____=T+—a-([_‘2—§-)—s-:. . (3- 10)

Dividing (3.10) by (3.6), we will obtain the dimension1eés coord-
inate for the center of pressure of the central chord. Carrying out

this division, we wlll obtain
- 2 - _ '
¢ Xux =T+Axn.m (3- 11)

where
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LYTRRTEY N
By = (11 ozi;)"i (3.12)

Let us determine the moment of forces acting on one half of the
wing, about the oX axis. The total moment of forces acting on this

half of the wing, about the ox axis, takes the following form

: ) 1 1 [ tge tgy . '~Atge .
M. =4gat ¢ — Bt {3 _..[ ’ : —cn
A tey + Vidr—tgie > gy +

N “tete (3.13)
-HWN%MﬁH%{%YW4_” ;

For the coefficient of thilis moment we wiIl obtéin the‘following

expression:
"';—V-M‘—“ 4 _g_[ tge - gy .arc-m tge ]*
" 4a T3 altgr | Vigeeyr—tge Ry J. TN
T . hS (3.14)
—— (=21 ____.L
a2 ( ;M 0 H s

where S = bh 1s the area of one half of the éileron, S, =‘(B2/25 tan
1s the area of one half of the wing, and H = B tan v is the half-span
of the wing; A = b/h.
Formula (3.13) can be ﬁsed for the determination of the moment of
'fprces of a rotating wing or control surface about the side chord in
the case of flow past a wall. At a = O we will obtain the moment pro-
duced by the deflection of the ailleron.
The dimensionless coordinate of the center of pressures of the
‘forces acting on the half of the wing, about the half-span, is found

from the following expression:

m—

aa =t - (3.25)

b) Characteristic of a wing with a flap or secondary control.surg

face. Let us determine the forces and moments acting on a wing with a

flap. Using the formulas for the pressure difference, obtained for a .
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wing with a flap, we will, through integration, find the force
- Z=dga tg.cB‘tg'_y-*—4qbtge‘[2bh.-{-‘b'tgﬂ', | _ _ (3.16)

For the coefficlent of this force we will obtain the expression

Vo VME=T - s 8, - . .
\ ——fzr——~=(1+7;3:),_ (3.17)

2‘

where S, = (2bh + " tan y) is the area of the flap.

The moment of force (3.16) about the oy axis takes the following

form:

i . . .
! 2 b 1

| M = — ' U B = | = ——— .

E Mv 4qatge 3 B‘tg7+4q0tge(2bh.+ b’tg'r)(B 3 ) 4q0tge 3 bth, (3 18)

. For the coefficient of the moment (3.18) we obtain the following

formula:
m;V.M.-_.4 2, .0 T b S, b 'S0, ’
4a =7+ [(i““ils_}?: ’TS'E—_S:"]' (3.19)
where S z.p = 2bh.
Dividing (3.19) by (3.17), we will obtain
Fun =g M (3.20)
where
o rt b\ S, b San ‘
— T[T(’—T)?;—%T sK] ‘ -
Ary = 5. S, (3. 21)
) (’f?.'s?)

The total moment of forces acting on one half of the wing about

the central chord, takes the following form:

1 i[tee tgy " t
M—=4qatge—-B’tg’T—[ T . ige
ey + Vier—toie arc cos ——th

i {Boet (3] £ 25 L (3]

For the coeffilcient of this moment we obtain the‘foliowing ex-

(3.22)

pression:

AL N TSR B—
4a 3 x| tgy Vtg"r—tx'e
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o+

alo

L Sy 5
: H [ 2 (l+ Mtz'c) 2% (l+—-kt¢7) S, ]
where we denote

B . b b
S, = - tgy. Sp=hh, Sy-= Y tey., N = Btgr. k=T.

The dimensionless coordinate of the center of pressure of" the
forées‘acting‘on the ha1f~wing about the half-span can be found froi
Formula (3.15). '

In order to determine the aerodynamic’ coefficients of a wing with
a secondary control surface it 1s necessary to replace a by (a + 9).
and & by =6 in the formulas found for a wing with a flap. Carrying out
this operation in Formula (3.16), we will obtain

=4q(a+ 8)tgeBitg 'r.—. 4q0 tg e‘(2i)h +oitgy). (3. 214)

Hencé‘we find that

Z: -mamrs 40 tgeSy, ‘ ; (3.25)

where S = [8° tan v -(2bh + b° tan y)] 1is the area of the secondary.

" econtrol surface.

For the coefficient of force (3.25) we will obtain the following

expression:
o, VM—T L8 Sa .
z 4a-_‘_. = (.1 -;— T") (3. 26)
Using Formula (3.18), we will find
2 ‘ 2 -
=4qatgeBs tg e B} /aqb‘tge{[ﬂl tgy —(20h ¢ b2 tg 1)] -;'B,. (3 ,}7)
‘ L De

- ('?.bh - hgy) -%(B —b) - —;!)- bilt}. :
For the coefficient of the moment (3.27) we will obtain the fol-

lowing expression:

mo¥M—1 2 a2 S A, b)sa+_LJLfEL] (3. 28)
S 2T - . NN PRI P . (3.2
e e G ) RN

The formula for the determination of Xy 4 takes the following

form:
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N . 2 .. .
Form L (3.29)

where
N\ S S
PRl U ot i O
| (.‘+’£“:f‘)' B (3‘-’30)

Carrying out the substitution in (3.22), we will obtain

) 1 1 [ tge tgy : tge ]
 Mo=4q(a+d)tge—Brtg —[——— -———_—-—_—.—'—'—'_arccm—]—
; TR gy T Ve e wrl”  (3.31)

.dwmq{%P+%%%yw4%%urp+%f%%nh--

For the coefficient of the moment (57) we will obtain the follow-

ing expression: m-¥VMi—1 =(,+_Q)J;EL[W° gy : e
T e a)3 nltey T Vigr—tge o gy )T
'S R 1 S, Sy s, 3.32)
—— e | — [ = A2 tpte | = 4 — -
aH[z(+s““)s.+(‘+3““)s,]- .

~—~

Dividing (3.32) by (3.26), we will find the dimensionless coord-
inate of the center of pressure of the forces acting on the half wing
about the half-span. |
According to the found formulas for c, and its.d we carried out
the calculations which were then compared against the experimental re-ﬂ
sults. The comparlisons showed that the calculated data are in good

agreement with the experimental within the following range of numbers:

2 <M< b
Recelved 2 Novemper'1961

Manu- . I

script [List of Transliterated Symbols]

Page

No.

37 g.n = ts.,d = tsentr davlenlya = center of pressure

37 2 = e = eleron = alleron

37 K = k = krylo = wing
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39 3 =2 = zakryldk = flap
39 3.n = z.p = zakrylok predkrylok = flap and other control
surface
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