Molecular Orbital Theory of Organometallic Compounds,
Part 4. Substitution Reactions of Tricarbonyl-
benzenechromium

by

D. A. Brown

Department of Chemistry,
University College,
Dublin 2,
Ireland.

Reproduction in whole or in part is permitted for any
purpose of the United States Government.
This paper constitutes part of a series based on the application of simple empirical molecular orbital theory to organometallic compounds. In Part 3 (1), it was shown that such theory provided a satisfactory explanation of the charge transfer observed in substituted tricarbonylbenzenechromiums, $X\text{C}_6\text{H}_5\text{Cr(CO)}_3$; in the present paper this theory is extended to a discussion of the substitution reactions of these systems. In particular, we shall calculate the contribution of the π^*-electron energy ΔE^* to the activation energy for nucleophilic, radical, and electrophilic substitution of the complex and compare these values with those for the corresponding substitution reactions of benzene. The calculations are made for a wide range of parameters in order to test the reliability of the conclusions made on such a theoretical model.

It is first necessary to consider the most probable transition state for this reaction; it is assumed that the transition state for substitution in the complex is the same as for benzene and is of the Wheland type; that is, that the carbon atom undergoing substitution is effectively removed from the conjugated system which now embraces only five of the six ring carbon atoms in the case of benzene and five carbon atoms and the Cr(CO)$_3$ fragment in the case of the complex (Fig. 1). There has been much discussion as to the nature of this transition state but recent views (2) give support to the above type; in particular, it has been shown by Olah (3) that stable π-complexes of the type
can be isolated. The parallelism between, for example, the logarithm of the rate constant for protodeuteriation of methylbenzenes and the log. of their relative equilibrium constants with hydrogen fluoride shows that a close similarity between the transition state for substitution and the above type of complex is most probable. It seems reasonable then to assume that a change in π-electron energy ΔE_π^+ between the ground state and the above structure will produce a parallel effect, $k^1 \Delta E_\pi^+$, in the actual transition state. Since it is comparative values which we require this is sufficient. In addition, of course, final comparison between the calculated energies and observed substitution reactions must involve the usual assumption of the neglect of entropy differences. In view of the similar nature of the reactions this assumption is probably more valid here than in most cases.

Figure 1.

Calculation

In the case of benzene, removal of one carbon atom (C₁) from conjugation changes the electron configuration in the ground state from $a_1^2 e_1^4$ to $(1a_1)^2 (1b_2)^2 (2a_1)^n$ for the transition state where a_1 and b_2 denote π-orbitals which are symmetric and antisymmetric respectively with respect to the symmetry plane.
through atoms C₁ and C₄ and n is 0, 1 or 2 for electrophilic, radical, and nucleophilic substitution respectively. It is a simple matter to show by Hückel theory that the difference in \(\pi \)-electron energies of the two states is:

\[
\Delta E^+(\text{benzene}) = -(2-n)H_{cc} + 2 \cdot 536\beta_{cc}
\]

where \(H_{cc} \) is the usual Hückel Coulomb term of the carbon 2\(p_\pi \) orbital and \(\beta_{cc} \) the resonance integral between two such orbitals. It is customary to regard the 2\(a_1 \) orbital as non-bonding since it lies at exactly the same energy as the free 2\(p_\pi \) orbital of carbon but in this case the matter is more complicated.

For both the complex and its transition state, it is necessary to consider the interaction of the above \(\pi \)-orbitals with the various metal orbitals; these may be classified by symmetry as shown in Table 1. It should be noted that the two antisymmetric orbitals 1\(b_2 \) and 2\(b_2 \) in the transition state are identical with one component of each of the doubly-degenerate \(e_1 \) and \(e_2 \) orbitals of benzene.

Table 1.

The magnitudes of the interactions are estimated by means of the group overlap integrals which were calculated in exactly the same way as discussed in Part 3 of this series and using standard tables (4). However, in this paper we solve the usual secular determinant:

\[
|H_{ij} - S_{ij}E| = 0
\]
4.

where \(H_{ij} \) is the resonance integral between orbitals \(\psi_i \) and \(\psi_j \) and \(S_{ij} \) is the corresponding overlap integral. \(i \) and \(j \) run over all the ring \(\pi \)-orbitals and the chromium 3d, 4s and 4p orbitals, by assuming that \(H_{ij} = kS_{ij} \) and allowing \(k \) to vary over the wide range of \(k = 1.0 \) to \(7.0 \) (2.0). In this manner, a considerable variation in the strength of the interaction between the \(\pi \)-orbitals and the metal orbitals is permitted. The above relationship is explicit in the semi-empirical treatment and has been used by many authors (5); it is gratifying to note that the recent detailed calculations, using the S.C.F. method of ferrocene by Dahl and Ballhausen (6) give support to the relation. In the previous treatment of ferrocene by Dunitz and Orgel (7) good agreement with observed bond energies was obtained using a \(k \) value of about five but these authors neglected the interaction of the 4p orbitals. The authors (8) showed subsequently that such interaction was considerable and the above detailed calculations support this. It appears, therefore, that reasonable values of \(k \) lie below 5.0. The Coulomb terms of the chromium orbitals were again (as in Part 3) taken from the spectroscopic values of Berry (9) and also (as in Part 3) the Coulomb term of the \(\pi \)-orbitals by identifying the first ionization potential of benzene with \(H(e_1e_1) \); the positions of the other \(\pi \)-orbitals both in the ground state and the transition state were then determined relative to this term in terms of \(\beta_{\infty} \) which was allowed the values 1.0, 2.0 and 3.0 to cover a wide variation in \(\beta \) values. The orbital energies of both the
complex and the transition state were then evaluated by solving the above determinant for this range of parameters using an IBM 1620 computer. For the complex this involved the solution of two (2x2) and one (4x4) determinant but with the lower symmetry of the transition state, solution of two (2x2) determinants for the \(b_2 \) group and one (9x9) determinant for the \(a_1 \) group are required. In this way all possible interactions, including the weakest, were included. Table 2 gives the values of the group overlap integrals employed in these calculations.

Table 2.

Neglecting the \(\sigma \) -bonds of the \(\text{Cr(CO)}_3 \) fragment, the ground state configuration of the complex is:

\[
(l\alpha_1)^2 \ (l\epsilon_1)^4 \ (2\alpha_1)^2 \ (l\epsilon_2)^4
\]

and of the transition state is:

\[
(l\alpha_1)^2 \ (l\beta_2)^2 \ (2\alpha_1)^2 \ (3\alpha_1)^2 \ (l\beta_{2xy})^2 \ (4\alpha_1)^n
\]

where \(n \) is defined as above. It is then a simple matter to evaluate the total \(\pi \) -electron energies of the complex and the transition state for different types of substitution and hence the \(\pi \) -electron activation energies for the complex, \(\Delta E_{\pi}^+ \).

The total activation energy for such substitution reactions will be given by the expression:

\[
\Delta E^+ = \Delta E_{\pi}^+ + (2-n) \Delta E_H^+ + \Delta E_B^+
\]

where \(\Delta E_{\pi}^+ \) is the difference in \(\pi \) -electron energies of
ground state and transition state,

$$\Delta E_H^+$$ is the difference in hybridization energy between the carbon atom in the sp^3 and $sp^2\pi$ valence states,

$$\Delta E_B^+$$ is the difference in bond energies between the ground state and transition state.

The second term is independent of the attacking reagent and it is generally assumed that the third term is also fairly constant (although detailed kinetic investigations by Dewar and co-workers (10) of aromatic nitration reactions suggest that this may not always be a correct assumption). However, in comparing the activation energy for substitution of the complex and of benzene by a given reagent it is reasonable to assume that the second and third terms will be identical and hence any differences will be due solely to changes in the π-electron activation energy, ΔE_{π}^+. In this way values of the relative activation energy, R.A.E., where:

$$R.A.E. = \Delta E_{\pi}^+ (\text{benzene}) - \Delta E_{\pi}^+ (\text{complex})$$

were calculated for nucleophilic, radical, and electrophilic substitution. In order to calculate this expression for the last two types of substitution it is necessary to assign a value to H_{cc}, the Huckel Coulomb integral of the carbon $2\pi\pi$ orbital. This was done from our previous identification of the highest filled orbital coulomb term, $H(e_1e_1)$, with the ionization potential of benzene. The different values of H_{cc} then appropriate to the given β_{cc} value are given in Table 3, together with the final results for the relative activation energies (R.A.E.).

Table 3.
Discussion

It follows from equation 1 that our conclusions for nucleophilic substitution are independent of the Coulomb term H_{cc}, and depend only upon the value of the resonance integral β_{cc}. For all values of β_{cc} greater than 2.0 e.v. and k values less than 5.0, it follows from Table 3 that the relative activation energy is positive. In other words, the activation energy for nucleophilic substitution of the complex is less than that of benzene and so such substitution should occur more easily for the former compound. As stated above, k values of greater than 5.0 lead to too large bond energies for these systems. A value of β_{cc} lying between 2.0 and 3.0 e.v. is in good agreement with the values obtained, viz. 2.48 and 3.41 e.v., from a correlation of the ionization potentials and molecular orbital energies of a wide range of conjugated systems (11).

In the case of radical and electrophilic substitution, explicit account must be taken of the Coulomb term H_{cc}. In the transition state of the complex, the difference between the three types of substitution lies in the filling up of the $4a_1$ orbital. Inspection of the eigenvectors of this orbital shows that for the above range of parameters k and β_{cc}, it is primarily a non-bonding $3d$ orbital; the difference then between nucleophilic, radical, and electrophilic substitution for a given k and β_{cc} will depend upon the relative magnitudes of H_{3d3d} and H_{cc}. Thus for

$$|H_{cc}| \gg |H_{3d3d}|$$

R.A.E. (Elec) \gg R.A.E. (nucl.)
and vice-versa as shown in the Table for the cases \(\beta = 2.0 \) and \(\beta = 3.0 \). There is then some ambiguity in any deductions drawn concerning electrophilic and radical substitution in these complexes arising from the uncertainties in the value of \(H_{cc} \). The above correlation, for example, of ionization potentials gives the values \(H_{cc} = 6.24 \) and \(7.07 \) e.v. which unfortunately are values which are respectively less than and greater than \(H_{3d3d} \). However, for the reasonable range \(\beta_{cc} > 2.5 \) e.v., it follows from Table 3 that the relative activation energies are only slightly positive or in some cases negative. Our conclusions regarding electrophilic substitution are more tentative than those for nucleophilic substitution but it is apparent that the rates of electrophilic substitution should not differ greatly for the complex as compared to benzene. The difference for nucleophilic will be much greater. This is particularly evident if we confine our attention to the case of \(\beta_{cc} = 3.0 \) e.v. It is interesting to note that the above theoretical treatment shows that simple predictions (12) based on the assumption that the \(\text{Cr(CO)}_3 \) group is electron-attracting and hence equivalent to, for example, a nitro group, require some modification. Indeed, as pointed out generally (13), any treatment of kinetic effects requires consideration of the effect of a group upon both ground state and transition state before the hazarding of any predictions.

Comparison with Experiment

No detailed kinetic or even competition experiments have
yet been performed on this complex so there is no quantitative data available for comparison with the above theory. However, simultaneously with the discovery of these compounds, Whiting and co-workers (12) reported that nucleophilic substitution was greatly enhanced relative to the benzene analogues. Thus tricarbonylchlorobenzenechromium was converted into the anisole complex in good yield at 65° which is in marked contrast to the unreactivity of chlorobenzene itself. The results regarding electrophilic substitution are less clear since the above authors reported a marked lack of reactivity in, for example, Friedel Crafts acylation experiments. However, two other groups (14) have reported up to 80% yields of, for example, tricarbonylacetophenonechromium from tricarbonylbenzenechromium under the quite mild conditions of refluxing in carbon disulphide. Recent studies (15) of acylation of tricarbonyltoluenechromium do suggest, however, that the complex reacts more slowly than the parent arene.

It is evident that detailed kinetic studies of both electrophilic and nucleophilic substitution are required for comparison with the theoretical predictions of this paper.

I should like to thank Miss Leahy, Physics Department, University College, Dublin, for her kind help with the computing, and the U.S. Office of Naval Research for a grant.
Table 1

Symmetry Classification of Orbital Interactions
in Complex and Transition State

<table>
<thead>
<tr>
<th>(\pi)-Orbitals of Benzene</th>
<th>Orbital Energy ((\beta))</th>
<th>Metal Orbitals</th>
<th>(\pi')-Orbitals in T.S.</th>
<th>Orbital Energy ((\beta))</th>
<th>Ligand (CO) Orbitals</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>-2.00</td>
<td>4s4p 3d (z^2)</td>
<td>(1a_1)</td>
<td>-1.732</td>
<td>(a_1(CO))</td>
</tr>
<tr>
<td>(e_{1x})</td>
<td>-1.00</td>
<td>3d (x^2) 4p (x)</td>
<td>(2a_1)</td>
<td>0.000</td>
<td>(e_{1x}(CO))</td>
</tr>
<tr>
<td>(e_{2x^2-y^2})</td>
<td>-1.00</td>
<td>3d (x^2-y^2)</td>
<td>(3a_1)</td>
<td>+1.732</td>
<td>-</td>
</tr>
<tr>
<td>(e_{1y})</td>
<td>-1.00</td>
<td>3d (yz) 4p (y)</td>
<td>(1b_{2y})</td>
<td>-1.00</td>
<td>(e_{1y}(CO))</td>
</tr>
<tr>
<td>(e_{2xy})</td>
<td>+1.00</td>
<td>3d (xy)</td>
<td>(2b_{2xy})</td>
<td>+1.00</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2

Group Overlap Integrals for Complex and Transition State

Totally Symmetric Groups

<table>
<thead>
<tr>
<th>ψ</th>
<th>$S(\psi, 4s)$</th>
<th>$S(\psi, 3d_{z^2})$</th>
<th>$S(\psi, 4p_{x})$</th>
<th>$S(\psi, 3d_{x^2})$</th>
<th>$S(\psi, 4p_{x})$</th>
<th>$S(\psi, 3d_{x-y^2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>0.207</td>
<td>0.072</td>
<td>0.022</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$1a_1$</td>
<td>0.1821</td>
<td>0.0633</td>
<td>0.0196</td>
<td>0.1233</td>
<td>0.1110</td>
<td>0.0203</td>
</tr>
<tr>
<td>$2a_1$</td>
<td>0.0488</td>
<td>0.0170</td>
<td>0.0053</td>
<td>0.1805</td>
<td>0.1626</td>
<td>0.1102</td>
</tr>
<tr>
<td>$3a_1$</td>
<td>0.0131</td>
<td>0.0045</td>
<td>0.0014</td>
<td>0.0331</td>
<td>0.0298</td>
<td>0.0753</td>
</tr>
</tbody>
</table>

Doubly-degenerate and Antisymmetric Groups

<table>
<thead>
<tr>
<th>ψ</th>
<th>$S(\psi, 3d_{y^2})$</th>
<th>$S(\psi, 4p_{y})$</th>
<th>$S(\psi, 3d_{x^2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>0.2708</td>
<td>0.2439</td>
<td>-</td>
</tr>
<tr>
<td>e_2</td>
<td>-</td>
<td>-</td>
<td>0.1654</td>
</tr>
<tr>
<td>$1b_{2y}$</td>
<td>0.2708</td>
<td>0.2439</td>
<td>-</td>
</tr>
<tr>
<td>$2b_{2y}$</td>
<td>-</td>
<td>-</td>
<td>0.1654</td>
</tr>
</tbody>
</table>
Table 3

Relative Activation Energies (R.A.E.)

<table>
<thead>
<tr>
<th>β_{cc}</th>
<th>k</th>
<th>R.A.E. (elec.) (e.v.)</th>
<th>R.A.E. (red.) (e.v.)</th>
<th>R.A.E. (nucl.) (e.v.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_{cc} = 8.24$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>+1.9006</td>
<td>+0.4370</td>
<td>-1.0266</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>+1.3960</td>
<td>+0.0049</td>
<td>-1.3862</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>+0.7570</td>
<td>-0.5477</td>
<td>-1.8524</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>-0.0160</td>
<td>-1.2401</td>
<td>-2.4632</td>
</tr>
<tr>
<td>$H_{cc} = 7.24$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.0</td>
<td>+1.0256</td>
<td>+0.5491</td>
<td>+0.0726</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>+2.2886</td>
<td>+1.18162</td>
<td>+1.3438</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>+0.7442</td>
<td>+0.2798</td>
<td>-0.1846</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>+0.1894</td>
<td>-0.2638</td>
<td>-0.7170</td>
</tr>
<tr>
<td>$H_{cc} = 6.24$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>+0.0624</td>
<td>+0.5856</td>
<td>+1.1088</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>+0.1616</td>
<td>+0.6867</td>
<td>+1.2118</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>-0.0048</td>
<td>+0.5240</td>
<td>+1.0528</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>-0.3744</td>
<td>+0.1597</td>
<td>+0.6938</td>
</tr>
</tbody>
</table>
10.

References

Leiffer, Cotton, and Leto, ibid, 1958, 22, 364;
Brown, ibid, 1958, 22, 1086.

Brown, J., 1961, 691.

(8) Brown, ibid, 1958, 22, 1086.

(9) Berry, ibid, 1961, 35, 29.

(10) Dewar et al., J., 1956, 3581.

(12) Macnally and Whiting, J., 1959, 551.

(14) Riemenschneider et al., Monatsh., 1959, 90, 571;
Ercoli et al., Chimica e Industria, 1959, 41, 404.

FIG. I.
Technical Report Distribution List

Contract N62558-3560

Commanding Officer
Office of Naval Research Branch Office
The John Crerar Library Building
86 East Randolph Street
Chicago 1, Illinois. (1)

Research Director
Clothing & Organic Materials Division
Quartermaster Research and Engineering Command
U. S. Army
Natick, Mass. (1)

Air Force
Office of Scientific Research (SRC-E)
Washington 25, D.C. (1)

Commanding Officer
Office of Naval Research Branch Office
346 Broadway
New York 13, New York. (1)

Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California. (1)

Commanding Officer
Office of Naval Research Branch Office
Box 39 Navy 100 Fleet Post Office
New York, New York. (1)

Commanding Officer
Air Force
Office of Scientific Research (SRC-E)
Washington 25, D.C. (1)

Commanding Officer
Diamond Ordnance Fuze Laboratories
Washington 25, D.C.
Attn: Technical Information Office Branch 012 (1)

Commanding Officer
Office, Chief of Research & Development of the Army
Washington 25, D.C.
Attn: Physical Sciences Division (1)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: Code 342C (2)

Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D.C.
Attn: Technical Library (4)

ASTIA
Document Service Center
Arlington Hall Station
Arlington 12, Virginia (10)

Director of Research
U. S. Army Signal Research & Development Laboratory
Fort Monmouth, New Jersey (1)

Naval Radiological Defense Laboratory
San Francisco 24, California
Attn: Technical Library (1)
Naval Ordnance Test Station
China Lake, California
Attn: Head, Chemistry Division (1)
Commanding Officer
Army Research Office
Box CM, Duke Station
Durham, North Carolina
Attn: Scientific Synthesis Office (1)

Brookhaven National Laboratory
Chemistry Department
Upton, New York (1)

Atomic Energy Division
Division of Research
Chemistry Programmes
Washington 25, D.C. (1)

Atomic Energy Commission
Division of Technical Information
Extension
Post Office Box 62
Oak Ridge, Tennessee (1)

U.S. Army Chemical Research and Development Laboratories
Technical Library
Army Chemical Centre, Maryland (1)

Office of Technical Services
Department of Commerce
Washington 25, D.C. (1)

Commanding Officer
Office of Naval Research Branch
Office
1000 Geary Street
San Francisco 9, California
Attn: Dr. P. A. Miller (1)

Dr. G. Barth-Wehrenalp, Director
Inorganic Research Department
Pennsalt Chemicals Corporation
Box 4388
Philadelphia 18, Penn. (2)

Dr. A. B. Burg
Department of Chemistry
University of Southern California
Los Angeles 7, California (1)

Dr. T. C. Fox, Director of Research
Mellon Institute
Department of Chemistry
Pittsburgh 13, Penn. (1)

Dr. H. S. Gutowsky
Department of Chemistry
University of Illinois
Urbana, Illinois (1)

Dr. J. E. Leffler
Department of Chemistry
Florida State University
Tallahassee, Florida (1)

Dr. W. N. Lipscomb
Department of Chemistry
Harvard University
Cambridge, Mass. (1)

Dr. S. Y. Tyree, Jr.,
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina (1)

Mr. B. R. Stein
European Research Office
U.S. Army R. & D. Liaison
Group 9851DU
APO 757
New York, N.Y. (1)

Dr. M. J. S. Dewar
Department of Chemistry
University of Chicago
Chicago 37, Illinois (1)

Dr. M. S. Cohen, Chief
Propellants Synthesis Section
Reaction Motors Division
Denville, New Jersey (1)

FORdnance Corps (ORDBB-T01)
Picketin Arsenal
Dover, New Jersey (1)

Monsanto Research Corporation
Everett Station
Boston 49, Mass.
Attn: Mr. K. Warren Easley (1)
Dr. D.C. Bradley
Department of Chemistry
University of Western Ontario
London, Canada (1)

Dr. T.L. Heying
Organics Division
Olin Mathieson Chemical Corporation
275 Winchester Avenue
New Haven, Conn. (1)

Dr. Joyce J. Kaufman
RIAS
7212 Bellona Avenue
Baltimore 12, Maryland (1)

Dr. H.B. Jonasson
Department of Chemistry
Tulane University
New Orleans, Louisiana (1)

Dr. T.D. Parsons
Department of Chemistry
Oregon State College
Corvallis, Oregon (1)

Dr. J.D. Roberts
Department of Chemistry
California Institute of Technology
Pasadena, California (1)