NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TRANSLATION

APPLICATION OF THE ASYMPTOTIC METHOD OF CERTAIN PROBLEMS OF THE DYNAMICS OF VEHICLES

By

V. A. Yaroshewskiy

FOREIGN TECHNOLOGY DIVISION

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE

OHIO
APPLICATION OF THE ASYMPTOTIC METHOD OF CERTAIN PROBLEMS OF THE DYNAMICS OF VEHICLES

By: V. A. Yaroshevskiy

English Pages: 19

APPLICATION OF THE ASYMPTOTIC METHOD OF CERTAIN
PROBLEMS OF THE DYNAMICS OF VEHICLES

V. A. Yaroshevskiy

The present article generalizes and reduces to a compact form the rule of the conservation of the "adiabatic invariant."

As an example of applying the formulas obtained, we will examine problems concerning orbital decay of a satellite, the skip-glide motion of a glider, and the oscillations of a vehicle about the center of mass on a flight path with a variable velocity.

1. When investigating a number of questions concerning the dynamics of vehicles, the problem reduces to finding a solution of a system of equations in which the principal second-order equation describes a rapid quasiperiodic motion, and the parameters of the system are variable, slowly changing magnitudes whose change is described by a system of second-order equations.

Let us examine the system of equations

\[\frac{dy}{dt} + F(\tau, r, y, \frac{dy}{dt}) = 0, \quad (1) \]
\[\frac{d^2r_i}{dt^2} = \epsilon_i \left(\tau, r, y, \frac{dy}{dt} \right) = 0 \quad i = 1, 2, \ldots n. \quad (2) \]
Here \(\varepsilon \) is the parameter of smallness, \(\tau = \varepsilon t \) is "slow" time, \(F \) and \(\sigma_i \) are differentiable functions of both arguments.

At constant values of \(\tau \) and \(r_j \) and when \(\varepsilon = 0 \), the first equation describes a rapid periodic motion.

To obtain the relationships characterizing the change of "amplitude" values of the variable \(y \) and the "mean" values of the variables \(r_i \), we will use in this work a method analogous to the method developed by Kuzmak [1, 2].

We will represent the unknown functions as functions of two variables, "slow" time \(\tau \) and the phase of the periodic motion \(\varphi \):

\[
\eta = y_\varepsilon (\tau, \varphi) + \varepsilon y_\varepsilon (\tau, \varphi) + O(\varepsilon^3), \quad r_i = r_{i\varepsilon} (\tau) + \varepsilon r_{i\varepsilon} (\tau, \varphi) + O(\varepsilon^3), \\
\frac{d\varphi}{dt} = \omega_\varepsilon (\tau) + \varepsilon \omega_{1\varepsilon} (\tau) + O(\varepsilon^3).
\]

To avoid the appearance of secular members, we will require that the functions be periodic with respect to \(\varphi \). Then the order of smallness of the terms of the asymptotic expansion will be retained in the interval \(\tau \sim 1 \), i.e., \(t \sim 1/\varepsilon \) [1].

Separating in all equations the terms of the zero and first order of smallness, we derive

\[
\omega_\varepsilon \frac{\partial y_{\varphi\varepsilon}}{\partial \varphi} + F(\tau, r_{i\varepsilon}, y_{\varphi}, 0) + \varepsilon \left(\frac{\partial \omega_{1\varepsilon}}{\partial \varphi} + \frac{\partial y_{\varphi\varepsilon}}{\partial \varphi} + \frac{\partial F}{\partial y} (\tau, r_{i\varepsilon}, y_{\varphi}, 0) \omega_{1\varepsilon} \frac{\partial y_{\varphi\varepsilon}}{\partial \varphi} + \frac{\partial y_{\varphi\varepsilon}}{\partial \varphi} \frac{\partial \omega_{1\varepsilon}}{\partial \varphi} + \frac{\partial F}{\partial \varphi} (\tau, r_{i\varepsilon}, y_{\varphi}, 0) y_{\varphi\varepsilon} + 2 \omega_{1\varepsilon} \frac{\partial y_{\varphi\varepsilon}}{\partial \varphi} + \frac{1}{r_{i\varepsilon}} \frac{\partial F}{\partial r_i} (\tau, r_{i\varepsilon}, y_{\varphi}, 0) r_{i\varepsilon} \right) + O(\varepsilon^3) = 0.
\]

Here \(\partial F/\partial y \) designates a partial derivative of the function \(F \) with respect to the argument \(\varepsilon dy/dt \).
Hereafter such partial derivatives of the function \(F \) will be designated as \(\partial F_0/\partial y, \partial F_0/\partial y' \) and \(\partial F_0/\partial r_j \), and the functions themselves \(F(\tau, r_j, y_\theta, 0) \) and \(s_1(\tau, r_j, y_\theta, 0, \omega_0 \partial y_\theta/\partial \varphi) \) as \(F_0 \) and \(S_{i0} \).

Integrating the expression in \(\varepsilon \) in Eq. (4) with respect to \(\varphi \) from \(\varphi \) to \(\varphi + 2\pi \) and taking into account that \(r_{i1} \) is a function periodic with respect to \(\varphi \), we obtain

\[
\frac{dr_{i0}}{dt} - s_{i0} = 0, \quad \text{(5)}
\]

where

\[
s_{i0} = \frac{1}{2\pi} \int_{\varphi}^{\varphi+2\pi} s_i(\tau, r_j, y_\theta, 0, \omega_0 \partial y_\theta/\partial \varphi) d\varphi
\]

(naturally, when integrating here with respect to \(\varphi \) the quantities \(\tau \) and \(r_j \) are considered parameters).

The term \(r_{j1}(\tau, \varphi) \) is determined by the relation:

\[
r_{j1}(\tau, \varphi) = \frac{1}{\omega_0} \int_{\varphi}^{\varphi+2\pi} [s_{i0} - s_{i0}] d\varphi, \quad \text{(6)}
\]

where \(\varphi_0(\tau) \) is some function which is nonessential when calculating the zero terms of the asymptotic expansion.

The term \(y_0 \) is a solution of the "standard" equation

\[
\omega_0^2(\tau) \frac{\partial y_{10}}{\partial \varphi^2} + F[\tau, r_{i0}, y_\theta, 0] = 0. \quad \text{(7)}
\]

The value of \(\omega_0 \) is conveniently determined from the hypothesis that \(y_0(\varphi) = y_0(\varphi + 2\pi) \).

The change in time of the amplitude values \(y_0 \), which is of particular interest to us, cannot be determined from this equation, therefore we must attract the "condition of periodicity" of the function \(y_1 \) [1].
The equation (linear) for determining the function y_1 has the following form (see Eq. (3)):

$$
\omega_i(t) \frac{\partial y_i}{\partial \varphi} + \frac{\partial F_2}{\partial \varphi} y_i = -\left[\frac{d\omega_\psi}{dt} \frac{d\psi}{d\varphi} + 2\omega_\psi \frac{\partial y_\psi}{\partial \varphi \partial \psi} + \frac{\partial F_2}{\partial y_\psi} \omega_\psi \frac{\partial y_\psi}{\partial \varphi} + 2\omega_\psi \omega_\psi \frac{\partial y_\psi}{\partial \varphi^2} + \sum_{j=1}^{n} \frac{\partial F_2}{\partial \psi_j} \psi_j \right]
$$ \hspace{1cm} (8)

Differentiating Eq. (7) in terms of φ, we are easily convinced that the term $\partial y_0/\partial \varphi$ satisfies Eq. (8) without the right part. Then, multiplying Eq. (7) by y_1 and (12) by $\partial y_0/\partial \varphi$, subtracting the obtained relations from one another, integrating in terms of φ from φ to $\varphi + 2\pi$ and taking into account that $\int_{\varphi}^{\varphi+2\pi} \frac{\partial F_2}{\partial \psi_j} \frac{\partial y_0}{\partial \varphi} d\varphi = 0$, we easily find the first conditions needed for the periodicity of the function y_1 in terms of φ:

$$
\int_{\varphi}^{\varphi+2\pi} \left\{ \frac{d\omega_\psi}{dt} \frac{d\psi}{d\varphi} + 2\omega_\psi \frac{\partial y_\psi}{\partial \varphi \partial \psi} + \frac{\partial F_2}{\partial y_\psi} \omega_\psi \frac{\partial y_\psi}{\partial \varphi} + \sum_{j=1}^{n} \frac{\partial F_2}{\partial \psi_j} \psi_j \right\} \omega_\psi \frac{\partial y_\psi}{\partial \varphi} d\varphi = 0
$$ \hspace{1cm} (9)

We will not examine the second condition of periodicity which enables us to determine the correction ω_1.

Taking into account that y_0 is a solution of Eq. (7), we find that

$$
\frac{\partial y_0}{\partial \psi} = \pm \frac{1}{\omega_\psi} \left(-2 \int_{\psi_m}^{\psi} \frac{F_2 d\psi}{\omega_\psi} \right)^{1/2}
$$ \hspace{1cm} (10)

where y_m is the amplitude value of the function y_0 indifferently, more or less, corresponding to the vanishing of the derivative $\partial y_0/\partial \varphi$ (the plus sign is ascribed to the increasing portion of y_0, and the minus sign to the decreasing portion of y_0).
It is evident that relation (10) is equivalent to the determination of the "instantaneous amplitude ym for values y and dy/dt by means of "frozen" Eq. (1) (τ = const, r_j = const, ε = 0).

We will transform Eq. (9) to the following form:

\[
\frac{d}{dt} \left[\int_{y_0}^{y_{0+n}} \omega \left(\frac{\partial r_0}{\partial \phi} \right)^2 d\phi \right] + \int_{y_0}^{y_{0+n}} \omega \frac{\partial F}{\partial y} \left(\frac{\partial y}{\partial \phi} \right)^2 d\phi + \sum_{j=1}^{\infty} \int_{y_0}^{y_{0+n}} \frac{\partial F}{\partial r_j} \frac{\partial r_j}{\partial \phi} d\phi = 0.
\]

When integrating with respect to \(\phi \), the magnitudes \(\tau \) and \(r_{j_0} \) must be considered as parameters, therefore \(\partial y_0/\partial \phi \phi = dy_0 \). Taking this into account as well as relation (10), we will reduce Eq. (9) to the following form:

\[
\frac{d}{dt} \left[2 \int_{y_0}^{y_{0+n}} F d\phi \right] dy_0 + \int_{y_0}^{y_{0+n}} \frac{\partial F}{\partial y} \left(2 \int_{y_0}^{y_{0+n}} F d\phi \right)^2 dy_0 + \sum_{j=1}^{\infty} \int_{y_0}^{y_{0+n}} \frac{\partial F}{\partial r_j} r_j dy_0 = 0.
\]

(The sign \(\int \) means that integration is performed for the complete period of the change \(y_0 \)).

Integrating by parts and taking into account that \(r_{j_1} \) is a periodic function determined by formula (6), and

\[
\int_{y_0}^{y_{0+n}} \frac{\partial F}{\partial r_j} r_j dy_0 = 0,
\]

we obtain

\[
\int_{y_0}^{y_{0+n}} \frac{\partial F}{\partial r_j} r_j dy_0 = \int_{y_0}^{y_{0+n}} \left(-2 \int_{y_0}^{y_{0+n}} F d\phi \right) \frac{\partial F}{\partial r_j} d\phi \int_{y_0}^{y_{0+n}} \left(-2 \int_{y_0}^{y_{0+n}} F d\phi \right) dy_0.
\]

Having differentiated the first term in Eq. (11), we derive
Substituting (12) and (13) into (11), we obtain

\[
\frac{d}{dt} \left[-2 \sum_{m}^{n} F_{m} dy_{m} \right] dy_{m} = \int_{-1}^{1} \left(- \sum_{m}^{n} \frac{\partial F_{m}}{\partial r_{j}} dy_{m} \right) dy_{m} + \\
\int_{-1}^{1} \left(- \sum_{m}^{n} \frac{\partial F_{m}}{\partial y_{j}} dy_{m} \right) dy_{m} + \\
\frac{\partial}{\partial \tau} \left|_{\tau_{j}=\text{const}} \right. \int_{-1}^{1} \left(- \sum_{m}^{n} \frac{\partial F_{m}}{\partial y_{j}} dy_{m} \right) dy_{m}.
\]

Substituting (12) and (13) into (11), we obtain

\[
\frac{\partial}{\partial \tau} \left|_{\tau_{j}=\text{const}} \right. \int_{-1}^{1} \left(- \sum_{m}^{n} \frac{\partial F_{m}}{\partial y_{j}} dy_{m} \right) dy_{m} = 0.
\]

Here \(dy_{0}/dt(y_{0})\) is the solution of Eq. (1) with frozen values of \(r_{j_{0}}\) and \(\tau\) when \(\epsilon = 0\).

Since

\[
\int_{-1}^{1} \frac{\partial F_{m}}{\partial r_{j}} dy_{m} = - \frac{1}{2} \frac{\partial}{\partial \tau} \left[\frac{dy_{m}}{dt}(y_{0}) \right] = - \frac{dy_{m}}{dt} \frac{\partial}{\partial \tau} \left[\frac{dy_{m}}{dt} \right],
\]

then the third integral in (14) can be presented in the following form:

\[
\int_{-1}^{1} \left(- \sum_{m}^{n} \frac{\partial F_{m}}{\partial y_{j}} dy_{m} \right) dy_{m} = \int_{-1}^{1} \left[\frac{dy_{m}}{dt}(y_{0}) \right] dy_{m}.
\]

We will introduce the following designations for averageable values:
\[
\frac{\delta F}{\delta y'} = \frac{\frac{\partial F}{\partial y'} \frac{dy_0}{dt} dy_0}{\frac{dy_0}{dt} dy_0} = \frac{\delta F}{\delta y'} (\tau, r_{j0}, y_m).
\]

\[
\frac{dy_0}{dt} dy_0 = D(\tau, r_{j0}, y_m).
\]

is the "adiabatic invariant" [3].

Then the concluding result can be presented in the following form:

\[
\frac{\partial}{\partial \tau} |_{r_{j0}=\text{const}} D + \sum_{j=1}^{n} \frac{\partial D}{\partial r_j} s_j + D \frac{\delta F}{\delta y'} = 0. \tag{15}
\]

The values of \(r_{j0}\) are determined from Eq. (5)

\[
\frac{dr_{j0}}{dt} = \bar{s}_j (\tau, r_{j0}, y_m).
\]

Using these equations we can determine the change in time of the amplitude of the zero term of the asymptotic expansion for \(y\) (i.e., \(y_m\)) and also the change in time of the zero terms of the asymptotic expansion (mean values) for \(r_1\) (i.e., \(r_{10}\)). The difference between the exact solution and the zero terms of the asymptotic expansion in the interval \(t \sim 1/\varepsilon\) retains an order of smallness \(\varepsilon\).

The first two terms of Eq. (15) can be combined into a "unique derivative" of the integral \(D\) in time, which is distinguished from the real, complete derivative in that the values \(dr_{j0}/dt = \bar{s}_{j0}\) are replaced by the values \(\bar{s}_{j0}\). If the right-hand parts of Eq. (2) were to depend on \(y\) and \(dy/dt\), then (when \(\partial F/\partial y' = 0\)) we would obtain the known rule of the conservation of the adiabatic invariant \(D = \text{const}\) [3]. Equation (15) generalizes this rule.

The magnitude \(\overline{\partial F_0/\partial y'}\) corresponds to the term \(\partial F_0/\partial y'\) averaged
over a period with a weight of \((\frac{\text{dy}_0}{\text{dt}})^2\), the magnitudes \(\overline{s}_{j0}\) correspond to the terms \(s_{j0}\) averaged over a period with a weight

\[
\frac{\partial}{\partial \tau_j} \left[\left(\frac{\text{dy}_a}{\text{dt}} \right)^2 \right].
\]

It is easy to see that in the important special case where

\[F(\tau, r_i, y, \varepsilon \frac{\text{dy}}{\text{dt}}) = F_1(\tau, y, \varepsilon \frac{\text{dy}}{\text{dt}}) F_2(\tau, r_i),\]

the magnitude \(\overline{s}_{j0}\), like \(\overline{\frac{\partial F_0}{\partial y'}}\), is a magnitude averaged over a period with a weight of \((\frac{\text{dy}_0}{\text{dt}})^2\).

We note in conclusion that these results can easily be generalized for the case where the term \(\varepsilon \frac{\text{dy}}{\text{dt}}\) is replaced by the term \(\varepsilon f(\frac{\text{dy}}{\text{dt}})\).

2. Let us examine, as the first example, the problem of the decay of an elliptical orbit of a satellite owing to a small aerodynamic drag.

The initial system of equations is written in the following form [4]:

\[
\frac{d^2 \xi}{d\varphi^2} + \xi = \eta,
\]

\[
\frac{d\eta}{d\varphi} = \eta - \frac{C_s S R_0 \rho(\xi)}{m} \frac{1}{\xi^2} \sqrt{1 + \left(\frac{1}{\xi} \frac{d\xi}{d\varphi} \right)^2}.
\]

where

\[
\xi = \frac{R_0}{R}, \quad \eta = \frac{\varepsilon g_0 R_0^2}{\left(R^2 \frac{d\varphi}{dt} \right)^2}
\]

is the magnitude which is the invariant on a Keplerian trajectory and in this case slowly changes, \(R\) is the distance from the vehicle to the center of the planet, \(R_0\) is the planet radius, \(g_0\) is the acceleration of gravity at the planet surface, \(\varphi\) is the central angle, \(\rho\) is the density of the atmosphere, \(C_s\) is the drag coefficient, \(S\) is the
characteristic area, \(m \) is the satellite mass. The meaning of the designations can be cleared up from Fig. 1. The perigean point corresponds to the value \(\xi_p = \frac{R_0}{R_p} \).

Let us apply the method cited in part 1 to this system (16), (17).

Taking into account that

\[
\frac{d\xi}{d\varphi}(\xi_p, \eta, \xi) = \sqrt{(\xi - \xi_p)^2 - (\xi - \eta)^2},
\]

we will find the value of the adiabatic invariant

\[
D = \oint_{\xi_p} \frac{d\xi}{d\varphi} d\xi = \pi - \eta^2.
\]

Equation (15) has the following form here:

\[
\frac{\partial D}{\partial \xi_p} \frac{d\xi_p}{d\varphi} + \frac{\partial D}{\partial \eta} \frac{d\eta}{d\varphi} = 0.
\]

Hence

\[
\frac{d\xi_p}{d\varphi} = \frac{d\eta}{d\varphi}(\eta_0, \xi_0)
\]
(η₀ is the zero term of the asymptotic expansion for η or the average value for η during the circling time).

Equation (5) is written as

$$\frac{dη}{dφ} = \frac{\ddot{η}}{dφ} (η₀, ξ).$$

Here

$$\frac{\ddot{η}}{dφ} = \frac{C_2SR_e}{m} \frac{\int_{n-n_0}^{n-n_p} \frac{p(\xi)}{\xi} \sqrt{1 + \left(\frac{1}{\xi} \frac{d\xi}{dφ}\right)^2} \frac{d\xi}{dφ}}{\int_{n-n_0}^{n-n_p} \frac{d\xi}{dφ}}.$$ \hspace{1cm} (19)

$$\frac{\ddot{η}}{dφ} = \frac{C_2SR_e}{m} \frac{\int_{n-n_0}^{n-n_p} \frac{p(\xi)}{\xi} \sqrt{1 + \left(\frac{1}{\xi} \frac{d\xi}{dφ}\right)^2} \frac{\partial}{\partialη} \left(\frac{d\xi}{dφ}\right) d\xi}{\int_{n-n_0}^{n-n_p} \frac{\partial}{\partialη} \left(\frac{d\xi}{dφ}\right) d\xi}.$$ \hspace{1cm} (20)

where \(d\xi/dφ\) are determined by formula (18).

Let us extract the explicit expressions for these derivatives in two extreme cases.

a) Considering the eccentricity of the orbit as small (\(≤ ξ \leq ξ_p\)), approximating the dependence of density on height \(H = R - R_o\) by the function \(ρ = ρ_o \exp(-λH)\), and introducing the concept of an "average" radius of the orbit \(r = R_o/η_o\), we will transform Eqs. (19) and (20) to the following (dimensional) form:

$$\frac{dR_p}{dφ} = -\frac{pC_2Sr^4}{m} e^{-λ(r-R_p)} \left[I_1[λ(r-R_p)] - I_1[λ(r-R_o)]\right] \times \left[1 + 0\left[\frac{r-R_p}{r}\right] + 0\left[\frac{r-R_o}{r}\right]\right].$$

$$\frac{dr}{dφ} = -\frac{pC_2Sr^4}{m} e^{-λ(r-R_p)} \left[I_1[λ(r-R_p)] \{1 + 0\left[\frac{r-R_p}{r}\right] + 0\left[\frac{r-R_o}{r}\right]\}.\right.$$

Designating the parameter \(λ(r-R_p)\), which in the indicated assumption is proportional to the eccentricity, in terms of \(ξ\), we derive the known result (see, for example, [5])
\[
\frac{dr}{dx} = -\frac{1}{\lambda} \frac{I_0(x)}{I_1(x)},
\]

where \(I_0\) and \(I_1\) are Bessel's functions of the imaginary argument.

At large values of \(x\), \(I_0/I_1 \to 1\). Consequently, if the eccentricity is comparatively large, the height of the perigee \(R_p\) decreases slowly in comparison with the average radius of the orbit \(r\) (and the height of the apogee \(R_a\)), and the eccentricity rapidly decreases.

At small values of \(x\), \(I_0/I_1 \approx 2|x|, x \sim \exp \lambda r|2, the orbit changes to a circular orbit, the average radius of the orbit and the height of the perigee virtually coincide and they decrease with the same velocity.

b) If the eccentricity of the original orbit is large, then the main deceleration of the satellite occurs in the portion of the path adjacent to the perigean point, wherein the role of this portion of the path grows with an increase of \(\lambda\). The dependence of density on height for a large range of altitudes, characteristic for an orbit with a large eccentricity, can be approximated by the function

\[
\rho = \rho_0 e^{-\int \lambda(eH) \, dH},
\]

where \(\lambda\) is a slowly changing function \(\lambda(gH)\). In the section \(R - R_p \ll \ll R_P\), which is of interest to us, we can consider that

\[
\rho = \rho_0 e^{-\lambda_p (R - R_p)}
\]

\((\rho_p = \rho(R_p), \lambda_p = \lambda(R_p))\).

Simplifying the expressions for derivatives (19) and (20) in accord with the assumptions made, we obtain (again in a dimensional form)
\[\frac{dr}{d\psi} = - \frac{C^2 S_{R_p} \lambda_p}{m \sqrt{2\pi \lambda_p \left(\frac{1}{R_p} - \frac{1}{r} \right)}} \times \left(1 + 0 \left[\frac{1}{\lambda_p} \frac{d\lambda_p}{dR_p} \right] + 0 \left[\frac{1}{\lambda_p (R_a - R_p)} \right] + 0 \left[\frac{R_a - R_p}{\lambda_p R_a R_p} \right] \right), \]

\[\frac{dR_p}{d\psi} = - \frac{C^2 S_{R_p} \lambda_p}{m 2\sqrt{2\pi \lambda_p \left(\frac{1}{R_p} - \frac{1}{r} \right)}} \times \left(1 + 0 \left[\frac{1}{\lambda_p} \frac{d\lambda_p}{dR_p} \right] + 0 \left[\frac{1}{\lambda_p (R_a - R_p)} \right] + 0 \left[\frac{R_a - R_p}{\lambda_p R_a R_p} \right] \right). \]

A similar result is obtained by a different method in El'yasberg's study [6]. It follows from the reduced relations that

\[\frac{d(1/\lambda)}{dR_p} = - 2\lambda (R_p) \left(\frac{1}{R_p} - \frac{1}{r} \right), \]

i.e., we obtain an ordinary linear equation which is easily integrated.

For convenience we can combine the results obtained for small and large eccentricities and write them in the following form:

\[\frac{dr}{d\psi} = - \frac{C^2 S_{R_p} \lambda_p}{m} \rho (R_p) \int_0^x e^{-x} \, dx, \quad \frac{dR_p}{d\psi} = - \frac{C^2 S_{R_p} \lambda_p}{m} \rho (R_p) \left[\int_0^x e^{-x} \, dx - I_1(x) \right] e^{-x}, \]

where \(x = \lambda (R_p) \frac{r}{R_p} (r - R_p) \) (at large values of \(x \) \(I_0(x) \approx \frac{e^x}{\sqrt{2\pi x}} \), \(I_0(x) - I_1(x) \approx \frac{e^x}{\sqrt{\pi} (2x)^{3/2}} \)). Since \(\lambda r \) has a order of 100-900, we can expect that the ranges of variability of the formulas overlap.

3. As the second example we will examine the motion of a flying vehicle with a large positive quality (the so-called skip trajectory) [7].

We will introduce the following assumptions:

\[\Pi \ll R_p, \quad |\theta| \ll 1, \quad \rho \ll \rho e^{-\lambda R}, \quad C_e = \text{const.} \]
Then the equation of motion can be rewritten in the following form:

\[
\frac{dH}{ds} = \frac{C_x \rho SV^2}{2m} - R_s + \frac{V^2}{\lambda_r},
\]

\[
\frac{d(V)}{ds} = \frac{C_y \rho SV^2}{m} - 2R_s \frac{dH}{ds}.
\]

Here \(H \) — height, \(V \) — velocity, \(\theta \) — the local angle of inclination of the trajectory, \(s \) — a variable of the path, \(C_x \) and \(C_y \) — coefficients of drag and lift (see, for example, [7]).

Considering that the velocity changes negligibly during the oscillation period with respect to \(H \) and that \(C_y \) changes slowly, we will apply formulas (5) and (15) to this system of equations.

We are easily satisfied that when calculating the averaged derivatives \(dV^2/\overline{ds} \) and \(dV^2/\overline{ds} \), the term \(2gH|ds| \) does not have any effect; it vanished on averaging. Therefore, this term is not taken into account when calculating the amplitude and mean value of the zero terms of the asymptotic expansion for height and velocity respectively.

Then, if we eliminate the variable \(ds \), we derive in plane \((H, V)\) the following equation of motion:

\[
\frac{\partial^2 u}{\partial x^2} = V \sqrt{\frac{C_x \rho SV^2}{2m}} \frac{\partial^2 u}{\partial y^2} - \frac{C_x \rho SV^2}{\sqrt{2m}} \frac{\partial u}{\partial y} + \frac{x^2 - 1}{y},
\]

where \(x = \ln \frac{\sqrt{R_o \rho}}{\sqrt{2m}} \), \(y = \frac{C_x S}{2m} \sqrt{\frac{R_o}{\lambda}} \rho \).

We can apply to this equation the method cited in Kuzmak's study [1], considering \(\exp(2x)-1 \) a slowly changing coefficient, which is valid for large values of the quality and at velocities smaller than circular velocity.

Without going into detailed calculations, we can extract the final formula which determines the dependence of the amplitude values of
height on the mean velocity:

\[
\left(\frac{\frac{R_0 - \frac{\mu}{2}}{V^2_{\text{initial}}} - 1}{\left(\frac{R_0 - \frac{\mu}{2}}{V^2_{\text{initial}}} \right)^2} \right)^{\frac{1}{2}} \cdot \frac{C_p}{\rho_{\min}} \cdot \frac{C_{p_{\max}}}{2m \left(\frac{R_0 - \frac{\mu}{2}}{V^2_{\text{initial}}} \right)^2} = \text{const.}
\]

Here the argument of the function \(h \) is the ratio of the maximal amplitude of density \(\rho_{\max} \) to the density corresponding to a trajectory of quasistationary gliding

\[
\rho_* = \frac{2m (R_0 - V^2)}{C_p S R_0 V^3}.
\]

The function \(h \) is determined by the formula

\[
h(u) = \int_{z_1(u)}^{z_2(u)} \sqrt{u - z + \ln \frac{z}{u}} \, dz.
\]

where \(z_1(u) \) and \(z_2(u) = u \) are the roots of the equation \(u - z + \ln \frac{z}{u} = 0 \).

The graph of the function \(h(u) \) is shown in Fig. 2. When \(u \approx 1 \), \(h(u) \approx \frac{\pi}{2 \sqrt{2}} \left(u - 1 \right)^2 \), when \(u \gg 1 \), \(h(u) \approx \frac{2u \sqrt{u}}{3} \).

Hence it is clear that in "deep" skips \(u \gg 1 \) when \(C_y = \text{const} \), the value of \(\rho_{\max} \) is practically constant (analogous to the case where the height of the perigee is at first almost constant upon decay of an elliptic orbit with a large eccentricity), which coincides with the results obtained earlier [7]. As the velocity decreases \(h \to 0 \), i.e., \(\rho_{\max} \to \rho_* \), the trajectory becomes a trajectory of quasistationary gliding. Here the minimal (amplitudinal) density \(\rho_{\min} \) is associated with the maximal relation

\[
\frac{\rho_{\min}}{\rho_*} \exp \left(- \frac{\rho_{\max}}{\rho_*} \right) = \frac{\rho_{\min}}{\rho_*} \exp \left(- \frac{\rho_{\min}}{\rho_*} \right).
\]

The instantaneous oscillation "period" with respect to the velocity is determined by the formula
\[T_v = \frac{2K_x}{\sqrt{\text{Re}_{\text{a}} C_y}} \sqrt{\text{Re}_{\text{a}} - V^2} \left(\frac{p_{\text{max}}}{p_0} \right). \]

The function \(T(u) = \frac{\sqrt{2}}{n} \frac{u}{u - 1} h'(u) \) is shown in Fig. 2. Since \(T \leq 1 \), the number of complete oscillations of the vehicle when \(C_y = -a \) does not exceed

\[n = \frac{\nu_{\text{initial}}}{\nu_{\text{end}}} < \frac{\sqrt{\text{Re}_{\text{a}} C_y}}{2a C_x} \times \arcsin \frac{V}{\sqrt{\text{Re}_{\text{a}}}} \left| \frac{\nu_{\text{initial}}}{\nu_{\text{end}}} \right| \]

\[n < \frac{\sqrt{\text{Re}_{\text{a}} C_y}}{4a \text{d} x} \approx 7.5 \frac{C_y}{C_x}. \]

![Fig. 2.](image)

4. In the last example we will examine a rapid plane oscillatory motion of a ballistic vehicle in an idealized medium with a constant density in the absence of a gravitational field. For simplicity we will exclude from the examination the damping terms in the equation of the oscillations of the vehicle about the center of mass (although this cannot be done in practical calculations).

The equations are written in the following form:

\[\frac{d\alpha}{dt} = k_1 m_2 \alpha N, \]
\[\frac{dN}{dt} = -k_3 C_x \alpha) N. \]
Here $k_1 = \frac{aSJ}{2J}$, $k_2 = \frac{aS}{2m}$, α is the angle of attack, m_a^2 is a derivative of the aerodynamic moment coefficient, C_x is the coefficient of drag, S and l are the characteristic surface and length, J is the moment of inertia, m is mass of the vehicle.

If the coefficient C_x did not depend on α, the change in amplitude of oscillations α_m would be determined by the asymptotic formula

$$\alpha_m^2 \sim \frac{1}{\sqrt{-k_m^2V^2}}$$

or

$$\alpha_m^2V = \text{const.} \quad (21)$$

We will apply formulas (5) and (15) to the extracted equations. Taking into account

$$D = \sqrt{-k_m^2V\pi\alpha_m^2}$$

we obtain equations describing the changes of the zero terms of the asymptotic expansion for velocity V_0 and for the amplitude α_m

$$\frac{dV_0}{dt} = -k_1V_0^2\frac{a_m}{\alpha_m} = -k_2V_0^2C_x(\alpha_m).$$

$$V_0 \frac{d}{dt}(\alpha_m^2) + \alpha_m \frac{dV}{dt} = 0,$$

$$\frac{dV}{dt} = -k_2V_0^2\frac{a_m}{\alpha_m} = -k_2V_0^2C_x(\alpha_m).$$

Then the equation relating the amplitude to the mean velocity takes the following form:
If $\frac{c_x(a_m)}{c_x(a_m')}$, we derive formula (21). We will approximate the dependence $c_x(a)$ by a function of the form:

$$c_x = a + b |a|^m \quad (a > 0, b > 0).$$

Then

$$\frac{c_x(a_m)}{c_x(a_m')} = a + \frac{\Gamma \left(\frac{m}{2} + \frac{1}{2} \right) \Gamma \left(\frac{1}{2} \right) b a_m}{\pi^{\frac{m}{2} + 1}}$$

$$\frac{c_x(a_m)}{c_x(a_m')} = a + \frac{2\Gamma \left(\frac{m}{2} + \frac{1}{2} \right) \Gamma \left(\frac{3}{2} \right) b a_m}{\pi^{\frac{m}{2} + 2}}.$$

Using these formulas, we can easily integrate Eq. (22) and obtain the relation between V_0 and a_m in an explicit form.

We will limit ourselves to a qualitative investigation of this equation.

When $m > 0$

$$1 > \frac{c_x(a_m)}{c_x(a_m')} > \frac{2}{2 + m}.$$

In the limiting case when $a = 0$ and $m \to \infty$ we derive that this relation approaches zero, i.e., $a_m = \text{const}$, in spite of the fact that the velocity decreases monotonically and the relative change of velocity during the oscillation period with respect to a can be as small as desired. The physical sense of the last result is that the fall-off of velocity V mainly occurs only in the neighborhood of amplitude $a = a_m'$ and outside this neighborhood the velocity can be considered as a virtually constant value. Therefore the motion "inside" each...
half-period is conservative, and the frequency change jumps like from half-period to half-period.

An opposite "degenerate" case can be obtained if we assume that $0 > m > -1$ so that $C_x(\alpha = 0) = \infty$.

Then the relation under consideration is greater than unity, i.e., in this case when $m \to -1$, the amplitude can increase proportionally $1/V$ (see [22]). Both degenerate cases are illustrated in Fig. 3.

![Fig. 3.](image)

REFERENCES

FTD-TT-63-164/1+2+4 -18-

<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT OF DEFENSE</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>AFSC</td>
</tr>
<tr>
<td>SCFDD</td>
</tr>
<tr>
<td>ASTIA</td>
</tr>
<tr>
<td>TDBTL</td>
</tr>
<tr>
<td>TDBDP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HEADQUARTERS USAF</td>
</tr>
<tr>
<td>AFCIN-3D2</td>
</tr>
<tr>
<td>ARL (ARB)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>OTHER AGENCIES</td>
</tr>
<tr>
<td>CIA</td>
</tr>
<tr>
<td>NSA</td>
</tr>
<tr>
<td>DIA</td>
</tr>
<tr>
<td>AID</td>
</tr>
<tr>
<td>OTS</td>
</tr>
<tr>
<td>AEC</td>
</tr>
<tr>
<td>PWS</td>
</tr>
<tr>
<td>NASA</td>
</tr>
<tr>
<td>ARMY</td>
</tr>
<tr>
<td>NAVY</td>
</tr>
<tr>
<td>RAND</td>
</tr>
<tr>
<td>NAFOC</td>
</tr>
<tr>
<td>PGB</td>
</tr>
</tbody>
</table>

FTD-TT- 63-164/1+2+4 20