TRANSLATION

CRYSTALLINE STRUCTURE OF THE NEW CLOSE-GRAINED MODIFICATION OF SILICA, SiO₂

By

S. M. Stishov and N. V. Belov

FOREIGN TECHNOLOGY DIVISION

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE
OHIO
UNEDITED ROUGH DRAFT TRANSLATION

CRYSTALLINE STRUCTURE OF THE NEW CLOSE-GRAINED MODIFICATION OF SILICA, SiO₂

BY: S. M. Stishov and N. V. Belov

English Pages: 7

CRYSTALLINE STRUCTURE OF THE NEW CLOSE-CHAIN MODIFICATION
OF SILICA, SiO_2

by

S. M. Stishov and N. V. Belov

Not long ago a description was given of a new modification of SiO_2 with a density $\delta_{\text{exp}} = 4.35$ g/cm3 (1), obtained under conditions of high pressure (160 to 180 thousand atm) and temperature (1,200$-$1,400°C). For the time being we do not have at our disposal material which is suitable for X-ray analysis by the monocristal method, but there has been obtained a powder pattern (filtered Cu emission, diameter of chamber 114 mm) of very satisfactory quality. In Table 1 there are presented for the new phase the angles of reflection, interplane distances, and intensities. The latter were evaluated in accordance with the marks of darkening. One was successful in accomplishing a faultless indexing of a Debye powder pattern (Table 1) on the basis of a primitive tetragonal nucleus with the parameters:

$$
\begin{pmatrix}
\text{SiO}_2 & \text{MnO}_2 & \text{TiO}_2 & \text{SnO}_2 \\
\alpha = 4.176 & \alpha = 4.44 & \alpha = 4.58 & \alpha = 4.72 \\
\gamma = 2.696 & \gamma = 2.99 & \gamma = 3.58 & \gamma = 3.68 \\
\gamma/\alpha = 0.638 & \gamma/\alpha = 0.85 & \gamma/\alpha = 0.84 & \gamma/\alpha = 0.89 \\
\end{pmatrix}
$$

(1)

In accordance with the indicated value δ_{exp} in such a nucleus there are contained precisely two units of SiO_2. In the brackets beside the parameters of the new modification of SiO_2 there are shown the analogous data for MnO_2, TiO_2, and SnO_2, and in Fig. 1 along with the Debye powder pattern of the new phase there is placed the X-ray picture of rutile TiO_2. The great affinity (of the relationships) of the parameters and the diffraction patterns, as well as the conformity to rules of the known series, CO_2-SiO_2-TiO_2-GeO_2-(SnO$_2$)-GeO$_2$-ThO$_2$ warranted one's thinking that we have before

*On the scale of Kennedy and Lamore (2) the above-mentioned limits correspond to 120$-$140 thousand atm.
us the long awaited rutile-like modification of SiO$_2$ with Si in the sixfold coordination, which is well known for the fluoride compounds of silicon.

In the list presented of indexed reflections there are lacking all those which would go against the spatial group of rutile (cassiterite) $D_{2d}^{14} = Fm$

\tilde{mm} (the h0l are extinguished with the odd sum $h \neq l$). By writing the coordinates of the atoms of the rutile-like pseudocentered structure in the form Si(000, $\tilde{1}$1); O(x0x, x00, $\tilde{1}$x, $\tilde{1}$x-x, $\tilde{1}$; $\tilde{1}$-x, $\tilde{1}$-x, \tilde{x}) we reduce the structure-analytical problem to the finding of a single oxygen parameter x.

In (3) N. V. Belov and V. I. Mokeyeva gave numerous examples of the solution of not very complicated single-parameter structures with the use of all, without exception, lines of the Debye powder pattern with the aid of very simple diversity of the three-dimensional Patterson synthesis, namely, Harker piercing (linear synthesis). In the structural type of rutile the piercing is done along the diagonal of the tetragonal basis, which analytically is presented in the form, $x = y; z = 0$. The Patterson function for any point of the piercing will be

$$P(x0) = \frac{1}{V} \sum \sum \sum f_{hk0} \cos 2\pi(h + k) x = \frac{1}{V} \sum \sum C_n \cos 2\pi nx,$$

where $C_n = \sum \sum f^2_{hk0}$ with the condition $|h + l| \leq n$ with random 1.

It is necessary to note that the intensities of the Debye lines \{hkl\} presented in Table 1 represent the result of the adding of the intensities 16, 8, 4 and 2 of the separate reflexes. Into \{hkl\}, along with hkl with all positive indices, there enter $\tilde{h}k\ell, \ell k\ell, \bar{k}h\ell, etc., which still have the same intensity. It is easy to see (3) that from each group \{hkl\} the half P^2 gets into C_n, where $n = |h| + |k|$, and the other half into C_m, where $m = \langle |h| - |k| \rangle$. An exception is formed only by \{h0l\}, which go entirely into $C_{n\ell}$, where $n = |h|$.

The totalling of the P^2 series was accomplished with the aid of the
Experimental and computed structural amplitudes are presented on the general scale, and besides in the experimental structural amplitudes there is taken into consideration the factor of recurrence.

three-degree strips (for 120 points of the diagonal) and the results of the numerical synthesis (with relative values of $\sum F_{hkl}$ and with the initial member discarded) are given in Table 2. Besides the trivial initial peak only one stands out very smoothly with the coordinate 38/120, i.e., $x = 0.317$. This number must be compared with the known x, equal for rutile 0.31 and cassigneite 0.26.

By the determined parameter x one can compute the signs of the structural amplitudes for all 37 reflexes of the powder X-ray picture and further accomplish the diagonal piercing through the three-dimensional
Harker Piercing through Paterson's Three-Dimensional Synthesis

along the Diagonal of the Base

Barker Piercing through Paterson's Three-Dimensional Synthesis along the Diagonal of the Base

distribution of the electron plane. The formula for this piercing remains the same, but into the sums \(C_n \) instead of \(F_{hkl}^2 \) the enter the \(F_{hkl} \) provided by the computed signs. Wishing to construct the synthesis on the same basis as with \(F_{hkl}^2 \), i.e., considering the table \(F_{hkl} \) as the sums of the respective 16, 8, 4, and 2 of the amplitudes we should multiply \(\sqrt{F_{hkl}^2} \) by \(\sqrt{2} \), 1, \(1/\sqrt{2} \), \(1/2 \). \(\text{compare (3).} \)

\[
\sum F_{hkl} \text{ according to } C_n \text{ or } |hkl| \text{ and } C_n = (1+|h|-|k|) \text{ it is necessary to keep in mind that in the group } P4_2/mnm \text{ the place of slipping } n \text{ makes the equality } F_{hkl} = F_{hkl} \text{ valid only for } h + k + l = 2n; \text{ if, however, } h + k + l = 2n + 1 \text{ then } F_{hkl} = -F_{hkl}.
\]

In this way the second synthesis was by no means simply a recurrence of the first with change of scale; it lead, however, as Table 3 shows, to the identical value \(x = 0.317 \).

In comparing the experimental \(F_{hkl} \) with the computed value we obtained the coefficient of the dispersion \(R = 0.10 \) (for all 37 reflexes).
According to Fig. 2 the ratio $x : (1-x)$ determines how many times greater the diagonal of the SiO$_6$ octahedron is than the horizontal edge of the octahedron.

The value 1.74 obtained is considerably greater than the same value for the correct octahedron (1.414) and shows that the SiO$_6$ octahedron is extended along the diagonal (as is the octahedron TiO$_6$, but not the octahedron SnO$_2$), i.e., of the 6 atoms of oxygen around the Si 4 are considerably closer than the remaining 2. The precise computation of the distance Si — 0 gives for the first ones 1.716 Å and for the second ones 1.872 Å (Fig. 3). If one considers as standard for the tetrahedral coordination the distance Si—O = 1.63 Å, then for the first four distances we get the value by $\approx 6\%$, i.e., just in agreement with what was shown by Goldschmidt already in 1928 for the ratio of the distances of the respective 6th and 4th coordinations. One can also consider that for the four lesser distances we have an ionic bond onto which their is put a covalent one, while in the two remaining ones there is only a single ionic one. Computation of the length of the horizontal edge of the Si Octahedron 0—0 gives 2.161 Å. This is considerable less than the sum of two oxygen radii, but the shortening corresponds well to that which should be for the general edge in the column from the octahedrons according to the 3rd and 4th rules of Pauling. The lengths of the vertical edges, apparently, represent nothing other than the parameters of the nucleus $c = 2.666$ Å, i.e., they are almost precisely equal to the diameter of the oxygen ion. The inclined edges of the coordination octahedron all equal 2.540 Å.
In conclusion the authors express their thanks to Member-Correspondent of the Academy of Sciences of the USSR L. F. Vereshchagin for giving his attention to and reviewing this present work.

Moscow State University

Institute of the Physics of Higher Pressures of the Academy of Sciences of the USSR.

Literature Cited

3. V. V. Belov and V. I. Mokeyeva, Transactions of the Institute of Crystallography of the Academy of Sciences of the USSR, 5, 13 (1949).
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>DEPARTMENT OF DEFENSE</th>
<th>Nr. Copies</th>
<th>MAJOR AIR COMMANDS</th>
<th>Nr. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>APSC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCFDD</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTIA</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDRFU</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TDSADP</td>
<td>5</td>
</tr>
<tr>
<td>HEADQUARTERS USAF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APCIN-3D2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARL (ARB)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER AGENCIES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEA</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIA</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AID</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTS</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AEC</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWS</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARMY</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVY</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAND</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>