FAST RISE-TIME PRESSURE-GAGE CALIBRATOR

RELEASED TO ASTIA
BY THE NAVAL ORDNANCE LABORATORY
Without restrictions
☐ For Release to Military and Government Agencies Only.
☐ Approval by Recipient required for release to contractors.
☐ Approval by Recipient required for all subsequent releases.

31 DECEMBER 1962

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

ASTIA

RECEIVED APR 16 1963

TISIA

NOLTR 62-218
Ballistics Research Report 86

FAST RISE-TIME PRESSURE-GAGE CALIBRATOR

Prepared by:
R. H. Waser and V. C. D. Dawson

ABSTRACT: This report describes a pressure-gage calibration device which simulates both the magnitude and the rise-time characteristics of pressure pulses experienced in shocktubes and shocktube wind tunnels. The advantage of a device of this type over a static calibration device is that it provides the ability to detect any difference in the static and dynamic characteristics of gages. Included is also a discussion of the response of gages to pressures with short rise times.

PUBLISHED MARCH 1963

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
FAST RISE-TIME PRESSURE-GAGE CALIBRATOR

This work was sponsored by the Re-Entry Body Section of the Special Projects Office, Bureau of Naval Weapons, under the Applied Research Program in Aeroballistics.

R. E. ODEWING
Captain, USN
Commander

A. E. SEIGEL
A. E. SEIGEL
By direction
CONTENTS

INTRODUCTION .. 1
CALCULATIONS ... 1
DESIGN AND OPERATION OF CALIBRATOR 3
TEST RESULTS AND DISCUSSION 3

ILLUSTRATIONS

Figure Title
1(a) Spring-Mass System and Applied Pulse
1(b) Response of Spring-Mass System
2(a) Applied Pulse
2(b) Response of Spring-Mass System
3 Calibrating Block
4 Pressure Gage Calibration Trace
5 Pressure Gage

REFERENCES

(2) Frankland, J. M., Effects of Impact on Simple Elastic Structures, DTMB Report 481, Apr 1942
INTRODUCTION

The design and use of pressure transducers are frequently complicated by the need to measure extremely transient pressures accurately. In shocktube wind tunnel development, for example, one is faced with the problem of measuring shock pressures which rise to peak value in the time required for the passage of a fast-moving shock front. Thus, the gages are often subjected to pressure fluctuations that occur in a matter of microseconds.

Generally the gage designer employs a static calibrating system in order to determine the sensitivity and calibration curve of the transducer. This calibration is then applied in determining the results for the case where the gage undergoes truly dynamic loading. As will be shown in the next section, the applicability of the static calibration to the dynamic reading is a question of the frequency response of the transducer. Beyond this, however, is the question of what dynamic conditions do to the gage. Since the pressure application is to be fast, will the gage have dynamic characteristics that are not apparent under static conditions?

To eliminate this question many people have, in the past, attempted to design and develop dynamic calibrating systems. This report describes one of several systems that was developed for use in calibrating low-pressure (0 - 100 psi) transducers.

CALCULATIONS

Most pressure transducers rely on the relative movement of one part of the system with respect to another part; this motion being used to develop a signal (such as strain in a deflected diaphragm or charge on a crystal stack) which can be measured. The magnitude of the motion is generally related to the sensitivity while the time with which the motion takes place is related to the frequency response. This latter quantity should be high when the gage is used to measure rapidly varying pressures.

A transducer system can usually be considered as a vibrating structure which is subjected to a force application varying with time. Generally the structure has many modes or frequencies of vibration. For simplification, however, this complex structure can be replaced by a simple spring-mass system having a single vibration frequency (which is normally considered to be the fundamental of the actual gage system) (refs. (1) and (2)).
Several important conclusions on gage performance can be made by analyzing the spring-mass system. If, for example, a step function is applied to the spring mass shown in figure 1(a), the deflection at any given time is

\[x = \frac{F_0}{k} \left(1 - \cos \omega_n t \right) \]

\[= x_{st} \left(1 - \cos \omega_n t \right) \] (1)

This shows that the deflection under the application of a step force function varies harmonically from 0 to 2 times the static deflection. This oscillation occurs at the natural frequency as shown in figure 1(b).

If the force pulse applied is as shown in figure 2(a), i.e., the force rises linearly in time \(\tau \) from 0 to \(F_0 \), then the maximum amplitude the mass has depends upon the ratio \(\tau / \tau_n \) as shown in figure 2(b). If \(\tau = 0 \) the maximum amplitude is twice the static value and for \(\tau > 0 \) the maximum amplitude decreases until for very large values of \(\tau \) the value of \(x_{\text{max}} / x_{\text{st}} \) is equal to 1. It is to be noted that if \(\tau / \tau_n < 1 \) the largest amplitudes occur. This fact then provides us with a logical definition for a dynamic load. Such a load occurs when the time of load application is less than the natural period because under this condition deflections in excess of 1 and up to 2 can occur. Such a pressure application to a transducer will cause ringing of the gage.

The gages in use at the Naval Ordnance Laboratory (ref. (3)) have a resonant frequency of 33 to 60 KC (resonant period of 30 to 17.4 sec). Thus, to have a dynamic pressure pulse, the time of application should be less than these values. Various systems have been tried at the Naval Ordnance Laboratory in order to provide a dynamic pressure pulse. All of these involved the use of a large reservoir of gas which vented by means of a rupturable diaphragm or poppet valve into a small cavity which contained the transducer. By using a cavity, infinitesimal compared to the large cavity, the initial pressure before valve opening represents the final pressure that the gage feels.

None of the designs that evolved using pressure application and quick-opening valves were successful in calibrating the NOL gages dynamically. The best rise time that was obtained was about 125 \(\mu \)sec.

If one re-examines the spring-mass system in more detail, several conclusions can be reached which simplify the development of a dynamic calibrator. For the system in figure 1(a), the equation of motion is
However, if we take the same system without a forcing function but with an initial deflection X_0, then we have

$$m\ddot{x} + kx = 0$$ \hspace{1cm} (3)

$$t=0: \quad x=X_0, \quad \dot{x}=0$$

For this case if we let $y = X_0 - x$ and then substitute in equation (3) for \ddot{x} and \dot{x}, we have

$$m\ddot{y} + ky = kX_0 = F_0$$

Thus, the system described by equation (3) in terms of the y coordinate is completely equivalent to equation (2) within an additive constant. This means that if we apply a pressure to a gage and then rapidly release it, the system will react exactly as if the pressure were suddenly applied to the static gage.

DESIGN AND OPERATION OF CALIBRATOR

Figure 3 is a sketch of the calibrating block that was designed and built. With the transducer in place, the end of the cavity is sealed with a cellulose acetate diaphragm. The cavity is then pressurized with oil to the desired value, air being bled out through the capillary connection. The diaphragm is ruptured by a needle causing the pressure to release. Oscilloscope triggering is obtained by using the internal triggering feature of the oscilloscope.

Oil is used as the fluid medium since it has a very low compressibility. Thus, very small increases in volume cause a rapid pressure decrease and the complicated wave-action effect that is usual with a compressible fluid is minimized.

TEST RESULTS AND DISCUSSION

Figure 4 is the trace obtained with a pressure gage such as shown in figure 5 when a pressure of 60 psi is released.
by the diaphragm. The trace shows considerable ringing indicating the pulse was released at a time considerably less than the natural period of the gage. Based upon the amount of overshoot of the trace \(X_{\text{max}}/X_{\text{st}} \approx 1.7\) and the natural period of the gage (from the trace this is about 30 \(\mu\text{sec}\)) the release time for the pulse can be calculated. For the case above the release time is about 13 \(\mu\text{sec}\). Thus, the oil calibrator system does provide a usable method of subjecting a transducer system to a step pulse with a rise time of about 13 \(\mu\text{sec}\).

One very interesting result was obtained with the strain-gage type transducers. It was found that the mean pressure, as read from the pressure traces, continued to rise to a value about 6 percent higher than the initial value in a period of about 200 to 300 milliseconds. A similar but somewhat smaller result has been noted with other calibrating systems having slower rise time. The authors believe that this effect is caused by the beam material and bonding cement used to mount the gages on the beam, i.e., they are viscoelastic in nature. Until further definitive work is performed, users of calibration devices having fairly fast-acting pressure pulses should investigate not only the initial rise but also the long time (several seconds) pressure value to determine if the effect mentioned is present in their gage and calibration system.
FIG. 1a SPRING-MASS SYSTEM AND APPLIED PULSE.

FIG. 1b RESPONSE OF SPRING-MASS SYSTEM.
FIG. 2a APPLIED PULSE

FIG. 2b RESPONSE OF SPRING MASS SYSTEM
FIG. 3 CALIBRATING BLOCK
FIG. 4 PRESSURE GAGE CALIBRATION TRACE
Distribution

<table>
<thead>
<tr>
<th>Copy</th>
<th>Address</th>
</tr>
</thead>
</table>
| 1 | Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.
Attn: RMMO
Attn: RMGA
Attn: RRMA |
| 1 | Director, Special Projects
Department of the Navy
Washington 25, D. C.
Attn: SP-20
Attn: SP-27
Attn: SP-272 |
| 4 | Office of Naval Research
Room 2709 - T-3
Washington 25, D. C.
Attn: Head, Mechanics Br. |
| 2 | Commanding Officer
Office of Naval Research
Branch Office, Box 39, Navy 100
Fleet Post Office, New York, N. Y. |
| 5 | Director, DTMB
Aerodynamics Laboratory
Washington 7, D. C.
Attn: Library |
| 1 | Naval Weapons Laboratory
Dahlgren, Va.
Attn: Library |
| 1 | Commander
U. S. Naval Ordnance Test Station
China Lake, Calif.
Attn: Technical Library |
| 1 | Director
Naval Research Laboratory
Washington 25, D. C.
Attn: Code 2027
Attn: Mr. Edward Chapin, Code 6310 |
Director of Intelligence
Headquarters, USAF
Washington 25, D. C.
Attn: AFOIN-3B

Commander
Aeronautical Systems Division
Wright-Patterson Air Force Base, Ohio
Attn: WCOSI-3
Attn: WCLSW-5
Attn: WCRRD
Attn: Melvin L. Buck (ASRMD-2)

Commander, AFEMD
Air Res. & Develop. Command
P. O. Box 262
Inglewood, Calif.
Attn: WDTLAR

Chief, DASA
The Pentagon
Washington, D. C.
Attn: Document Library

Headquarters
Arnold Engineering Development Center
(ARDC) U. S. Air Force
Arnold Air Force Station, Tennessee
Attn: Technical Library
Attn: ABOR

Commanding Officer, DOFL
Washington 25, D. C.
Attn: Library
Rm. 211, Bldg. 92

NASA
George C. Marshall Space Flight Center
Huntsville, Alabama
Attn: M-S&M-PT (Mr. H. A. Connell)
Attn: Dr. W. R. Lucas (M-SFM-M)
Attn: Dr. Ernst Geissler

Office, Chief of Ordnance
Department of the Army
Washington 25, D. C.
Attn: ORDTU
NOLTR 62-218

Copies

BSD (BSRP)
A. F. Unit Post Office
Los Angeles 45, Calif.

NASA
Langley Research Center
Langley Field, Va.
Attn: Librarian 1
Attn: C. H. McLellan 1
Attn: J. J. Stack 1
Attn: Adolf Busemann 1
Attn: Rodger W. Peters (Structures Res. Div.) 1
Attn: Russell Hopko, PARD 1

NASA
Ames Research Center
Moffett Field, Calif.
Attn: Librarian 1

NASA
Lewis Research Center
21000 Brookpark Rd.
Cleveland, Ohio
Attn: Chief, Propulsion Aerodynamics Div. 1
Attn: Mr. George Mandel, Chief, Library 2

Office of the Assistant
Secretary of Defense (R&D)
Room 3E1041, The Pentagon
Washington 25, D. C.
Attn: Library (Technical) 1

Research and Development Board
Room 3D1041, The Pentagon
Washington 25, D. C.
Attn: Library 2

ASTIA
Arlington Hall Station
Arlington 12, Va.
Attn: TIPDR 10

Commander, Pacific Missile Range
Point Mugu, Calif.
Attn: Technical Library 1
Commanding General
Aberdeen Proving Ground, Md.
Attn: Technical Info. Br. 1
Attn: Ballistics Research Laboratories 1

APL/JHU
8621 Georgia Ave.
Silver Spring, Md.
Attn: Tech. Reports Group 2
Attn: Dr. D. Fox 1
Attn: Dr. Freeman Hill 1
Attn: Dr. L. L. Cronvich 1
Attn: Librarian 1

AVCO Manufacturing Corp.
Research & Advanced Development Div.
201 Lowell Street
Wilmington, Mass.
Attn: Dr. B. D. Henschel, Aerodynamics Section 1

AVCO Manufacturing Corp.
Everett, Mass.
Attn: Dr. Kantrowitz 1

General Electric Co.
Space Vehicle & Missiles Dept.
21 South 12th St.
Philadelphia, Penn.
Attn: Dr. J. Stewart 1
Attn: Dr. Otto Klima 1
Attn: Mr. E. J. Nolan 1
Attn: Mr. L. McCreight 1

General Electric, Research Lab.
3198 Chestnut St.
Philadelphia, Penn.
Attn: Dr. Leo Steg 1

National Aeronautics and Space Admin.
1520 H Street, N. W.
Washington, D. C.

NASA
High Speed Flight Station
Edwards Field, Calif.
Attn: W. C. Williams 1
Copies

National Bureau of Standards
Washington 25, D. C.
 Attn: Dr. Galen B. Schubauer 1

Cornell Aeronautical Laboratory
4455 Genesee Street
Buffalo, N. Y.
 Attn: Dr. Gordon Hall 1

Dept. of Mechanical Engineering
University of Delaware
Newark, Delaware
 Attn: Dr. James P. Hartnett 1

General Electric Company
Missile and Space Vehicle Dept.
3198 Chestnut Street
Philadelphia, Penn.
 Attn: Jerome Persh 1
<table>
<thead>
<tr>
<th>SOURCE</th>
<th>NOL technical report</th>
<th>NOLTR</th>
<th>SECURITY CLASSIFICATION AND CODE COUNT</th>
<th>Unclassified-17</th>
<th>U017</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT NUMBER</td>
<td>62-218</td>
<td>620218</td>
<td>CIRCULATION LIMITATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>31 December 1962</td>
<td>1262</td>
<td>CIRCULATION LIMITATION OR BIBLIOGRAPHIC</td>
<td>BIBLIOGRAPHIC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESCRIPTORS</th>
<th>CODES</th>
<th>DESCRIPTORS</th>
<th>CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>PRES</td>
<td>Shock</td>
<td>SHOC</td>
</tr>
<tr>
<td>Gage</td>
<td>GAGE</td>
<td>Low-pressure</td>
<td>LOWR</td>
</tr>
<tr>
<td>Calibrator</td>
<td>CALR</td>
<td>Transducers</td>
<td>TRAD</td>
</tr>
<tr>
<td>Fast</td>
<td>FAST</td>
<td>Calibrator (Design)</td>
<td>CALRD</td>
</tr>
<tr>
<td>Rise</td>
<td>RISE</td>
<td>Calibrator (Operation)</td>
<td>CALRI</td>
</tr>
<tr>
<td>Time</td>
<td>TIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calibration</td>
<td>CALB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>DEVI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td>SIMU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulses</td>
<td>PULS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shocktubes</td>
<td>SHTU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind-tunnels</td>
<td>WINU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRNC-NOL-5070/29 (L-42)
Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 62-218)

FAST RISE-TIME PRESSURE-GAGE CALIBRATOR (U),
by Robert H. Waszer and Victor C. D. Dawson.
31 Dec. 1962. 4p. illus., diagr. (Ballistics research report 86) UNCLASSIFIED

This report describes a pressure-gage calibration device which simulates both the magnitude and the rise-time characteristics of pressure pulses experienced in shocktubes and shocktube wind tunnels. The advantage of a device of this type over a static calibration device is that it provides the ability to detect any difference in the static and dynamic characteristics of gages. Included is also a discussion of the response of gages to pressures with short rise times.

Abstract card is unclassified.