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ABSTRACT

A Mean Taylor Number is here introduced as a characteristic

parameter governing stability of viscous flows between concentric

rotating cylinders separated by a finite gap. This pLrameter is

constructed on the basis of the forces causing convection and

their mode of contribution to the instability. In particular

for gaps equal to the radius of the inner cylinder considered

by Chandrasekhar, it is found that the critical values of this

Mean Taylor Number obey the laws governing the critical Taylor

Number in the case of small gap.



INTRODUCTION

It was established(") that the critical condition for convective

instability of a horizontal layer of fluid with a vertical temperature

gradient increasing with depth can be reduced to the critical conditions

for convective instability of the same fluid layer, but with constant

temperature gradient. The vertical temperature gradient concerning the

latter case was determined from the former one by means of an appropri-

ate averaging. A mathematical proof of this equivalence has so far

been established only by invoking highly simplifying assumptions, and

its generality may be limited. Numerically, however, high accuracy

has justified its validity in various cases of temperature distributions.

Since the inversions in the ocean are in general accompanied by

nonconstant gradients of temperature and salinity, the proposed prin-

ciple of equivalence could provide a method for investigation of the

stability of such inversions. Thus, investigation of the range of

validity of this principle of equivalence is of importance. In order

to direct the research concerning this range of validity, at the first

stage other cases of more complicated distributions of convection

causing forces have to be considered.

In this report an equivalent problem represented by a physically

different model of stability of flow between rotating cylinders is

considered. In the present case the nonconstancy of the convection

causing forces is modeled by the variation of the angular velocity of

the fluid. The special case of gap equal to the radius of the inner

cylinder is considered in detail because of the available data of

Chandrasekhar's( 2 ) calculations concerning the critical conditions

for instability in this case. However, due to singularity arising as

a result of the change of sign of the angular velocity and the re-

sulting more complicated physical interpretation of the results, only

the case of cylinders rotating in the same direction is treated. The

obtained result supports the validity of the mentioned principle of
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equivalence for the considered cases of gap and angular velocity. Thus,

it may be assumed that this principle gives in the general case an

approximation which is good for practical purposes.

The above mentioned oceanographic analog of the problem treated

here suggests that the principle of equivalence can be carried over

in the investigation of stability of more complicated profiles of

temperature and salinity than have hitherto been treated.

The subject of this paper is a segment of a sustained investiga-

tion initiated in 1957 concerning the effects of simultaneously im-

pressed gradients in velocity, temperature, and salinity on stability

of a class of fluid structures. This investigation was motivated by

physical-mathematical considerations suggesting that simultaneously

impressed velocity and temperature gradients on flows over curved

boundaries can interact so as to be either mutually stabilizing or

destabilizing(1 0 ). For this purpose, in Ref. (11), a model embodying

only essential elements of this idea was treated. This model led to

an interaction parameter consisting of Rayleigh-like and Taylor-like

numbers. In subsequent investigations, including the present one, we

have systematically relaxed simplifying assumptions of Ref. (1) and

have extended the concept of gradient-interaction to include salinity

gradients as well.

The Critical Conditions

The present calculations are concerned with a modification

of Chandrasekhar's critical conditions( 2 ) for stability.* Be-

cause of the simpler physical interpretation, only the case of

* Compare also the experimental verification of R. I. Donelly( 3 )
and K. Kirchgaessner's(4) alternative treatment of the problem.
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cylinders rotating in the same direction will be considered.

The principle underling the calculations is the following:( 1 )

The considered problem of instability is one of balance

between the centrifugal force and the pressure gradient, acting

simultaneously on the same mass of fluid and damped by the

viscosity. In the classical case of small gap and nearly equal

angular velocities, the measure of this balance is given in terms

of the Taylor Number

~L

where (1)

•. 9 ,

In the general case the Taylor Number gives the measure of this

balance only locally, as function of r. The radial perturbation

velocity, directed as the above mentioned forces, will therefore

be locally damped or amplified in proportion to the local value

of the Taylor Number. For the integral effect, thus the Mean

Taylor Number taken with weight function proportional to the

radial perturbation velocity u

oro (2)

will be characteristic. For the case - j the values of

Tcr can be found by use of Chandrasekhar's results. The radial
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perturbation velocity is given by Chandrasekhar's series

- •_f • ,oL,) (3)

with coefficients given in Table I.

Table I. Coefficients of the series(3) for the state of
marginal instability, ' - 1,according to Chandrasekhar(2).

/ 0-25 M1667 01176 0*0

-pxl° 2  2929 3745 4*347 6514

-P 3 xlO2  f240 "291 £329 f527

The eigenfunctions are Chandrasekhar-Reid's functions(5) satis-

fying four boundary conditions

with eigevalues and coefficients given in the Table II.

Table II. Eigevalues and coefficients of the Bessel type
functions satisfying four boundary conditions - according
to Chandrasekhar-Reid(5).

_ _A; B ~ C D

1 9499 1 -9076 '006x10-3  4396x10 2

L2 15'74 1 -1136 3676x10- 6  -1955x10 4 -

3 2202 1 -2247 -89864xlO- 9 5912xi0 5
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The evaluation of the integrals involved the determination of V

as function of r , the asymptotic series( 6 )

(5)
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were used. By repeated integration by parts, for the integrals

of the Bessel functions were obtained the asymptotic series
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the asymptotic expressions(6) are reduced to

|\ * O 5 .4,\ \a S

_ly Lt ,, S tXM,,, -*.

~R O&1R= '77 (8)

I- \.\-66 "%6% 1&7 O7IIL\

('ý\ t~3 I -

For the numerical evaluation of the integrals of the first

eigenfunction the asymptotic series (6) has been used, the inte-

grals in the right side being evaluated by use of calculated

values of Fresnet integrals and the error function. For the

integrals of the higher eigenfunctions the expressions (8) has

been used. The obtained values of T for the state of marginal
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instability are given in the second row of Table III.

Table III. Critical values.

S0"25 0"1667 0-1176 0.0

V 1"794 1"797 1"798 1"8Q3

TcrxlO3  1"719 V706 1"695 1"662

In the third column of the same table are given the values of

Tcr obtained by means of eq. (2). It can be seen that they

differ by less than 2% from these of the equation(9)

valid for the case of small gap. Since also the critical value

of the wave number obtained by Chandrasekhar, if related to the

gap is equal to 3.1 as in the case of small gap, it can be con-

cluded that the proposed method of averaging reduces the pro-

blem to this of small gap.

The mentioned deviation of less than 2% can be attributed

to two sources; the 1% accuracy of Chandrasekhar's results and

to an t depending term in eq., (9). Thus, for I , j a much

greater deviation from eq. (9) can be expected. For . i

the following approximate method can be used. Since the

radial perturbation velocity is in the general case unknown,

the approximation by 6---7 1--) -a function satisfying the

boundary conditions for u', can be used. Thus, we obtain fort
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the approximation

I- (10)

where

By use of the tabulated values of the integral cosine function

the eq. (10) gives for I - j the approximation C 6 1 805.

Since the obtained by means of this approximation values of

Tcr differ by less than 1% from the "exact" values given in

Table III, it is concluded that for -C j this approximation

gives good results.

Conclusions

As mentioned in the introduction, the proposed method of

averaging reduces the problem of critical conditions for convec-

tive instability due to non-constant gradients of temperature

and concentration of diffusive substance to an equivalent pro-

blem but due to constant gradients. It is possible that this

principle of equivalence has only an asymptotic character, how-

ever, the present calculations suggest that even for signifi-

cantly non-linear gradients the approximation obtained by use

of this principle is good.

In applications the unknown weighting function can be

approximated by a function satisfying only its boundary con-

ditions. The present'calculations suggest that such an
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approximation gives good results. However the above considera-

tions are not directly applicable in cases in which some of

the gradients changes sign; in such cases, in analogy with

the case of counter-rotating cylinders( 9 ), a more complicated

dynamical model is to be considered.
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