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New Procedure for Computing Finite-Amplitude Distortion

Br D. Coox
Depariment of Physics, Mickigan State Unsversily, East Lansing, Michigan
(Received November 21, 1961)

An iterative process is described for the calculation of the distortion of plane finite-amplitude sound
waves in a dissipative, nondispersive medium. The method of calculation is a discrete-interval process of
considering the distortion of the wave while propagating through a small distance, correcting for absorption
within this distance, and then considering this new wave, etc. It is necessary to use a high-speed electronic
computer to obtain the spectral composition of the wave. The iterative process allows calculations beyond
the “discontinuity distance.” The spatial change of the spectral composition is used for the calculation of
“‘absorption coefficients” describing the energy loss from the total wave and from the fundamental com-
ponent, These absorption coefficients, which are functions of distance from the source, are found to be

remarkably different.

INTRODUCTION

N recent years the problem of finite-amplitude sound
waves has been approached through the solution of
the nonlinear equation of motion. Although this ap-
proach has answered some of the questions concerning
the propagation of finite-amplitude waves, the range
of reliability of these theories, which are usually based
on equations approximating the exact differential equa-
tion, is small. The reliability of this usually extends up
to the neighborhood of the “discontinuity distance.”
However, from the p.enomenological aspects of the
problem, one can formulate a very simple model from
which solutions at greater distances may be obtained.
Presented here is such a model. While it necessitates
the use of a high-speed electronic computer, it allows
one to compute, by an iterative process, the spectral
composition of the waves at all distances. It is not the
purpose of this paper to correlate the results of previous
theoretical and experimental investigations, but rather
to show what may be obtained from a very simple
model. The readers are referred to the papers of Keck
and Beyer! and Zarembo and Krasil’nikov? for reviews
of existing analyses using the differential equation.

A model approach was previously used by Fox and
Wallace,' who used a graphical analysis to determine
the spectral composition and consequently determined
an “‘absorption coefficient” for finite-amplitude waves.

1 W, Keck and R. T. Beyer, Phys. Fluids 3, 346-352 (1960).

8 L. K. Zarembo and V. A. Krasil'nikov, Soviet Phys.—Uspekhi
2, 580-599 (1959).

'&)E. Fox and W. A. Wallace, J. Acoust. Soc. Am. 26, 994-1006
(1954).

Although the model here is based somewhat on the
same assumptions as those of the Fox and Wallace
theory, a more basic aspect of the absorption mecha-
nism is introduced. A high-speed electronic computer is
used to calculate the distortion. A parametric integra-
tion method similar to that given by Fubini-Ghiron*
is used. This integral method of Fubini-Ghiron has
also been given by Hargrove® and Keck and Beyer.!

This model is based on two fundamental assumptions
which describe the distortion and absorption mecha-
nisms. These assumptions are the following:

(1) The distortion mechanism can be described by
a change in phase velocity directly proportional to the
particle velocity.

(2) The absorption mechanism can be described by
assuming that the rate of the absorption of each
harmonic is proportional to the amount of the harmonic
present and to the square of the frequency of the
harmonic.

These basic postulates are applied to a wave by first
allowing the wave to distort while it propagates through
a small interval, and then correcting for absorption.
This wave of new shape is now allowed to distort and
be absorbed. By assuming that no discontinuity of the
wave shape is formed because of absorption, one may
calculate by this continuing process the shape of the
wave at all distances. Although the absorption and
generation of the harmonics are treated independently

¢ R. Fubini-Ghiron, Alta Frequenz. 4, 530 (1935).
S L. E. Hargrove, J. Acoust. Soc. Am. 32, 511-512 (1960).
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F16. 1. Diagram showing the distortion process
postulated for a finite-amplitude wave.

in each small interval, the end result contains the inter-
action between absorption and generation mechanisms.

Others®” have considered similar absorption mecha-
nisms along with distortion; however, the effect of the
absorption on the generation of the harmonics is neg-
lected. The range of these theories which are based on
the Fubini-Ghiron method does not exceed the dis-
continuity dlstance as given by the dissipationless
theory.

The model presented here is not expected to be valid
for extremely intense sound waves which may produce
periodic shock fronts but rather for sound waves of
moderate amplitudes traveling in a fairly absorbing
medium. In particular, this model should be useful for
the investigation of finite-amplitude waves of the mega-
cycle frequencies in liquids. The calculations presented
from this model are for a range of parameters which
cover the practical experimental situations.

FORMULATION OF THE MODEL

In this paper we shall consider plane acoustic waves
in a nonlinear, nondispersive medium. Following the
usual notation we write an equation relating the in-
stantaneous pressure p and density p as

p—po P—po
p= po+A( )+—( ) . (1
Po 2\ po

The zero subscripts refer to the undisturbed medium.
The terms 4 and B are constants for a given medium
at a given temperature. Using the above equation of
state, the phase velocity is

c=co+[B/(24)+1u, (2)

accurate to the first order in «, where % is the particle
velocity and co is the velocity of sound with infinitesimal
amplitude. It is assumed here that this linear change
of phase velocity with particle velocity is the only
mechanism which causes the wave to distort. Points on
the wave having larger values of particle velocity tend
to overtake points of lesser values. For a dissipationless
medium, an initially sinusoidal waveform will become
multiple valued at distances greater than a distance L

¢ W. W, Lester, J. Acoust. Soc. Am. 33, 1196 (1961).

TL. Adler, “A' tudy of the Distortion of Finite Amplitude
Ultrasonic Waves in Liquids,” M.S. thesis, Michigan State Uni-
versity, East Lansing, ichigan, 1961,

D. COOK

given by!
=co*{2[B/(24)+1]fxU1(0)}7, ©)

where f is the frequency of the wave and U,(0) is the
maximum particle velocity of the initial wave. This
distance L (known as the “discontinuity distance”)
shall become one of the important parameters in de-
scribing the results from this model approach.

The exact frequency dependence of the absorption
coefficient for most media is unknown.® Here we shall
assume for simplicity that the rate of absorption is
proportional to the square of the frequency of the
wave; this is characteristic of a viscous, heat-conducting
medium.

In the absorption of infinitesimal waves, the expo-
nential decay which describes the “diffusive nature”
of the absorption, occurs because the damping forces
produced are proportional to the quantity being
damped. Although for acoustic waves in a viscous,
heat-conducting medium, the exponential decay arises
from a higher-order differential equation, we shall as-
sume that the “diffusive nature” can be described by
a first-order differential equation, namely, the rate of ab-
sorption of a quantity is proportional to that quantity.
However, in considering the “diffusive” absorption of
waves, the exponential is a special case. It requires
that the quantity being absorbed will remain at a con-
stant value if the absorption mechanism vanishes.
However, since the amplitudes of the harmonics are
changing due to distortion while undergoing absorption,
the diffusive absorption process must be considered for
each harmonic according to its growth. The harmonics
are treated independently, i.e., the absorption of a
harmonic in a wave is the same as the absorption of an
infinitisimal wave of that harmonic. Details of how the
generation affects the rate of the absorption are given
in the Appendix.

With these distortion and absorption mechanisms,
it is relatively easy to calculate the spectral composi-
tion of a finite amplitude wave by an iterative process.
In such a process, the results are expected to be more
valid for smaller increments of interval. No analytical
treatment will be given here for the estimate of size
of these intervals in terms of the other parameters. It
should be noted, however, that for small absorption
parameters or greater amplitudes of the wave, the
wave approaches more closely to the dissipationless
case. For these conditions, it is reasonable to assume
that intervals must be small.

DETAILS OF COMPUTATIONS

To calculate the effects of distortion, we shall now
generalize the method outlined by Hargrove® for the
dissipationless case. Let a function = f(x) describe
the particle velocity at a given time. The independent

¢71.J. Markham, R. T. Beycr, and R. B. Lindsay, Revs. Modern
Phys. 23, 353—411 (1952).
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variable is a reduced spatial coordinate which describes
the function in the range 0<2< 2x. For simplicity we
shall now restrict f(x) to be an odd function. For
arbitrary waveforms this restriction can be removed.
During a small interval of time Af, the whole waveform
propagates a distance codf. However, in addition to
this velocity co, each point of the wave described by
the function # is assumed to propagate at a velocity
proportional to the value of the function. The velocity
of each point is given by Eq. (2). Figure 1 shows one
half of an arbitrary waveform [described by f(x)] and
the resultant waveform [described by fi(x)] from
such a distortion mechanism. The problem now is to
calculate the function f,(x) provided that f(x) and
B/A are known.

As f(x) is an odd function, fi(x) is necessarily an
odd function. Thus both can be expanded in a Fourier
sine series. Let

f(®) =f: b, sinnx 4)
and
Nilx) =§ by,,1 sinnx. (5)

ne=l

If fi(x) is known, the expansion coefficients can be
calculated from

2 T
b,.,,=—f f1(x) sinnxdx. 6)
xJo

Graphically, one may obtain f;{x) if f(x) is known and
thus obtain the coefficients b.,;. By parametric inte-
gration, one may, in principle, analytically find these
coefficients if f(x) and B/4 are known.

To evaluate Eq. (6) let

u= flx(6)], (M
2(6)=0+%1(6). ®)

The term kf(f) describes the distortion mechanism
as required by Eq. (2). The value of k& is restricted to
be sufficiently small, such that the waveform does not
become multiple valued. Hargrove has shown that #
represents the fractional distance to the discontinuity
distance L of an initially sinusoidal wave. In other
words, if in a dissipationless medium an initially
sinusoidal wave propagates through a distance R, the
spectral composition can be calculated using k=R/L.
Substitution of Egs. (7) and (8) into Eq. (6) gives

where

2 L 4
Baa=— / (/(6) sin[nd+nk f@) T} (1-+47 @)}db. (9)
*Jo

Thus if we know the description of the particle velocity
at any given time, we can find the description of the
particle velocity at a new time if we are considering
only the distortion mechanism.
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The procedure for introducing absorption is the
following : assume a waveform (described by the coeffi-
cients b.,); choose a small increment of &; calculate
the spectral composition of a distorted wave by Eq.
(9) (in terms of coefficients b,,i+1); correct the coeffi-
cients (then described by b, 41"} for absorption; and
repeat the above process using the previous results to
describe the new wave. Each coefficient b, is cor-
rected independently according to the assumption that
the absorption throughout the small interval of % is
proportional to the amount of the harmonic present
at any given point in the interval. The frequency
dependence of the absorption must be considered.

From the dissipationless theory,

ba=(—1)"(2/nk)J »(nk). (10)
It can be seen that Ab,,;(=ba, r1—ba.s) is approximately
described by the first term of the power-series expres-
sion of Eq. (10) in the form Ab, =g, %" for small &.
Assuming this power dependence on k, the absorption-
corrected coefficients can be written as

bo, it =bn exp(—aon?Lk)+Abn A nr(an?lk). (11)
The first term of the right-hand side of Eq. (11) is the
exponential decay if Abn;=0; ao is the absorption
coefficient of a wave of the fundamental frequency and
infinitesimal amplitude. The function 4 ._.(ae®Lk) cor-
rects for the absorption of the changing function Ab, ;.
This function 4 .-, which is described in the Appendix,
is a power series for which the exponential power series
is a special case. The n-squared dependence of the ex-
ponential and A4, is introduced by the assumption
of the frequency squared dependence of the absorp-
tion. The product kL gives the actual distance that the
wave propagates for the increment .

For the calculations presented here the initial wave-
form is assumed to be sinusoidal with the unit ampli-
tude (b1,0=1). The corresponding particle velocity and
pressure may be determined through the parameter L.
The results are expressed in terms of the product aoL
and the reduced distance K. This distance K, which
is the distance that the wave has propagated from the
origin, is given by K=mk, where m is the number of
intervals. When K=1, the wave has propagated a
distance equal to the discontinuity distance.
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Fie. 3. Comparison of the
normalized intensity(solid line)
calculated from spectral curves
of Fig. 2 and the exponential
decay expected for s wave
undergoing no finite-amplitude
distortion.

The calculations were done by the Michigan State
integral computer. To accurately retain the shape of
the waveform, as many as 16 harmonics were computed
for each interval. In the results presented here, the
value of % never exceeds 0.05, one-twentieth of the dis-
continuity distance.

DISCUSSION OF RESULTS

Figure 2 shows the spectral composition of a wave
from a typical calculation using this model. This com-
position is given in terms of the harmonic structure of
the particle velocity. The amplitudes U,(X) of the
harmonics are normalized to the particle velocity am-
plitude U,(0) of the initial sinusoidal wave. The value
of aol equals 0.10 for these calculations which extend
to 10 times the discontinuity distance. For this cal-

40 y ]
\ |
30 : ! ‘
‘ Fic. 4. Normalized
! | . absorption coeffici-
j ! ents for the total
20 ™ -~ 7" wave ar/a and for

the fundamental
component ay/ao for
the values given in
Figs. 2 and 3.

culation, the amplitudes of higher harmonics peak in
the region 1 <K <2.

Figure 3 shows the effect of the nonlinear propaga-
tion on the dissipation of the sound intensity calculated
from the curves presented in Fig. 2. As is expected,
there is a large difference between an exponential decay
and the decay predicted by this model. The predicted
greater total absorption is, of course, caused by the
higher rate of absorption of the generated harmonics.
To describe this higher rate of absorption, one may
define a finite amplitude absorption coefficient! as

ar=—(1/21)(dl/dz),

D. COOK

where I is the intensity of the sound wave. This coeffi-
cient ar describes the rate at which the energy of the
total wave is dissipated at any given distance. One
may also define an absorption coefficient which de-
scribes the rate of loss of energy from the fundamental
component alone as

ay=—d(U®)/2U pdx=—dU,/U dx.

Figure 4 shows these coefficients (normalized to ao) for
apL=0.10. It is important to stress that the absorption
coefficient for the fundamental frequency a, differs
from the total absorption coefficient ar for most values
of K. It can, therefore, be concluded that the total

oL 0l
T el e 02
K-
&, Fie. 5. Normalized
8 L @L=05 total absorption coeffi-
cients for various values
j . of aol.
| ——t—da.Le l0
2 e
/
«,Le.20
1 j L= 50
0 8 10 15 20 28
[

absorption coefficient is not determined by experimental
absorption measurements of the fundamental compo-
nent only. The difference between coefficients «; and
ar can be very large, especially at small distances;
the energy of the fundamental is being lost by both
distortion and absorption while the energy of the total
wave is being lost only by absorption.

As to be expected, the values of ar/ay and a;/ag
depend on the parameter aoL. Figures 5 and 6 show
the results for ar/ao and a,/aq, respectively, for various
values of the parameter aoL. For large values of aoL
(larger than 0.50), which means either high absorption,
small pressure, or small nonlinearity, the absorption

40
/—, L\q_ .0
3
P ——
oA/ d e 02
¢/ R Wy
Ll ental a n
ol [/l W08  coefficient for various
/ values of agl.
2
gL .20
| oL 90
1.0 K 20
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F16. 7. The maximum values of the normalized absorption
coefficients versus the parameter aolL.

coefficients ar and a, are nearly equal to as. However,
for small values of aoL, these absorption coefficients
become large compared to ao. Also at small values of
K, the absorption coefficients, ar and a,, differ greatly.
For example, for K=0.50 and aL=0.01, the ratio
a,/ar is approximately equal to 10.

The maximum values of ar/as and a,/a, for values
of asL <0.10 occur in the neighborhood of K=2.0, and
K =15, respectively. The dependence of the maximum
values of ar/ag and a;/as on aol is shown in Fig. 7.

In Fig. 8 the fundamental component is shown for
several values of apl. As aoL decreases, the values of
U,(K)/U,(0) are approaching upper limits. Of course,

1.0,
NN
IANN
PANAN
F16. 8. Normalized 7 NN
fundamental compo- y () \ N
Pehesof mL. Deshes U o Ry
valueso .01
lifn:i_gi;/cs yallues 5% \ \\\::t-.lo
of dissipationless .
o e R ese0
4 a,Le.30
.!r
LRS-
2
1520 28

o 1.0
K

for K<1 the limiting values are those given by the
dissipationless theory, not only for the fundamental,
but also for the higher harmonics.

Figure 9 shows the effect of the parameter aol on
the second harmonic. For values of aol <0.20, the
maximum value of the second harmonic occurs at
K=1.25. For larger values of asL, these maxima are
seen to occur at lower values of K. Similarly, the
maximum values of the third and fourtb harmonics
are affected by the parameter aoL as shown in Figs.
10 and 11. As a consequence of the frequency squared
dependence of the absorption, these higher harmonics

945

tend to become negligible even at moderate values of
aol.
CONCLUSION

An iterative process is used to determine the spectral
composition of plane finite-amplitude waves in a
dissipative medium. From the spatial change of the
amplitudes of the harmonic components, ‘“‘absorption
coefficients” describing the loss of the energy from
the total wave and from the fundamental component
are computed. The results are presented as families

- N
- [
! \\Kq;-,m
Fio, 9. Normalized u00 N
. 9. Norm
second harmonic for ~|ﬂﬁ_¢ /[ \\
various values of aol. /
Dashed line gives values \. Le2
of dissipationless theory. \ .
4 ?/ \ aL=3
aLeS
8 L0 18 20 28
K

of curves having the parameter aol. This parameter
determines the experimental situation as ao, the ab-
sorption coefficient of the fundamental component
of infinitesimal amplitude, and L, the ‘“‘discontinuity
distance,” describes the absorption and distortion
mechanisms.
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APPENDIX

By assuming the rate of loss of a quantity to be
proportional to the quantity present at each instant,
one expects a decay of the quantity according to an
exponential law. However, this is true only if the
quantity would remain constant if the loss mechanism
were absent. We shall consider here the case where the
quantity changes according to a power law in the
interval if absorption were not present.

Let the dependence of the quantity y on the inde-
pendent variable x be y=Cx™ if there were no absorp-

BILL D. COOK

tion. By assuming the loss mechanism described above,
one can write the integral equation

y=Cx"‘—a/z y(bdt, (A1)
0

where @ is a constant. This integral equation is of the
type known as Volterra’s linear integral equation of
the second kind; the solution may be obtained by
successive substitutions.® The solution obtained by this
method may be written as

y=Cx™A u(a%), (A2)
where 4.(ax) is the hypergeometric series
Am(ax)=1—~ > + (e’
m+1  (m+1)(m+2)
- il +.... (A3)
(m+1)(m+2)(m+3)

This series becomes the exponential series when m=0,
i.e.,, when y is a constant if the absorption were absent.

*W. Lovitt, Linear lnugral Equations (Dover Publications,
Inc., New York, 1950), p. 13.
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Calculations of Finite-Amplitude Distortion.

Bill D. Cook, Research Assistant, Physics Department, Michigan State
University, East Lansing, Michigan, U.S8.A.
Abstract: The distortion of plane finite amplitude sound waves in a dissipative, non-
dispersive medium can be calculated by an iterative process of allowing the wave to
distort and then correcting for the absorption. Results of such calculations are
presented.

In the last few years, there has been considerable interest in the problem of
finite-amplitude sound waves in dissipative media, primarily, because of the excess
absorption of these waves. Most theoretical attempts to calculate finite-amplitude
distortion and, consequently, the absorption have not been entirely successful. The
chief difficulty with these theoretical attempts, which are usually based on equations
approximating the exact differential equations, is that the range of reliability
usually extends only up to the neighborhood of the discontinuity distance as given
by the dissipationless theory. However, from the phenomenological aspects of the
problem, a simple model can be formulated from which solutions for greater distances
can be calculated. In this paper, an outline of this model is given and some of the
more interesting conclusions are noted.

This model basically consists of applying distortion and absorption mechanisms
in an iterative manner. This model is based on two fundamental processes which
describe the distortion and absorption mechanisms independently. The mechanisa
for the distortion is described by a change in phase velocity directly proportional
to the particle velocity. This may be written as

c=c, + [(B/2A) + 1] u (1)

where c¢_ is the velocity of sound waves of infinitesimal ‘amplitude and u is the
instant8neous particle velocity. The terms A and B, which are constants for a given
medium and a given temperature, sre defined by the equation of state relating the
instantaneous pressure p and density p in the following equation:

: 2
P=p,*+A [ﬁ] + (B/2) [ P _-_po] (2)
Po Po

where the zero subscripts refer to the undisturbed medium. For this model it is
assumed that only this linear change in phase velocity causes the wave to distort.
This distortion is produced as points on the wave having larger values of particle
velocity tend to overtake points of lesser values. (see Fig. 1).

The absorption mechanism is described by assuming that the rate of absorption
may be obtained by calculating the absorption of each harmonic independently accord-
ing to the amount of the harmomic present and to
the square of the frequency of the harmonic. This
assumes that the absorption mechanisms are linear.
With these two mechanisms, the procedure for the
calculation of finite-amplitude distortion is the

following: assume an initial waveform f£(x) which
may be described by a set of Fourier cosfficients

b_; allow the wave to distort while propagating a
small distance, producing the function f£)(x)
described by the coefficients bn 1} correcting

4
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Calculations of Finite Amplitude Distortion 2

coefficients for absorption; and then allowing these coefficients to describe the

nev waveform and continuing this process in an iterative manner. By assuming that
the waveshape does not become multiple valued because of the absorption, one may cal-
culate by this continuing process the shape of the wave at all distences. Although
the generation and absorption of harmonics are treated independently in each interval,
the end result contains the interaction between these mechanisms.

A model somewhat based on the same aspects outlined here was used by Fox and
Wallace(l) in their attempt of calculating absorption coefficients for finite-ampli-
tude waves. They graphically analysed the waveforms to obtain the Fourier coefficients.
However, it is possible to use a parametric integration method for calculating the
distortion process which allows the problem to be easily adapted to h speed com-
putation. If the function £(x) is known analytically, the function £,(6) may be
obtained by introducing x = 6 + k £(8) into f(x). The term kf(9) intfoduces the
distortion mechanism required by Eq. 1. The quantity k represents the distance
the wave has propagsted in the interval in terms of the fractional distance to the
digcontinuity distance L for an initially sinusoidal wave. Introduction of the

parametar 6 allows the coefficients bn 1 to be calculated from
)

b . o= % /: {f(e) sin [ne + nk f(e)]}[l +k £'(6)] do (3)

n,1

The discontinuity distance L represents the distance which initially sinusoidal
waveform travels in a dissipationless medium before becoming multiple valued. At
this distance, the wavefront has an infinite slope, however, the peak has moved
only the distance of one radian with respect to the gero points of the wave. The
distance L is given by

L= 2Rl(3/2) + 1) v (0)et] ()

where £ is the frequency of the wave and U,(0) is the maximum particlc velocity
of the initial sinusoidal wave. For this *odcl, this distance L is sufficient to
describe the distortion mechanisms and, consequently, is an important parameter in
describing the results.

The absorption coefficient @@ of a wave of infinitesimal amplitude with the
frequency of the fundamental cowgnont completely describes the absorption mechanism;
hence, it is ancther important parameter for this model. Each harmonic is absorbed
essentially exponentially for each interval in each iteration. The property of heat-
conducting, viscous media having an absorption coefficient dependent on the square
of the frequency is also taken into sccount. | O

Using the model previously described,
calculations were made using a high speed
electronic computer. To accurately retain
the shape of the waveform, as many as Un( )
sixteen harmonics were computed. The —
value of k, the length of each iters- U| (0)
tion was taken to be 0.05, one twentieth
of the discontinuity distance. The results .5
are presented in terms of the dimensionless
product @ L which adequately describes both
distortiof and absorption mechanisms. This
parameter @ L is related to the inverse of
the hynoldg number.

This model is not expected to be valid for
extremely intense sound waves which may

od! riodic shock fronts but rather for
'3§un3°3.5:. of moderate smplitudes travelling 00

in a fairly absorbing medium. The results
presented are within these limitatioms. K
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Calculations of Finite Awplitude Distortion.

'1'“:. 3 Figure kb,
1.0 ‘ 4
3
L
To 0.1 2

. ‘
B
Figure 2 shows typical results from cslculations made from this model. The
amplitude of the particle velocity U (K) of the harmonics are normaliszed to the
amplitude U, (0) of the initial sinusBidal wave. The value of 0 L equals 0.10 for
these curves. The abscisea, capital K, messures the distance the wave travels in
units of the discontinuity distance. It is to be particularly noted that these
calculations extend to 10 times the discontinuity disténce. For these calculations,
the amplitudes of the higher harmonics have their peak in the region where K is
between 1 and 2,

Figure 3 shows the effect of the nonlinear propagation on the dissipation of
the sound intensity calculated from the previous curves. As expected, there is a
large difference between the exponential decay (dashed line) and the decay predicted
by this model (solid line). The predicted grester absorption is, of course, caused
by the higher rate of absorption of the generated harmonics. To describe this
higher rate of absorption, one may define a finite amplitude absorption coefficient

as
1
@p = 21 ‘dxl (5)

This coefficient describes the rate at which the energy of the total wave is being
dissipated at any given distance. One may similarly define a coefficient @ for the
energy carried by the fundamental component as

2
a], - d(Ul)
2
201 dx
The absorption coefficient @, measures the rate of loss of energy from the
fundamental component alone while measures that from the total wave,
Figure U4 shows these coefficiefits (normalized

(6)

- to a_) for the paramster @ L = 0,10, It is impor-

tant to note that the nbuogption coefficient for

the fundamental frequency differs from the totdl o
absorption coefficient % for most values of K.
It can be concluded that the total absorption
coefficient can not be always obtained by measure- 8
ments of the fundamental component only. The differ- I
ences between and can be very large at small T
distances where the carried by the funda- L
mental is being lost by both distortion and

absorption, while the energy of the total wave

is being lost only by absorption. A}

As the results depend on the parameter ¢ L, it .
is interesting to investigate the Stu:lpnt:lon%f L 4 a4 8
the intensity as a function of this parameter. .08 1.0 20

Figure 5 shows a semi-logarithmic plot of the K
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intensity for different values of @ L. For large values of a L(>0.5), where the
absorption is large or where the nofilinesr effacts are small, "the decay is nearly
exponantial as the lower curve in Figure 5 is almost a straight line. In these
cases, the wave is absorbed so fast that the nonlinear effects do not become
appreciasble. Hence, there is little or no excess absorption. For smaller values of
a L, the wave becomes apprecisbly distorted and the excess absorption becomes
ndticesble. The upper-most curve of Figure 5 shows that the excess absorption
becomes prominent after the wave has propagated to the vicinity of the discontimuity
distance.

The differential absorption coefficient gives a more detailed view of the
rate of absorption. Figure 6 shows the absorption coefficients corresponding to
the curves in Figure 5. For the smaller values of 0 L, the absorption coefficients
have their maxims in the vicinity of K = 1,6 L, Thi$ corresponds to the situation
that the peak of the initial wave move x/2 with.respect to the zero points of the
wave. Physically, the movement of this peak is limited to this range as the particles
cannot move through each other.

In Pigure 7 the maximum valuas obtained by the absorption coefficient are
plotted as a function of @ L. For values of large o L(>1), the finite amplitude
distortion is completely nggligible. For small valuls of « L, i.e., large non-
linear effects, the maximum absorption becomes inversely pr8porttoml to the para-
meter @ L. In other words, at large sound pressures, the maximum absorption
coefficlent is directly proportional to the initial sound pressure. The nature of
the curve in Figure 7 agrees somewvhat with the theoretical results as outlined in
the review paper of Zarembo and Krasil'anikov (2).

Although this model approach is an over simplification of the problem of
finite-amplitude distortion, the results obtained from it are beneficial in under-
standing some of the properties of finite-amplitude distortion. At present there
is pot a sufficient amount of experimental data to check the range of validity of
the results obtained using this model. (This work was supported by the Office of
Naval Research, U.S. Navy and the U.S. Army Research Office (Durham)).
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Optical Effects of Ultrasonic Waves Producing Phase and Amplitude Modulation

L. E. Hazcrove®
Deparimens of Physics, Mickigam Siate University, East Lonsing, Michigon
(Received June 18, 1962)

A theory is developed for the diffraction of light by ultrasonic waves of sufficiently high frequency, large
amplitude, and/or Jarge beamwidth that the emerging light wavefront is significantly amplitude modulated
in addition to the phase modulation considered in the Raman-Nath approach. The ultrasonic beam is con-
sidered to consist of N adjacent sections and the final diffraction spectrum to result from N successive
diffractions. The diffraction orders emerging from a given section are considered to be sources for further
diffraction by the next section. Only phase modulation of the separate plane waves (diffraction orders) is
considered within a section. Refraction of light is not considered as such; it is characterized by successive
redistribution of light in the diffraction orders. Numerical results are obtained by iterations using an elec-
tronic computer. These results are compared with measurements,

INTRODUCTION

HE diffraction of light by ultrasonic waves has
been the subject of numerous experimental and
theoretical investigations. Raman and Nath! developed
a theory for conditions under which the ultrasonic fre-
quency, amplitude, and/or beamwidth are sufficiently
small that the refraction of light within the ultrasonic
beam may be neglected. Under such conditions the
ultrasonic beam may be considered to act as a pure
phase grating producing only changes in the relative
phase of the initially plane incident light wave and no
intensity changes. The Raman-Nath approach has
proven useful over a limited range. Herein, the Raman-
Nath theory and other theories based on the phase
* Present address: Bell Telephone l.aboratories, Inc., Murray
Hill, New Jersey.
1 C. V. Raman and N. S. Nath, Proc. Indian Acad. Sci. A2, 406~
412 (1935); A3, 75-84 (1936).

grating concept are called the Raman-Nath approach
for sake of brevity.

When the ultrasonic frequency, amplitude, and/or
beamwidth become large, refraction causes significant
amplitude modulation along the emerging light wave-
front. Extermann and Wannier,? Wagner,? Van Cittert,*
and Mertens® have obtained solutions for such condi-
tions. Their results contain varying degrees of approxi-
mation and complexity.

In this paper, a solution to the problem of diffraction
of light by sinusoidal, plane, progressive, ultrasonic
waves is presented. The ultrasonic beam is considered
to consist of N adjacent ultrasonic beams. For N

1331}5 Extermann and G. Wannier, Helv, Phys. Acta. 9, 520-532
VE. H. Wagner, Z. Physik 141, 604-621 (1955).
«P. H. Van Cittert, P f-dcu 4 nﬁ”\’n)'
sR. Mertens, Mededel. Koninkl. Viaam. Acad. Wetenschap.
Belg. 12, 1-37 (1950).
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Fi16. 1. Schematic diagram showing a diffraction order with
amplitude ¢,*1)(0) from the (»—1) st section incident at x=0
on the nth section with angle of incidence 8,; sound propagation
in the <« direction, incident light in the +-s-direction.

sufficiently large only phase modulation of the light
wavefronts need be considered within each of the N
intervals. The final diffraction spectrum is considered
to result from N successive diffractions.

THEORY

Consider, as indicated in Fig. 1, a section within the
ultrasonic beam having thickness ! assumed to be
sufficiently small that refraction of light within the
distance ! may be neglected. Let this be the nth of
many identical sections making up the whole ultrasonic
beam. Diffraction orders emerging from the (n—1)st
section may be considered sources for further diffraction
by the nth section. Figure 1 schematically represents
the following situations: A diffraction order with ampli-
tude ¢,V (0) from the (n— 1)st section is incident at
x=0 on the nth section with angle of incidence 6,.
Neglecting refraction, the incident light undergoes a
change in phase on progressing through the nth section.
This change is expressed by®

— i plieosts
5™ (&)=4,7-0(0) exp[T f u(s)d-']. )
0

where the integral in Eq. (1) represents the optical
path through the nth section, A is the wavelength of
light in vacuo, and u(s) expresses the refractive index
along the light path. Using

1(s)=po+u sin2x[ (s sinfp—2')/X*], (2)
where A* is the wavelength of sound and the Raman-

Nath parameter v;=2xul/}, 3)
Eq. (1) becomes .
89 m8,10) e o)
A cosd,
ol ()0
P ! sing,, g A

w2

¢In this development the time dependence of the light and
sound are not included, with the result that the Doppler shifts of
the various diffraction orders are not shown. The small Doppler
shift is neglected in writing the coefficient of the integral in Eq. (1).

Using the identity
exp(—ia sinb)

= explia sin(~8)]= £ _Jo(0) exp(—iat), (5)

Eq. (4) may be expressed in the form

= 2ipg
65" (&)= ™1 (0) exp( - c; )

xE ol 5)]
Xexp[_ ori & ta:t:,—x’)]. ©

In Eq. (6) a term for a particular ¢ represents light
incident on the nth section at an angle 8, and incident
on the (n+-1)st section at an angle 0,-6,, where

sinf,= — kM (oh*). 0]

Consider one such component (particular  and ¢) from
Eq. (6) denoted by ¢,,,™ (x’). This relates a particular
emerging component at 2’ to the one, namely ¢,™1(0),
incident on the nth section at x=0. In order that each
successive section may be treated in mathematically
identical manners, ¢,,,™ (+') must be transformed to
$¢.¢™(0) in order that the point of incidence on the
(n1)st section will also be at x=0.

The transformation from 2’ to x=0 involves an
ultrasonic phase shift and an optical phase shift as indi-
cated in Fig. 2. The effect of an ultrasonic phase shift
is expressed by a factor exp(—ipé*), where §* is the
ultrasonic phase difference. From Fig. 2 it is seen that

exp(—ips*) =exp(2xipl tand,/\*). ®

Similarly, the effect of the optical phase shift is ex-
pressed by a factor

exp(—18)=exp(2xiud tand, sind,/A) (9)
= exp(—2ripl tand,/A¥),

where § is the optical phase difference and Eq. (7) has
been used. The transformation then consists of multi-

.
\:u.
&
g

¢

&

X0
L -
Phose Oifference 3

F16. 2. Schematic di illustrating the optical and ultrs-
sonic ghue diﬂerenmwed in tramfor:%ng from zwms’
to x=0,
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plying ¢,,¢™(x’) by the right-hand members of Egs.
(8) and (9). Noting that these two factors are simply
complex conjugates, and that their product is unity,

then
b5, (0)=me, ™ (). (10)

Having transformed the separate components corre-
sponding to various p and ¢ to a common point x=0,
the components propagating in a given direction may
be combined to obtain the amplitudes of the diffraction
orders which act as new sources for further diffraction
in the (#4-1)st section. The terms to be combined to
obtain the amplitude of the rth order are those for
which p+4¢=r, i.e.,

+o vA* . (7l tang,
¢'('I)=-_ Z ¢’(ﬂ—‘l) J'_p[ - sm( )]

p—w Ix sind, A+
% [-— Zu'iuol] [ri (r—p) tano,] )
€ € ]
P o, 1 I

where 2’ has been expressed by
%' =1 tanf,. (12)

Equation (11) expresses an iterative procedure for
calculating the final diffraction order amplitudes ¢,
resulting from N successive diffractions.

Equation (11) may be put into an approximate form
which is more suitable for numerical evaluation. Using
the approximations

tand,~singe= —kN/ (uok*), (13)
1/cosfr=secfi~1+40,2, where 6,~sind,, (14)
and introducing the parameter’

Q= (2xN)/ (™), (15)
Eq. (11) becomes

4% v 8ind pQy
$ W= T ¢, J, (—'——)
B N
Xexp(—4iprQy). (16)
04 vpe2.0 04 Vpedo 04r vreso

.0.3 LR N 03 p

go 2 0.2 ° 0.2P

5O.I 0.1 ° 0.t °

[>] ] [}
0 ¢l 22 23 24 O tI 22 23 24 0 21 22 23 24
Order Order Order

F1o. 3. Light intensities predicted by the 1present theory
(vertical bars) for Qr=1.5, using Qr' in Eq. (16) and by the
Raman-Nath theory (circles).

"The parameter Q appears in some form in various other
theories }(’)l' the diffraction of light by ultrasonic waves,

S

Light {otensity

o i n N J
[} /2 L4 In/2 2r

2ex /3"

F1a. 4. Intensity modulation of the light wavefront emerging from
the ultrasonic beam for yp=4 and Qr=1.5, using Qr'.

In either Eq. (11) or Eq. (16)

¢0(0) = ly ¢P"°(o) =0) (17)
and

¢V =Jp(u)) (18)

for unit incident-light amplitude and normal light inci-
dence. The light intensities in the final spectrum are
obtained from

I.= |¢r(N) |’- (19)

It has been assumed that the refraction of diffraction
orders within each section may be neglected and the
Raman-Nath approach applied therein. Limitations
on Q and v for validity of the Raman-Nath approach
have been given in the form?

Ovk2. (20)

The degree of inequality required in (20) depends on the
accuracy required. It is proposed that the number of
sections chosen for application of the present theory be
sufficiently large that (Qu); be less than two by a
factor of one or two orders of magnitude. The number
of sections N may be increased as required to obtain
theoretical results for large Qr and vr pertaining to the
lotal ultrasonic beam.

Straightforward application of the present theory
would require that

I=L/N, (21)

where L is the total width of the ultrasonic beam, be
used in Egs. (3) and (15) which define v; and Q; which
appear in Eq. (16). However, an alternative approach
is proposed. Note, in Eq. (18), that in the first section
the result is independent of Q. Refraction effects, as
characterized by spreading of light into the various
diffraction orders as it emerges from each successive
section, are in no way considered in the first section.
If the ultrasonic beam width L were divided into twice
as many sections, refraction effects would be ignored
in a first section of half the width. In order to approxi-
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Fic. 5. Theoretical (line) and experimental (circles) zeroth-
order (l?ight intensity vs Raman-Nath parameter for Qr=0.62,
using Qr'.

mately account for refraction effects in a first interval
of finite width, it is proposed that

Q/=Qr/(N—1) (22)

be used in Eq. (16) to replace Qi. The Raman-Nath
parameter v; should remain as

u=or/N. (23)
Use of Eq. (22) is equivalent to using
Qr'=QrN/(N-1) (29)

as an “effective 0" to compensate for use of finite
sections of the ultrasonic beam. Obviously, as the
number of sections N becomes very large, the difference
between Qr’ and Qr vanishes.

NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

Numerical calculations were made from Eq. (16)
using the Michigan State Integral Computer (MISTIC).
The choice of 0<vr<8, Qr<15, and N=16 gives
(0v):<0.05. The value N =16 was also chosen for con-
venience in a binary computer. Calculations were made
for 0.25 intervals of vy and for p (and therefore also r)

K-
o8 p
osp
0.4F

o2

i AKENY

A
-] 2 4 [ ] .
Vr

F16. 6. Theoretical first-order light intensity vs Raman-Nath
parameter for Qr=0.62, using Qr’.
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ranging from —4 to +4. For a given range of vr the
range of p should be taken over values for which signifi-
cant light occurs in the pth orders. The final results are
probably less reliable as |r| approaches the maximum
|#| used.

The differences between predictions of the present
theory and the Raman-Nath theory are illustrated in
Fig. 3. The predicted light intensities in the zeroth
through fourth diffraction orders are shown for Qr=1.5,
using Q7' in Eq. (16), for vr=2, 4, and 6.

Using the calculated amplitudes and phases of the
diffraction orders, the calculated intensity modulation of
the light wavefront emerging from the ultrasonic beam
for the vr=4 case shown in Fig. 3 is shown in Fig. 4.
Note that the intensity modulation is quite significant.
This intensity modulation explains the failure of the
Raman-Nath theory for this case where (Qn)r=6.
Taking the refraction viewpoint, concentration of light
about 4x indicates light refracted toward this region
where the density of the medium and hence the refrac-
tive index is greatest.

1.0

X N J

o2t

Fic. 7. Theoretical and experimental zeroth-order light intensity
vs Raman-Nath parameter for Qr=0.93, using Qr’.

Figures 5 through 10 show calculated zeroth- and first-
diffraction-order light intensities for Qr=0.62, 0.93,
and 1.24, using Q7' in Eq. (16). The predictions of the
Raman-Nath theory are also shown in these figures,
where clarity permits. Experimental results for the
indicated values of Qr, obtained by Klein,! are also
shown in Figs. § and 7 through 10. Klein's measure-
ments were made at 5.23 Mc in water. Qr was varied by
varying the ultrasonic beam width (2.0, 3.0, and 4.0 cm
for the data shown).

Klein found good agreement between Mertens'
theory and his experimental values of light intensity
in the zeroth and first diffraction order,’ for a limited
range of Qr and vr. The present theory agrees with
the Mertens theory where the Mertens theory is in
reasonable agreement with measurements. However,
the present theory appears to be valid over a wider
range of Qr and V7.

¢ W. R. Klein, M. S. thesis, Michigan State University (1962).
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For comparison, the zeroth-order light intensities
predicted by the present theory (using both Qr=1.5
and Qr'=1.5(N/N~1) for calculations), by the Mertens’
theory for Qr=1.5, and by the Raman-Nath theory
are shown in Fig. 11. If the present theory is valid, then
the Mertens theory is a good approximation, in this
case, for v7<4.0. The difference between the curves in
Fig. 11 for the present theory using Qr and Q7' is not
great, but the difference is generally in the correct
sense to give better agreement with experimental values
by using Qr'.

Calculations have been made for Qr=0.31 and com-
pared with the predictions of the Raman-Nath theory.
The predicted light intensities in the diffraction orders
agree to within 0.01 up to the values of vr indicated in
Table I. This agreement over a fairly large range of vr
demonstrates that the method of calculation used in
the present theory gives results which approach the
Raman-Nath results for a small value of Qr.

It should be pointed out, however, that only agree-
ment in light infensily has been obtained for Qr=0.31.
The relative optical phases should also be considered.
The intensity modulation of the emerging light wave-
front shown in Fig. 4 for Qr=1.5 results not only from
light amplitudes which differ from those predicted by

)

° 2 . [ .
vy

F1g. 8. Theoretical and experimental first-order light intensity vs
Raman-Nath parameter for Qr=0.93, using Qr’,

F16. 9. Theoretical and experimental zeroth-order light intensity
vs Raman-Nath parameter for Qr=1.24, using Qr’.

1551

o.ep

0.2 F

Vr
F1c. 10. Theoretical and experimental first-order light intensity
vs Raman-Nath parameter for Qr=1.24, using Qr'.

1.0

0.8

F16. 11, Zeroth-order light intensities vs Raman-Nath parame-
ter from present theory (using both Qr=1.5 and Qr'=1.5
(N/N—1), Mertens’ theory for Qr=1.5, and Raman-Nath theory.

the Raman-Nath theory, but also from different rela-
tive phases of the various diffraction orders. The relative
phases in the Raman-Nath theory are either 0 or r rad,
according to whether the Bessel function is positive or
negative, respectively. The calculations for Qr=0.31,
though the light intensities agree with the Raman-Nath
theory, show marked deviations in relative phase from
0 or r rad. This indicates that the Raman—Nath theory
may appear satisfactory from intensity measurements
but not be accurate where the relative phases are con-
cerned. The relative phases become important, as
pointed out in a previous paper,? in a situation in-
volving successive diffraction of light by two separate
ultrasonic beams.

TasLE 1. Maximum values of v for which the predictions of
the present theory and the Raman-Nath theory agree to within
0.01 light intensity. Qr=0.31.

Order 0 +1 %2 +3 =4

or 1.0 >8 7.28 6.0 40

* L. E. Hargrove, E. A. Hiedemann, and R. Mertens, Z. Physik
167, 326-336 ﬁ%l).
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F16. 12. Intensity modulation of the light wavefront emerging from
the ultrasonic beam for Vr=4 and Qr=0.31, using Qr'.

The agreement in intensity predictions may also be
considered to demonstrate that the Raman-Nath
approach predicts the correct intensities even when
there is some degree of light intensity modulation along
the emerging light wavefront. Figure 12 shows the in-
tensity modulation calculated for Qr=0.31 and v7=4.0.
It has been shown in Table I that the present theory and
the Raman-Nath theory give essentially the same light
intensities through fourth orders up to this value of vs.
Therefore, the intensity modulation shown in Fig. 12
is an estimate of the upper limit of intensity modulation
for which the Raman-Nath theory gives the correct
light intensities in the first four diffraction orders.
Figures 4 and 12 are for the same value of vy but

different Qr, and may be compared to illustrate the
difference in intensity modulation for ultrasonic beams
with the same ‘‘diffraction strength” or but different
Qr. Finally, it is remarked that the light intensity
modulation for the smallest (Qv)r calculated (Qr=0.31
and vr=0.25, giving (Qv)r=<0.08) deviates from unity
by at most approximately 0.04.

DISCUSSION

The predictions of the present theory are in good
agreement with Klein’s experimental data. The agree-
ment is somewhat better, for the larger values of Qr
and vy, than that found by Klein using Mertens’ theory.

Diffraction of light by high-frequency, intense, ultra-
sonic waves is of particular interest for determining
the waveform of distorted finite-amplitude waves in
liquids. While the present results are restricted to
sinusoidal waves, work is in progress to extend the
theory to include arbitrary ultrasonic waveform,
especially waveforms of the finite-amplitude type.
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OM THE CONVERSION OF LOWCITUDINAL T0 SURFACE WAVES IN SOLIDS

Walter G. Mayer
Physics Department, Michigan State University,
East Lansing, Michigan, U.8.A.

Various experimental techniques for the production of surface waves on a free
surface of & 8011d havé been described in the past (1). Quite frequently one uses
the method of converting a longitudinal wave in a solid to a surface wave on another
solid in contact with the first, The present paper is concerned with this type of
mode conversion because the energy transfer from a longitudinal to a surface wave
seems to offer possibilities for decressing the intemsity of the reflection of the
longitudinal wave in the solid through which it is propagated. Some experimental
results for a specific case are given here.

The production of a surface wave is usually accomplished by the familisr e
method shown in Figure 1. The amplitude of the surface wave reaches & maximm (2)
vhen the angle of incidence ¢ is chosen that the ratio
Vi/Vg = sincx, vhers Vy 1is the velocity of the longitu-
dmt wave in solid I, and Vg is the velocity of the
surface wave on solid II, An arrangement of this type
has the disadvantage that one cannot easily determine
how much energy contained in the longitudinal wave is
transferred to the surface wave. A slightly different
wedge was therefore used, shown in Figure 2. An ultra-
sonic pulse is emitted by transducer E. If the bottom
surface of the wedge is in contact with air the pulse-
will be totally reflected and will be picked up by the
receiving transducer R. The amplitude of the received pulse is taken as reference
for the subsequent experiment in which the wedge is placed on the smooth surface of
solid II. In the experiments described here solid II is aluminum while solid I is
Plexiglas. The velocities V; and Vg were determined
experimentally by a conventional pulse method. Plac-
ing the Plexiglas wedge on the aluminum surface allows
the mode conversion from a longitudinal wave in the
wedge to a surface vave on the aluminum. The wedge is
cut in such a way that the angle of incidence O satis-
fies the above condition for optimum surface wave pro-
duction. With the wedge on solid II there is no more
total reflection of the incident pulse, and the ampli-
tude of the signal received by transducer R ghould de-
crease by an amount determined by the energy converted
to the surface wave., However, it is found that using the Plexiglas wedge the smpli-
tuds of the received pulse increases when the wedge is placed on the aluminum, This
aay be explained by considering the loss mechanisms. If the wedge is nmot in contact
with solid II every part of the sound signal emitted by transducer K travels the same
distance in the wedge before it reaches transducer R. The absorption in the Plexi-
glas is quite high. If the wedge is then placed on the aluminum a surface wave is
generated between the two solids. As this wave propagates slong the surfaces it may
radiate energy back into the wedge, If the absorption of this wave should be less
than the absorption of the longitudinal wave in the wedge a signal of higher ampli-
tude would be received at R than if the signal had traveled entirely in the Plexiglas.

VP




COMVERSION OF LONGITUDINAL TO SURFACE VAVES

One would, therefore, like to minimigze this radistion back into solid I. Ideally,
one would 1ike to separate the surface wave from the bottom of the wedge as soon as
it 1is genersted, But this wave is generated over s finite area of contact between
the two solids, and the size of this area is determined by the size of the emitting
transducer and the angle of incidence; one therefore encounters certain experimentsl
limitations in separating the surface wave from the bottom of the wedge. Since the
central portion of the ultrasonic signal emitted from transducer E contains more ener-
gy than the outside of the beam one might remove the
corresponding most intense portion of the surface wave
Fig. 3 by rounding off one edge of solid II and placing it in
relation to the wedge as indicated in Figure 3. The
radius of curvature of the rounded edge is big enough
so that the surface wave will travel around it (3).
Adjusting the relative positions of the wedge and solid
II in this manner one transfers the most intense part
of the longitudinal wave in the wedge to a surface wave
I which is then conducted away from the wedge, thus re-
ducing radiation back toward the receiving transducer.

In order to decrease further the area of contact in which surface waves are gene-
rated one can decrease the dimensions of the emitting transducer. Doing this one nar-
rows the width of the longitudinal weve impinging on solid II and one can reduce the
received signal by replacing the aluminum block by a
s0l1d aluminum cylinder as shown in Pigure 4. This re-
rig. 4 duces the area of contact between the two solids and
assures & more efficient separation of the surface wave
from the bottom of the wedge, Changing the sise of
the sluminum cylinder changes the effective area of
contact and thus the amplitude of the received pulse.
The angle of incidence O is not affected by the size
of the cylinder,

The surface wave traveling around the cylinder is
absorbed by placing some suitable liquid on the cylin-
der; if this is not done, the wave completes the circle
and reaches the wedge again where it is converted back
into a longitudinal wave which travels toward R, In
this case one has a short cdelay line,

The efficiency of mode conversion from longitudinal to surface wave for the various
arrangements described can be seen from the results of experiments using Plexiglas and
aluminum, Using & 5 Mc pulse from & 1.2 x 2,5 cm transducer and placing the entire
wedge on the aluminum one receives a signal whose amplitude is shown in Figure Sb.

The reference smplitude (wedge in air) 1s shown in
rig. 5 PFigure 5a. The amplitude of the signal has increased

by about 50 percent; thus, placing the entire wedge on
) the aluainum block does not reduce the reflections back
into the wedge. Figure 5c shows the received amplitude

of the reflected longitudinal wave recorded with the

srrangement indicated in Figure 3. In this case the am-

a b plitude has decressed somewhat. A mors effective ener-

— € gy transfer is attainable if the wedge is placed on &

' rig. 6 solid aluminua cylinder. The received amplitude is in-
dicated in Figure 6b, compared with the reference ampli-

tude in Figure G6a (wedge in air). The dismeter of the
,l__ cylinder wvas 1.85 cm. The effective area of contact
between the two solids was increased slightly by using

s solid aluminum cylinder with a diameter of 6.3 cm.
a b Py In this case the received signal had an amplitude shown
in Figure 6¢c. The results shown in Pigure 6 were ob-
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tained by using an emitting transducer with dimensions 0.25 x 2.5 cm which minimised
further the effective ares of surface wave production. It is seen that the reflected
longitudinal wave decreases to about half its amplitude in the last case shown in

Figure 6.

This reduction in amplitude of the reflected longitudinal wave indicstes that an
appreciable part of the energy in the longitudinsl wave can be taken out of solid I
by mode conversion to a surfsce wave on solid II, especially if one considers that the
greatest part of the cross-section of the sound beam is impinging on the Plexiglas-air
interface and only a small part on the Plexiglas-aluminum interface. The resulting
surface wvave can be absorbed very easily so that it will not be reflected back into
solid I. That fraction of the longitudinal wave in solid I which was not converted to

a surface wave at the boundary can be reduced further
by repeating the process as indicated in Pigure 7. In
principle, it should be possible to use this technique
for the surpression of reflections of an ultrasonic
wave in a solid. 8ince the absorption of the resulting
surface wvave presents no problem one should be asble to

the production of progressive ultrasonic waves
in solids using the method outlined here, provided the
velocity of the longitudinal wave in the solid in ques-
tion is smaller than the velocity of the surface wave
on solid II. (This work was supported by the Office of
Naval Research, U.S. Navy.)
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Reflection and Refraction of Mechanical Waves at Solid-Liquid Boundaries

by
Walter G. Mayer

Abstract.

The energy ratios of reflected and refracted waves to the
incident wave at ten liquid-solid boundaries are calculated as 8 function
of the angle of incidence., The influence of the weve velocities in the
media and their density on the shape of the curves is discussed.

INTRODUCTION
Knowledge of the energy ratios between incident, reflected, and
refracted mechanical waves at interfaces formed by two dissimiler media
is of great importance in ultrasonics1-3, seismologyh, and for material

5’6. Knott7 and ZOeppritzB have given expressions

testing techniques
describing the changes of amplitude of reflected and refracted waves

ar a function of the angle of incidence. Based on their work, Erginh

has calculated these amplitude ratios for seismic waves incident at both
sides of the ocean floor., Mayer and Kelsey3 have measured the velocities
of ultrasonic waves in solids by observing the amplitudes of the reflected
waves in the liquid. These measurements and the results given here allow
one to draw a number of useful conclusions about the behavior of the re-
flected and refracted waves. However, Ergin considers only the changes

in the energy ratios caused by a relatively small change in the ratio of
the longitudinal to shear wave velocity (essentially the Poisson's ratio)
of the solid medium. The present paper also considers the influence of
the density ratio and the ratio of the longitudinal wave velocities of

the two media,
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RESULTS

The system under consideration consists of & liquid with density
P1 and a solid medium with density P’ The plane surface of the solid
is in contact with the liquid, The velocity of the longitudinal wave in
the liquid is le' The velocity of the longitudinal wave in the solid is
given by VLa and that of the shear wave by Vsz. The energy of the incident
wave in the liquid is unity, and the angle of incidence is denoted by «,
measured from the normal to the liquid-solid boundary. According to Ergin ,
the energy ratio of reflected to incident wave is given by

(R/1)% = ([con b - Acosa(1 - B)1/[con & + Acon(1 - B)])Z, (1)

vhere A = Vi o0,/V01Pys

B = 2sinysin2y[cosy - (Vszlea)cosB].

The angles B and y are the angles of refraction of the longitudin-
2l and the shear wave in the solid, determined by Smell's law

VLllaina = VLalsinB = Vszlliny.
The energy ratio of refracted longitudinal wave in the solid
to the incident wave in the liquid is given by

1 2
(L/I)2 - <?c0027 (Acosa cosy)3/ [cosB + Acosa(l - B)l) . (2)
The energy ratio of refracted shear wave to incident wave is then

(s/m? =1 - (&/1)2 - (/1) (3)

Calculations of these ratios were made for a2 number of solids
with the incident wave in water and oil. The values of velocities and
densities used are shown in Table I. Poisson's ratio 0O is also showm.
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Table I. Velocities and Densities Used for Calculations

au e Veo P2 o

Water 1490 1,00

01l 1740 0.87

Steel 5850 3230 7.80 0.261
Brass 4430 z123 8.10 0.351
Copper 4700 2260 8.90 0.350
Aluminum 6330 3130 2.70 0.338
Magnesium 5770 3050 1.70 0. 306

Velocities in m/sec.

Since one cannot readily see from eqs. (1-3) how the intensity
of the waves is influenced by changes in the various parameters, individual
celculations were made for all the possible combinations of liquids and
golids listed in Table I. The results are plotted in Figs. 1-5. The
solid lines are for oil-solid interfaces, the dashed lines for water-
#olid interfaces. The letters R, L. and S denote the curves for the
cefiected longitudinal wave, the refracted longitudinal wave, and the
refracted shear wave, respectively,

DISCUSSION

The general conclusions drawn from the curves in Figs. 1-5 are
valid only if sz > V82 > le' This excludes boundaries formed by some
liquids and plastics where vs2 < le'

The ratio (R/I)2 becomes unity at the critical angle for the
refracted longitudinal wave (sinB = 1) and again at the critical angle
for the shear wave (siny = 1), The location of these critical angles
@ and g depends only on the ratios szlel and Vszlel. Totel reflection
occurs at these angles of incidence regardless of the values of density
and velocity.
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The value of (R/I)2 for normal incidence depends only on V,,p,
and V;,p.; eq. (1) reduces to the well-known formula for the reflection
coefficient. The shear wave velocity is of no consequence a8t @ = O,

The general behavior and the minima of the (R/I)2 curve remains
essentially the same if instead of given values for VLl
slightly different values without changing appreciably the acoustic im-
pedance of the liquid medium (water and oil). This also holds for the
maxima of the (L/I)2 and (S/I)2 curves,

Poisson's ratio is not a dominating factor in the behavior of

and py one selects

the curves. Of the golids considered steel and magnesium have the lowest
Poigson's ratios, yet, the curves for the other three substances lie between
those for steel and magnesium,

The energy of the reflected wave is determined mainly by itse
value at @ = 0, The ratio (R/I)2 stays almost constant until the critical
angle for the refracted longitudinel wave is approached, The width of the
peak at that engle depends on the energy at @ = O and on the cutoff angle
for the shear wave. The peak is sharper the lower (R/I)2 at @ = 0 and the
smaller o

s’
is always less than (R/I) at @ = 0O, This means that in certain solids a

Beyond aL the curve dips sharply and reaches a minimum which

shear wave can be produced which is more intense than the reflected long-
itudinal wave (Fig. 5). Whether this is possible depends primarily on the
""acoustic impedances and to a lesser degree on the shear velocity.

The energy of the shear wave between & = O and o is much
smaller than its energy between o and ¢, S’ the maximum depends strongly
on the values of aig end the width of the (R/I) peak,

With this information, and since the two cutoff angles can be
found easily from Snell's law and the initial values at @ = O from the
reflection coefficient, it is possible to estimate the behavior of the
three curves (RII)z, (L/I)z, and (s/I)2 for a given set of velocities and
densities in the range considered here without having vo make many time-
consuming calculations.
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PR —

Figure 1. Energy relations at oil-steel boundary (s0lid lines)
and water-steel boundary (dashed lines),

R reflected wave,
L refracted longitudinal wave,
S refracted shear wave.
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