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PREFACE

This Memorandum is concerned with the application
of invariant imbedding to the study of rarefied gas
dynamics. A new formulation of the problem of lineariged
Couette flow is presented using ideas which were first
developed in astrophysics and neutron—transport theory.
This study should be of interest to specialists in the
fields of aerodynamics and heat transfer who are
concerned with the calculation of flow fields in the
upper atmosphere, as well as to astrophyslicists and

nuclear physicists.
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PEERPUR L T

SUMMARY

This Memorandum applies the techniques of
invariant imbedding to the study of rarefied gas flows.
The problem of linearized Couette flow is investigated,
and it is shown how the assumption of the Krook
scattering model results in a formulation which 1is
similar to that obtained in radiative transfer for
conservative isotropic scattering in a plane-parallel
atmosphere.

By a simple enumeration of physical processes,
the nonlinear integral-differential equation governing
the reflection function is cbtained, and a suitadle
transformation is shown to render this equation amenable
to numerical computation.
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INVARIANT IMBEDDING AND RAREFIED GAS DYNAMICS

1. INTRODUCTION

The use of invariance principles and invariant

imbedding technliques, originating in the work of
Ambarzumian and Chandrasekhar, has provided new insights
and computational solutions to various problems in the
fields of radiative transfer and neutron transport
theory [1]. Let us indicate how these same techniques
can be applied to representative problems in the kinetic
theory of gases. The possibility of this is suggested
by the essential similarity of all particle processes:
the behavior of neutrons or photons, or the structureless
spherically symmetric molecule of the classical kinetic
theory. For the present, we shall restrict our area of
interest to linearized scattering models, finite
collision frequencies, and relatively simple geometries.
We leave to future study the application of invariance
techniques to nonlinear scattering models and to cases
in which the Boltzmann gain and loss operators are only
conditionally convergent. A classic problem, that of
plane shear flow between two infinite flat plates, will
be used to present the ideas of invariant imbedding in
the context of rarefied gas dynamics.
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2. KINETIC-THEORY APPROACH

Various kinetic-theory approaches to the problem of
plane shear flow are described in some detail by Willis
(2]. The physical picture is the following.

An infinite plane wall moves with a small constant
velocity Vﬁ in its plane at a distance d from a fixed
wall. Both walls are maintained at the same temperature,
and may consist of either similar or dissimilar materials.
It is desired to find the gas velocity and the stress at
the moving wall as a function of the degree of rarefaction,
which is measured by an appropriate Knudsen number. In
the body of the gas, we shall use the single relaxation
time model of Krook [3] in 1ts linear version. Linearization
18 made possible by requiring that the Mach number of the
moving wall be much less than unity, and then using
standard perturbation techniques.

We define the following quantities:

(2.1) n-ffmfrdv, T = 8n, VA d,
- sV ETFTA

e[ [FeF, wvw-EGLET, BT,

Q0
B-[[T[ec-m2 &, 5-%.
-0

The nonlinear Krook [3] equation for this one-
dimensional geometry can dbe written
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(2.2) M. _ snlr - n(®)32 exp(-n(z - ).

The linearized version of this equation, obtained by
setting R Vw <« 1,” (where V, 1s the velocity of the
moving wall) 1is

(2.3) F%sre = onlf - n(h)3/2 exp(~ he2)(1 + 2hv V).

h
It £ =ny(=2)32 exp(— nC?) + £y, where

£fy=n (—)3/2 exp (- h,C )W(u,x), then the equation for
the perturbation distribution function may be written

(2.4) %l-'r[-rl+%_c7:vffmfflvdudvdw].
-

The boundary conditions corresponding to purely diffuse

reflection from the wall are

(2.5) (a) Pixed plate: f](x = 0) = 0,
(b) Moving plate: f7(x = ) = ny(-—2 203/ oy M
where M = VR V .
It is possible to develop an equation for the function
which 18 closely related to the rediative transport
equation for isotropic scattering in a plane slsdb, i.e.,

(2.6) %-t[—O-o--\lH- fm.c"“ZOGu].
-QD

The diffuse boundary conditions associasted with this
equation are

(2.7) y=0, ¢*a0, ye1, T2V,

This is equivalent to ring that the Mach
aumber be eve ere small. V. is proportional to the
Nah number of the wall. -
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Willis has obtained a numerical solution to equation (2.6)
by recasting it in a form similar to the Milne integral
equation of radiative transfer. In addition, he has

shown that straightforward Neumann lteration is suitable
only for the very rarefled case, corresponding to T < 1.
Since each subsequent calculation in the Neumann iteration
scheme corresponds to higher-order collislions, it is not
surprising that it is rather slowly convergent as the
collision frequency is increased. This is quite similar
to the state of affalrs in radiative transfer, where it

is known that a calculation based on successive absorption
and scattering processes 1is 11l suited for computation as
slab thickness is increased, or conversely, as the optical

mean free path is decreased.

3. _ INVARIANT IMBEDDING APPROACH
The invariant-imbedding approach permits us to

concentrate our attention on the values of quantities at
the boundaries. This is particularly relevant to problems
in heat transfer and aorodynammos. vhere values of

certain molecular fluxes at the boundary are related to
such macroscopic observables as energy transport and
momentum transport to the walls. Once valuss have been
obtained for the distribution function at the boundary,
however, it is possidble to calculate values of the distri-
bution function within the body of the gas by relatively
simple techniques.



5

The introduction of other boundary conditions
besides the presently chosen diffuse re—emission is
postponed so that we may focus on the essentials of the
technique. In addition, it should be noted that our
cholice of one moving wall and one fixed wall is somewhat
different from the usual Couette flow problem, where the
two walls move in opposite directions. This cholce wes
made because it obviated the need for the calculation of
transmission functions. The method of linearization and
the diffuse boundary conditions at the fixed wall result
in the fixed wall acting as a "sink" for perturbing
molecules, in the sense that it emits only particles
which possess the equilibrium distribution function.

Consider Fig. 1. A reflection function
p(d,u,ub,v,vé,w,wb) is defined which relates incoming
molecules at d to outgoing molecules at d:

(3.1) £1(u,v,w) f f f p(d,u,u8, v, vg,w,up)
o
2

-0 =00

(ul ,vb.w%)dubdvédwb.

Fig. 1
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Linearity of the transport equation pevmits us to
consider a Dirac S—function incident distribution
centered about u,,Vy,W,. Thus p(d,u,uo,v,vo,w,wo) is
the outgoing distribution function of particles at d
due to an incident monochrematic beam at 4 with velocity
Uqs Vs W We observe that the sink-1like character of the
Tixed diffuse wall guarantees that all outgoing perturbing
particles at the moving wall are due solely to the
disturbance generated by it. Simple particle—counting
techniques are utilized to relate the reflection function
p(d,u,uo,v,vo,w,wo) at d to the reflection function
p(d + A,u,uo,v,vo,w,wo) at d + A. We recognize that
the original disturbing beam of molecules at d + & is
modified by interactions within A, and the resulting
incoming distribution function at 4 undergoes the same
sort of processes at 4 as the original beam underwent
at d + A. A new problem is initliated at d, which
differs from the problem initiated at 4 + A by the fact
that the incident distribution is continuous rather than
monochromatic.

We introduce the mean free path as the unit of
length, and use T = § nOVh'o' d rather than 4 for the
spacing between plates.

The spirit of the technique is exhibited in the
simple particle—~counting spproach. To terms of order
(A)z, p(T + 8,u,u5,V,V,W,W) 18 equal to the results
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of the followlng processes:

(a) The incoming monochromatic beam is diminished
by collisions in A, reflected at T, and then
diminished again by collisions in A.

(b) The incoming monochromatic beam is scattered
within 4 from u,,Vqy,W, to u,v,w.

(c) The incoming beam is reflected at T, and
then scattered into u,v,w within A.

(d) The incoming beam is scattered within 4,
then reflected at T into u,v,w.

(e) The incoming beam is reflected at T,
scattered in A, and then reflected again at T.

Taking account of these interactions, we have

(3.2) p(1+A,u,u°.v,vo.w,wb)

= [1 - élp(r,u,uo,v.vo,w,wo)ll - ﬁ%] + (—’jgﬁ‘: .-czvoA

—62 VA o o 'y
+2 T, 2 1 W) PaRATaR +
] Il etk

A consequence of the linearized Krook scattering
model 1s that Atf;(u,v,w)/u is the mmber of particles
which are scatte out of the element of velocity space
cenitered about u,v,w, and

w BT [ emyoenn
0

is the nuwber of particles scattered inte this element,
all in an infinitesimal thickness A.

EE



2 @ p 4o _c,a vov'
+ =B s f f f p(7,u,8,v,7,w, k) dddvdk
(m) 0 u
+ (—7372- Af f p(T,u,4q,v,V,w,w)e ~ Vdudvdw
T
0
w m m ® [ [ J [} L] L] *
'f f p(‘l’,u,uo,V,VO,W,WO)VdudVdW.
0
The requirements of Sec. 2 suggest the transformation
2 vv
(3.3) P(Tou,u0, VsV, W, W) = ;ﬁg e C 2 s(r,u,u,).

Letting A4 - 0, we obtain the following symmetric form
for the one—dimensional reflection function S(d,u,uo):

(3.4) $Ar,u,uy) + &+ éa)s(r,u.uo)

@ =-u du . ) 2
=] 4 -3-# f e 0 S(rluouo) =2 + -Lf e S(":uouo)%'

o Yo Wy,
1 a [® 'aeo -,

The initial condition assoclated with (3.4) is
s(o,u,uo) = 0, resulting from the observation that
T = 0 corresponds to the free-molecule limit when
there are no collisions within d ¢to reflect molecules
from u, 1into u.

The last equation closely resembles the radiative—
transport equation for isotropic scattering in a plane
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slab that Chandrasekhar also obtains by invariance
principles [4]. A significant difference, however,
between radiative transport and kinetic theory is that
in kinetic theory, incoming distribution functions are
not generally of a delta—function character, so that it
is necessary to integrate over all incoming velocities
in order to obtain the distribution function at the wall.

The computational solution of (3.4) has been
readily obtained using techniques which were originally
developed for problems in radiative transfer. In
forthecoming publications we shall discuss this, consider
the inclusion of nondiffuse particle-surface interaction
at the moving wall, and present asymptotic observations
which are relevant to the problems of near-free-molecule
flow and slip -flow.
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