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PREFACE

Advances in the design of hypersonic vehicles can be realized
only if the structural and thermal problems engendered by the high
surface-heating rates are alleviated. The injection of a coolant
into the boundary layer on the surface of a vehicle, i.e., mass-
transfer cooling, is one method for reducing heating rates.

In this Memorandum the problem of a hypersonic flow on a flat
plate with surface mass transfer is examined to determine the sig-
nificant parameters which affect the solution. This work is the
beginning of a general study of hypersonic flow with mass-transfer

cooling.
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SUMMARY

An account 1s presented of the development of an approximation
theory for the problem of hypersonic strong viscous interaction on a
flat plate with mass transfer at the plate surface. The disturbance-
flow region is divided into inviscid- and viscous-flow regions. The
hypersonic-small -per+wrbation theory is applied to the solution of
the inviscid-flow region. The method of similar solutions of compres-
sible laminar-boundary-layer equations is applied to the treatment of
the viscous-flow region. The pressure and the normal velocity are
matched between the inviscid- and viscous-flow solutions. The law of
surface mass transfer for similar solutions is derived, Formulas for
induced surface pressure, boundary-layer thickness, skin-friction co-
efficient, and heat-transfer coefficient are obtained. Numerical re-
sults and their significance are discussed.

The most significant results obtained from the data presented are
(1) the boundary layer thickens with injection so that the interaction
phenomena increase, (2) the skin-friction coefficient and heat-transfer
coefficient exhibit remarkably linear behavior with respect to injec-
tion, and (3) the Reynolds Analogy is valid only for the cold-wall

case,
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? SYMBOLS

¢, = local skin-friction coefficient
¢, = local dimensionless heat-transfer coefficient (Stanton mumber)
¢, = specific heat at constant pressure
f = dinviscid similarity function defined in Eq. (22)
H = specific total enthalpy
i = specific thermodynamic enthalpy
K_ = hypersonic similarity parameter defined in Eq. (17)
K°=K(o) = injection parameter
k = thermal conductivity
L = characteristic length
M = Mach number
n = exponent defined in Eq. (20)
Pr = Prandtl number

P = pressure

R = universal gas constant
s = specific entropy
T = temperature, CPH/R

U = free-stream velocity in x-direction

u = velocity in x-direction
{
5 v = velocity in y-direction
x = distance in direction parallel to plate surface
y = distance in direction normal to plate surface
p = =1
4
y = ratio of specific heats, °p/°v

¢ = parameter defined in Eq. (12)

similarity variable for boundary layer
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3
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X

8 = 1inviscid similarity parameter defined in Eq. (21)
b = viscosity
v = kinetic viscosity, u/p
p = density
T = surface shearing stress
¥ = stream function in inviscid flow region
¥ = conventional stream function in viscous region
w = see Eq. (1)
Subscript
§ = edge of boundary layer
* = nondimensional
8 = shock
1 = free stream
v = wall
o = sgtagnation
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I. INTRODUCTION

Alleviation of aserodynamic heating on the surface of a hypersonic- -

velocity vehicle can be achieved by cooling methods using surface
nass transfer. Three such methods that hold great promise are(l)

1. Transpiration cooling

2. Fllm cooling

3. Sublimation or ablation cooling

In the transpiration-cooling method, the surface-mass-transfer rate
is arbitrarily controlled. In the methods of film cooling and subli-
mation or ablation cooling, the surface-mass~transfer rate is not
entirely arbitrary. However, all of these methods possess the same
main feature: <the injection of a foreign material from the body
surface into the boundary layer., As a result of this injection, it
can be expected that several new elements must be admitted into the
analysis of the boundary-layer phenomena:

1. The heat-energy balance in the boundary layer must de con-
siderably modified to account for the surface-mass-transfer
effects.

2. The momentum equation is modified to include the normal
velocity component at the wall. This results in a change
in the velocity distridbution in the doundary layer.

3. The injected foreign material will diffuse through the
main bourdary-layer stream, causing a change in the compo- ‘
sition of the fluid.

Surely these effects are mutually interdependent. An accurate analy-

tic formulation of the multicomponent-boundary-layer flov is possible

b i oy S
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but difficult. As a simple approximation, the problem can be treated
&8 the leminar-boundary-layer flow of a binary mixture.(2) Adopting
the simplifylng assumption that the Lewls number is unity, the amalyti-
cal characteristics of the laminar-boundary-layer equations for a
binary mixture have been examined in Ref, 3, where the introduction
of a new characteristic-temperature function reduces the binary-
boundary-layer equations to those for a pure gas. Therefore, an
approximate analysis of the surface-mass-transfer effects can be made
by considering only those modifications mentioned in items 1 and 2
above., By interpretation of these initial results according to the
method of Ref. 3, estlates of the effects due to item 3 above can
be obtained. In the main part of this Memorandum, therefore, we shall
deal with the boundary-layer equations of a pure geas.

It 1s well known in the study of hypersonic viscous flow past
a flat plate that there exists a reglon of strong interaction between
the leading-edge shock wave and the viscous boundary layer. 1In the
present Memorandum, we shall study the effects of surface mass trans-
fer on this strong-interaction phenomena. This problem has previously
been treated by Yasuha.ra,(h) vho confined his attention to the case
of an insulated flat plate and used the Karman-Pohlhausen method for
solution of the equations. For the surface-mass-transfer rates used
in Ref. 4, we shall show that the boundary-layer equations admit simi-
lar solutions. We shall then proceed to apply the method of similar
solutions of the compressible-laminar-boundary-layer equations(5) to
the present problem, Both the insulated and the noninsulated flat

plates will be considered. In deriving the systeﬁ of differential
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equations, we shall neglect terms of the order of l/Mi where the
free-stream Mach mmber is assumed to be M »> 1. The differential
equations thus obtained are nonlinear and can be integrated numeri-
cally. Results of such integration (for Pr = 1, w = 1) vill be pre-
sented, These results will then be used to provide estimates of the
effects of mass transfer on the strong-interaction phenomena. We
shall find that the magnitude of the swrface temperature plays an
important role in this problem., Indeed, one effect of injection

is to keep the plate surface temperature low, which tends to alleviate
the strong-interaction phenomena. Another effect of injection is to
increase the boundary-layer displacement thickness and thus to increase
the strong-interaction phenocmena. These opposing effects are both
important for a certain range of injection rates. In the numerical
examples, we shall also consider some cases of negative injection
rates which can be interpreted as applylng suction at the body sur-

face.
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II. BASICE ONS AND BOUNDARY CONDITIONS

Consider a flat plate at y = o (Fig. 1) and extending from x = 0 to
X = o, At the plate surface, a particular rate of mass transfer due to
injeetion is allowed, the rate of mass transfer being determined in a
manner to be described later. A uniform stream with velocity U parallel
to the plate is deflected by the viscous boundary layer on the plate surface.
This flow deflection is aceompanied by a shock wave emanating from the
leading edge of the plate. There is a nonlinear coupling between the
growth of the beundary layer and the variation of the shockewave strength

in the strong-interaetion region oen the flat plate wvhere

+
v
A

< s (1)

fu—t}-<<x<

Xx being the distance frem the leading edge of the plate. The disturbed
flow is separated from the undisturbed flow by the leading-edge shock wave,
The region between the shock wave and the plate surface can be divided in
the range of x, as defined in Eq. (1), into an inviscid-flow region and a
viscous-boundary-layer region. (6, 7) The basic system of equations for
the disturbed-flow region can be written as follows:

Slow + (o0 = © (2)
o Po. Bl (Y (3)

pu%'*mr%"-% (%)




Shock wave Y=Y (X)

_/— Boundory-layer edge
—_————— Y=8(X)

Fig. i—Coordinate system and flat plate

S
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pu%*-w%-u%*u%)a*%(k%r)*\r% (5)
P = RoT (6)

We assume that the fluid medium consists of a pure perfect gas with
constant specific heat; therefore, i = °p T. As stated in the Introduction,

we regard these simplifying assumptions as acceptable for an initial attempt,
and we shall consider the corrections to account for the imperfect-gae-
mixture behavior in a later section. Equation (2) is the continuity equa~

tion for the entire disturbed-flow region. Equation (3) 1s the boundary-
layer equation applicable in the viscous region adjacent to the plate surface.
In the inviscid-flow region, Eq. (3) becomes simply

pu%i'pv%u--% (39')

Equatien (4) is the y-momentum equation for the inviscid-flow region. I'.
the boundary layer, Eq. (4) becomes, in the present approximate theory,

%-0 (4a)

Equation (5) is the energy equation for the disturbed-flow region. In the

inviscid flow region, Eq. (5) becomes simply
pu%\‘ﬂ%}-u%*-v%ﬁ (5a)

In the boundary«layer region, Eq. (5) can be combined with Eq. (4a) to yield

pu%+pv%-u§+p%>a+%(k%r) (5b)




Bquation (6) is the equation of state. Comparing Eqs. (2) and (5) with
the Navier-Stekes equations, one finds that many terms in the Navier-Stokes
equations are omitted in the present system. These ocmissions can be justi-

fied, in the range of x considered in Eq. (1), by the well-known order-of-
meg-itude arguments.

Our problem is to determine u, v, p, q, and T as functions of (x, y)
vhich satisfy the following boundary conditions:

x>0, u(x,0)=o0, v(x,0) = vw(x)
(1)
T(x,0) = Tw
y —»w, u(x,e)=TU, v(x,0) = 0
p(xp“‘) = Pln p(x,») =Py T(x)“) = Tl (8)

The conditions in Eq. (7) are specified at the plate surface which is as-
sumed to have a uniform temperature Tw. The velocity of injection, which

ve shall specify later, is represented by vw(x). The conditions in Eq. (8)

are the conditions of the undisturbed free stream; the subscript 1 is being

used here to signify the free-stream conditions. We note that Eq. (8) also

specifies the flow conditions for all y wheh x < o.
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ITI. THE INVISCID-FLOW REGION

The inviscid-flow region is governed by Eqs. (2), (3a), (4), (5a), and
(6). This region is bounded by the leading-edge shock wave which separates

it from the free stream. The shock-wave conditions may be expressed as

P 2 -

r-2r 83 -+ (s)
o\

?,(’”) "i..(.g.x%a (10)

! (7—1)B€(% +2

v'-731<0%> 1.-—3 (1)

15
vhere y = Y (x) represents the shock-wave equation. Equations (9) and (11)
mst be applied as the boundary conditions for the equations of the inviscid
region. Solutions of the inviscid region have been obtained by Stewa.rtson(s)
and Osudu.(e) As pointed out in Ref. 9, these inviscid solutions are di-
rectly applicable in the present :I.nveltigation.* In fact, the direct ef-
fects of the mass transfer at the plate surface are to modify the boundarye
layer flow, and the inviscid-flov region is only influenced indirectly
(through the matching between the inviscid- and viscous-flow regions).

In the development of our theory, we shall use Oguchi's inviscid so-
lution in the matching procedure., We therefore briefly discuss here Oguchi's

In fef. 9, this interesting point is demonstrated by an order-of-
megznitude analysis. The same kind of analysis can be put forward here.
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inviscid solution. We have, from thermodynamics
i = Tds + %P

where s is the specific entropy. Hence, Eq. (5a) becomes

u%‘t-ﬁv%-O

For a perfect gas with constant specific heat, we have s o Ry'i hence
()

“'g?c (,fi)*V%i(%)'o (5¢)
Equations (2), (3a), (4), and (5c) form the exact system that determines u,
vV, b, and p in the inviscid region with the shock-wave conditions in Eqs.
(9), (10), and (11). We introduce

X = Lx*

y = Ley’

u=U [1 + eau*(xr y*)]

v = Uev*(xr y*) (12)

p = 77 P () y")

p= plo*(xf y)
Where L is a characteristic length) ¢ is nondimensional, and ¢2 < < 1.

In Eq. (12), the starred quantities are nondimensional and are all assumed to be
of the same order of megnitude. Substitution of Eq. (12) into Eqs. (2), (3a),

*WowtukeL-linthepnuntMemormdm.




(4), and (5¢) ylelds

g, v =0
%:'FV*%:'F%* g:-o
el e

352*-(9.7/ Y (p.w') °

(13)

(%)

(15)

(16)

Equations (13) to (16) are the equations of the hypersonic-small-perturbation

theory.(lo) The shock-wave conditions in Egs. (9) to (11) now become

p*.ZYKi-h-l) (!..Y*a
"y

- (7'f1)l<"’E
. (7-1)Kf+2

v*____a(xf-l) 9.!*)

OV
In these equations we have

28 & (E)

which is the inviscid-hypersonic-similarity perameter, xf >>1,

We have discarded O (ce) terms.

(9a)

(10a)

(17)




A stream function is dsfined
LALR J (x*) y*)

%,-p* %--p*v* (18)

Let % = u*; then from Eq. (16) we have a* = wh(y).
(]

Equation (15) can be rewritten as
(3) 2 En ()% () &
@ {5 (%)

vhich is the differential equation for y. If the shock wave is expressed as

such that

Y* = x# 0<n<1 (20)
then a similarity variable 6 can be defined as

o -x”;:- (21)

and ¥ can be expressed as
v(x*, y*) = x* £(9) (22)
Substituting Eq. (22) into Eq. (19) yields

02221t + a(n - 1) (£ - o) (£')2

7 7+l 2
e A CRE I T

In the shock vave conditions, we neglect o(i—.‘,) terms and thus obtain from
Eqs. (9a), (10a), (11a), and (20) ¢

*In Section III, the prime denctes differentiation with respect
to 0. |




£(1) =1

f'(l) - 2—+—1 (gh)
7y -1
The function £(8) can be obtained from integration of Eq. (23) under the
boundary conditions specified in Eq. (24). It should be noted that a singu-

larity develops at the point 6 = 90 vhere f vanishes, We let

£= Ao - o) N>0 (25)"
Ve then find that

2 V4 2(n - )
on -1 1 o .m-1
p* - % (L+_.) x¥* (f ) @__

- (f|)7fg££_;\._l.). - (9-90)'2-(2-;-‘-]-')'1""(11-1)7
(26)
The pressure p* is bounded and nonvanishing as 6 - eo, provided that

I
N O (=)

For% 2 y > 1, Eq. (27) implies that

l>n>% (272)

For the strong-interaction region on a flat plate, we shall shown = 3/k
(see Eq. (60)). The constants A and 9, can be obtained from the following
asymptotic values

6y ~ 6 =% N (28)

as £ —» 0, These constants are readily evaluated from the solution of

*We are interested here in the leading term in f. In Ref. 8, the
sexries expression of f has been given.




Eq. (23), using a stepwise integration starting from the shock vave. The
integration can be carried out by using values of £(1) and £'(1) given in
Eq. (24) to compute £''(1) from Eq. (23). PMurther, Eq. (23) can be differ-
entiated and used to compute £'''(1), £''''(1), etc. e then can determine

£(1 + Ah) = £(1) + &h r'(.1) +_(_A_121f (1) +-(‘3l913 £rrr(l) + ...

Oguchi has carried out the calculations for n = 3/4 and y = 7/5 (air)

and 7 = 5/3 (heliun). These results are given as follows:

LR
Air k.40 0.591
Helium 2.4 0.479

Using Eqs. (25) and (18), we obtain

-1
a e o [140 (- 0] (29)

By the definition in Eq. (12), we have, then, as 6 — o,

v,

X n-1
5~ ne(-].:) eoU (292)
This gives the value of Ve a2t the edge of the viscous boundary layer.
Equations (25) and (26) yleld

1
o = 2 ('v 11)7 ()7 (xr)2(0-1) {1 +0 (0- )" } (30)
l4 7

-

Hence, for ¢ — eo

(n - 1)

w2 ] [ () ae

(30e)
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This gives the pressure distribution in the boundary layer. Bgmtiens
(29a) and (30a) provide the useful relations for matching the inviscid so-
lutien vith the viscous-boundary-layer solution. We shall retawrn to these
relations later, but we shall now turn to the discussion of the viscous-
flow region.

o
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IV, THE VISCOUS-FLOW REGION

The viscous-flov region is govemned by Eqs. (2), (3), (ka), (5v), and (6).
The conditions at the plate surface are specified in Eq. (7). This viscous-
flov region must possess a solution that can be mmoothly Joined to the
invisedd solution described in the previous section. In fact, Egs. (29a)
and (30a) give the values of Vv, and p, at the edge of the boundary layer.
It is noted that Bq. (29a) specifies that Y = 0(c). This noxrmal velocity
is, physically speaking, the outward-flow velocity that accounts for the
boundary- layer-displacemsnt effect. In other words, as far as the boundary.-
layer calculations are concerned, the inviscid stream is parallel to the
plate surface. This main flowv is displaced outward by the boundary-layer
effects vhich produce the valus of Ve Hence, in the boundary-layer calcu-
lations, the leading terms of the inviscid-stream conditions are

Pals ':':E = ';xﬁ (3e)
Pg ;_Q - % (310)
By (x) = R g, (x) Ty(x) (31e)

These conditions are obtainable from the inviscid-flow equations for a
main stream parallel to the plate surface.
In boundary-layer calculations, it is convenient to introduce

1.2

Hei+zu (32)

The values of H within the boundary layer must sstisfy the equation




w16~

2
oo B3k 5)0-w3E)] o
shich is easily cbtained by combining Eqs. (3) and (56). By Eq. (ka), within

the boundary layer, wve must have

o(x,7) 2(x,y) = oy (x)Ty(x) = § By (x) ()

Using this relatien, we eliminate the variable p from Bqs. (2), (3), and (33)

and thus obtain
ORI S >
a3k 2L 5(-3) )
BeZe2)-25 (6 2) 5 5685 O

(38)

y=o: u-o,v-vv(x), H-H'-cp'rv

vhich are the surface conditions. The main-stream boundary conditions are
Yo u‘-»ub, B-)Ea (39)

Frem Egs. (3la) and (31b) we easily obtain

Hy =1y +3 1 = const. ()

In @ homoenergetic flow, the constant term on the right-hand side of Eq.

(b0) must be By = 1, +2 VP, Therefore, E, = K.
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The next step in the boundary-layer calculations is the introduction
of a strean Nnction:(3)

y
RN I TR ()
0
Then we obtain
&3 (x2)
Prom Bq. (35), we also obtain
F--k 2§ (+3)
v 1 9
ook = e (E), o
It 1s noted that Eqs. (42) and (43) can also be written as
pu -% % (v ¥) (b2a)
pve-3% V) (43a)

These expressions can be compared with the conventional stream function
V defined as follows:

ove-& (85)

pu-% (46)
Thus we obtatn

Togmy (v7)
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The streamlines can be obtained as lines of ¥ -%pbt = const.; ¢, vhich
may be called the reduced stream function, is a generalization of the
function used in Ref. 5.

| Nov, Eqs. (36) and (37) can be rewritten as

(372)
We let
¥(x,y) = ¥(x) K(n) (48)
u(x,y) = uy(x) X' (n) (s9)*
H(x,y) = & 6(n) (50)

here 1 is the similarity varisble for the boundary-layer flow. An explicit
definition of 1 vill be cbtained later. Substitution of Eqs. (48), (49),
and (50) into Eqs. (36a) and (37a) yields, after some manipulations,

A :
(xta r -‘-‘i—‘-‘——- «a KK = R2 -?;6—%‘:‘5—— (m)' (3&)
-;’-;‘ %(pbl) RN G (m¥)

. 2 ' |
b 2 G o (1) 2 {0 e ] o

shere the parameter
i en ()
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has been introduced after Baron, (1) and C 1s the Chapman-Rubesin con-
stant.(12) v now 1et

x
'.<7aa—h¥>e-c°f Pyiigly &x (52)
Then Eqs. (36b) and (37b) may be expressed as
o)’ s - gt (@2 - Fy e (%)
xc' +(%:L')' +g [(1 -E) mr‘]' =0 (37¢)

The above calculations are simple extensions of the method of Ref. 5.
Equations (36b) and (37b) can also be obtained by following different
approaches such as those used in Refs. 7 and 11. Using Eq. (32) we
can rewrite the last group of terms in Eq. (36c) as

2 &y 21 B . k2.
— 2.l .- A B (53)
& ) Bb'%“g "o“g 14

i
|

/

#l
J

The conditions at the edge of the boundary layer give

L T
95"3 7"5
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Thus, Bq. (53) can be yewritten as

A 2. L) =-_z-1 (x2-0)
Ug Ty - i &
l"'N ax

1%

psdx

(53s)

(5)

The right-hand-side expressien is a functien of 7 only, provided that

i
gle

= m = const.

4
’l8

(54)

Therefore, in oxrder to obtain the similar solutions of the boundary layer

we must have

B3
From Bq. (52), it then followe that
4
om+1 P
Coghgly ~ Py =

Py
0%"5“5"&'; Ty Uy

(55)

(52a)




. L © -1 o 1/2
. By ‘a( “TTET —';_-g_i——f> - Ty

7-1','3

Thus, BEq. (52a) implies that

e ;—5 = const. (52v)
whence we have . ’
B o~ 221 | (56)
Now, from BEq. (43), we have
£k @ -k & MoK
I ;pr;~xz(n-1)(n-1)+(an-3) (s7)
Comparing Egs. (29a) and (57), we obtain
2m-1) + &84 .1 (58)
Comparing Eqe. (30a) and (56), we obtain
2(n-1)-mil (59)
Equations (58) and (59) are used to determine the values of n and m; I
thus, ve have
neg m=-3 (60)

These values of n and m are necessary to permit the matching of the
inviscid solution of Section III with the visoous ool.pion of the present

section. We shall discuss the matching progedure in & later section. By

- X




Bgs. (53) and (54), nov, we obtain

2‘;‘9(‘.2 lg) :+z;1 (x,z_o) (530)

Therefore, in the hypersonic-strong-interaction region on a flat plate,
Egs. (36c) and (37¢) can e written as

)y e w252 (02 - 0) (362)
xo +(§') + 2 [(1 - %;) wx"]' -0 (310)
shere terms of 0(:-) are neglected because l§ >>1, Equations (364)
and (374) can be t0 compute the similar solutions K(n) and G{n). The

boundary conditions in Eqs. (38) and (39) yield the following conditions:

n -0 K' =0, K = const., G= (38e)

ol<?

Wl

100 K =l Gul (390)

mnrom-wmumwmumwmm
stresn. The ocondition K(0) = const. implies a particular value of v'(x)‘
that vill be discussed in the next section. We note here that the simi-
larity variable N is related as

,,.fe“_b f (Q)

This result can be easily cbtained from Eqs. (), (¥2), (49), snd (52).
Bquation (61) shows that the similarity variable used here is the same
one adepted in Ref, 1l.

A great simplifiestion of the system of equations derived abowe can
be achieved by taking Pr= 1, ® = 1., In this simplified case, w obtain
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K" + kX" » a(xnz - q)

K3'+G" =0
T, (6e)
n—=0: K'=0, Ka=counst., G-T
®
M-e : K'al, Gs=sl
vbere
r-=1
B= 7

To obtain a preliminary estimate of the mass-transfer effects on the strong-
interaction phenomena on a flat plate, nmumerical integration of this simpli-
fied system has been carried out for y = 7/5 and 7 = 5/3. Results are sum-
marized in Figs. 2 through 12. In these numericsl results, G(0) and K(0)
have been assigned the following ranges of values:

T
G(O) -i! = 0, 005, o-”, 200’ u.o, 600, 8.0, 10.0
o

K(0) = 0, 20.2, 0.5, 0.6
For Pr = 1, G(0) = 1 corresponds to the case of an insulated surface, and
G(0) <1 cerresponds to the case of a cooled surface. Fositive velues of
K(0) represent suction (vw < 0), and negative values of X(0O) represent in-
Jectien (vw > 0) (see Eq. (68a), next section). Also calculated are values
of T and /2 where I 1s defined as

I e f (6 - x2) an (63)

°

Ve shall use these values of I in later calculations. In practice, the
upper limit of integration in Eq. (63) is finite, its values 1, being
given in Figs. 2 through 12 also.
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V. THE LAV OF SURFACE MASS TRANSFER FOR SIMILAR SOLUTIONS

In deriving the equations and boundary conditions for the similar so-
lutions in the boundary=lsyer flov, it has been necessary to take K(0) =
const. In this section, we briefly discuss the significance of this

condition. We obtain, from Eqs. (k8) and (kk),

XO) = T A ()
r(x x v
vhere N(x) has been defined in Eq, (48), and

Mx) = - ;—ti & Gp (65)

In the present investigation, T' is assumed constant. Therefore, in oxrder
that K(0) = const., we must have

vw"6rT (x) ¥ (x) C, =T, x(0) (66)

where C; is & constant. Bquation (66) gives the lav of injection neces-
sary for similsr sclutions., For ©® = 1, we obtain

Re. U A -1/
v = -—cl w! P x (61)

v ‘\/T Tl [}

vhere 1t has been agsumed that P, " (pox)"l/ 2, P, being a constant to be de-

termined later (Bq. (72)). This is the lav of injection f similar so-
lutions in the hypersonic-strong-interaction region of a flat plate. It
folloys, from Eq. (67), that

3/2
v _ _K(0) /P N @
WA/ R TR (&)

D
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- p'
In Ref. b, Yeswhara used the cenditions v,a X 1/8“‘;:_5 ap63/2
vhich are in agreement vith Bgs. (67) and (68). The present theory there-
fore oontains Yasuhara's results as a special case, namely, the case of an
insulated plate. Equation (68) ean be rewritten as

\1/2

This shows that for K(0) = const. the mass-transfer rate at the plate surface
must follow the special law in Eq. (68a). If a transpiration-cooling system
is to be designed based on this analysis, then a particular arrangsment of
pups, storage tanks, pressure regulators, and scosssories is needed to pro-
duce this special mass-transfer rate. In the case of a film-cooling system

or a sublimation- or sblation-cooling system, some further studies are neces-
sary to obtain an ides of the feasibility of this special surface-nass-transfer

rate.
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VI, MATCHING OF THE INVISCID- AND VISCOUS-FLOW SOLUTIONS

The ooamplete solution of the strong-interection regicn on the flat
plate vill be discussed in the present section. The visocous-boundary-layer
solution mst be metched to the inviscid solution. Such a matching can be
carried out in one of the following three schemes:

1. Scheme I: mmmammuuw(a)u-m

to the visoous-boundary=layer solutiom.

2. Schems II: The inviscid solution due to Wm(s) is
mtched to the visocous-boundary-layer salution.

3. schems I17:(13) e inviscid solution 1s approximately repre-
sented Wy the tangent-wedge approximstion and is then matched
t0 the viscous doundary-layer solutien.

We shall discuss driefly here Scheme I, making use of the results ob-
tained in Sections III and IV. In carrying out this scheme of mtching
between the viscous and inviscid solutions, we shall adopt the simplifi-
cations Pr = 1, w = 1.

From Bq. (61), w obtain

a-(r-l)'{w/g'l_ (s, %) of. (G - x'%) & (%)

From Eqs. (35) and (k6), on the streamline ¥ = const., ve have

3R -(8),

N
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vhence, tr Eq. (A7), w have

%--%—(-hl)og (1’0)

d
& (my)
It fellows that

;!.%-e(r-l)lé\/;; ’1,01/'*:'1/5[(6_"2)“ (70a)
-]

wbere O has been dstermined frem Eq. (69). Equstion (70s) can be compared
with Eq. (29.);* thus we obtain

Y |
Llﬁl-(ycl)ﬁ,\/';?\/il—_a:'g I (1)

where I is the integral defined in Bq, (63). To dstermine ¢ from Eq. (T1),
we need to Xnov p_ which, by Eqs. (308)X can be given as

) 7 52 i
% * [m”:ﬂ{g—rﬂ'(;—'%',} AT .2] ¢ (12)

I¢ follows that

-1/2
N y 7-2 !
‘/Fl’°m'[“"'gz”{"*1” u-?—)} v ] (e I,
k74

(722)

*In Eqs. (29e) and (30a), v taks n = 3/4 (see Eq. (60).
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Cosbining Eqs. (71) and (72s), w obtain

1/2(g(y + 3 [ + )2 - & ) 1/h s
G e S e B R

(Tla)
Finally, ve obtain here a definition of the nondimensional paramster ¢.

Substituting ¢ frem Eq. (Tla) into Eq. (30e) yields

1/2
.’A.u.ﬂ_’r-,l. 7 -2 _(L:_L)_I{s/"l}
R [7+1{(7+1)(1-33;)}A ] 5 'tVEs [

Equation (73) gives the pressure distribution in the strong-interaction

region on the plate surface. For 7y = 1.k, eo = 0.591, and A = 4,40,
we obtain, from Eq. (73),

v
%--W I{"E'\/ﬁl} (73a)
Combining Eqs. (69), (72a), and (71a), we obtain

"‘1%'[2(79,—1{7+1)(1'-} 2/3_7] mof(xl/_>1/2

(%)
Equation (7h) gives the boundary.layer- thickness distribution in the strong-
interaction region on the plate surface. For 7 = 1.k, we obtain, from

lQO (7~)'
. 1/2
W 2w.as5/1 {'@«/g} (Tha)




mmunmmmmm--,r-(ug),uunmnq. (89)
v

u. UK 1(0)

The local -skin«friction ocefficient is then defined as

shich can be expressed as
1/2
f r\/v:- [ y + {74- .11-%)}71\7'
1/2
JT {“f\/g } x*(0)

3

!

(75)

/s

(76)

This gives the variation of the skin-friction coefficient in the strong-

interaction region on the plate surface. For y = 1.k, we have

«/‘? 1\/5;‘ heloez 1/2 gn(0) <“1«/_ )1/2

We define the local heat-transfer coefficient S, as

- (E), l
% * FVETHI =D

We then find that

2

(768)

(m)

FEE S —

W
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Equations (73), (T4), (76), and (T7) are the results of matching the inviscid

and viscous solutions by Scheme I. In these calculations, we have used the
simplification Pr = 1 and w = 1. In the matching procedure, the viscous-
boundary-layer solution has been joined continuously with Oguchl's inviscid
solution regarding flow variables, including pressure and normal velocity.
No attempt has been made here to join continuously the inviscid and viscous
solutions regarding the temperature and density. To make the matching con-
sistent regarding temperature and density, a higher-approximation theory
similar to Oguchi's theory in Ref. 8 mast be developed., In such a higher-
approximation theory it can be anticipated that the interaction between
surface mags transfer and the entropy layer behind the shock wvave will
produce interesting effects. The treatment of the higher-apmroximation
theory will be deferred to & future report, and the discussion will be
confined to the present approximation theory. It will be seen that impor-

tant effects due to surface mass transfer cen be found within the present

theory.




VII, RESULTS AND DISCUSSION

BOUNDARY-LAYER THICKNESS

Figure 2 shows the effect of mass transfer and wall tempersture on the
beundary-layer thickness. The mass~-transfer behavier is quite similar to
that experienced by a noninteracting boundary layer. The boundary-layer

thickness increases hen material is injected and decreases wvhen material

is removed by suction at the wall. The wall-tempsrature variation of the
beundary-layer thickness shows an interesting property. The results indi-
cate that the boundary-layer thickness is most insensitive to mass-transfer
effeets for hot- and cold-wall conditions. The percentage changs in thick-
ness at a given injection or suction rate incresses to a maximm value which
1s reached at T /T = 1. This percentage change then decreases until it is
reduced to less than the cold-wmll ('1“/'1‘0 = 0) value. This would indicate
that the boundary layer is most "malleable" ItT‘/Tohl, as far as the
boundary-layer thickness (and, of course, induced wall pressure) is concerned.
This 1s the point at which the mass transer affects the coupled boundary

layer most effectively.

INDUCED SURFACE PRESSURE

Figure 3 shows the varistion of the induced presswre at the wall with
mss transfer and wvall temperature. Since the qudm-lq.r thickness and
induoed pressure are directly related, the bshavior of the two are quite
sixilar. The induced wall pressure increases with surface injection bdecause

of the thickening boundary layer. Suction at the wall produces the opposite
effect. The induced pressure exhibits the same meximm sensitivity at

Tﬁo =],
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Fig. 2 — Influence of mass transfer on
boundary-layer thickness
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Fig. 3 —Influence of mass transfer on
induced surface pressure




VELOCTTY PROFILES

The velocity profiles in an interacting viscous boundary layer show
some umusual charactaristics with varying mass transfer and wvall temperature.
This behavior effects an interesting varistion in the skin-friction coef-
ficlent. When the tesperature of the wall s low (T_/T < 2) (see Pig. }),
ﬂny.locﬁvmﬁhsnnpondtowdlinjectimandmcﬁoninthuml
mmer; that is, the welocity gradient at the wall increases, and the profile
becomes more shallow as mess is removed from the boundary layer. It can be
seen hov the boundary-layer thickness is decreased. The opposite effects
are brought about by injection.

As the wall temperature is increased (T /T > 4.0), several things
begin to happen (see Fig. 5). First, the velocity profile at the wall be-
comes more independent of the mass-transfer parameter K until (at '.I."'r/'l‘° >
8.0) (Fig. 6) it is a constant for all values of K, representing extremes
of well suction and injection. Second, the wvelocity gradient increases
generally with the increase in wall temperature, finally approaching a limit
at T /T ~ 8.0. The interesting thing to note is that the vall velocity
gradient and the boundary~lsyer thickness 40 not behave in a similar fashion.
The reason for this is the appearance at moderate wall temperatures ('1‘1',/’1‘o =
§.0) of a local velocity overshoot at about the middle of the boundary layer.
Since the pressure is constant throughout the boundary layer, this oversheoot
is caused by the acoeleration of low-density material near the wall, This
effect was first cbserved by 14 and Nagamateu'2) fer the sclid-well cese st
a similar tempersture and a £ = 0,400, The effeet here is much greater be-
osuse higher wall texmperatures have been investigated. The effect appears
for the first tims at T /T = 4,0, The overshoot is small (1 to 2 per cent),

it oaionhain MGtk . i< kaintuln “iiiciic: sica b M Sk RN
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fB:0.286

Fig.4—Influence of mass transfer on velocity

profiles in the boundary layer
for Tw/To=2.0
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Fig. 5—Influence of mass transfer on velocity
profiles in the boundary layer
for Tw/ To=4.0 !




Fig. 6 —Influence of mass transfer on velocity
profiles in the boundary layer
(Tw/To=80)
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and the wall mass-transfer oondition still influences the slope of the
veloaity profile rether than the height of the overshoot. As the wall
temparature increases, the mass-transfer paramster xo no longer affects the
wll velocity gradient, but reather changes the meaximm value of the welocity
overshoot in the boundary layer. At high wall temperature ("r“/'::o = 10,

B = 0,2686) the overshoot at high injection (KO-- 0.6) can be 25 per cent
higher than the velocity at the outer edge of the boundary layer. The fact
that the surface mass transfor changes only the overshoot velues and not

the wall gradient explains the interesting result that the skin-friction co-
efficient is insensitive to variation of mass transfer for very-hot-wall con-
ditions, as can be seen in Fig. 10. In fact, for T w/To = 10, both injection

and suction decrease the skin-friction coefficient, albeit by a small amount.

TEMPERATURE PROFILES

The thermal boundary layer is more regular in its behavior with mass
transfer and wall temperature (see Fig. 7). The thermal boundary layer is
about as thick as the dynamic boundary layer (3.0 <1 < 4,0) and remains essen-
tially constant in thickness as the wall-temperature ratio is increased. Al-
though the temperature gradient at the wall becomes very large for the hot-wall
case, it does not lose its sensitivity to the wall mass transfer (Fig. 8).
It is still possible to changs the heat transfer by significant emounts (50
per oent) even at very hot surfaces. There is no appearance of an overshoot
similar to that in the velocity profils. Examination of Fig. 9 shows that
sdisbatic-wall cases above T /T = 4.0 vill be aifficult to obtain with
reascnable mass-transfer paramsters. It is obvious that an enormous Ko <0
wvill be required to bring about an adiabatic wall condition. The boundary
layer will have sepurated, invalidating the equations long before the proper




Fig.7—Influence of mass transfer on temperature
profiles in the boundary layer
(Tw/To= 4.0)
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Fig. 8 —Influence of mass transfer on temperature
profiles in the boundary layer
(Tw/To=8.0)
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Fig. 9 —The influence of the wall temperature

| on the relationship between the heat and
mass transfer at the wall
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valus is reashed. It should prowe interesting to see how these valims
respond t0 a higher pressure gredient.

SKIN-FRICTION COEFFICIENT

The variation of the skin-friction coefficient with mass transfer and
wvall tempesrature is shown in Fig. 10. The skin friction is most sensitive
to mass transfer at a cold wall and loses this sensitivity quite rapidly as
the wall tempersture is increased. For 'I.‘“/'I'o > 6,0, the skin-friction coef-
ficient is essentially independent of mass transfer. The constancy of the
skin-friction cosfficient is a direct result of the insensitivity of the
velocity gradient to mass transfer. Figure 10 illustrates the importance
of mess-transfer oooling at lov wall temperatures. It is interesting to
note the linear character of the relationships. The skin-friction-cosfficient
variatien can be described quite well by an equation of the fom

-::—°-1+A(;:-:) K,

HEAT-TRANSFER COEFFICIENT

The heat-transfer coefficient is shown in Fig, 1l. It is much less
sensitive to the wall temperature and retains its dependence on the mass
transfer even at T'/TO-].O.O. This behavior is quite in line with the
results cbtained for the temperature profiles. Again the linearity of the
mass~transfer dspendence is noted; The heat-transfer coefficient may be
described by
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REYNOLDS ANALOGY

The different behavior of the velocity and temperature profiles at
high wall temperatures would indicate severe deviations fram the Reynolds
analogy. This is shown in Fig. 12, From this it is possible to comclude
that the Reynolds analogy is a reasonable approximation only for a cold

wall; this approximation works better for suction than for injection.

0.2

0.0 ] | ] | 1 |
-06 -04 -0.2 0.0 0.2 04 0.6 0.8
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Fig 12—Influence of mass transfer on
Reynolds' analogy
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VIII. CONCLUDING REMARKS

The results of this study may be succinctly stated as follows:

1. The boundary layer thickens with injection, so that the inter-
action phenomens increase.

2. The percentage increase in the boundary-layer thickness is a
function of the wall temperature and reaches a maximum when the ratio
T,/T, = 1.

3. The velocity and temperature profiles behave quite differently.

4, The velocity profiles exhibit an overshoot at high wall tem-
peratures (Tu/To > L4), The value of this overshoot, as well as the
boundary-layer thickness, is dependent on the mass-transfer parameter,
whereé.s the wall gradient is essentially a constant. This explains
the constancy of the skin-friction coefficient with K, at high T w/'1:0.

5. The temperature profiles retaln their sensitivity to Ko up
to (and probably beyond) T H/TO = 10. In order to achieve adiabatic
wall conditions at high '.I?w/'ro, values of Ko will necessarily be so
high that the boundary-layer equations will no longer be valid.

6. The Reynolds analogy breaks down for T w/To > 0. It retains
its validity longer for suction than for injection.

T. Both the dimensionless skin-friction coefficient and heat-
transfer coefficient exhibit remarkably linear behavior. It appears
that over a broad range of parameters (0 < Tu/To < 10; <0.6 < Ky < 0.6)
the coefficients may be expressed in the form
x . 1+4 (%) K
c fo ° 0
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The analysis presented here is being extended in several directions:

1. The relationship of B to the other variables is be:l.ng exam-
ined; all cases for B = 0.400 are being eva.lmted.*

2. 'The adiabatic wall condition is being examined.

3. The simple sublimation case is now being evaluated. This
model is generated by requiring the Clausius-Clapeyron equation to be
satisfied at the wall.

*

These results have been presented in a paper ("Der Effeckt der
Druckverteilung auf die Starke Z&higkeitswechselwirkung im Hyper-
schallgebiet an einer Platte mit Stoff-Austausch") read before the
wuaeggcl:hamme Gesellschaft f{ir Luftfahrt, Freiburg/Br., October
21’ l .
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