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ABSTRACT

The reduction of test time in low pressure shock tubes, due
to a laminar wall boundary layer, has been analytically in-
vestigated. In previous studies by Roshko and Hooker the
flow was considered in a contact surface fixed co-ordinate
system. In the present study it was assumed that the shock
moves with uniform velocity, and the flow wae investigated
in a shock fixed co-ordinate system. Unlike the previous
studies, the variation of free stream conditions between the
shock and contact surface was taken into account. It was
found that B, a parameter defined by Roshko, is considerably
larger than the estimates made by Roshko and Hooker except
for very strong shocks. Since test time is proportional to
p'z, previous estimates of test time are too large, particu-
larly for weak shocks. The present estimates for B appear
to agree with existing experimental data to within about 10
percent for shock Mach numbers greater than 5. In other
respects, the basic theory is in general agreement with the

previous results of Roshko.
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PR

I. INTRODUCTION

In an ideal shock tube (i.e., neglecting wall and real gas effects), the shock
and the contact surface both move with a constant velocity and the flow between
them is uniform (Fig. 1). In an actual shock tube flow, however, the presence
of a wall boundary layer causes the shock to decelerate, the contact surface

to accelerate, and the flow to be nonuniform (e.g., Ref. 1). Analytical and
experimental studies of the nonuniformities in shock tube flows have been

presented in References 1 through 10 (as well as by others).

The analytical theory presented in References 5 and 6 is applicable when the
wall boundary layer introduces only small perturbations into the ideal flow.

In these references, it was shown that the wall boundary layer between the
shock and the contact surface acts as an aerodynamic sink, removing mass
from the region between the shock and the contact surface. This mass removal
causes the shock to decelerate and the contact surface to accelerate, in agree-

ment with the experimental observations of Reference 1.

As the length-to-diameter ratio of a shock tube is increased and as the initial
pressure in the low pressure section is reduced, the wall boundary layer
effects become more pronounced. (The study of dissociation and ionization in
shock tubes has stimulated the use of low initial pressures.) Duff, 7 in a study
of the flow about 12 feet from the diaphragm in a 1-1/8 in. diameter shock tube
with initial pressures of the order of 1 mm Hg, found the flow to be strikingly
different from that in a conventional shock tube. In a conventional tube, the
separation between the shock and the contact surface (and therefore the test
time) increases with distance from the diaphragm. However, in a low pressure
shock tube, Duff observed that the separation reaches a limiting value and
remains constant with distance thereafter. When this limiting condition is
reached, the shock and the contact surface both move with equal and constant
velocity. This phenomenon must be taken into account when estimating

test time in low density shock tubes.
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Fig. 1. Shock Tube Flow in Laboratory Coordinates
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Duff correctly explained the limiting flow, where shock and contact surface
move with equal velocity, as one wherein the flow passing through the shock
equals the flow which moves past the contact surface due to the wall boundary
layer, He referred to the contact surface as a 'leaky piston." This effect

was later studied experimentally and analytically by Roshko. 8 In the analytical
portion of Reference 8, Roshko considered the flow in a co-ordinate system in
which the contact surface was stationary. The separation distance between

the shock and contact surface at any instant was found from a mass balance

that equated the mass flow through the shock to the sum of the boundary layer
mass flow moving past the contact surface and the rate of accumulation of mass
between the shock and contact surface. (Anderson9 had used a similar approach.)
Roshko used the boundary layer theory presented in References 11 and 12
(which applies for the boundary layer behind a shock moving with uniform
velocity). He also developed an approximate boundary layer theory to account
for real gas effects. (The latter are treated more accurately in Refs. 13

and 16.) Experimental measurements of test time for a valriety of initial

pressures were obtained by Roshko, which confirmed the basic theory.

Hookerlo noted an erroneous velocity transformation in Reference 8 and also
noted that Roshko had left out a term in the mass balance equation, namely, the
accumulation of mass between the shock and contact surface due to nonuniform
density in the boundary layer. He proceeded to correct Roshko's theory for
these effects and claimed a somewhat improved correlation between theory and

experiment. Howecver, the improvement was not dramatic.

The analytical results of Roshko and Hooker describe the basic features of the
flow in a low density shock tube and are widely used to estimate test time.
However, the flow model used in both papers (i.e., a co-ordinate system in
which the contact surface is fixed) contains several inherent contradictions. For
example, both authors solve for the nonuniform shock velocity relative to the
contact surface but assume, for one term in the mass balance equation, that the
shock velocity is constant. The nonuniformity of the flow between the shock and

the contact surface is not taken into account since both authors use a boundary



layer theory based on uniform flow between the shock and the contact surface.
They recognized that the latter assumption becomes correct only in the case of
very strong shocks but made no attempt to modify the theory for the
"not-so-strong'’ shock despite the fact that much of their experimental data were

obtained at n}xoderate Mach numbers.

In the present paper, the problem of test time in a low density shock tube is
investigated by considering a flow model wherein the shock moves with uniform
velocity. The co-ordinate system is one in which the shock is stationary, and
the wall moves. The present model is self-consistent. A boundary layer
theory is developed to take into account the nonuniform flow between the shock
and the contact surface. The solution applies to shocks of moderate strength,
as well as to strong shocks. Previous experimental data are re-examined in

the light of the present theory.




II. STEADY STATE SOLUTION

The experimental results presented in References 7, 8, and 10 indicate that
the shocked gas in a low density shock tube ultimately reaches a steady state
condition where both the shock and the contact surface move with equal and
constant velocity. The flow between the shock and the contact surface is
then steady when viewed in a co-ordinate system in which the shock and the
contact surface are stationary. In this co-ordinate system the wall moves
withvelocity u, (which equals the shock velocity U, in the laboratory
system). This steady flow is investigated herein with the primary object

of determining the separation distance between the shock and the contact
surface, The problem of unsteady flow, where the shock and the contact

surface have different velocities, is treated in Section III.

Steady flow is illustrated in Fig. 2. The shock is located at £ = 0, and the
free stream portion of the contact surface at £ = { m . The flow upstream of
the shock is denoted by subscript oo and moves with velocity u,» as does
thc wall. Free stream conditions between the shock and the contact surface
are denoted by subscript e. Free stream conditions directly downstream of
the shock have the additional subscript o. The percentage of mass flow in
the boundary layer increases with £ such that all the mass flow is in the

boundary layer at lm and the free stream is stationary at that location.
Roshko8 obtained an estimate for 1 m 1n the following manner. The flow
rate through the shock, rhs. equals

rhs =P u ) A (la)

where A is the cross-sectional area of the tube. Roshko assumed that the
boundary layer was thin and characterized the flow in the boundary layer at

the contact surface, n'nc. by
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A'f’

me = pr, o(“w - Y, o)6R (1b)

where L is the perimeter of the tube; 6R is a characteristic boundary layer
thickness at Im; and Pw, o and Uy, " U, o 2TE characteristic boundary layer
densities and velocities, respectively. The boundary layer thickness was

further characterized by

v
5, = By [—2 (lc)
R uw - ue,o

where B is a constant that must be found from an exact solution of the bound-
ary layer development in the tube. Equating Egs. (la) and (1b), since the

flow is steady, yields the following expression for Im

2 /p 2 u u
;= d e,0 e,0 e,0 (2)
m  16p2\Pw,0/ “w " Ye,o0 Yw,o0

where d = 4A/L is the hydraulic diameter. Assume that the temperature

upstream of the shock is at a standard condition sothat T =T , a_ =a__,
e} st’ o st

and Foo = Mgt Also, assume that the wall remains at its initial temperature

so that Tw = Tst' From continuity, Pow = (peue)o. Equation (2} can then
be put in the form

Pst fm _ 1 Pw WMB(P_a) (3)
p(D dz l6ﬁ2 pe,o w-1 ]

st

where W = uw/ue,o = pe'o/poo, Ms z uw/aoo' and P, iz a standard pressure

(usually an atmosphere). The right hand side of Eq. (3) depends primarily

on Mq. Hence, for a given Ms, the separation distance ‘m is proportional



: 2 . . .
to the product d Poy This can result in very short test times for shock
tubes with low initial pressure.

Equation (3) does not yield numerical results for lm unless an accurate

estimate of B is available. Estimates of f§ have been presented in References 8,

rove thege
rove (<]

el O

10, and 14, The primary nurpose of th pregent paper is to im
estimates, particularly for flows with moderate MS. This is done by taking

Eq. (2) as the defining relation for B

2 p ¢ u

.pzslgl <pe,o> Wl_l ve,o (4)
m\'w, o0 W, 0

and finding lm as accurately as possible from a consideration of the bound-

ary layer development in the flow 1llustrated in Fig. 2. A first estimate is

made below by considering the boundary layer to develop in a uniforsim external

strcam. An improved estimate is then made by employing the concept of

local similarity.
A, UNIFORM EXTERNAL FREE STREAM APPROXIMATION

Boundary layer development for the case of an external free stream that does
not vary with £ is illustrated in Fig. 3 and is discussed in the Appendix. Let
Em correspond to the value of £ at which the excess mass flow in the boundary
layer equals the mass flow entering through the shock. This gives

A(peue)o = L(peue)o (-6%) where &% is the boundary layer displacement
thickness at Em. Combining the latter expression with Eqs. (4) and (A-4)

(Appendix) yields

Bo = =T [ - W, + 1)y = /7T G (52)

The subscript o has been added to B to indicate that this value is based

on a bounday layer with a uniform external strecam.
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Fig. 3. Boundary Layer Development Assuming Uniform Free Stream
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Numerical values of po have been computed assuming an ideal gas and

pp = constant in the boundary layer (Appendix). These are listed in Table 1
for Prandtl number (o) = 0.72 and 1; y = 7/5 and 5/3; and for various shock
strengths.

A solution for the boundary layer behind a strong shock moving with uniform
velocity into air at an initial pressure of 0.001 atmospheres and

Tw = Too = 522°R has been presented in Reference 13. (Some results at 0.0l
atmospheres were also obtained.) This is a ''real gas' solution in the sense
that equilibrium gas charts were used to obtain the flow across the shock and
in the boundary layer. The Sutherland relationship was used to evaluate the
variation of pu in the boundary layer. Some of the boundary layer results
are given in Table 2. The ccrresponding values of [50 are included in this
Table.

It is expected that these values of po will overestimate ‘m particularly for
shock Mach numbers that are not large. This is due to the fact that the
relative velocity between the wall and the free stream increases from

u, " Y o at 1 =0 to u, at lm (compare Figs. 2 and 3). Hence the excess
mass flow in the boundary layer will be greater at a given £ than that obtained
from the above model (which assumes the relative velocity to remain constant
at u - Y, o)' This will result in smaller L and larger Pf than obtained
from Eq. (5a). However, for very strong shocks, where LI is small

1

relative to u Eq. (5a) should give accurate results.

In Reference 8, Roshko used two different expressions to evaluate B. The
first expression arose from a velocity transformation error (pointed out by
Hooker) and is the same as Eq. (5a). His results for ¢ =1, y = 7/5 (in Table I

of Ref, 8) are in agreement with Table 1 herein. He also used the expression

Br = g ((E-nig ], (5b)

-10-
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which is the basis for the results he presents in his Tables II to IV. Since
Ioo/(f - n), is positive, B is somewhat smaller than B and therefore

leads to greater error when computing 1 m’ Equation (5b) is the expression
that arises naturally from the contact surface fixed co-ordinate system

used in Reference 8 and is presumably the expression Roshko meant to employ
throughout his paper. In References 10 and 14, Eq. (5b) was therefore used

to evaluate B. This is discussed further in Section IV.
B. LOCAL SIMILARITY APPROXIMATION

In the present section, the streamwise variation of free stream properties
due to the increase in boundary layer mass flow with £ is taken into account.
The development of the boundary layer and the variation in free stream
properties are treated simultaneously. The boundary layer growth is found
by assuming that at each station it is similar to a corresponding boundary
layer developing in a uniform free stream behind a shock moving with uniform

velocity (i.e., local similarity).

Since the flow is steady (Fig. 2), the net mass flow through the shock equals

the net mass flow at any station £. Thus

[0 0]
Alpu)_ = Ap u_ +L fo (pu - p,u_) dy (6)

In Eq. (6), it is assumed that the boundary layer thickness is small compared
with d; thus the integrand is nonzero only in the region close to the wall.
Define

(-6%) (7a)

<11-



where &% ie the local boundary layer thickness

e ]

o% = (1 - _&) dy (7b)
o peue

Note that § is the ratio of the excess mass flow through the boundary layer

at £, to the mass flow through the shock. Thus G varies from 0 at £ = 0

tol at £ = Im. Equations (6) and (7) then give

- G
6=1-—S2 (8)
(peue)o

which relates the free stream conditions to the local boundary layer displace-

ment thickness.

The concept of local similarity is now introduced. It is assumed that the
boundary layer profile at each £ corresponds to that for a boundary layer
associated with a uniform free stream (equal to the local free stream) and
a wall velocity u, The origin of this boundary layer is at ‘i' which is
initially an unknown function of £. (See Fig. 4.) The origin li is chosen
such that the excess flow in the boundary layer at each £ has the correct
local value. It is also assumed that the boundary layer growth at each
section is the same as that for the corresponding uniform free stream
boundary layer.

The local displacement thickness is then (Eq. A-4)

.. Py 2(! - li)vw
o s g e L gy 1) o

-12-
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where (f - n)co and Ico are functions of the local free stream and wall

conditions (Appendix ). From Eq. (7a), T becomes

5= /¢ - gi He (102)

where

2
b v
£ = z[%(_ﬂ> ] oy (10b)
Pe /o e, 0
b\ 12 v
e, -2|3 (=) ] 2oy, (10c)
! d\Pe /o] Ye,0 !
Pe
H_ - vpe.o[(f-n)mnw] (10d)
v Ev‘e/ue,o {10e)

The nondimensional variable § now replaces L. In deriving Eq. (10a) from

Eqs. (7a) and (9), it was assumed that TW = Tw ° and Py = H

w, 0’

The problem now is to solve Eqs. (8) and (10a) simultaneously to find § as
a function of £. The value of £ at & = 1 will then define L, and B. First,
€i will be eliminated. Since & is a function of £, a plot of ® versus £ can
be made, as indicated by the solid line in Fig. 5. The dashed line in Fig. 5
represents the variation of § with ¢ for a boundary layer growing under a
uniform free stream corresponding to the free stream condition He at some
station §£. The origin of this boundary layer, gi. is such that & has the

correct value at §. The boundary layer is assumed to grow at £ at the same

-14-
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rate as the corresponding uniform free stream boundary layer (dashed line).

The value of § at some point £ + At is then

T +a6 = /(§+A§)-§iHe (11)

However, the boundary layer at £ + Af may be viewed as corresponding to a
boundary layer originating at gi + Agi and developing under a uniform free
stream corresponding to the free stream at £ + AE. The latter free stream
is characterized by the value He + AHe. The resulting boundary layer is
denoted by the dash-dot curve in Fig. 5. The choice of Agi is such that the
excess mass flow in the boundary layer 6 + A% at £ + Af is the same as for

the boundary layer originating at gi. Thus

T +Aa5= ﬁg + AE) - (& + A8 (H, +AH,). (12)

Equating Eqs. (11) and (12) and neglecting higher order terms gives

1 i _ e
3 = (13)

which relates A&i and AHe.

The total differential of Eq. (10a) is

aF 1 A8 - af, . AH, (14)
Tz TENE H,

In view of Eq. (13) this becomes

ab 1 _at
T 2 (15)

£ - & <}

«16-
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But, from Eq. (10a), £ - ﬁi = EZ/Hi. Hence, Eq. (15) becomes
-S-AE/Hi = At/2, or in integral form

g=2f =2 (16)

This expression can be integrated to find £ as a function of 5. The value
of £ at 6 = 1 is denoted gm and defines { - Inparticular, from Eqs. (4)
and (10b),

2

B = WoTE" © B, or B, (17)

NE_

The subscript 2 is used when gm is obtained from a numerical integration
of Eq. (16). The subscript 1 is used when gm is obtained from an approxi-

mate integration, as will be discussed later.

In order to integrate Eq. (16) it is necessary to express He as a function of
§. A procedure for doing this is outlined by Eqs. (A-13) through (A-16) in
the Appendix. These equations apply for an ideal gas where ¢ =1 and

pp = constant across the boundary layer. A numerical integration of Eq. (16)
is required. This has been done for y = 7/5, y = 5/3, and values of W from
1.100 through 6. The results for B, are included in Table 1. These will be

discussed later.

Approximate Analytical Integration of Eq. (16)

Equation {(16) ruquires a numerical integration and only the case of an ideal
gas where ¢ = 1 and pp = constant has been evaluated. In the present
section, an approximate analytical integration of Eq. (16) is obtained which

is suggested by the solution for strong shocks. It will be shown that this

approximate integration gives accurate results for all Ms' except Ms near 1.

-17-
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For Mz o << 1 (i.e., for strong shocks), the state properties of the fluid in
L
the free stream between £ = 0 and § = §m can be assumed to remain constant.
. Y o 2 .
That is, [pe/pe. 0] = Pe/pe,o 81+ O(Me'o) . Equations (8) and (10d) become

§=1-V (18a)

I
Qo
v
i
b

We now assume that 1 + Ioo/(f - n)oo remains fairly constant for a given flow
and may be taken equal to its value at £ = 0. (Note from Tables 2 and A-1

He=~f7[(f-n)m+\ ] (18b)

that Im/(f - 11)00 is small for strong shocks. However, Ioo/(f - “)oo decreases
with V (Eq. A-12) so that the present approximation tends to overestimate G.)

Equation (18b) now becomes

(f-n),

He =Wr(f—-m Go (19a)

W-VNT +1.022W
= G 19b
W-1 JV+1.022W © (195)

where the substitution for NV (f - q)w/(f - n)oo o in going from Eq. (19a) to
Eq. (19b) was found from Eqs. (A-8a) and (A-10a), In effect, Eq. (19b)

assumes that the change in He is due primarily to changes in boundary layer
velocity profile. Substitution of Eqs. (18a) and (19b) into Eq. (16) yields

1
_1 (1 - V)(1 + DV)dv
£ = f (20a

By u-EV? )

-18-




where

w 1 +1.022W 2

B = G (20b)
D=1/1.022W (20¢)
E=1/W (204)

Equation (20a) can be integrated and gives, for V = 0,

1 [DE-E- 2D L
= =53 [ e In(l - E) - E ZD] (21a)
%1-1'—%31@-[1 +0(1/w?)) (21b)

These equations become, in terms of W and Go’

2
_6.044 (w_l) ( _ 1 ( w )-
fm © G2 1+1.022W W 3.02.2)ln w1/ ! (22a)
(e}
"l W—lzl o1 /w2 -
Pozlmv] tron/wnl (
(¥

In deriving Eq. (22b), a term 0.015/W was neglected compared with 1.

Equations (22) can be used, with Eq. (17), to find . The resulting values
of B are given the subscript 1 to indicate that they are obtained from the
approximat}e intcgration of Eq. (16), Values of ‘31 obtained from Eqs. (22),
are included in Tables 1 and 2 and will also be discussed later.

-19-



The parameter pl has a simple relation to po when WZ >> 1., Thus, from
Eqs. (5), (17), and (22Db)

N

2
ow_l[1+0(1IW)] (23)

By =8

It is seen that [51 is larger than po but approaches [30 as W -~ oo,

Simplified Expressions for pl

Equations (17) and (22) indicate that ﬁl depends only on W and Go' The
value of W is found from normal shock relations and can be considered
known. The problem then is to find GO. In References 12 and 13, analytic
interpolation formulas for Go have been presented. These are used herein

to obtain simple analytic expressions for By-

For an ideal gas with pp constant in the boundary layer

G (24)

crwswey [, o
o° )
NT ¥1.022W (£ =Mglo

where the coefficient of the bracketed term is (f - n)oo o (see Eq. A-8a).
Substituting into Eqs. (17) and (22b) and neglecting a term 0. 01/W compared
with 1 yields

By =1.59[1+1_/(f-n)_] [1+0(1/W?)] (25)

The ratio [Im/(f - ﬂ)m]o has been evaluated for ¢ = 1 in the Appendix.
Substituting Eq. (A-9b) into Eq. (25) gives

6 =1 59[1 +0.56ZW( 2.57
l_ .

2
ST 1+—VT-)][1+0(1/W)] (26a)

-20-
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This agrees with the values of {31 in Table 1 for ¢ =1 and y = 7/5 and 5/3
to within 3 percent for W > 2, A similar expression can be derived to
correlate the ¢ = 0. 72 data in Table 1. If the constants in the expréssion
for [Im/(f - 11)00]o are adjusted so that B, has the correct value at W= 6,
=7/5 and W = 4, y = 5/3, the following expression is obtained for ¢ = 0. 72

B, :1.59[1+°2;:,°f"1”(1+2°v§4)] (26b)

This agrees with the results in Table 1 to within 2 percent for W > 2.

The effect of variable pp in the boundary layer has been treated in Reference 13
for the case of air. It was found that Go is related to the value of Go found

from a constant pp solution by

(G)

o' pp.=constant (27)

where Ce'0 = (pep.e/pwpw)o. The exponent 0.37 correlated the numerical
boundary layer solution for 4 <My < 14, Py = 0. 001, 0.01 atmospheres, and
Tc0 = TW = 522°R {in Ref. 13) and should be valid for air in a low pressure
shock tube. Equation (27) should also give reliable estimates for the effect of

variable pp for gases other than air.t This leads to the following expression

= 0.37
By = (C¢, o (pl)pp.=constant (27)

.37
TFor weak shocks, Co , is nearly one and the correction for variable PH
is small, For strong shocks G, depends primarily on (f - ) whxch is
obtained from an integration of the momentum equation (Cf")' E
where C = pu/pyiw. The quantity C varies monatomically from 1 at the
wall to Cg, o at the cdge of the boundary layer. Its effect should depend

primarily on the value of C. , and should not be a strong function of the
nature of the gas.
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for obtaining pl from values of [31 found from constant py boundary layer
solutions. Egquation (26b) then gives, for ¢ = 0.72 and W >2,

_ 0.37[, ,0.802W [, . 2.24
B, =1.59C, 2 [1+Zw_1(1+ - )] (28a)

where an ideal gas (constant y) solution for the shock is assumed (due to
the presence of Z). For strong shocks, where y no longer equals the ideal
value, Z approximately equals W. Hence, for strong shocks, Z can be

replaced by W and Eq. (28a) becomes

0. 37 0.802WwW 2.24
B, =1.59C [l + (1 + )] (28b)
1 e, o WZ -1 w

Results from Eq. (28b) for air are listed in Table 2. These agree within
2 percent with the exact values of pl (computed from Eqs.; 17 and 22a)
for M_ > 4. The agreement is within 1 percent for Ms > 8.

C. SUMMARY AND DISCUSSION OF RESULTS

Various estimates for f have been made. These will now be reviewed and

compared.

The parameter [30 was found by assuming the free stream to be uniform and
by finding lm such that the excess mass flow through the boundary layer
equalled the mass flow through the shock. This assumes that the relative
velocity between wall and free stream is Uy " Yo 0" Near the contact
surface, the relative velocity is actually u, Hence, ;30 is too small
(i.e., lm is overestimated). For weak shocks u,, is nearly equal to u

e, 0
and the error is very large.

In order to obtain an improved estimate for B, the variation of free stream
conditions was taken into account and a local similarity boundary layer
solution was employed. A numerical integration was required and the

resulting values of § were denoted ﬁz. Values of [32 were obtained for an
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ideal gas with y = 7/5 and 5/3, ¢ = 1,and pp = a constant across the boundary
layer. The results are given in Table 1 and Fig. 6. As expected, pz is
larger than By The difference is very marked near W = 1 since po behaves
like NW -1 while B, behaves like 1/NW -1 as W= 1, The latter behavior
for ‘52 is required in order that Im be finite a8 W =~ 1 (see Eq. 3).  The
infinite value of [32. at W =1, could have been avoided if Roshko had taken
the characteristic velocity to be u, rather than LYWL S in Eqs. (1b) and
(lc).

e,

The numerical integration to obtain pz is tedious and simplifications were
introduced to permit a closed form integration. The resulting values of g
were denoted B,. Values of By for ¢ =1, y = 5/3.and 7/5, and pp constant
may be compared with the corresponding values of pz in Table 1 and Fig. 6.
It is seen that ﬁl is somewhat larger than [32 for larger W and is smaller
than ﬁz for W near 1. The two agree within 8 percent for y = 5/3 and

5 percent for y = 7/5, except near W = 1, where the local similarity solution
itself is least accurate. Since "1 is relatively simple to obtain, it will be
used henceforth instead of ﬂz to evaluate the flow in a low density shock
tube,

Values of '51 for air, including real gas effects and variable pu, are given

in Table 2 and Fig. 7. The effect of variable pp is to decrease ﬂl by a
factor (Ce, 0)0. 37. This effect is most pronounced for strong shocks and
causes Bl to decrease continuously with Ms. Figure 7 includes values of

pR (Eq. 5b), including real gas effects, as computed in References 8 and 14.
The agreement betweenﬁR (from Ref. 8) and pl near Ms = 10 is fortuitous,
e, 0 The

results of Reference 14, for pR' are based on an accurate boundary layer

being due to a rough approximation by Roshko for the effect of C

solution. It is seen that PR underestimates Py and therefore considerably

overestimates ! [ recall Lo~ (3'2] for the range of M, in Fig. 7.

Values of By for argon are included in Fig. 7. These were obtained by
multiplying the values of B in Table 1 (¢ = 0.72, y = 5/3) by (C_ %" *".

The normal shock solution for argon was based on y = 5/3 and the results
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Fig. 7. Values of B for Air (Based on Equilibrium Real Gas Properties,

p.. = 0.001 atm) and for Argon, Including Effect of Variable pyu;
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are therefore not extended beyond Ms = 10 (where ionization effects become

important).

Ronshko8 measured test time in a low density shock tube for 2.5 < Ms <9 in
air and argon. He found that p = N3 gave a mean correlation of the experi-
mental data. Ilowever, since he computed B from Eqs. (5), he had no
rational explanation of why P should be so high. The present results (Fig. 7)
indicate that p = N3 is a reasonable mean value for his tests. The marked
decrease of B with Ms indicates that smaller Mach number ranges should

be used when correlating the experimental data, particularly for moderate

M .
8

The present results for [31 have been used in Eq. (3) to obtain the variation
of !mpst/dzp00 with Ms for air and argon. The results are given in Fig, 8.

The standard condition in Eq. (3) was taken to be Tst = 522°R and

Py, = 1 atmosphere, for which

6.93x 10° £t-!  air

©
1:|p
S
)]
or
]

7.39x 10° 7! argon

1t

Roshko used the values 6. 74 X 106 and 7.03x 106 for air and argon,
respectively. These values correspond to a higher standard temperature

[ Note that (pa/|.L)st ~ Tst-l. 26 for air, since p ~ 70 76. The effect of
initial temperatures other than 522°R can be readily taken into account].
The results for air in Fig. 8 are based on values of ﬁl obtained from

Fig. 7 for Ms < 14 and on values obtained from Eq. (28b). Real gas
normal shock solutions were employed. The difference in the values of

‘m for Py = 0.5 cm and Py = 0.001 cm is due to the effect of initial
pressure on the shock solution. This difference is small and probably within
the accuracy of the present solution. The results for argon in Fig. 8 are

based on the values of ﬁl in Fig. 7 and an ideal gas normal shock solution

(y = 5/3).
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III. UNSTEADY SOLUTION

In the previous section, the asymptotic value of the separation distance
between the shock and contact surface was found. This defines the test time
in shock tubes that are sufficiently long to permit the asymptotic steady state
flow to be reached. The separation distance as a function of time is required
in order to estimate test times in shock tubes wherein the steady state solution

is not achieved. This problem is now discussed.

It is desired to find the separation distance as a function of time, t, assuming
that the shock and the contact surface are coincident at t = 0. This problem
is very difficult to solve, and it is necessary to set up an approximate model
for the flow. Two limiting approaches seem tractable. The first is to assume
that the contact surface moves with uniform velocity and to attempt to compute
the nonuniform motion of the shock relative to the contact surface. At first
glance, References 8 and 10 appear to use this approach. "However, in both
of these references it is assumed that the mass flow through the shock, n’xs.

is a constant and thus a uniform shock velocity is implicitly assumed. In
addition, the proper boundary layer theory to be used in the contact surface
fixed co-ordinate system is not clear. (In Refs. 8 and 10 attempts are made
to relate the boundary layer to that behind a constant velocity shock with a
uniform free stream downstream of the shock.) The second approach is to
assume that the shock moves with uniform velocity and to find the rate at
which the contact surface moves relative to the shock. This model can be
specified more precisely than the first one, is self-consistent, and leads
naturally to the asymptotic solution obtained in the previous section. The

latter model will be treatcd herein.
A. SEIPARATION BETWFREN SHOCK AND CONTACT SURFACE

Consider flow in a co~ordinate system in which the shock is fixed and the
wall moves with velocity u, Assume that at time t = 0 the contact surface

coincides with the shock and that at some later time, t, the portion of the

-3]-




contact surface which is in the free stream is located at ¢ (Fig. 9). Also

assume that the flow between the shock and the contact surface is steady.

For steady flow, the rate of mass flow through the shock equals the rate of

mass flow through a control surface at f. Thus

(peue)oA pru dA

Pelieh + PougL(-5") (29)

where & is the displacement thickness at t. This continuity equation can

be reduced to

Peue
T=1- ooy (30)

which is the same as Eq. (8). If # is replaced by § (Eq. 10b), and local

similarily is assumed for the boundary layer, it again follows (see derivation

of Eq. 16) that
dt = 25 dB/H’ (31)

We are now interested in obtaining f as a function of t. But df /dt = u,.
=t i = =

Thus t -_/(') dt /ue. Define X = ue'ot/[ m’ T = l/lm. It then follows

{from l/'m = §/§m and Eq. 31) that

eot L %y [ s az/vid)
tm "'m o [I5a3/ml
Q
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xdx/n
T.‘.. .L (32b)

/: TaB/HS

The quantity x in Eq. (32a) is the distance of the shock from the diaphragm,

X, =ut. Equations (32) give the separation distance { as a function of

t {(or xs). The parameters X and T are the same as those introduced by Roshko.

The quantity T is the ratio of the separation distance { to the asymptotic
value t - The quantity X is the time t divided by the time it would take an
ideal shock tube (no boundary layer) to achieve a separation distance {

The latter may also be viewed as the shock distance x_ divided by the distance
required, in an ideal shock tube, to achieve a separation distance £,,, Note
also that dT/dX=u /u . For an inviscid flow, X = T. The departure of X

e "e,o0
from T is a measure of the wall boundary layer effect.

Equations (32) have been integrated for an ideal gas with ¢ = 1 and constant
fp across the boundary layer for y = 7/5 and 5/3. Equations (A-13)through
(A-16) were used. Plots of X versus T are given in Fig. 10. The results
for W =1.25, y = 7/5, and for W = 1.25, y = 5/3, are sufficiently close that
they appear as a single curve in Fig. 10, Similarly, the results for W = 6,
= 7/5, and W =4, y = 5/3, appear as a single curve. The displacement
between these curves is small and intermediate values of W are therefore

not plotted.

A simpler relation between X and T, suggested by the solution for strong

shocks, can be found as follows. Write Eq. (29) as

1 Pe Ye Pe Ve L(-8%)
= +
(p_u)) (pe quT

e €eo

(33)
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If variations in free stream density are neglected, the first term on the right
hand side can be written as u.e/ue' o = dT/dX. The second term on the right
hand side is the ratio of the excess mass flow through the boundary layer at
1 to the mass flow through the boundary layer at tm' For strong shocks,

the external free stream remains fairly uniform and the excess mass flow in
the boundary layer grows approximately as Nt so that the second term can be

approximated by ‘W-'-: =NT. Equation (33) then becomes
_dT
1=3g + NT (34)
This is the same equation as that derived by Roshko and the solution is
-§=¢n(1-'\/f)+’\}? (35)

Equation {(35) is also plotted in Fig. 10 and is indistinguishable from the
previous results for W =6, y = 7/5, and W =4, y =5/3. This shows that
the plot of X versus T is relatively insensitive to W and y and that Eq. (35)

gives an accurate representation except for W very near l.
B. TEST TIME

In the previous calculation, the separation distance was obtained as a function
of t. A quantity that is perhaps o1 greater interest is the test time (i.e., the
difference in time between the arrival of the shock and the arrival of the
contact surface) at a fixed value of x. This quantity will now be discussed.
Designate the test time by T. For t—o, T = lm/uw. Define T = u, T/t N
which is the test time at x divided by the test time at x+o. Since u, - u,

is the velocity of the contact surface relative to the shock tube wall, the test

time will nearly equal¢/(u_-u). Also, u_ o2 Ug20. It then follows that

w—iT272T (36)



At the start of the motion, T = WT/(W - 1), whereas after long times T = T.
If W is large, T = T throughout the entire motion.

The test time ?a at a particular station X, is found analytically as follows.
In the present model, the shock moves with uniform velocity u, Let !a be
the separation distance when the shock is at X and let xb be the location of

the shock when the contact surface is at x,. From Fig. 11 it is clear that

x, =X - 1y and T, = tb - ta = tb/uw. In nondimensional variables, the
latter expressions become

X =X - Tb/W (37a)
Tr'a =T, (37b)

Equations (37) give corresponding values of Xa and ?a from corresponding
values of Xb and Tb (which are found from Eqs. (32)or Fig. 10). Since
station a is arbitrary, the subscript a may be removed from Eqs. (37). Plots
of T versus X are given in Fig. 12 for anideal gas, where ¢ = 1 and

pp = constant.

If Eq. (35) is used, the relation between X and T becomes
“X=2[tn (1 -NT)+NT] +T/W (38)

Equation (38) is also plotted in Fig. 12.

It is seen from Fig. 12 that the variation of T with X is more sensitive to W
than is the variation of T with X (Fig. 10.) Equation (38) gives a reliable

estimate for the variation of T with X except for W near 1.
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Since the variation of T with X is relatively ingensitive to W (compared with

T versus X), it is preferable to attempt to correlate experimental data on the
basis of T versus X. The data should then correlate with the single curve
defined by Eq. (35) for all values of W except W near 1. Experimental obser-
vations of test time can be reduced to T as follows. If ?a is the nondimension-
alized test time at Xa, Eq. (37) indicates that the corresponding values of T

and X are

X= xa + ?a/W (39a)
T = Ta (39b)

This reduction procedure becomeg more important as W decreases. A

similar procedure has been discussed in Reference 10.
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L.

IV. COMPARISON WITH REFERENCES 8 AND 10

References 8 and 10 used a contact surface fixed co-ordinate system to study
the separation between the shock and the contact surface. The derivation of
their basic equations is outlined here. The assumptions which are required
to reduce the equations for the shock fixed model to those of References 8

and 10 are also noted and discussed.

The notation to be used in the contact fixed co-ordinate system is indicated
in Fig. 13. Subscripts 1 and 2 denote conditions upstream and downstream
of the shock, respectively. Us is the velocity of the shock relative to the
wall and u, is the velocity of the free stream in region 2 relative to the wall,
In both References 8 and 10 it is assumed that the free stream is uniform in
region 2 so that u, is a constant and also equals the velocity of the contact
surface relative to the wall. Hence, the free stream velocity is zero in
region 2 in contact surface fixed co-ordinates. The above notation is the
same as that used in References 8 and 10. In addition, the velocity in the

boundary layer, relative to the contact surface, will be denoted by a (Fig. 13).

The mass balance between flow entering and leaving region 2 is found as

follows. The rate at which mass enters the shock at any instant is

m,=p, U A=p, (U-s - uz) A (40)
The rate at which mass leaves, at the plane of the contact surface, is
0 "
m, = LS pf dy (41)

where pii is zero outside of the boundary layer. The rate of increase in mass

between the shock and contact surface, m, can be found in the following
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Fig. 13, Flow in Contact Surface Fixed Coordinate
System of References 8 and 10
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manner. Consider the interval of time between t and t + dt. The separation
distance increases by an amount d¢. Assume that the mass between 0 and {
at time t is the same as the mass between d? and £ + df at time t + dt (see
Fig. 13). The increased mass between the shock and contact surface is then

contained between stations 0 and d¢ and equals
=(SpdA) &t

=[P, + LS (p - py) dyldt (42)

This gives the following expression for the rate of increase of mass in

region 2:

th=[p, A+ LLY( - p,) dy) G (43)

(Roshko used m = P2 A df /dt and Hooker used the integral in the form
A Vbt pdy. Reference 14 corrected Hooker's integral.) Continuity of mass,

n'ls - mc = m, then gives

el dy l
(U, - u,) - ( [ > (’T Roa.hko (44a)

= g{_ [l + Nfl_(k‘/o‘m(% - l)jllx)] Hooker (44b)

/

where the integrations are t%ken at the contact surface.




Since the free stream was assumed uniform in region 2, the integrals in
Eq. (44) can be evaluated using the results of References 11 to 13 and are
independent of  and t. Hence Eqs. (44) can be integrated to find f as a
function of t. In integrating Eq. (44), both Roshko and Hooker assumed
that Us - u, is a constant. However, from Fig. 13, it is seen that

U’ -u, = d¢ /dt and therefore cannot be a constant for shock tube flows
when the wall boundary layer effects are important. Hence there is an
inconsistency in this model beyond the assumption of uniform flow in region 2,
The assumption that U’ - u, is constant is equivalent to assuming that the
mass flow rate through the shock is constant. This is precisely the basic
assumption made in the shock fixed model and it is not unexpected that the
two models give a similar variation of £ with t.

Equations (44) can be put into shock fixed notation by letting Us “uy Fu_

A=u- U, o and P2 = Pe, o The result is

[0 o]
1 %;g% -»nkj; P—e%;(“:o . 1)3_} =0 Roshko (45a)
a
= “fo 3{_ %[o (F;e: -l) 3'}

Hooker (45b)

(Roshko used pﬁ/pZ = p“/Pe.o -u, _as wellas p\'i/pZ =plu-u_ )p

e, e,0" "e,0
and the former is the transformation error previously noted in connection
with Eq. 5b.) The limit d¢/dt = 0, in Eqs. (45), shows that the

asymptotic separation distance ‘m is obtained from a value of g
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TR

equal to ﬂR as defined in Eq. (5b). When put in terms of X and T, Eq. (45a)
reduces to Eq. (34) and the integral is given by Eq. (35). However, in terms
of X and T, Eq. (45b) becomes

I
daT _ (o] dT
"HR"“T'[«"T'-n ]O“Tax (46)

which can be integrated to give

1 I
X T
'7=[“V'_°:’_]o [m(l.~lﬂ+«f"r]+[H.T‘lj".,_loz (47)

(o o]

Equation (47) is Hooker's modification of Roshko's Eq. (35). The differen&:e
between these equations is small, particularly for strong shocks.

Equations (45) can be compared with the corresponding equations which
arise in the shock fixed model. Equation (29) can be written

e eo e eo

~/‘ [ =0 (48)
eeo I

This can be reduced to Eqs. (45) by taking Pe = Pe o and by taking u, equal
to either u, ,or d¢ /dt, depending on the particular term involved. If

u, =u, o in the third term of Eq. (48), and if u, = dt /dt in the forth term,
Eq. (48) reduces to Hooker's Eq. (45b). However, it is more consistent
to let u, = for both these terms. This would mean that the coefficient

(de /tlt)/ue o on the right hand side of Hooker's Eq. (45b) could be replaced

Pe" L Pe'e d
b g, -V e, l(ﬁ‘i')ﬁ
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by 1. I this substitution is made in Eq. (45b) then it would yield a value of

P defined by ﬂo (which is more accurate than pR) and a variation of T with X
as given by Roshko's Eq. (35). The latter was shown in Fig. 10 to be in good
agreement with the integral solutionofthe shock fixed model for all W except

W near 1.

Hence Hooker's relatively small correction (Eq. 47) to Roshko's resulit
(Eq. 35) for the variation of T with X does not appear warranted. Equation (35)
is sufficiently accurate, considering the basic limitations of the contact

surface fixed model. The major problem is that of accurately determining f.
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V. COMPARISON WITH EXPERIMENTAL DATA

Experimental observations of test time in low pressure shock tubes are
reported in References 7, 8, 10, and 15. The results of the first three of
these papers are summarized in Fig. 14. The results will be considered in
the light of the present study. In particular, the question of whether the use
of ﬂl leads to improved correlations will be investigated.

The experimental results in Fig. 14 were reduced on the basis of p = N3
and T =7. t
his experimental data. Recall that both X and T are multiplied by ﬁz (since

The value of B = N3 was chosen by Roshko as a mean fit to

‘lm ~ p'z). An increase in § will result in an increase in both Xand T. In

regions where T has reached its asymptotic value (i.e., is independent of X),
changes in § will raise of lower T, but the effect on X will be unimportant
with regard to correlation with the asymptotic portion of the theoretical

curve in Fig. 14. If B were correctly evaluated, the experimental data should

by asymptotic to T = 1. Hence, the asymptotic data can be used to evaluate

"'B. In particular, p = '\/3/TA where TA is the asymptotic value of T in Fig. 14

for the data in question.

The results of the above procedure are compared in Table 3 with values of ﬁl
from Fig. 7. For air in the range Ms = 5 through 9, Bl is too small by about
10 percent. The results for argon cover three Mach number ranges and are
more complete. It is seen that {31 is too small by about 35 percent for
M_=1.6, 20 percent for Ms = 4, and 10 percent for M‘ = 5 through 9. These

8
figures are only approximate, due to uncertainty and scatter in the experimental

T’I‘he quantity T was found from an experimental measurement of test time.
The procedure noted in Eqs. (39) should be used to reduce the data to obtain

a plot of T versus X. This would displace the points in Fig. 14 to the right.
This displacement is unimportant in the region where T is near its asymptotic
value, which is the region of primary concern here.
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Fig. 14. Experimental Results of References 7, 8, and 10,
Reduced on the Basisof = V3 and T = 7T
{(Modified From Fig. 3, Ref. 10)
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data. However, the trend appears reasonable in view of the fact that the
procedures used to obtain ﬂl and ‘52' in the present analysis, become more
accurate as M‘ increases. Mixing and diffusion at the contact surface would
also tend to yield experimental values of f which are somewhat larger than pl.
The magnitude of ﬂl, and its variation with Ms’ is in much better agreement
than would be obtained by usiug BR. The large values of §, as M.-’l. indi-
cate that in the low M. range the test time is much less than previous esti-
mates based on ﬂR.

On the basis of the above data, it appears that the present estimates for Bl
are correct to about 10 percent for Ma 2 5. Additional experimental data
are required to better define f. A narrow range of Ms must be used when'f

is evaluated experimentally in the low Ma range.

Table 3. Evaluation of § from Experimental Data in Fig. 14

Gas Ref. M, Ta B=V3IT, 3
(Approx.) (Fig. 7)
Argon 7 " 1.6 0.2 3.9 2.4
Argon 10 4 0.6 2.2 1.8
Argon 8 5-9 0.9 1.8 1.7-1.4
Air 8 5-9 1.3 1.5 1.6 - 1.2
-49-
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V1. ADDITIONAL CONSIDERATIONS

The present theory can be used to estimate the flow nonuniformity in low
pressure shock tubes. In addition, the asymptotic shock strength for given
initial shock tube conditions can be estimated. Since in the present theory a
laminar wall boundary layer is assumed, it is also of interest to discuss tran-
sition to a turbulent boundary layer. Finally, it has been assumed that the
boundary layer is thin compared with the tube diameter, and this assumption

requires verification. These topics will now be briefly considered.
A, FLOW NONUNIFORMITY

An estimate of the flow nonuniformity between the shock and the contact surface

can be obtained from Eq. (34), which, in dimensional variables, can be written

u
S =1 -VT_I (49)
m

This gives the variation of u, with distance behind the shock. Isentropic flow
relations can then be used to find the variation with £ of all other flow prop-
erties. In shock fixed co-ordinates, the flow downstream of the shock cor-
responds to subsonic flow in an expanding channel. The density, temperature,
and pressure increase with distance behind the shock. The net change in these
properties can be expressed in terms of the flow Mach number directly behind
the shock ue,o/ae,o and is small for strong shocks. The present discussion
neglects relaxation phenomena which may also contribute to variations in the

free stream properties.
B. COMPARISON OF IDEAL AND ACTUAL ASYMPTOTIC SHOCK STRENGTH

The problem here is to estimate the actual asymptotic shock strength that will
result from given initial conditions in a low pressure shock tube. Perfect gases
with constant specific heats are considered. Here the conventional subscripts
1 and 4 are used to indicate initial conditions in the driven and driver sections,

respectively.
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If wall boundary layer effects are neglected, the resulting ideal shock Mach
number M’ L related to the initial pressure ratio p4/pl and sound speed

ratio a4lal by

> 2 1(Z 1)
Zl -1 a, Ms i-l P (Zl+l)Ms i-l (50a)
— ; = ] afe— U
Z\(Z, - TN ay ICI.s,i Py Z,

In the derivation of Eq. {(50a), it is assumed that the flow is uniform between

the shock and contact surface.

Duff’ has pointed out that the ideal shock tube equations can be modified to
account for the character of the asymptotic flow in a low pressure shock tube,
In particular, Duff neglects the boundary layer effect in the driver gas (valid
for strong shocks). He also assumes that the contact surface moves with the
same velocity as the shock and that the pressure: at the contact surface equals
the stagnation pressure (relative to the shock) of the flow directly behind the
shock. The shock Mach number M that then results from given initial

7 8, A
conditions is found from

2 1/(z4+l)
M a pl(Zl+ l)M"A- 1

— ] =} —
Zy -Tay Py 2y

(Z.+1)/2(Z ,+1)
Mi Atz ¢+ 1 ‘ 4
X111+ 2 {50Db)

. (zy - DI(Z, + DME , - 1]

The quantity Ms may be termed the actual asymptotic shock strength.

A
’
Eq. (50b) differs in form from Eq. (4) in Reference 7, since Duff was primarily
interested in determining the initial pressure ratio p4/pl required to achieve

a given shock strength Ms,A'
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When the shock tube diaphragm first bursts, the boundary layer effects are
small and the shock Mach number will tend to be M_ . as given by Eq. (50a)

Hence, Ms,i may also be viewed as the initial shock Mach number. (The
finite time required to rupture the diaphragm tends to alter this result some-
what). If the flow reaches its steady asymptotic limit, the shock Mach number
is given by Eq. (50b). ,")Theae two Mach numbers can be readily compared for
large initial pressure ratios. In the latter case, Eqs. (50a} and (50b) can be

equated to yield

Ms,A W, -

)
M T W, L +0(py/py)
8,1 1

(51)

1/(z4+11

where Wi is the density ratio across the shock corresponding to Ms ;» For
’

strong shocks, M is only slightly less than Ms i The difference becomes

8,A
more pronounced for weaker initial shocks.

Roshko8 has deduced an expression similar to Eq. (51) from a simple physical
argument. Namely, for ideal flow,the shock velocity relative to the wall is
Us,i = (W ue,o)i . For the asymptotic flow, the shock velocity approximately
equals the ideal contact surface velocity relative to the wall; U's, A~ (Ua -u

)

e,0'i’
The latter expressions give Eq. (51).

C. TRANSITION

It has been assumed throughout that the wall boundary layer is laminar between
the shock and the contact surface. This assumption is generally valid for low
pressure shock tubes. It is of interest to compute the Reynolds number at the
contact surface for the asymptotic flow condition. If this is below the transition

Reynolds number, then the validity of the laminar flow assumption is established.
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In Reference 16, a transition Reynolds number defined by

[w-1]1

v
e,o

eo

(Re)t (52)

has been proposed for correlating transition in shock tubes, Here, It is the
distance between the shock and the transition point. (The characteristic velocity
used to deduce Eq. (52) is the flow velocity relative to the wall and the charac-
teristic distance is the distance a particle moves in the free stream from the
instant it is set into motion to the instant it is at the transition point.) Experi-
mental observations of (Re) are summarized in References 16 and 17, For
weak shocks, (Re) = 0(10 ) The value of (Re)t increases with Ms‘ particularly
for strong shocks where the low wall-to-free-stream temperature ratio tends to
stabilize the boundary layer., This stabilization seems to occur at about
Tw/Te,o % 0.1, which corresponds to Ms % 10 in air. The, data in Reference 17
indicates that for 1 < Ms <9, (Re) appears to be in the range

0.5¢ (Re) X 10 -6 < 4. For larger M the values of (Re) tend to increase
markedly and values as high as 107 and 5 X 10‘7 have been observed 17 for Ms
around 10. An analytical study of the stabilizing effect of low Tw/Te,o has been

presented in Reference 18. The latter study is consistent with the experimental

data for very weak shocks, but indicates infinite stability for Ms > 2,18 in air,

The Reynolds number at the contact surface, corresponding to a shock-contact
surface separation distance of lm’ can be used to determine whether or not the
laminar boundary layer assumption is correct. This Reynolds number is

(Re)lm = ue'o[w - 1] !m/ve, o A8suming a uniform free stream, and can be put

) (53)

in the form

'U
n

'O

<p“>2 (_—TRG)Im M_w - 2 v fpa) (e
Pwo d s p'e',o(”‘ —dz_

-54.

J



PIURPE L.

The right hand side depends primarily on Ms' For a given M'. (Re)y varies

27 m
as(dpco/psg . .
may be required in order to assure laminar flow. Eq. (53) has been evaluated,

If d is increased to increase lm, then smaller values of P

employing the same data as used to obtain Figs. 7 and 8, and the results are

presented in Fig. 15.

The present results have been used to estimate (Re), for one series of
Roshko's tests in air. These tests were made in a tugé with d = 1/6 feet,

5< Ms €£9and 0. ImmHg <p_ < 5mm Hg. Using an average value
(pst/pm)z(Re)!m/d2 = 2% 10! (from Fig. 15), it is found that

104 < (Re)lmﬁ 2 X 107. At the higher values of (Re)lm' transition to a tur-
bulent boundary layer might have occurred. This would reduce lm' and increase

the effective value of B, as compared with a completely laminar boundary layer.

D. BOUNDARY LAYER THICKNESS AT !m

Let 6u represent the value of y at which (uw - u)/(uW - ue,o) = 0,99 and let

n, be the corresponding value of n. Hence, 6u is a measure of the boundary

layer thickness. Assuming that the flow behind the shock is uniform 6u is given

by (e.g., Ref. 13)
Pw Zlvw
Su =<p_-v u [n, - Ioo]o (54)
e e /o

The value of 6u at ‘m can be used as an index to determine whether the

boundary layer thickness is small relative to the tube hydraulic radius d/2.

Combining Eqs. (2) and (54) gives

28 M, - Io)e
- = X0 (55)
Im BNZTW-T)

TThis dependence is due to the fact that £, varies as dzpm/p.t and the Reynolds
number per unit length, behind the shock, varies as p,,/pgt¢-
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For constant pu, it has been fom'ui13 that the interpolation formula

n, =3 20/NT+0.543W is accurate. This together with the values of I  in
Table A-1 permits Eq. (55) to be evaluated forconstant pu. The effect

of variable pp on (11u - Ioo)o' for air, has been determined in Reference 13.
It was found that the variable pp values of ('f\‘1 - Ico)o for air, can be obtained

0.48

from the constant pu values by multiplying the latter by (C_ ) It may

e,0
be assumed that the latter correction for variable pu is also reasonable for

other gases.

Values of (Zbu/d)lm have been computed for air and for argon, including the
effect of variable pp. It was assumed that p = Bl in Eq. (55). The results
are given in Fig. 16. It is seen that, for both argon and air,

(Z6u/d)1m~ 1,0.7, and 0. 4 for Msag 1.2, 1.6, and 2. 4, respectively, and

decreases with increase of Ms'

The excess mass flow in the boundary layer was previously found by integrations
in which it was assumed that the boundary layer thickness small compared with
d (e.g., Eq. 6). Since most of this mass flow occurs in the portion of the
boundary layer near the wall, 6u is a conservative criterion for the size of the
boundary layer relative to the tube radius. For laminar boundary layers, the
thin boundary layer assumption is probably valid for Ms as low as about 1. 6.

This covers the range of Ms of practical interest in low pressure shock tubes.
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VII. SUMMARY AND CONCLUDING REMARKS

Test time and flow nonuniformity in low pressure shock tubes have been
investigated. It was assumed that the boundary layer was laminar and was

thin relative to the tube diameter.

In the first portion of the study, the asymptotic flow after long times was
considered. Here, the shock and contact surface moved with constant and
equal velocity. The flow between shock and contact surface was steady, in a
shock fixed co-ordinate system, and the separation distance was found. It
was necessary to treat simultaneously the boundary layer development and
the change in free stream conditions external to the boundary layer. A local
similarity boundary layer solution was used which utilized the uniform free
stream solutions given in References 11 to 13. The local similarity solution
should be accurate except for Ms near 1 (where neglect of the pressure
gradient on the boundary layer profile may become important). The accuracy
of the local similarity solution can be established by more accurate solutions
of the wall boundary layer or, perhaps, by applying the same procedure to
boundary layer problems where the solutions are known. This has not been

attempted.

The asymptotic separation distance yielded values of g which were consid-
erably larger than the previous analytical estimates of Roshko and Hooker,
particularly for moderate Ms' (As an example, consider y = 7/5, ¢ =1, and
pi constant across the boundary layer. Roshko obtained 0.91 < BR < l'.‘SZ.
for 1.29 < Ms < o, whereas we have obtained 2.22 < B, < 1.81 for the same
range of Ms. ) Test time is proportional to p'z. Hence, the previous

analytical estimates for test time are much too large, particularly for

rnoderate Ms.

The experimental test time data of Duff, Roshko, and Hooker indicated that

the present estimates for pl. are still somewhat low. For argon, they are
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too low by about 35 percent for Ms = 1.6; 20 percent for Ms =4, and

10 percent for 5 < Ms <£9. They are also about 10 percent low for Ss_Msg 9
in air. The discrepancy between theory and experiment decreases with
increasing Ms' This trend is to be expected since the local similarity solu-
tion becomes more accurate as Ms increases. It is also to be expected that
the analytical estimates for B should be lower than the experimentally
observed values since mixing and diffusion at the contact surface will tend to

reduce test time (i. e., increase B).

In the second portion of the present paper,consideration was not restricted to
the asymptotic flow, and the separation distance was found as a function of
time. In order to make the problem tractable, it was assumed that the shock
moved with uniform velocity and that the flow between the shock and the
contact surface was steady {in shock fixed co-ordinates). Both assumptions
are somewhat in error but should give at least qualitatively correct results.
The variation of separation distance with time, in nondimensional form, was
essentially the same as that obtained by Roshko, except for Ms near 1. Hence,
the main difference between Roshko's results and the present results is in the
numerical value of ﬂz (which is used to nondimensionalize both separation
distance and time).

The shock Mach number varies from an initial value of Ms,  to an asymptotic
value Ms, A during the course of the flow in a low pressure shock tube. For
strong shocks, Ms, i nearly equals Ms. A and the assumption of a uniform
shock velocity is valid. For weaker shocks, the question might arise as to
what value of Ms should be used to correlate experimental test time data or to
theoretically predict test time. When correlating experimental data, the
locally observed value of Ms should be used. When predicting test time, the
local value of X = xs/Wlm should first be evaluated using either Ms,i or

Ms' A (Eq. 50). If X > 0(10), the local flow will be in the asymptotic flow
condition, and Ma = Ms, A
turbed from the ideal flow, and Ms = Ms, i For X = 0(1), the local flow is in

an intermediate condition and a mean value between Ms i and Ms A would be
?

If X <0(0. 1), the local flow is only slightly per-

appropriate.
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APPENDIX

BOUNDARY LAYER BEHIND MOVING SHOCK

The results given in References 11 and 12 are summarized with regard to the
displacement thickness of the boundary layer behind a shock moving with
uniform velocity. It is assumed that y and o are constant, that pp is constant
across the boundary layer, and that the free stream is uniform behind the

shock.

These results are then put in a form applicable to the local similarity solution

discussed in the body of the report.
UNIFORM FLOW BEHIND SHOCK

The boundary layer is indicated in Fig. 3. The free stream is uniform and is

the same as that directly behind the shock. Subscript o is used for this flow.

In References 11 and 12 a similarity variable n is employed, defined by

a_
_r___ .._Lp (A-1)

WO w, O

and a stream function fo(n) such that

£ =ulu, , (0)=0 (A-2)

The boundary layer displacement thickness is given by

o .
= 1 - 1 _la (A-3)
[71- v ]

which is negativ.e for the boundary layer behind a moving shock.
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In terms of transformed quantities,

P [T ; it
g €90 [ €eo _ lim (fo - ) +/ (1 - _ep;ﬂ) dn (A-4)
o

W.OVZIVWpO n-~®

i

(- + 1),

G
o

Equation (A-4) defines (f - n)m‘ o' Ioo. o

fundamental importance in determining shock tube test time and can be

,» and Go' These quantities are of

evaluated from the numerical results given in References 11 through 13.
Typical values are given in Table A-1l for fluids with constant specific heats,

constant o, and constant pp. Real gas results for air are given in Table 2.

The boundary layer parameters in Table A-1 were obtained as follows. The

quantity (f - n)m oisa function only of W = uw/u and is tabulated in §

e, 0
References 11 and 12. The quantity Ioo o is found fromll

T
S =1T‘ 1 Mz.o (W - I)Z[ro(O)Is’o - Ir,ol +<1 - -T——‘” )Is.o (A-5)

e, 0

where M =u_ /a and
e, 0 e,0' “e,0

The quantities Ir , 1 , and ro(O) are functions of ¢, as well as W, and are

o' "s,0
defined and evaluated in References 11 and 12 for ¢ = 0. 72. However, for

o = 1, these quantities become (using Ref. 11)

(@W - 1L - m) ) o+ £5(0) (€= o
r@=1 I = TR L o= =22 (A-6) 3
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where fg(o) is also a tabulated function of W. Normal shock relations give

-1 .2 1 )
= Mo zw T (A-7a)

R B (A-Tb)
e,o e, 0

where Z = (y + 1)}/(y - 1) In Eq. (A-7b),it is assumed that TW = Tm' The
shock Mach number M, is related to W and Z by M2 = W(Z - 1)/(Z - W).
Equations (A-7a) and (A-7b), combined with the tabulated results in Refer-

ences 11 and 12, yield the values of Ioo o and Go in Table A-1.

The constant pu solutions in References 11 and 12 have been correlated in

Reference 12 by interpolation formulas. The equations

(f-m)y, o =1-135(W - /1 +1.022wW (A-8a)
f4(0) = -0. 489(W - 1) J1 +1.665W (A-8b)

correlate the numerical results in References 11 and 12 to within | percent.

It is also of interest to find an approximate analytic expression for
Ioo. o/'(f - n)m. o This can be readily done for ¢ = 1 by using Eqs. (A-5)
through (A-8). We find

I
_‘:'° =[1 +0.431/(1 +1.665W)(1 + 1.ozzw1Azw -1)  (A-9a)
. @,0

- So2Y [+ 20 ¢ oswdy (A-9b)
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For strong shocks, Z can be replaced by W in Eq. (A-9b).
BOUNDARY LAYER THEORY FOR LOCAL SIMILARITY SOLUTION

The boundary layer theory for use in the local similarity theory presented
in the body of the report will now be outlined. For simplicity, it is assumed
that 0 = 1. The free stream is uniform, with a velocity ug and the wall has

a velocity u,, (Fig. 4). The variable V = \.\e/ue o is introduced. As before,

W=u/u _.
w' e, 0

Expressions for (f - n)m and f"(0) are found by replacing W by W/V in

Egs. (A-8). The result is

(f-n) = 1.135(}’}- 1)/\/1“.022# (A-10a)
£(0) = -0.489(%'- - 1)\ f1+1.665 3 (A-10b)

which is valid for allo. For o =1, Eq. (A-5) becomes (since r(0) = 1)

1= Lz—l M:(%'- - 1)z a -1) +<1 - ;‘f)l. (A-11)
where

2 L B L |

T ¥y ")

But Me = ue/ae = Me'ov Te.o/Te and Tw/?e = (Tw/Te.o)(Te.o,Te)' Also,
the flow in the free stream is isentropic so that pe/pe. o= (pe,Pe. o)Y and

= v-1 . A- -
Te/Te,o = (pe/pe.o) . From Eqs. (A-7), (A-10), and (A-11), it can then
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be shown that

Is V wv-1 Teo W-V
o= 7w T WV 7 |1 +0.431 Wv_—ls/(v+l.665W)(V+l.022W)
Q e
T
ZW -1( "e
* =T \—— - (A-12)
h (e.o )]

It also follows that
He = VvPe/pe, o It~ N ¥ Ioo]

y/2 v-1
. _1.13sw [ Pe 14V [Peo [v-2
V+1.022w \P ZW-T\"p

e, 0 e

+o.4n ¥ o ¥ A eesw /v + 1.ozzw]|
(A-13)
To integrate Eq. (16),it is necessary to express He as a function of 5. This is
done as follows. For isentropic flow
2 z/2

Pole M [z-14M]

(peue)o Me.o Z-1+ M:

which,with Eq. (8), gives

2 Z/2
Z-1+M;
Me=(1-3')M 5

©0lz.1+M
e,o0

(A-14)
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which can be solved by iteration to find Me as a function of §. Also, for

isentropic flow

(z-1)/2

Finally

V= eue pe.o =(l -3) Pe.O

Peue o Pe pe

(A-15)

(A-16)

Equations (A-13) through (A-16) permit He to be found as a function of d and

permit the integration of Eq. (16).
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