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ABSTRACT

The equations of motion of a beam with the lateral
surface thermally insulated are derived, including
the effects of shear deformation and rotatory iner-
tia. Thermoelastic coupling in the heat conduction
equation and in the elastic constitutive relations is
also included. Axial deformations of the beam are
taken fnto account. Two examples are presented

and discussed.
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SYMBOLS

cross-sectional area

boundary of cross section of a beam
specific heat at constant volume

E/p

modulus of elasticity

Tz' < V’ y + W' z

see pages 18 and 20

imaginary part of w

moments of inertia

Timoshenko shear constants
thermal conductivity

bending moments (see page 5)

axial force (see page 5)

mode number

applied forces per unit length (see page 5)
shear resultants (see page 5)
applied moments per unit length (see page 5)
fA TdA

temperature measured from ambient
ambient temperature (absolute)

.[A Yy, X TdA

displacement resultants (see page 5)
l/AfAﬁ,V.W dA

displacements

iv




X, ¥ 2

rectangular Cartesian coordinates
coefficient of thermal expansion

lcl/(xmr) (see page 19),
nzwz/(xlz)[EIyy/(pA)] l“'/(A/Iyy + nzﬂzllz)(lee page 22)

l(3)\ + Zp.)azTol/[(X + p)pc]

wl /(n‘ncl) (see page 19),

w12/(nz'rrz)[pA/(Elyy)]1/2 (see page 22)

roots of the frequency equations, Eqs. (39) and (49)

Poisson's ratio

(-1 )1/2

k/pc thermal diffusivity

Lamé elastic constants )
density

stress components

cross-sectional rotations (see page 13)

frequency
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SECTION I
INTRODUCTION

In treating the problem of calculating stresses and deflections of a
complicated structure, the common practice is to consider the structure as
being made of a number of simpler structural elements whenever possible
and to treat these elements separately. Of all of the simple structural ele-
ments, the beam is perhaps the most common and at the same time the most
useful element. In many applications, the beam can be thought of as having
dynamic tractions and temperature gradients applied to its bounding surfaces.
This report treats the problem of the dynamic response of a beam to dynamic
loads and to thermal gradients applied to the ends of the beam under the con-
dition that the lateral surface of the beam is insulated. This latter condition
could be fulfilled approximately if the beam were in the hard vacuum of a
space environment and if the thermal radiation from its lateral surfaces could
be neglected.

?

It is well knownl that the temperature couples with the elastic prob-
lem in two ways: the coupling in the constitutive relations described by
Neumann3 and the coupling in the heat conduction equation described by Biot. !
This latter coupling can be neglected for a wide class of problems, 2 and
several articles have treated the problems associated with this assumption.4°6
Ignaczak and Nowacki7 have presented a similar analysis; however, because
the reference was not available to the author, no appraisal of it relative to

the present work could be made. The Biot coupling is included in this report

in a general theory which also includes rotatory inertia and shear deformation.
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SECTION I1

ANALYSIS OF RAYLEIGH BEAM

The coupled thermoelastic equations of motion in a rectangular Cartesian

coordinate system arel' 2

‘xx. X + crxy, y + o'xz, z - pu. tt

4 +0 to = pVvV
Xy, x Yy, y yz,z ) tt

“xz.x + Gyz, y+ T2z, 2 = PW, tt

KWoT = pc T BN+ 2u)a Tge
cxx=)\e +Z..|.Tf’x- (3N +2u)a T

= ke +20V _ - (3N + 2
cyy e p.v,y (3N +2p)a T

T,z = N +2pW,z -3\ +2u)a T

where o_ , o

xx

(2)

f (3)

s’

(4)

yy' etc., are the usual components of the stress tensor; \ and p

are the Lamé constants; G, V, W are the displacement components; k is the




R e,

thermal conductivity; p is the density; T is the temperature; c is the specific
heat of constant volume; e is the dilatation and is given by u <t v y +w
1} »

2
A comma followed by a subscript denotes differentiation.

The terms (3\ + 2u)a T occurring in Eq. (3) are the usual Neumann

coupling terms. The term (3\ + 2u)a T0 e, in Eq. (3) is the coupling
described by Biot, ! The method of procedure is to integrate Eqs. (1) through
(4) across the thickness of the beam. The centroid of the cross section of the
beam lies along the z axis, as shown in Fig. 1. Green's lemma is used in

the form

_I;(P’X+Q.y)dA = ];:-de+de ,

where A denotes the cross-sectional area of the beam and C the boundary of
the cross section. The equations will be derived first neglecting the shear

deformation of the beam which will be put in later. )

X

Fig. 1, Beam geometry.
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The physical meaning of these quantities is clear: Qx and Qy are the shear
forces and N is the tensile force in the beam; Mx and My are the usual bending
moments; U, V, W, Wx, Wy are the displacement resultants and moments
and will be discussed later; Py py. p, are the applied pressures, taken
positive when acting in the direction opposite to the respective coordinate
areas; Rx and Ry are the applied bending moments, taken positive in the

aforementioned sense.

Equations (1) are now integrated over the cross section of the beam.
The last of Eqs. (1) is multiplied by x and y respectively and integrated. The

results are:

=eU W

Q ,-p,=pV

Y, y ) tt
Nn z ) pz = pwa tt } (7)
My,z ) Qx N Ry = pwy, tt

X, tt

M, 2" Qy - Ry=eW

The same procedure is now applied to the heat conduction equation,

Eq. (2). Integrating Eq. (2) across the thickness, one has
k_(;("f’xx + T.yy)dA+k4T,zsz- pc/T'tdA=

(3N + 2u)a T,y 4 e dA (8)
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1f Green's lemma is used and if it is assumed that differentiations with respect
to z and t can be interchanged with the integration, one has

KT ,, - pe T"H(fc(- T x+T dy)=

(3N + 2p)a T 2 4 e dA (9)
where
T=/) Taa (10)
4

If the lateral surface of the beam is assumed to be insulated, then the integral

/é(- T ydx +T _dy) vanishes since the integrand is proportional to 8T/9n.
Then (9) becomes

_ 3
kTzz-ch.t-(3X+2p)aTo-a—t4edA (11)

‘Multiplying Eq. (2) by x and y respectively and integrating yields

- 9
KT, ,,-pcTy - k4T'di- (3X + 2u)a T 3¢ foe dA
(12)

= i} 9
KT, ,,- pc Tx't-kAT,ydA-(3k+2p.)a Ty 5 4ye dA

()
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where
T, = 4y’fdA Ty=4deA (13)

This is as far as one can go without assuming some sort of deformation
and temperature variation across the thickness of the beam. For the defor-
mations, it is not unreasonable to expect a linear variation; this will be taken
to be

u = u(z,t) , vV =v{z,t)
(14)

w =w(z,t) - xu’z o A

This assumption corresponds to Bernoulli- Euler bending theory. To include

the effects of shear deformation, this assumption must be modified slightly; )
this point will be taken up in detail later. Since the outer surface of the beam

is insulated, it would not be unreasonable to assume a linear variation in

temperature as well. For other boundary conditions, such as a given tempera-

ture on the surface, this assumption would not necessarily be warranted.

With the assumption of linear temperature gradients, and using the

definitions (10) and (13), one can express the temperature as

IxxTy(z. t) - IxyTx(z’ t)
I2

T-= T“A t) +x
1 -
xxlyy xy

I T (z,t)-1_T (z,t)
+y Yy Xx xyzx (15)

I -
XX yy I"Y
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This assumption gives rise to a fundamental inconsistency. The boundary
condition for an insulated surface states that the normal derivative of the
temperature vanishes on the lateral surface of the beam. Equation (15) will
not, in general, satisfy this condition. It is felt, however, that this incon-
sistency is an approximation of accuracy comparable to the usual approxima-
tions of beam theory, and should yield a good degree of quantitative accuracy.
A similar assumption was made by Biot in a similar problem which was
solved by a variational procedure.

The assumptions (14) imply that

xy yz Xz

P

) (16)

2z

q
"
L}
€
]
%
[~

Syv, zz) - EaT

(1= 2w , - xu - yv )+ (3N + 2")%

These implications are inconsistent with the assumptions used in deriving

Eqs. (7). These inconsistencies are inherent in beam theory, and the justi-

! fication of the deformations as given by Eqs. (14) has been establishéd by
: centuries of use.

The stress résultantl become

N =Esz~EuT

M, =-E(l u ,+1.v ,,) - EeT i a7

Mx = 'E(Ixyu, 2z + Ixxv,zz’ - Eco.'.['x




From the third equation of (16), it is easily shown that

LN, LMy - Lo M, \ LM =L M
zz A é 4 2
I I -1 L1 -1
xx yy Xy XxX'yy xy
I T -1 T I T -1 T
- Eax ,;XJI xI); x. Eay Yy X _xg Y. Ea% (18)
xx'yy = xy Lelyy = Iy

Using the last of Eqs. (16) plus Eq. (15) to calculate 8T/3y and 8T/8x, one
obtains

(3\ + Zp.)zaz'l‘o
kT 2z Pl - —TWFuTpe vt

(37 + 2u)a To(l - 2v)Aw . )

2
(3\ + 2u)a" T I T -1 T
- - - XXy Xy X _
k Ty. zz - PC [l (N + wlpc Ty,t k A 11 - IZ
XX yy Xy 3 (19)

-(3\ + 2p)a To(l - ZV)(Iyyu, 2zt +1

2 2
(3\+ 2p)"a’ T T
kT - pc|l - 0 kAL X XY ¥ o
X, 22 (A + ul)pc y:t 1 1 - IZ
xXx'yy Xy

=(3\ + 2u)a To(l - Zv)(Ixyu' 2z +1 v )

10




it now remains only to apply assumptions (14) to the equations of
motion, Eqs. (7). The result is

Qx, z " Px*® PA“. tt

Qy 2~ Py = PAV

N,z P, = pAw, tt } (20)

M z-Qx-R

= - +
Y, y = TPUyyu e * 1

xyv. ztt)

Mz~ Qy - R, = -p(lxyu, ztt ¥ L, ztt)
The terms on the right-hand side of the last two equations of (20) are the
rotatory inértia terms. Since the beam theory assumptions imply that the
shear resultants Qx and Qy are zero, the usual procedure is to eliminate
them from the first two of (20) by the last two equations. The result is

PN

+ Ixyv. zztt

)

'
-l

]
"

PAU - P Y o

PAV o = PLyY saee ¥ LV, 22t | (31)

N,z " Py T pAw’ tt

J

As a final exercise, the moment and axial force resultants are eliminated
from Eqs. (21) by means of Eqs. (17), with the result

EaT __ +E( +1
@ (Iyyu

Y, 22 , Z222 xyv, zzzz) + PA“, tt

+1 )=-p (22)

- P(Iyy“, zztt © 'xy", zztt x

11




g, my = s 2

[ —— e

Ea Tx. 2z + E(Ixy“. t 1111 + Ixxv. uz) + pAv' tt
- P(Ixy“. extt ¥ lxxv. sxtt) = -Py : (23)
~Eq T. z + EA w. zz " PA W oot =p, (24)

The basic equations to be solved are, then, Eqs. (19), (22), (23), and
(24). These constitute six equations in the six unknowns T, Tx’ Ty' g, V, W.
Note that only the first of Eqs. (19) and Eq. (24) contain w and T; thus, these
two equations uncouple from the rest. When Ixy = 0, the other equations

uncouple similarly into pairs.

12



SECTION I11
ANALYSIS OF TIMOSHENKO BEAM

In the previous section, the effects of rotatory inertia were included
(hence the name '"Rayleigh beam"9’ 10). In this section, the effects of shear
deformation will be included. The method of analysis will be quite analogous
to that of the previous section.

The basic equations (1) through (4) obviously will be unchanged. The
stress resultant, moment-resultant equations of motion, Eqs. (6), (7), and
(8), will also be unchanged. The heat conduction equations (12) and (13) will

be unchanged except in the term involving e.

To put in the shear deformation, one must change Eqs. (14). One

assumes that

U = u(z,t) . v = v(z, t)

(25)
w=w(z,t) - x¢x(z; t) - Y¢y(z' t)

Here Py and ¢y represent the total rotation of the elements including the
rotation due to bending and the rotation due to shear. The assumptions (25)

imply that

0oz = EW - %0 - Ve g) - EaT { (26)

e=(l-22)w -xo ,-Y9 ) +(3)‘+zpk)xi‘;.r.’T

13




1f, as before, one sets

T=4TdA , Tx=4deA , Ty:[\x’rdA , (27)

then the assumption of a linear temperature profile implies that

I T -1._T
'T=T+x XXy Xy "X
.\ 2z
Ixnyy'Ix

y

1. T -1_T
yy x Xy ¥ (15)

z
Ledyy = Txy

ty

Using (15) and (26) in the heat conduction equations yields

\
(3\ + Zp.)zaz TO
kT oz Pl - Falpe T o= 3N+ 2u)a Tyl - 2)Aw
2 2
(3x + 2p) To 1. T -1..T
) . XXy~ Xy x
kT, 2z "C[1 (A + plpc Ty, ek A L1 -12,
XX Yy xy » (28)
-0+ Zu)a Tyl - 2001 0, + L0 )
T 3\ + 2u)a® T, LT, - LT,
x,zz"!":l (N + p)pc Tx,t.kA I 1 -IZ =
XX vyy Xy
{3\ + 2p)a To(l - Z")(Ixy"’x, et Ixx¢y' t) ‘

14
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The stress-resultant deformation equations are derived as before, except
that the Timoshenko shear constants Kx and Ky multiply the expressions for
Qx and QY. (For a more complete discussion of these constants, see Ref. 11).
The results are

N=Esz-EaT

My = ~Ellyy 0,z * Igy®y,z) - Ea Ty

M, = -E(Ixy¢x’ . Ixx¢y’z) -Ea T, > (29)
Q =KpAlu - 9¢)

Q = KAty - 9)) ‘

These expressions must now be substituted into the equations of motion (7);
the result is

pr.A(u' zz ¢x. z) " Py T pAn' tt

KYP.A(VU zZ - ¢Y’ z) - py = PAV' tt

EAw zz-Eo' T,z' P, PAw.tt

X { (30)
E(Iyy¢x. 2zt Ixy Yo % 2t x"‘A(“ - #
- PPy 1t Iy Py, o) BTy 7Ry
E(Le s ze * Loty, as) + KA, - 9)

- Py bt lfy o) TEO Ty g7 R

15




0

Equations (28) and (30) constitute eight equations in the eight unknowns T,
T Ty' u v, W, 9 The boundary conditions are the usual ones for
the Timoshenko Iul.ml z}' plus those discussed in the previous section for the
temperature terms.

16
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SECTION 1V
CALCULATIONS

The formulas derived herein will be used now to calculate the frequen-
cies of the free oscillations of a simply supported beam for which Ixy = 0,
(This is not necessarily a symmetric cross section. ) Rotatory inertia and
shear deformation will be neglected. Two cases will be discussed: axial
vibrations with insulated ends, and bending vibrations with isothermal ends.
Bending (and temperature variations) will be assumed to occur in the xz plane
only.

With the above assumptions, the basic equations become -

(3x + 2w)%a? T,
kT'zz-pcl- N T,t=

(3\ + 2p)a Tyl - 2v)Aw
) (31)

{3\ + 2;.4.)20,2 TO KA
kT - pc|l - - T =
Y, 22 A+ p , t I Yy
Yy
=(3\ + 2p)a To(l - Zv)Iyyu' zzt
\
Elyyu. 2222 + pAu’ tt + Ea Ty, 2z = 0

3 (32)

t

EAw 2z " pAw'

, ¢ " Eq T. z = 0
Thus it is seen that these equations uncouple into one pair involving w and T
and another pair involving u and Ty' The equations involving w and T are the
equations of axial vibration, and the equations involving u and 'I‘y are the

bending equations; they will be treated separately.

17
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Case I: Axial vibrations, fixed and insulated ends

The boundary conditions are

' 2
The basic equations are
(3N + 2p)a T,L(l - 2v)AwW
c 0 , 2t
T - 0-aT - K
-4 et o
W 2z 'C_Zw.tt A T,z
|

(3N + 20)a® T
(A +p)pc

L
1l
<|H

4

(33)

(34)

It is easily seen that solutions satisfying the boundary condition (33) can be

taken of the form

w = F(t) sin%"—z-
T = AG(t) cos E}'ﬁ

18
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Then Eqs. (34) become

(3\ + 2u)a To(l - ZV)F

Qr(x-e)c+—-z-c+-r T =0
(36)
1".'.+nz'|r2 anmw _
ZFrT T FoT 60
1

Then solutions of the form exp(iwt) exist providing w satisfies the equation
-wz - nzwz nzw +__ 1 - ) 2172 lw M+ €= 0 (37)
vy s N- =g

1

where & = k/pc is the thermal diffusivity. This is a cubic inw. Ife = 0 or is
sufficiently small, there will be two roots close to w = nmc, /t, which corre-
spond to the free vibrations without thermal effects,and a root close to

w = ;(nznzll Ne /(1 - €)], 'which corresponds to a decaying ''thermal wave. "

It is of interest to compare the oscillations to those of a free vibration without
thermal effects. One sets

nm:1 !cl
w = -T— g and __kn'“' =Y (38)
Thus (37) becomes
(@ - 101+ oyl - )]+ oye gy L= 0 (39)
+ p

19
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while ¢ is usually small (¢ & 10'2). Y is large, at least for the smaller modes,
(yss6X 107). With this in mind, one finds that the roots close to { = 1.0 are
given by

Yy +1

G =1+ G s v ot (1)

v +1

The root near { =1/y is given by

;3="?+.'1-1_/_§l1_+o(,2) (42)

Y /v 41

Case II: Bending vibration--pinned ends, ends kept at zero temperature

The basic equations are, from (31) and (32),

(3\ + 2p)a T,(1 - 2v)
[ A 0 _
Ty 22 BEa- T, - r—yy T, + T LyU zat =

(43)

+ pAu' et Ea Ty, 2z - 0

Elyyu, 2222
It suffices to consider solutions of the form

nwz

F(t) sin T

e
n

(44)

]
"

G(t) sin 2;’-‘-

20
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Then

2.2

.. 2 2 (3\ + 2p)a Ty(1 - 2v)I
l"G+(A nn)G+ 0 yyrxﬂz

As before, there will be two solutions of the form

2_2 |[El

and one of the form

2l

!

F=0

(45)

(46)

(47)



for sufficiently small ¢. We are mainly interested in the root given by

Eq. (46). Accordingly, one sets

22 [El

LETVER S

4
w2a2)g2 ET

A/l +n°népe V pPA X
yy

[

Y:

Equation (45) becomes

%~ 101 +uy - L] ey el L= 0

This is an equation that is completely analogous to Eqs. (34) of the last

section, except that y is given by Eq. (48) instead of (38) and one must
replace N\ + p/(3\ + 2) by /(X + p). The roots are given by

1+.u/y " 2
g, = 1 +% + O(e ) ‘

€ -1 +u/y

-1+
1 +1/y°

L2 g ot ’

t,3=$+-“———45-‘+” + O(e?) )

Y 1+1/y

22
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be it temperature, deformation, or stress, and then to integrate this distri-
bution across the cross section to obtain resultants. These resultants are
then the quantities which are considered to be the dependent variables of the
resulting differential equations. Evidently, the success of the method depends
upon how closely the assumed distribution approximates the actual distribution.
In the case of thin beams, plates, and shells, a linear distribution suffices,
for all practical cases, to describe the stresses and deformations. For
temperature distributions, the situation is different. Depending on the prob-
lem, a linear distribution might or might nct be indicated. In the case of a
plate or shell, this is not unreasonable; in the case of a beam, the success

of the linear approximation definitely would depend upon the individual problem
at hand. The insulated beam was chosen for two reasons: First, it is believed
that the linear distribution is probably a good approximation here since there
are no prescribed temperature gradients over the cross section. Second, it
is a natural boundary condition since such quantities as ,/C‘S 8T/on ds vanish for
an insulated lateral surface. To extend beam theory to include the other types
of boundary conditions, one must use some further approximations to obtain

the boundary integrals occurring in the averaged heat conduction equation.

The effects of shear deformation and rotatory inertia are definitely of
second order for most practical cases, becoming of importance mainly at
high frequencies, or where the shape of the cross section changes abruptly or
rapidly. The Biot coupling is also a small effect, 2 becoming of importance
mainly when the dilatation changes rapidly. This would more or less imply
that for dynamic problems both effects would come into play under similar
circumstances, and it would be prudent to include all three effects in any
analysis where it is thought that any one effect would come into play. (The
case of a short beam in static loading where shear deformation is of impor-

tance is an obvious exception to the above statement.)

24
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