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FOREWORD

This report, as presented in Volume I and II, represents a final summary of
Boeing-Vertol effort under Contract DA44-177-TC-663 to determine the feasibility
and potential of the Ground Effect Take-off and Landing (GETOL) Configuration.
This analytical development program was initiated in 3September 29, 1960 and
completed on March 28, 1962 with a preliminary design of a Flight Research
Vehicle (FRV).

H. Wahl, F. McHugh and R. Hooper of Boeing-Vertol guided the parametric
analysis, development testing. preliminary design and report preparation under
the direction of W. Stepniewski.~-Technical assistance and cooperation was pro-
vided by S. Spooner. J. Whitman and G. Smith of USA TRECOM as well as
K. Goodsen and R. Kuhn of NASA's Langley Field facility.

Major development testing was performed by NASA at Langley Field. Static room
tests were performed from May 22 to June 30, 1961. Tow track testing began
May 31, 1961 and was completed June 9 1961, while wind tunnel testing of the
GETOL model commenced on July 7 and ended on July 28, 1961. Planform and
dynamic model testing was alsoconducted by Princetonand Toronto Universities.

Special mention for technical service during the life of Contract DA44-177-TC 663
go to T. Sweeney of Princcton University, B. Etkin, J. Liiva, R. Radford, and
G. Kurylowich of the University of Toronto, H. Chaplin of DTMB and J. Wosser
of ONR. Editorial coordinative assistance for this final report was provided by
J. Gaffney.
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1.

v APPENDIX A

STATEMENT OF WORK - CONTRACT DA44-177-TC-663

RECITAL

a. There is a continuing need for U.S. Army aircraft to be made capable of

operating under the most adverse conditions. One characteristic which
greatly limits the utilization of current Army aircraftis the requirement
for relatively smooth and firm airstrips.

. As part of its program to hring abouta satisfactory solution to the prob-

lem of operation from unprepared fields, the Army desires to determine
the feasibility and potential of an aircraft landing gear system utilizing
the peripheral jet principle to form an air cushion on which an aircraft
would operate in the landing and take-off regimes. Such a system may
provide the capability for operating independently of prepared landing
facilities. An aircraft incorporating this system is referredas a GETOL
aireraft (Ground Effect Take-off and Landing).

2. STATEMENT OF WORK

a. The Contractor as an independent contractor and not as an agent of the

Government shall in accordance with the instructions of the Research
Contracting Officer (hereinafter referredtoas the ‘‘Contracting Officer’’)
provide all engineering services, personnel, labor, material and facil~
ities (except as hereinafter indicated) and use its best efforts in the
conduct of a research program leading to and including the preliminary
design of a research type aircraft to prove the feasibility and potential
of an aircraft landing gear system utilizing the peripheral jet principle
to form an air cushion on which an aircraft would operate in landing and
take-off regimes for operations within the mission of Army aircraft.

. To the extent applicable to this research aircraft design pertinent Gov-

ernment specifications shall be used as guides for the structural and

functiona’ designs of the aircraft. The design objectives of the research

type aircraft shall be as follows:

(1) Ground effect take-off and landing with ground clearances of at least
three feet with no more than maximum continuous power of the
power plant.

(2) Take-~off and landing over a fifty foot barrier within 500 feet.

(3) 250 mph at standard sea level conditions at. maximum power.
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(4) Two place (side by side desired), dual controls, with a 600 pound
lift capability (crew included, fuel not included).

(5) Sufficient fuel for 1-1/2 hours at cruise power (maximum contin-
uous) at sea level.

(6) Handling qualities to fulfill both helicopter and fixed wing require-
ments in all flight regimes.

(7) Auxiliary wheels for ground handling.

(8) All controls shall act in a conventional manner throughout the entire
flight range.

c. The Contractor has submitted a proposal for a research program which
may generally be followed but specifically the research program shall
be accomplished in three (3) Phases as follows:

PHASE I - WIND TUNNEL MODEL FABRICATION

Through analysis based on existing experimental data, the Contractor shall
establish the configuration and provide the design of a wind tunnel model of a
research GETOL aircraft in accordance with the design objectives above speci-
fied, to the extent that the same may be applicable and feasible in a wind tunnel
model, to demonstrate the nature of GETOL performance attainable. Said model
designed shall have a wing spread of approximately 6 feet. The model design will
be coordinated with the NASA Langley Laboratory and will be compatible with
the requirements for model tests in the NASA facility. Upon completion and co-
ordination of design, the Contractor shall fabricate or have fabricated the wind
tunnel model in accordance with the design developed as aforesaid.

PHASE II - MODEL TEST AND DATA ANALYSIS

The Contractor shall deliver the wind tunnel model fabricated under Phase I to
NASA Langley and render assistance as called upon in the installation of the
model in a wind tunnel and shall thereafter provide technical assistance in sup-
port of a wind tunnel test program coordinated among the Contractor, the Con-
tracting Officer and the operator of the test facility, and shall obtain and reduce
the data obtained from the wind tunnel test. The Contractor shall also render
assistance in the installation of the wind tunnel model in an additional test
facility to be made available by NASA, and thereafter provide technical assistance
in support of this additional work. The Contractor shall obtain data from tests
(not to exceed two (2) weeks) to be conducted by the Government on the model in
simulated forward flight (moving model) over a stationary ground plane on sim-
ilar aerodynamic configurations and control settings as the wind tunnel tests.
The Contractor is to compare data obtained in this manner with that obtained in
the wind tunnel to determine ground plane boundary layer effect encountered in
the wind tuhnel -testing and shall analyze all the test results with respect to the
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GETOL potential displayed. The Contractor shall submit all test data and cor-
rections to the Contracting Officer and on the basis of such analyses shall make
recommendations as to the sufficiency of the test data to form a basis for the
work conteraplated under Phase III hereof.

PHASE III - PRELIMINARY DESIGN OF RESEARCH AIRCRAFT

Utilizing insofar as applicable the results of the work performed under Phases I
and II above the Contractor shall make a preliminary design and performance
analysis of a research type aircraft incorporating to the maximum achievable
the design objectives above stated, capable of demonstrating the GETOL concept
through flight testing and providing a basis for evaluation thereof.

d. The Contractor shall prepare a final report in accordance with
USATRECOM Circular 715-10, to be submitted in draft in three (3)
copies, to contain a complete description of all work and experimentation
accomplished including the test data, a direct comparison of the data
obtained in simulated forward flight tests (moving model) with the data
of the wind tunnel tests of corresponding configurations, complete details
of the methods utilized in the comparison of the simulated forward flight
tests of the model with that of the wind tunnel tests, analysis of the test
data, and complete preliminary design description, including drawings,
of the research vehicle with a presentation of the considerations, data
and analysis employed in sufficient detail to clearly justify the design
criteria and configuration of the research aircraft. The report shall also
contain recommendations for construction of a flight vehicle, ground and
flight test programs, and schedules therefor. On approval of the draft,
with such revision or augmentation as the Contracting Officer may direct,
the Contractor shall prepare one (1) reproducible and five (5) copies for
submission to the Contracting Officer.

e. During the work hereunder, the Contractor shall, upon request of the
Contracting Officer, make available any of its personnel engaged in the
performance of the work for conferences with the Contracting Officer.
Said conferences may include a full discussion of any or all of the work
performed hereunder. The Contracting Officer or his representative
shall be free to comment on or limit any of the work which is performed
by the Contractor, in which event the Contractor shall thereafter take
into account any such comments or limitations in performing further
work. The Contracting Officer, at the conclusion of each such conference,
shall prepare a memorandum setting forth the result of such conference,
which memorandum shall serve as a guide for further work. In the event
Government personnel visit the Contractor’s facility for the purpose of
conferences or study of the work, the Contractor shall make available
to the Government representatives rdequate office space and other facil-
ities as may be necessary at no additional cost to the Government.

f. The Contracting Officer shall be the sole judge as to the adequacy and
completeness of any of the work to be performed hereunder and shall be_
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at liberty to make suggestions as to further work required or as to other
data as the case may be. The Contractor shall perform such other work
or revise and augment the work hereunder in such particulars ius are
requested by the Contracting Officer. No work performed by the Con-
tractor, in order to meet the approval of the Contracting Officer, shall
be deemed to constitute a change in this Statement of Work so long as
the work is in furtherance of the reports, designs, fabrication, tests,
analyses, or other data to be prepared hereunder. Changes in the scope
of the contract will be made only by the Contracting Officer by properly
executed modifications to the contract.

g. Project Officer: The Contracting Officer may designate and authorize a
represeniative to act as project officer under this contract. Such repre~
sentative as may be appointed will be specifically designated in a letter
from the Contracting Officer to the Contractor. The project officer shall
receive for the Government the reports and other material required under
this contract and will represent the Contracting Officer in the technical
phases of the work. The project officer will not be authorized to issue
change orders, contract supplements, or directany contract performance
requiring contractual modification or adjustment. Changes in the scope
of work will be made only by the Contracting Officer by properly ex-
ecuted modifications to the contract.

h. Plan for Performance: Within twenty (20) days after receipt of written
notice from the Contracting Officer of the award of this contract, the
Contractor shall deliver to the Contracting Officer its Plan for Perfor-~
mance of the work under the contract for completion of the work within
the time specified in Clause 3. entitled ‘‘Period of Performance’’. Said
schedule shall be delivered, in duplicate, in sufficient detail to be used
as a guide in evaluating the Contractor’s performance.

i. Technical Progress Reports: The Contractor shall submit monthly
technical progress reports, in triplicate, to the Contracting Officer by
the 20th of each month following the month for which the report is ren-
dered. Such reports shall set forth the general results, progress achieved,
and plans for continuing performance of the work hereunder. It shall
specify the project name and objective, contract number, and by reference
to the plan of performance, a comparison of planned and actual progress
and planned and expected completion dates. It shall include a written
report of all visits to Governmental agencies or commercial organizations
made in connection with this contract and shall also include a brief
summary of results and findings obtained therefrom. In addition, the
Contractor shall furnish informational copies of this reportto such other
agencies, and only such other agencies, as may be designated by the Con-
tracting Officer.
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APPENDIX C

NASA STATIC ROOM AND WIND TUNNEL TESTS

Appendix C includes the major portion of the data obtained from the development

testing performed at NASA with the GETOL wind tunnel model (See Volume I,

Page 19). Two methods of presenting data in Figures 104 to 206 are used so as

to include two flight regimes. The first method covers forward flight and

represents a variation of the conventionally defined aerodynamic coefficients of

a model (CL. Cp and Cy) with angle of attack for specific values of momentum
Slot Momentum

coefficient (Cu = Dynamic Pressure x Wing Area)' The second method covers hover

and transition and consists of representing the conventional aerodynamic co-
efficients divided by the momentum coefficient as a function of the reciprocal
of the momentum coefficient. These relationships are presented for constant
values of angle of attack. This approach permits finding the value of a conven -
tional aerodynamic coefficient, for instance Cp,. at transition for any angle of
attack by dividing the CL/C values represented by ordinates by the 1/C given
by the abscissa. H H
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Figure 104, Configuration No. 12, BF = -OR = +30x h/c = .33, (Runs 420 -422)
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Figure 105. Configuration No, 12, 6, = - GR = +30x h/c = ,33, (Runs 423 -424)
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Figure 106. Configuration No, 27, 6. = -0

F

R H30% h/c = «, (Runs 671 -673)
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Figure 107, Configuration No, 27, O
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CONFIGURATION NO.27

RUNNO.
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= =6p = +30x h/c = =, (Run 682)
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CONFIGURATION NO. 36
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Figure 108, Configuration No, 36, 65 = -6 +30x h/c = «, (Runs 675 - 677)
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Figure 109, Configuration No, 36, 0p = -0
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Figure 110, Configuration No. 37, OF = - OR = +30x h/c = .33, (Runs 415 - 418)
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Figure 111, Configuration No, 64, Op = Oy 6 = 0x h/c=,20, (Runs 611 - 613)
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Figure 112, Configuration No, 63, 8

l CONFIGURATION NO. 63
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= 0x 6p = Ox h/c =33, (Runs 607 - 609)
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Figure 113, Configuration No, 34, 6 = Ox 6p = Ox bh/c= .5, (Runs 615 - 617)

225




M
aSc

1

MOMENT
DYNAMIC PRESSURE X WING AREA X CHORD

L
Q3

LIFT
DYNAMIC PRESSURE X WING AREA

h/c = ,20, (Runs 505 - 508)
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6 T CONFIGURATION  NO. 51
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Figure 114, Configuration No, 51, 6., = -60x OR = +60x
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Figure 115, Configuration No, 6, GF = -60x 0R= +60x

h/c=,33, (Runs 511 - 514)
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h/c = .33, (Run 515)
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Figure 116, Configuration No. 6, GF = -60x 9R= +60x
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Figure 117, Configuration No, 50, GF = -60x

h/c = .33, (Runs 499 - 503)
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CONFIGURATION NO.50
RUN NO. J/qS
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502 1.7375
503 3.0084
GR = +60x
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Figure 118, Configurations No, 55, GF = - GR = +60x

h/c= .33, (Runs 429 ~ 430)
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Figure 119. Configuration No, 26, 0y = - O = +60x
h/c = ©, (Runs 690 - 692)
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Figure 120, Configuration No. 73, Op = - 6, = +60
h/c ==, (Runs.683 - 685)
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Figure 121, Configuration No, 81, 0 = -6, = - h/c = .20, (Run 404)
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Figure 122, Configuration No. 79, 6 = - b= - h/c = .20, (Run 402)
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Figure 123, Configuration No. 78, 9. = -
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Figure 124, Configuration No, 80, bp=-06p=- h/c = .33, (Run 403)
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Figure 125. Configuration No. 2, §_ = -30x 6 = ~30x h/c =, 20,
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(Runs 487 -490) °
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Figure 126, Configuration No, 2, 6., = -30x @
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Figure 127, Configuration No, 15, 6
(Runs 544 - 545)
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Figure 128, Configuration No. 1, 6_ = -30x 6y = -30x h/c =, 33,

F
(Runs 493 - 495)
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Figure 129, Configuration No. 1, 4
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Figure 130. Configuration No. 4, Op = ~30x 6p = -30x h/c = .33,
(Runs 517 - 518)
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Figure 131, Configuration No. 5, 6 = -30x 6, = -30x h/c =.33,

R

(Runs 520 - 521)
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Figure 132, Configuration No. 13, 0p = -30x 6p = -30x h/c = .33,

(Runs 547 - 548)
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Figure 133, Configuration No, 28, .= -30x @ = -30x h/c =,33,

~ (Runs 481 - 484)
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Figure 134, Configuration No, 28, GF = -30x 6, = -30x h/c = .33, (Run 485)
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Figure 135. Configuration No. 29, OF = -30x O = -30x h/c = .33,
(Runs 556 - 557)
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Figure 136, Configuration No, 30, 6p = -30x 6 = -30x h/c = .33,
(Runs 653 - 554)
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Figure 137, Configuration No. 48, oF

= -30x 0, = -30x h/c =.33,

R

(Runs 523 - 524)
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Figure 138, Configuration No. 49, OF = -30x OR = -30xh/c =.33,
(Runs 526 - 527)
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P = -30x O = -30x h/c =. 33,
(Runs 551 - 552)
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Figure 140, Configuration No. 57, 0., = -30x 6., = -30x h/c =, 33, (Run 559)
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Figure 141, Configuration No, 3, 6. = -30x 6, = -30x h/c = .50,

F
(Runs 535 - 538)
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Figure 142, Configuration No, 3, 6p = -30x 6p = -30x h/c= .50, (Run 539)
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Figure 143, Configuration No, 7, 6p = -30x 6 = -30x h/e = ,50,

(Runs 541 - 542)
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Figyre 144, Configuration No. 42, 0

(Runs
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633-635)
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CONFIGURATION NO.42

RUN NO. J/qS
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= ~30x 6p = +30x h/c = . 20,




L

LIFT
OYNAMIC PRESSURE X WING AREA

MOMENT

DYNAMIC PRESSURE X WING

qSc

AREA X CHORD'

qS

6
4 ,—-%
/ ‘647
}
2 /
0
.4 o 4 8 12 46 20°
ANGLE OF ATTACK, a DEGREES
4 847
3 /
/ 646
2/ —_1645
/?
i ,/
0
-4 0 4 8 12 16 20
ANGLE OF ATTACK, a DEGREES
4
/“‘ 647
3 //
/ 646
2 PJ/;
7 /
/ 645
i L
0
-4 0 .4 8 1.2 1.6 2.0
DRAG D
1) ——
DYNAMIC PRESSURE X WING AREA qS

Figure 145, Configuration No. 68, GF = -30x GR
(Runs 645-647)
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CONFIGURATION NO.68

RUN NO. J/qs
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=+30x h/c =. 20,
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Figure 146, Configuration No. 8,

CONFIGURATION NO. 8

RUN NO.| J/q$
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447 .5895
448 1.3963

=-30x 0, = +30x h/c =.33,

Op R

(Runs 445-448)
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Figure 147, Configuration No, 8, 6
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(Run 449)

259

0
qQS

= -30x 6, = 30x h/c =, 383,

R

T CONFIGURATION NO.8
/1\ RUN NO. J/qS
2 / 449 2.4326
44
J ~_9/
0
-8 -4 o] 4 8 12 16 20




s 0§ .6 T
'e® 8 tre" 8

) 459

o 4 1

@

o é

5

457

x .2 458

g 460

4
- < o
2
&2 -s -4 0 4 8 12 16 20
§ 3 ANGLE OF ATTACK, a DEGREES

% ¢ 460

i |

Qa

o 3

g 459

5 2 ,/ o

y 457

2% ! //

LIFT

g
&
a O !
> 8 -4 ) . 8 12 16 20
§ ANGLE OF ATTACK, a DEGREES
* q /
& / 460
=2
[723
9
w3
a 459
O
g e
g 2 / 7 457
>
. /A

I

, /
0
-4 0 4 8 12 .6 20 24
DRAG )

DYNAMIC PRESSURE X WING AREA qS

Figure 148, Configuration No. 9, OF = -~ 30x 6 = +30x h/c =.33,

(Runs 457-460)

260

CONFIGURATION  NO. 9

'RUN NO. J/qS
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458 1812
459 .5492
460 1.3075
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Figure 149, Configuration No, 10, 6 = -30x

F

(Runs 469-472)
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O = +30x h/c =, 33,
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Figure 150, Configuration No. 10, OF

(Run 473)
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CONFIGURATION NO. 10

RUN NO.
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= -30x 0, = +30x h/c =, 33,
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Figure 151. Configuration No, 82, Op = =30x 6 = +30x h/c =, 33,

(Runs 410-413)
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Figure 152. Configuration No, 11, 6. = -30x 6, = +30x h/c =, 33,
g F R

(Runs 463-466)
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Figure 153. Configuration No. 11, 6p = -30x 6 = +30x h/c =.38,

F
(Run 467)
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Figure 154, Configuration No, 35, 6 = ~30x 6 = +30x h/c = .33,
: (Runs 619-622)
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Figure 155, Configuration No. 35, BF = ~30x GR

(Run 623)
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Figure 156, Configuration No, 46, GF = -30x OR

(Runs 6563-655)

=+30xh/c =,33,
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Figure 157, Configuration No. 47, 6, = -30x 6, = +30xh/c = .33

(Runs 657-659)
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CONFIGURATION NO. 47

RUN NO. J /98
657 191
658 .530
659 1.240
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Figure 158, Configuration No. 66, Op = -30x Op = +30xh/c=.

(Runs 629-631)
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Figure 159, Configuration No, 65, Op = -30x Y

(Runs 625-627)
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=+30x h/c =, 33,

6 l I CONFIGURATION NO.€5
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- - CONFIGURATION NO. 69
Lg=h2, tyg =4 65!
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R
(Runs 649-651)
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Figure 160, Configuration No. 69, 6 = -30x 6 = +30x h/c =, 33,
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Figure 161, Configuration No, 43, fp = -30x 6 = +30x h/c =, 50,

(Runs 637-639)
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Figure 162, Configuration No. 67, 6., = -30x 6

F
(Runs 641-643)
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CONFIGURATION NO. 67

RUN NO. J/qS
641 216
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643 1.413

= +30x h/c =, 50,



o YR S CONFIGURATION NO.70
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Figure 163, Configuration No. 70, 6 = -30x fp = +30x h/c=w,
(Runs 661-665)
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Figure 164. Configuration No. 71, 6 = -30x 6 = +30x h/c =,

R
(Runs 667-669)
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Figure 165, Configuration No, 76, bp = ~30x 6 = +30x h/c ==,

(Runs 705-709)
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Figure 166. Configuration No. 77, 6 = -30x b = +30x h/c==,

(Runs 711-~713)
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Figure 167, Configuration No. 18, 6

= +30x 0

F R

(Runs 587-588)
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=-30x h/c = .20,
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Figure 168, Configuration No. 18,
(Run 6589)
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= -30x fp = +30x h/c =, 20,
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Figure 169, Configuration No, 16, oF = +30x R
(Runs 590-591)

CONFIGURATION NO. 16

RUN NO. J/qas
590 .3640
591 2.2339
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Figure 170, Configuration No. 31,

(Runs 405-407)

9F= -30
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CONFIGURATION NO. 31
RUN NO. J/qS
405 2333
406 7225
407 3651

6. =-30 h/c=.33,
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Figure 171, Configuration No. 31, 6
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F
(Run 408)
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(Run 560)
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Figure 172, Configuration No. 58, 6p = -30x 6y = -30x h/c = .33,
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Figure 173, Configuration No, 59, GF

(Run 561)
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MOMENT
DYNAMIC PRESSURE X WING AREA X CHORD

L

LIFT
DYNAMIC PRESSURE X WING AREA’

M
qSc

QS

L
[\

DYNAMIC PRES SURE X WING AREA = qS

Figure 174, Configuration No. 60, OF = ~30x OR

(Runs 563-564)
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Figure 175, Configuration No, 44, OF = - OR
(Run 575)

287

CONFIGURATION NO. 44
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Figure 176, Configuration No. 45, 6

F

R

(Run 576-577)
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Figure 177, Configuration No.
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Figure 189, Configuration No. 64, OF = 0x GR =0x, h/c=.2



1 16
- - q
J|- tes 8 'TE'L
ll1 ‘2
J'|° 4 2-—
2l 3 '
) =
Olu
e 1<} //
wio 2
Sz
- E /
3 g |
o
x
o0 4 8 1.2 1.6 2.0 2.4
c|=
" 3
Uclf} a //'6
- 7} 12
. & 2 e
o l‘&. / 4
E 8 l‘ o] -‘—-
OlE —
ok
(L] |
3z % 3 8 1.2 1.6 20 2.4
o3
3
. 1.2 1 m
1] e
() |u 8 r
;I! // o
glz 4 /
w|= k’—4
8 E / /
Ol /
St / /
Wiy /
s
Qe -af—
3z ' / v
S|z >
Iz _,
5 o . e 8 12 s 20 24
! SN 1
. MOMENTUM COEFFICIENT Cu 4
Figure 190. Configuration No. 63, OF = 0x GR = 0x, h/c =..33

302



S T .
e 'Le®-8: tye®8 e =16
" =4
4
o3 .
s -4
£
U -
Gis /
EO
[ O 2
&
[&]
I
jg | ot
>
0
o|~» (o] 4 8 1.2 1.6 2.0 2.4
" 3
8[3‘ a Kls
2|z o>
E.g //‘// 4
TS | -
W
o3
ol
§§ 0
oo . .
b

1.2
=8 [} 16
zll lz
%) lo 8
" 4
L
wl, 0
OfL.
8 ©
2 7
§ S
g-.4
9|g
I
- -.8 -
a 0 .4 8 1.2 1€ 20 2.4

| )
VOWENTOM COEFFIGIENT T "

Figure 191, Configuration No. 20, 6. =0x 6, = -30x, h/c = .33

F R

303

BN



2.4

20

2.0 2.4
]
4
L]

2.0 2.4
L/

|

/
>
|2

L.as
cu J

18

| "]
-8,
16
| 15>
/7
——
-8
1.6
l)s/
/
12
4
-4
-8

12

qa 8
”
7
o
/
1.2

g
o
8>
/
- -
0 -4
[

[]
/

~N

304

:
fg® 8, tygs8
165
~
”

8
"
"

8

N

MOMENTUM COEFFICIENT

< <
| ¢ |No
o 4 (o] A
0 < " ~ - L] ~ - o Y Q ® © 4 o~ o o~
'
L .73 _IN3IDI44300 WOUNINOW ¢ _ 7D IN3IDIJ430D WAINGWOW  3F 7D IN3I13330D WNININOW
3 "5 T IN313134300 14N Q@ "33  1N3i33307 ovaa - W CN IN3DLII305 INIWON ONIHOLId

Figure 192, Configuration No. 2, Op = ~30x 0 = -30x, h/c =.20



CR-AL ud

2.0 24

2.4

0
as
v

7

-8

-4
-8

2
s
Cu

.6

ARSI

.2
305

AW N

MOMENTUM COEFFICIENT

<
. o
o " ~ - o ~ o © © L ~ o N
o ° \
£ .75 _AN31D134300 WNINIWOW £ 7D _ 1N3IDI34300 WNINIWOW 2F 7D IN3IID144300 WNLNIWOW
3 "5 T T INDIE3300 13N 0 05  IN31D13330D 9vN0 W "W, T IN31D134300 LN3WOW SNMILId

Figure 193, Configuration No. 1, OF = -30x 6 = -30x, h/c =.33



[ L]
J

s s
Cu

MOMENTUM COEFFICIENT

. e | LR LRk e r e |
ol o ® o7 % o ol 8 | Yme o T 9 o
/ o o o
SR T A R
N // \ Wl TN .

HER \\\\VEAIR W U A\ .
NN\EREERANT AN
3 | ), A\ |
1N312149300 WNININOW ..“...n . 1|w3n pzw,”.u_uuw.a.uu :.quzws : ar Mv. . 3._.zu_.”_&uo” z:h”uzom

AIN3NII430I 14N a 2 AN31D134300 9vd0 w :U INFIDIS44300 INIFWONW ONIHILID

306

Figure 194, Configuration No. 4, Op = -30x 6, = -30x, h/c =.33
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Figure 197, Configuration No. 28, GF
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Figure 200. Configuration No. 31, 6p=-30 6 = -30, h/c=.33
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Figure 201, Configuration No. 3, BF = -30x GR = -30x, h/e =.50
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Figure 204, Configuration No.’ 10, 6 = -30x 6 = +30x, h/c = .33
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APPENDIX D

MOVING MODEL TEST RESULTS (NASA TRACK DATA)

Appendix D includes the data obtained from development testing performed
at the NASA track facility (See Volume I, Page 74). The method of presentation
used in Figures 207 to 211 of Appendix D consists of plotting the variation of the

conventional aerodynamic coefficients divided by the momentum coefficient for
specific angles of attack.

This development testing was performed without the honeycomb flow straight-
eners behind the fan. As a result, this altered the flow distribution within the
model which in turn rendered the resultant data questionable. Specifically,
there was a disparity between the flow distribution across the measuring station

and the basic distribution obtained in the static room. This factor prevented a
simple integration of the flow.
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APPENDIX E

UNIVERSITY OF TORONTO DYNAMIC MODEL DATA

PART 1

Research on the Dynamics of an Airplane Flying
in the "Ground Cushion"

by

G. Kurylowich
R. C. Radford
B. Etkin

PREFACE

In response to a proposal entitled ‘‘Proposal for Research on the Dynamics of
an Airplane Flying in the Ground Cushion’ by B, Etkin, dated Jan, 11, 1961, the
Vertol Division of the Boeing Airplane Company made available the sum of
$5000 to the University of Toronto for research in the indicated area, (Order

No, 96-54391.)

This report, together with Ref, 1, are submitted in compliance with the terms
of the contract, as the final report required.
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I. INTRODUCTION

A self-propelled GETOL model similar in concept to the Vetrol drawings supplied
was constructed and flown over the UTIA 20 ft, diameter track to determine the
feasibility of this means of testing, and to obtain any results possible. The tests
proved successful and are described in detail in Ref, 1, Some of the data ob-
tained is reproduced from that report in Section III herein.

In addition to the work reported in Ref, 1, a program of static tests was under-
taken to determine the velocity distribution of the air issuing from the peripheral
jet slots of the model. This was accomplished by mounting the model in a test
rig while a total pressure traverse of the slots was made, These results are
presented in Section II. Additional related information derived from wind-
tunnel tests of a rectangular wing of aspect ratio 4 is in process of publication
(Ref. 2).

II. VELOCITY DISTRIBUTION OF THE ANNULAR JET

The annular jet of the Vertol model was investigated with pressure probes to
obtain the distribution of flow, In addition, the model was held over a ground
board coated with lamp black and kerosene to obtain a visual picture of jet
behaviour, This last test was conducted at a height of 1/8’’ above the ground
board and is shown in Figure 213, The following is a summary of the test data
obtained,

The pressure probing system used is shown in Figure 214. The model was
attached to two Dexion sections which acted as tracks when the model-Dexion
combination was placed on the guide rails. 18 shrouded pressure probes were
attached, by means of plasticene, to the Dexion stand D such that these probes
were approximately 1/32" below the undersurface of the model’s wing, By mov-
ing the Dexion track-model combination over the guide rails, a pressure traverse
was made at the positions shown in Figure 212, By this means, all traverses
through the annular jet could be made within one minute of model running time.
The pressure probes were connected to a manometer board, inclined at a 45°
angle, which was photographed to produce the records.

The pressure readings are presented in Table I, while Figure 215 to Figure 219
inclusive are the graphical presentation of v2 through the annular jet, Figures
220 and 221 is a cross-plot of Figures 215 to 219 and shows the span-wise
variation of V2 (proportional to jet momentum flux) at d/G = .2, 4, .6, and .8,
A graphical integration of these curves then produced the total jet momentum
flux and average velocity (see Appendix A).

o1, TEST FLIGHTS

The feasibility study of the track facility was accomplished by the analysis
of 6 flights. Two of these were runs over a level track while the other four
were for flights over ramps having 1/8’’, 1/4’’, and 1/2’’ maximum heights.
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X LONGITUDINAL AXIS

Figure 213, Flow Visualization Study (Height = 1/8 inch)
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Figure 214, Static Test Rig
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TABLE I
PRESSURE READING DATA

ﬁAp=(—r~)‘°-p)2 v2 (ft/sec)
V2
e e — e ———
TAP NO 075" 1757 275" 3257 0757 175" 275 3257
1 80 .90 1,00 2.05 2470 2680 3094 6350
2... 1 o 30 .70 1.75 0 927 2160 5410
3 0 55 115 175 0 1700 3560 5410
4 0 60 145 240 0 1850 4480 7420
5 0 25 .70 1.70 0 772 2160 5260
6 1.05 1.70 190 2.60 3250 5250 5880 8040
7 10 140, 140 1,05 309.4 4330 4330 3250
8 0 15 .30 .60 0 464 928 1860
9 2 0 70 2.00 618.0 0 2160 6180
10 9 9 20 0 2780 2780 619 0
11 110 115 .70 0 3400 3560 2160 O
12 165 1.80 185 1.65 5100 5560 5720 5100
13 70 125 125 2.15 2160 3870 3870 6650
14 60 .50 .60 .70 1860 1545 1860 2160
15 140 195 190 .80 4325 6020 5880 2470
16 1.30 140 120 1,00 4020 4320 3720 3094
17 80 1.00 100 0 2470 3094 3094 0
18 A5 100 .70 0 2320 3094 2160 0
19 reference
20 taps

BY NUMERICAL INTEGRATION

J = .68 lbs

Vay = 77.5'/sec, (r.m.s.)
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Figure 215. Presentation of V2 through the Annular Jet
(Graphs No. 1, 2, 3 and 4)
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Figure 216, Presentation of v2 through the Annular Jet

(Graphs No. 5, 6,
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Figure 217, Presentation of V2 through the Annular Jet
(Graphs No. 9, 10, 11 and 12)
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Figure 218, Presentation of V2 through the Annular Jet
(Graphs No. 13, 14, 15 and 16)
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Figure 219, Presentation of v2 through the Annular Jet (Graphs No. 17 and 18)
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The flight data was recorded by the photographic technique (Ref. 1) and is re-
produced in Figures 222 to 227 inclusive.

This data was obtained by taking a 16 mm movie picture of the model as it flew
past a reference grid, By analysing the behaviour of three reference points on
the model, the dynamic behaviour of this GEM can subsecuently be chbtained, A
full treatment as to methods of analysis is presented in Ref, 1 and thus will not
be discussed here,

Figures 224 to 227 are the reduced records showing angle of pitch and height of
a reference point above the ground, The CG, position and other model parameters
are given in Appendix A.

The tests showed that the model occasionally contacted the ground board, The
reasons for this behaviour cannot be definitely stated, but it is suspected that
inadequate pitch stability may be the cause, The hits were not clearly evident
to observers watching the flights, which to the unaided eye appeared to be rea-
sonably smooth and steady.

REFERENCES

1, Liiva, J. A Facility for Dynamic Testing of Models of Airborne
Vehicles with Ground Effect. UTIA Technical note 53,
Oct. 1961.

2, Dau, K, Characteristics of a Rectangular Wing with a Peripheral

Jet in Ground Effect, Part I. (in preparation)
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Appendix A - Data

V = 26,5 fps. in Figures 224 to 227
Model weight = 2,483 #

cq. position is 1/4? behind the midchord and 1,94’ above ground
when model is at rest

I .0123 slug £t

cgyy

I .018 slug ft.2

cgzz
Jet momentum flux = .68 lbs,
RMS jet velocity = 77.5 fps.
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UNIVERSITY OF TORONTO DYNAMIC MODEL DATA
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of Airborne Vehicles with Ground Effect
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SUMMARY

A feasibility study has been carried out of the testing of self-powered models of
vehicles with ground effect, on a circular track of 20 ft. diameter. Preliminary
{esting of a GETOL model with a wing of aspect ratio 3.5 and 17 inch wiangspan
was performed by flying over ramps in the groundboard of the track. The motion
of the vehicle was recorded by filming witha motion picture camera. A theoretical
study of ihe cable derivatives introduced by the harnessing and of their magnitudes
relative to the aerodynamic derivatives was made. Problems associated with the

model construction and performance are outlined and experimental test results
are presented.
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SYMBOLS

constant defined in Eq. 4.5
augmentation due to ground cushion
wing span

mean aerodynamic chord of wing

effective drag coefficient of cable, to be added to vehicle drag
coefficient '

constant defined in Eq. 4.5
local drag coefficient of cable at local Reynolds number

drag coefficient of cable at Rev

additional rolling moment coefficient due to cable
additional pitching moment coefficient due to cable
additional yawing moment coefficient due to cable
aC, /8¢

8C. /36

8C, /8%

additional vertical force coefficient due to cable
8C, /0H

perpendicular distance between cables to vehicle
cable diameter

drag of cable

drag component of cable tension at harness point
acceleration of gravity

perturbation height of vehicle above ground
height parameter h/¢

momentum thrust



L)

t‘

9 © » ¥®

distance from centrepost to point of action of total cable drag

additional rolling moment due to cable
mass of vehicle

cavle restoring moment due to perturbation pitch angle
displacement 6

additional yawing moment due to cables

local distance in cable from centrepost

distance from vehicle centre of gravity to centrepost
length of cable, centrepost to wingtip point

local Reynolds number of cable due to local cable velocity V )

Reynolds number of cable calculated for flight velocity V by
using wingtip speed Vc in Reynolds number relation

wing surface area

cable cross-sectional area

cable tension
tension at model end of cable

flight speed of model
speed of cable end, when model speed is V

local speed of cable

gross weight of model and fuel

additional height of cable attachment at centrepost to allow
model to fly horizontally, taking cable sag into account

additional vertical force due to cable

angle of cable tension at model end with radial line from
centrepost

perturbation angle of pitch

viscosity ¢. air at 8. T. P.
mass parameter of vehicle
characteristic wavelength
atmospheric density at 8. T. P.
characteristic time
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- perturbation angle of yaw

cable linear density in lbs/ft

angular velocity of model around centrepost
cable furces and derivatives
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I. INTRODUCTION

Much work has been completed on the statics of GEM and GETOL aircraft, but
so far little is known about the dynamics of these vehicles. To study the dynamic
behaviour of models of such vehicles, a circular track facility has been built at
UTIA.

The concept of using flying models on a circular path, controlled by a pilot
through lines to the centre is not new. It has been in use by ‘‘U-Control”’
model fliers for years. The quality of power plants used for the models has been
greatly improved. Consequently, there are glowplug engines now available with
horsepower ratings sufficient to power models for most testing purposes.

Testing. by this method was proposed by Braun (Ref. 2) in 1949, using models of
conventional type aircraft on a 150 foot radius tether. Some of the difficulties
that he outlined are not relevant to aircraft of the groundcushion type, where the
testing is carried out on a horizontal table at the largest diameter of the testing
sphere. The testing sphere is defined as that surface which the tether from the
centrepost to the centre of gravity of the vehicle will trace out. Variations in the
model’s height above groundboard are a small percentace of the radius of the
testing sphere. Braun’s results show that with the co straint of lines whose
weight is small in comparison to vehicle weight, the short-period longitudinal
pitching mode can be obtained directly, but that for the long-period mode (the
Phugoid) the constraints must be carefully considered.

Rotating-arm devices have been considered, but not used due to the interference
of the arm on the derivatives (see Ref. 10).

In wind tunnel testing the ‘‘effective’’ shape of the ground encountered by the
peripheral jet depends on the boundary layer on the groundboard. With a
Reynold’s number that produces a turbulent boundary layer, the ground surface
is effectively one of unknown roughness and distance from the jet face.*

In free flight model testing the pilot in control does not have an absolute knowl-
edge of the attitude of the model when the controls are activated for a response
test. Responses of the vehicles could be telemetred to the recording equipment,
but the resulting model to house this would then be quite large and heavy. On a
circular track one canharness the model to suppress any undesirable modes such
as roll and yaw. Continuous recording of flight attitude is possible by the simple
arrangement described in this report.

The test data obtained from the track is easy to read and process by direct hand
calculation or by automatic analogue and digital computation. Transfer functions
and stability derivatives can in principle be obtained by methods similar to those
already developed for flight test work.

*The concept of an effective ground surface may actually prove to be inadequate
as a representation of the complicated interaction between the jet sheet and the
boundary layer.
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II. TESTING TRACK

2.1 CONSTRUCTION AND SPECIFICATIONS

The track consists of a level annular table of 9.0 foot radius from the centre of
track to centrepost (see Volume I, Figure 25). Eighteen pieces of 1/2' thick
plywood from the horizontal table, each subtending an angle of 20 deg. at the
centre. The effective table width is 2.5 feet. The framework to support the table
is made from Dexion angles for ease of assembly, and also to facilitate adjust~
ment of height when levelling. The bottom of the Dexion framework is fastened
to the concrete floor with Ramset bolts and each frame is cross-braced to the
two adjacent ones. This combination of interconnected frames, fastened securely
to the floor produces a very strong and stiff structure. One of the 18 plywood
boards is hinged for access to the interior. The horizontal table is 30 inches
above the floor to provide sufficient room for observers to remain inside the
track during test runs.

2.2 FLIGHT RECORDING

During flight the vehicle was photographed by a 16 mm. Bolex movie camera,
with an electric drive. The filming speed was 32 frames per second. The camera
is fixed rigidly at the centre of the testing track to the structure which overhangs
the track. The optical path from the camera to the model is completed with a
mirror, mounted at an angle ona sleeve. This sleeve is fitted with two ball bear-
ings to the top of the centrepost. The lines from the model swing the sleeve and
mirror in sucha way that the mirror is always aimed at the model; consequently,
the model is always in the camera’s range of vision.

To obtain quantitative results, there is a vertical background of horizontal lines
spaced one inch apart. The background board is 20 inches high, to permit con-
tinuous photography of transition to flight outside ground effect.

Floodlights on every second post light the model and background for photography.

To prevent discoloration of the grid and to provide protection against solution of
the glues which bind the plywood, the whole structure was covered with several
coats of butrate dope.

There are three reference points on the aircraft; a double rectangle on nose and
tail and a post on the wingtip closer to the camera. By conducting a frame-by-
frame analysis of the film from a test run, the relative heights above ground-
board and distances from each other of these points can be determined. Arithmetic
operations, performed either by hand calculating machine or electronic digital
computer, will yield the angles of pitch, rolland yaw against frame number. The
camera filming speed is calibrated by filming the second hand of an electric
clock. This procedure gives an accurate measure of time. Centre of gravity
position of the model along the track is obtained from the angle of orientation of
the track within the film frame. As the model proceeds along the track, the
track rotates in the camera frame due to the arrangement of stationary camera
and rotating mirror,
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The model points were read from the film by using one of two methods.

1. For very accuratc résults the commercial comparator available at
UTIA was used, This procedure is very time-consuming.

2. For quicker but less accurate results the pictures were enlarged by
projecting onto a screen at a convenient magnification, such as half, full,
or double size. The accuracy of reading is consistent with track con-
struction accuracy and frame magnification. By aligning a sheet of
paper with the grid lines onthe backboard, the model points were directly
plotted against frame number.

2.3 CENTREPOST

The centrepost consists of a three-legged frame to hold a 3/4 inch diameter
steel rod with set-screws for adjustment of height. The rod is fitted with two
ball bearings at the top, and an aluminum sleeve is pressed on the outer races
of the bearings. Since the models are self powered it was decided to make the
inertia and bearing drag of the rotating part of the centrepost as small as pos-
sible. This prevented direct mounting of the camera to the centrepost and the
mirror arrangement described inpart2.2 was used instead. The mirror arrange~
ment had the added advantage that distance along the track could be directly
obtained as an angular displacement from a reference radius, such as that at
the ramp.

The lines to the model are fastened to two nylon-coated steel wires that run
through tubular guides and attach to a bellcrank. The guides provide a restor-
ing moment to the mirror mount if the vehicle tends to lead or lag. On the model
wingtip there is a bellcrank the height of which is adjustable by a set-screw.
There is no additional rolling-moment introduced by the tether, if the lines are
adjusted to the height of the vehicle c.g.

One control can be introduced to the vehicle through the control lines. By linking
cables from the elevator or engine throttle to the belicrank on the wingtip of the
vehicle, it can be controlled from the outside. This mechanical control through
the bellcranks was intended for use as a throttle control for the GETOL model,
but since no suitable throttle for the engine was found, the control was not used.

Other controls could be provided by using stepping relays or servos, electrically
fed through the control lines and slip-rings on the centrepost, operated from a
control-c_entre outside the test track.

2.4 STARTER

An engine starter is indispensable for efficient operation of the test track. In
the beginning of the program much time was spent trying to start the engine by
hand; the starter subsequently made this a simple operation. The starter con-
sists of an automobile starter motor, a 6 volt battery and charger. The model
engine is pressed against a rubber hose fastened to the motor shaft, while the
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needle valve on the engine is adjusted for proper fuel flow, as indicated by the
sound of the exhaust. Final adjustment canthenbe made with the engine removed
from the starter. Power for the glowplug is obtained from one of the three cells
in the battery. While 1.5 volts for the glowplug is recommended by the manu-
facturer, it was found that 2 volts made starting easier with ocecasional burnout
of plugs.

I. MODEL

3.1 STRUCTURE

The model used for preliminary feasibility tests was based on a Vertol design.
It was made from balsa wood covered with polyester resin. The internal surfaces
of the nacelles and ducting were also covered with the resin to proyide a smooth
surface. The combination of balsa covered with resin makes a strong structure,
but it has a tendency to crack. These cracks occurred at many of the joints and
had to be repaired by using layer of glass cloth with resin to bond it to the sur-
face of the model.

3.2 SPECIFICATIONS

The wing is of NASA 4418 cross-section with a 6'' chord at the root, tapering to
a 3" tip chord outboard from the nacelle structures. The wing aspect ratio is
3.5—a compromise chosen to provide both a good ground cushion and 2 more
efficient wing for forward flight than the circular planform, which is more effi-
cient as a GEM. The wing spanis 17'"'. The horizontal tail aspect ratio is 4.5, with.
a tail moment arm of almost 13.0''. The long moment arm to the high aspect
ratio horizontal tail provides a neutral point at 52% chord (Ref. 1).

This is sufficient to accommodate the shift of the centre of pressure from the
midpoint of the wing during hovering, to the more conventional aerodynamic
centre near 1/4 chord for forward flight. The C. G. of the vehicle has to be at
the midpoint of the wing to provide trim, since the centre of pressure is at the
midpoint of the planform enclosed by a peripheral jet during hovering. It may be
possible to compensate for a C. G. forward of midchord point during hovering,
if the centre of pressure can be shifted by having jet slots of different width at
the front and rear of the wing.

The weight of the finished model together with power plant, fans, pulleys, belts
and empty fuel tank is 2.4 lbs. Variation of C. G. position and of the moment of
inertia can be effected by adding or subtracting lead weights to the tail, nose and

wingtips.

The jet slot width can be changed by taping over part of the present opening of
.40 inches or by making new bottom covers for the wind with the desired jet slot
opening,

3.3 NACELLES, FANS AND DUCTING

The two forward-facing intakes each have a fan driven by a common engine
mounted inside the fuselage. There is a twin pulley on the crank-shaft of the
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engine. A belt to each fan pulley provides the power transmission. The intake
nacelles have built-up lips to prevent separation during hovering. Fixed stator
blades behind the fan straighten the flow,

The air supplied by the fans can be directed to either or both of two openings.
It can all be used to provide the ground cushion by exhausting the air through the
slot around the periphery of the wing, i. e. the hovering mode. Fixed turning vanes
inside the nacelle, located at the upper wing cover, turn the air into the wing.
At the moment no information is available on their effectiveness in our model.
For forward flight, part of the air is used to provide a forward thrust. The
back of each nacelle has a set of 4 slots which can be opened or closed to pro~
vide various amounts of forward thrust,

The fans are mounted on the shafts with two ball bearings and a thrust bearing
each, and are removable. There are commercial fans available to suit model
engines of all power ratings. These fans are made to power models of jet air-
craft with air passing straight through the body, and were not designed to work
against the high internal resistance encountered in our model.

Two types of fans were tried unsuccessfully, since neither allowed the engine
to speed up to its full 15,000 r. p. m. and thereby develop its full 3/4 horsepower.

Fair results were obtained from the smaller fan after reducing its solidity
by 50% by cutting away six of its twelve blades.

Due to the extremely bad matching of fans to engine and model ducting when the
wing bottom cover was on, the hovering heights obtained were small, of the
order of .04 to .06 h/&. With the bottom cover removed and the model running as
a simple plenum chamber heights of over 3'' were obtained during portions of the
run.

3.4 ENGINE

Installed in the model is a .35 cubic inch displacement Fox Combat Special glow-
plug engine delivering 3/4 horsepower at 15,000 r.p.m. This engine has a ball-
bearing mounted crank-shaft and a tap on the crank-case for pressurizing the
fuel supply. The pressurized supply operated satisfactorily, giving a constant
fuel feed and facilitated starting. There was no throttle control on the engine.
Two types of butterfly valves were tried on the carburetor, but neither operated
satisfactorily. (For efficient control of speed a combination of throttle and ex~
haust valves can be used. These were not installed on our engine). Runs were
therefore taken at full speed, as set by the needle valve on the fuel supply.

Many flexible and springloaded motor mounts wvere tried unsuccessfully. Not
one of them provided enough tensionon the belts to prevent slippage. The present
mourt attaches the engine solidly to the model with four screws and locknuts.
The tension to keep the belts tight is provided by the cantilevered fan shafts,
fastened into the stator section. Belt tension can be adjusted with shims under-
neath the engine mounts.
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Engine cooling was critical in the preliminary hovering tests. Runs of only a
few seconds were obtained before the engine overheated. Glowplug engines are
normally cooled by the slipstream from the fan or propeller. In our installation
of two fans driven by belts, there was no slipstream cooling of the engine. An
ejector was constructed, using the high-velocity exhaust gases from the engine
to inducc ccol air over the cylirder head. During hovering the ejector interfered
with the inflow into the fans, With forward flight around the track there was suf-
ficient cooling without the ejector for runs of a few minutes duration. The ejector
was discarded, since it added to the weight and did not perform as expected.

The engine performed much better after teing thoroughly broken in by running
it on a bench stand for several hours with a rich mixture of fuel and added castor
oil.

More serious difficulty was caused by the castor oil, which sprayed from the
exhaust over pulleys and belts during the runs. This oil caused slippage of the
belts after five or six circuits around the track. This slippage could clearly be
heard from the change in engine tone. Most of the data was taken on the first three
circuits. Between runs the belts and pulleys were cleaned with a commerical
window cleaning solvent

IV. MODEL HARNESSING CHARACTERISTICS

. 4.1 CABLE PROPERTIES

The harnessing arrangement selected consists of two dacron lines from the
bellcrank on the centrepost to the wingtip bellcrank. The distance between the
lines is 2 inches. The dacron lines have the following properties:

- maximum safe tensile stress per line is 11 pounds

"3 feet

- average diameter dc is 1.51 x 10
- average lineal weight p, is 8.56 x 107° 1b/tt.

4.1.1 Cable Tension

Cable tension for the unbanked andunyawed vehicle in level circular flight around
the track is

T = e (4.1)

v rase

If the vehicle is banked, or if control surfaces are deflected, the tension will not
be given exactly by equation 4.1, but if the speed of the vehicle is greater than
10 ft/sec the error will be less than 3% for angles of bank up to 5 degrees.
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4.1.2 Cable Sag

To enable the vehicle to fly with its wings level at any given speed, the height
of the centrepost is adjustable to compensate for cable sag.

From Ref. 21 the differential equation ui the cable, and the boundary conditions
are (see Figure 228(a) ).

2
dy _ 1
&yl .y

=0
o ‘ (4.3)

T =Ty at x = 0 and the horizontal component of tension at any point in the cable
is assumed to be constant over the length of the cable. This equation neglects the
centrifugal force on the cable and gives a pessimistic answer for cable sag.
This assumption is good provided the total cable mass is small compared to that
of the airplane model, which is the case in the present tests.

Solving Eq. 4.3 gives : -~

1 2
hTEr, Pefe @. 4)

Using the values for our line the sag is only 5.69 x 10-3 inches at 30 ft/sec
testing speed, and decreases rapidly with increasing speed.

4.2 HARNESS TO WINGTIP

The pair of lines to the model are harnessed to the wingtip as described in
Sec. 2.3, to keep yawing and rolling to a minimum. We are mainly interested
herein in obtaining the longitudinal derivatives of the vehicle. The procedure for
defining the derivatives is as outlined in Ref. 1, except as otherwise noted. The
cable derivatives are compared to the vehicle aerodynamic derivatives to show
their relative magnitudes. The comparison will be carried out for the vehicle
described in Section II. .

4.2.1 Cable Drag Coefficient CD*

Assuming straight lines to the model, and that the drag coefficient for an infinite
cylinder can be approximated by

C. =C. R%
D, "Dje, (4.9)

Cp; and a can be found from a log, log plot of Cp vs. Re e.g. Refs. 22, 23 or
24, reproduced here for convenience in Figure 235,
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dc
Re == 4. 6)
2
The drag on one wire is then
* 1 r
D = Ch 35 pV2 = d - dr

o 22T (Rc> c “.7

r

V,=V =
t e (Rc> @. 8)

where
Substituting for Cp 9 from Eq. 4.5, using Eq. 4.8 and integrating

R
(] 2+a
D*=C,. R*® £ v24c J X dr

D1 ev% c Rc @. 9)

0

C
D* = D, (Rcdc) 1 v2
3+a 2 PYe

The drag acts at a distance 11 from the centrepost, where 21 is given by

R
c

2
=1 1 vZ (L .
4 = px J CD12PV0 (R> d,er.dr (4. 10)
c
0
integrating we get

11 3+a

R "4+a
c (4. 11)

Setting up a co-ordinate system as shown in Figure 228(c), we see that by taking
moments about the centrepost, the drag component of the cable tension at the

wingtip is
AD*R = (. D*
: c 1
11 4, 12)
3+a (
=D¥* = =D*% L=
AD*=D Rc D i+a
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This corriponent must be added to the vehicle drag; it produces a yawing moment
and a drag force on the vehicle. )

The effective additional drag coefficient is then -

A D*

C* s
P 2oV (4. 13)

Since two wires are used in the harness

' 2C 1 1 2 2C 2
{ 1 .1
ck = Dy 373 ZPVcSc 3+ta _ Dy .Eg. _liq -
D 1 25 *4+a 4+a S R (4. 14)
2

we have used

V = QR o (4. 15)
V=8R (4. 16)

Additional drag occurs in the centrepost bearings. This drag is assumed to

be small in comparison to vehicle and cable drag.

To find the angle a (Figure 228(c)) that the cable tension makes with the radius

from the centrepost to the end of cable at vehicle, we use Eq. 4.3, but substitute

D* (x) for po using the assumptions of small cable weight compared to vehicle
weight

2
dy . D) 4.17)
w2 Ty

where y 1is now the displacement in the horizontal plane. Using Eq. 4.5 and

V,=x0 , (4.18)

we get

2 ) |
d_¥ =2 ! °1“x % p 2 a2 d (4.19)
dx 0



Integrating we get

C a
D 3+a
dy 1 11 2 pdc X
LT F e de (—1 > 37a T %1 (4.20)
0 I
and
C
D '\ a 4+a
-1 11 g2 pdef x
y —To 5 p ¢ de ( ul B+ @73 +CIX+C2 (4.21)

The boundary conditions are:
y=0atx=0

y=0 x= Rc
whence it follows that 02 =0 and

. CD1 . (nzni) pdc AR\ ? Rf':
Cl""‘Rc‘To R £ de 1 G+a)(@+a)

using Eqs. 4.15, 4.6, 4.9

- D*

=7 NIE)

aatx = Rc is then found from Eq. 4.20 |

_ _D* 1 ] _D*3+a_aD*
@= (%c) x=R ~T, [1‘4+a] “T,T¥a T, (4.22)

This result can also be deduced directly from Figure 228(e),
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4.2.2 The Cable Derivative C* z
H

Assﬁming straight, level, horizontal flight with small perturbations, we see that
the vertical force due to the cable is (Figure 228(b) )

*= T =7l (4.23)
2 T ¢ T R
¢ is approximately the angle of bank ¢ for the vehicle with wingtip tethering, if

wire sag can be neglected as shown in Sec. 4.1.2. Substituting from Eq. 4.1
for T

z"‘:‘mi‘;‘z% (4.24)
2
C* = -mhzv . 1 1 (4.25)
R Y pV2 S
m is non-dimensionalized as in (Ref. 1), i.e. let
S . (4.2
T (4.26)
then sh :
* o .
cy -%2- (4.27)
Non-dimensionalizing h by dividing by c,
b_y (4.28)
c
and acy C* -2
Z_"By- K (4.29)
oH R®

4.2.3 The Cable Derivative C*me

If the vehicle’s angle of pitch varies by an angle 6 from 6y, then a restoring
moment is set up as shown in Figure 228(c).

Mx=-L£4 8 4 (4.30)
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Non-dimensionalizing by using Eqs. 4.1 and 4.26, we get
c* = - 26,
m 4
*

acm_cl,,;l =_“dz
96 = e IER‘C

(4.31)

4.2.4 The Cable Derivatives C*;l‘p » C}
¢

To show that the roll and yaw response will tend to be small, C{",w is calculated
for the vehicle in section 2 with wingtip harness attachment. Figlire 228(d) gives
the relevant parameters

N*=T £= TRy (4.32)
b/
~ 2
c [
_ _~,bR
N*= -T2 R
[
C* = H b w
C
acx
Similarly EX -12‘—R-c = C;,p (4.34)
ac*

= kb (4.35)

These derivatives are large, compared to conventional aircraft derivatives,
as will be shown in Section 4.3.
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4.3 COMPARISON OF VEHICLE AERODYNAMIC AND CABLE DERIVATIVES

The calculations will be performed for a 2.0 lb. vehicle at h = .25 inches and
forward speed of 30 ft/sec. The following are quantities used in the computations:

R = 8.29 ft. p = 2.38x 10”2 slugs/st°
R = 9,00 ft. ulateral = 1,16x 10°

h = 0.25in. ulong. = 1,78 x 10

V. = 300 ft/sec Rey ~ 3,00 x 10

W = 2,0bs. ul = 3,73x 1077

& = 5.56in, Cpy = 1.25

b = 17.0in. Cpy = 10.0

S = 91,2 in2 a = -.365

d = Lslx107 . Cp, = 10.0Re, > ®

d = 2,00 in, Py = 8.56x 1072 bs/ft

CDv- CD1 are found from Figure 235,

4.3.1 Drag of Cable
2 CDV s [R\ 2
=___Y  _ct({_¢c =
Ci") i+a ( ) 0.0115

S\R

We can see that the cable dragisa significant fraction of the total drag and must
be carefully considered in derivative analysis.

4.3.2 Lift
For equilibrium flight

Z=W

9z
By the most optimistic theory (in sense that ﬁ, is largest) we have
% =_‘_;_ for the cushion. Hence cushion derivative is

(Qﬁ) =k __W
9h/ cushion. h2 h
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9F* _
also JH~ = -

from Eq. 4. 14

w[

wv2
st

Therefore the ratio
(Zy) :ushion ) Ri& _ g
Z* v2h  he?
hence in our case
_81lx32x12 ~
ratlo = =55 .95 140

This ratio, for the same height h, falls to 10 When the speed of the vehicle is
about 100 ft/sec.

In regimes where the vehicle has little inherent stability in heave, i.e. (Zh)

= 0 the cable derivative would be the predominant one. cushion

4.3.3 Pitch
Artificial pitch stability is provided by C*

P

d_ _
c"x‘n={m—- = -,0165

(Y] c

This value of C’}n is small, but enough to provide some stability in pitch if
vehicle is neutrally stable. By variation of d, a limited range of pitch stability
can be provided. This stabilization increases rapidly with d since it is squared
in the equation,

'4.3.4 Roll and Yaw

Typical values of Cpg are .05, therefore the roll and yaw response of the vehicle
should be extremely small during flight, i.e. the wingtip harness has the effect
of suppressing the roll and yaw degrees of freedom.

4.3.5 Cable Dynamics(1)
The speed of propagation of a wave in a cable with tension T is

v= I—
‘p

c

(1) This analysis is due to Prof. B, Etkin
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The characteristic time for this wave to travel the length of the cable and return
is

substituting for T and assuming Rcz R

pcR

7. =2R —
mV

1

The time to complete one cycle in pitch or heave is

Ty = %" where A = one wavelength

The ratio of these times is

" _2RV ‘/ e _2R ‘/ Te
T A mvz A

2 m

We can see that the ratio of the characteristic times depends only on the length
of the cable, the wavelength of an oscillation and the mass ratio of cable and
vehicle.

Substituting the values which occurred in the experiments into the equation
we geot

T1.2x9 '/9xs.56x10“5
1'2 6 2

~ -3

=3x19.6x 10

=58.8x10™°"

For the cable to adjust instantly to conditions at the end, the ratio of the above
times must be small. If the ratio approaches one there may be dynamic inter-
actions between the motion of the cable and that of the model. In the present
case it is evident that such interaction can be neglected.
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Figure 228(e). Drag Component of Cable Tension
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V. TESTING AND RESULTS

{

Initial hovering tests with an engine of half power indicated that severe mismatch
of fanand load existed, so a new high power engine was installed. Hovering heights
of .25 to .75 inches were achieved with the larger engine. Since there was no
cooling for the engine without forward motion, as described in Section 3.4, hover-
ing tests were limited to a few seconds before the engine overheated.

The vehicle was tethered to the centrepost and testing on the track began. A
ramp was made by raising one edge of the door in the track to the required height.
Values of .125, .25, .50 and ,75 inches were used. The resulting ramp was set
at the required height and the vehicle traversed it during each subsequent pass.

The accuracy of the resuits was limited by the camera shutter speed. With the
electric motor drive the maximum filming rate of the camera was 32 frames
per second. The shutter speed of the camera was fixed and proportional to
the filminig rate. While the filming rate was adequate to record and define the
motion, the shutter speed was not fast enoughto produce a clear and well defined
picture of the reference points on the model. At the testing flight velocity of
approximately 30 ft/sec, the background reference lines were fan-shaped, with
both ends one inch blurs at the frame edge, due to the fixed camera and rotating
mirror arrangement. .

‘Three fan configurations were tested. On all fans the outside diameter of 3.5
inches and hub diameter of 1.5 inches were kept constant. The first fan had 12
fibre blades of .75 inch chord. The results from tests indicated that back pressure
on the fan was too great to allow the engine to accelerate up to full speed (12,000
to 15,000 r.p.m.). With the bottom cover of the wing removed, the vehicle hovered
at a height of .25 inches.

The second fan tested was of identical construction to the first, except that the
blade chord was .50 inches. In the peripheral - jet configuration the hovering
heights obtained were very small, but in the plemum chamber ccnfiguration the
model performed better. A graph of the test run with .50 inch high ramp is
given as Figure 231.

The reference point height and angle of pitch 0, were calculated from test records
similar to the ones in Figures 229 and 230. With the model on the ground the
zero angle of pitch o is defined by the tailpoint height: 2.375 inches, and nose-
point height: 1.905 inches above the ground. The reference point used for the
calculations and shown on Figures 231°to 234 is midway between these two
points: 2.240 inches above ground, vertically up from the midchord of the wing
at the centreline of the vehicle. Horizontal separation of nose and tail points is
14.25 inches. The wingtip point is 2.406 inches above ground when model’s
angles of pitch and roll are zero. Because the nose and tail points are on the
side of the vehicle the straight line joining them is 1.015 inches out from the
centreline of the aircraft toward the camera, at wing midchord (perpendicular
to X, Z plane, as defined in Ref. 1 or 20).
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The centre of gravity of the aircraft was fixed at 54.5% chord for the runs shown
in Figures 232 to 234. The pitching moment of inertia was .0123 slugs-ft2,

Corrections were made for parallax of the readings due to displacement of the
vehicle reference points from the backboard. Yaw and roll angles were cal-
culated but not plotted because the variation was no more than +0.8 degrees.
Collisions of the leading and trailing edge of the wing with the groundboard
were frequent and have been indicated on all ‘‘reduced’’ graphs of test records.

The solidity of the fan was further decreased by cutting away 6 of the 12 blades
from the fan with .50 inch cord. As a result the vehicle’s flight in the plenum
chamber configuration was highly unstable. Heights of wing bottom above the
ground of 3 inches were reached during some of the runs. In the peripheral jet
configuration the flight was more stable in height, with .25 to .50 inches ground
clearance. Figures 232 to 234 are results from test flights over .125, .25 and
.50 inch ramp heights, obtained from frame by frame analysis of the test film.
The tests were performed in the peripheral jet configuration with one half of the
lower slot on the back of each nacelle open for forward thrust. It was found ex~
perimentally that this gave the highest flight above the groundboard without sub-
stantial loss of forward velocity. The traces suggest a highly damped heave
oscillation and a very lightly damped pitch oscillation, as expected, since the
annular jet formed by the wing has little stability in pitch due to the relatively
large aspect ratio.

The track was carefully levelled during construction, but due to the butrate
dope which was applied for protection against engine fuel, the boards had buckled
at the joints. A few runs were taken with no ramp in the track. Two unreduced
test records are shown in Figures 229 and 230. The results indicate frequent
hits of both leading and trailing edges of the wing with the ground. The pitching
mode is very lightly damped, if not unstable. Centre of gravity height is nearly
constant, indicating a steady flight height.

A test was performed to see if the wake would linger on the track and disturb
the model on subsequent passes. One piece of track was amply equipped with
wool tufts on the groundboard, over the background grid and around the edges
of board and light fixture. From visual observations, it was seen that the wake
was lost through the cracks between backboard and groundboard, and no motion
of the tufts was evident after the model had progressed 120° from the tufted
section.

VI. CONCLUSIONS

It can be concluded from the theoretical analysis of cable restraints, and experi-
mental track testing, that this method can be used for testing of vehicles with
ground effect, from hovering, through transition, to full forward flight. Longi-
tudinal stability, trim and control effectiveness can be investigated. Additional
synthetic stability can be introduced by suitable harnessing the model (e.g.
Sec. 4.2.3). Response to gusts and turbulent air could be studied by installing
fans at various places around the track.
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From the experience gained during this phase of testing it appears that future
development of the facility should proceed along the following lines:

a. Design of a suitable one-fan vehicle of the GETOL type. The vehicle
should be designed as an integral unit of fan, powerplant and fuel supply.
To this unit planforms of various aspect ratios and shapes could be

fastened for testing.

b. Instrumentation of models to enable outputs of flight results to be directly
processed during test runs by analogue equipment.

-~

The photographic method should be improved as outlined in this report, and re-
tained as an absolute check on instrumentation accuracy and response.
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