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This project report is based om six lectures given by Dr. I. N,
Sneddon at North Carolina State College in the spring of 1962, The
results of the research reported here have been successfully applied
to solution of certain crack problems in the mathematical theory of
elasticity; these applications are expected to appear either as a
subsequent project report or in published journals.

Copies of this report have been distributed as directed by the
sponsaring organizations. This project is sponsored by AFOSR, ARO,

- and ONR through the Joint Services Advisory Group; ths contract is

currently under ONR (Nonr 486(06)).

John W, Cell
Project Director
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LEOTURES N FRACTIHAL INTEGRATION
AND TUAL INTRGRAL EQUATIONS

1‘.:, mtroductig&_

These notes are based on six lectures given in the Department of
Mathematics, North Carclina State College, Raleigh, the final copy being
prepared with the assistance of Dr. M. Lowengrub. Their function is
purely expository; they contain little that is new but it was thought
to be warthwhile to cast the material of Erdelyi and Sneddon (1962) into
a form in which it could be applied immediately to some of the dual
integral equations arising in mathematical physics. This is achieved
by a trivial alteration in the definitions of the Erdelyi-Kober operators
(ct. equations (3.1) and (3.2) below) and the modified operator of Hankel
transforms.,

The plan of the lectures is straightforward. First of all an account
is given of the "classical" fractional integrals of Riemann-Iiouville and
Weyl (92) and then of the closely related Erdelyli-Kober operatars. One
of the disadvantages of the form of definition of these operators adopted
here is that whereas in the papers of Erdelyil and Kober certain formilae
involved the eimple differential operator D = d/dx, the analogous farmulae
here involve the more cumberson operator 6’ } Dx The central part of .
the method is contained in § 4 where we der‘.l.ve relstions connecting the
Erdelyl-Kober operators with the modified operator of Hankel transforms.
These relations are used extensively in applicatims so we have collected
them together in Table I at the end. In the next sectimn (§5) we intro-
duce two operators Pk ¢ (defined by equatians (5.1) and (5.2)
respectively) and derive two of their properties; since these properties
depend on results in the theory of Besssl functions due to Sonine, we have
called them Sonine operators, although their use was suggested by a recent
paper of Peters.

The remaining sections are concerned with applications. In § 6 we
consider the type of pair of dual integral equatione which arise in the
analysis of mixed boundary value problems of potential theory concerning
a half-space. In § 7 we consider the type arising in some problems of
diffraction theory, and, finally in § 8, the more complicated type such
as those arising in the solution of mixed boundary values of potential
theory relating to a thick plate.
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In deriving the basic results it is necessary first to consider some
simple integrals. In ordsr not to complicate the later proofs we diacuss
these integrals nows The first one ia

x
af (k3 = u3) P (ur o ya)Pel (1=20-2R, . ﬂr}g@ v 20=2B (xa. yayatpl
v . P (1.1)
in which
0<v<x, Rea>0, Re p>0.
The proof is simple: If we change tne variable of integration from u to

2 where
L.l 1.2=v,
w v x3

we find that the integral is transformed to
1
f o™ g el @o *")ﬁ‘1 P vﬁ)d,,
0

v 2 v

from which the result follows immediately.
Similarly, if v>x >0, Re a> 0, Re f >0, we have that

v
2 3 ya a=1 vi= ud Pl » (y3= x3 atB=l | (a . .
L(“ 2wt P « (e LD LE . .2)

a result which is easily established by changing the variable of integra-
tion from u to z where
ud = x3 4 (v2- x*)g.

We also require soms results fraom the theory of Bessel functians.
As a special case of the Weber-Schaftheitlin integral (Watson, 19LL, p.398)
we have that if a + B >0

- anta (1) P2
L vl"“"BJzﬂ,zﬂp(v)Jm(w)dv - { W)—. <p<1;
0, p>1.
Making the substitutions v = xy, p = u/x we see that this result can be
written in the squivalent form
P 071 szmzmp(v)Jmc(W)dy Tm o
143

x2Nm20-f 2nra (J:‘-Au")q"B lﬂ(x-u)

o ]



where H denctes Heavisids's unit function.
A well-inown result in the theory of Bessel functimms is Sonine's
first integral

. , ’vq f%” - el
J (8) * commeme J (s sin Q)ain" ~ O cos © de.
pvel 2\0 r! v+1Jo p(

(Watson, 1544, p.373). If we make the substitutions z = yx, sin 0 = u/x
we f£ind that we can write this result in the form

x
Kl 2 3y w oV HIVEL _ew-l
f; W T (x3= u®) J“(w)ﬁu 2V y v+ I)Juwﬂ(W) (1.4)
Sonine's second integral states that 1f Rev> Re u > =1,

I (% 223V 1§ (xe) [ ad(e2+ 23] at
0 o (1.5)

- T (g, cafh v - hi-d g .,1.1{“ (a%- xa)} R(a-sx),

(Watson, - 15LL, pe 415). The substitutions ¢ =V (2= s3), p =V apl
transform this equation to

J; (72 5:)%""&1‘ - %t 'v*lJv-r-l {x\/ (z*= z‘)} J, (az)av

- 2T T (g3 x‘)%r J. {l V (a2- x’)} H(a = x), (1.6)

provided Rev > Re r>=-1. If we now divide both sides of this equation
by ™ and st x tend to zero, we find that

j‘ (xFm gB)VTL V41 J, (ax)dr = ZWJ'P(V - ) Vs Jr(“)’ 1.7)
s

provided that Re & > O, Rev 7 Re r >Re(§v--&).
If we apply Hankel's inversion theorem to equation (1.5) we obtain
the equatiom

a
g‘ R G Ak dat E W RGO

R e I 3{sVt* M} , (Rev >Re 7 -1). (1.8)
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Replacing s by ik we cbtain ths equation

a
L P body (e ] g e

R R T U PRI (1.9)
with the same restrictions on v and j.

2e. g‘ucgiaul Integltig.

2,1 Repeated indefinite integrals.
If the function f£(x) is integrable in any interval (0, a), where

a 7 0, we define the first integral I"l(x) of £(x) by the formula
x
F, (x) -fo £(t)at, (2.1)
and the subsequent integrals by the recursion formula
x
F gy (%) -fo F (t)dt (2.2)

where r is a positive integer. These integrals are such that
Fr(O) =0 (r = 1, 2, cor), (2‘3)

and have the property

Fx"l'l(x) - Fr(x), (r=1,2, e0)e (24l)

Now if we consider the integral

X
( (x - t)2(t)dt
0

we find, on integrating by parts, that it is equal to

x X
5y )t = 2)] + fo P (b)at = By (x),
and similarly that
X

0
- F’ (X) .

X
%-, f (x = t)22(t)dt --} (P (t)(x - t)’]: + [P, (t)(x = t)]: + fo'rz(t)dt
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This leads us 40 speculgte that

x
rml(x) -%,f; (x = t)22(t)ds, (2.5)

a result which is easily proved by induction.
. Sinilarly we could define an indefinite integral Fy(x) of £(x) by
the formula

Px) = - f £(t)at (2.6)
X

and the higher order integrals of the sams family by the recursion formuls

Ton () - 'f

Fr(t)dt (2.7)

These integrals also have the properties (2.3) and (2.4). It is easily
proved (again by induction) that

OIS f RO © (248)

provided that £(x) is of such a nature that the integral exists.

2.2 The Riemann-liocuville fractional integral.

The Riemann-liouville fractional integral is a generalizatim of
the integral on the right-hand side of equation (2.5). The integral

X
T-](';)- L £(6) (x - )™ Las (2.9)

is convergent for a wide class of functions £(t) if Re @ > O. The upper
limit of integration x may be real or complex; in the latter case the
path of integration is the straight segment t = xs, 0 S s £1. The
integral reduces to the integral in (2.5) in the case where ¢ n + 1

a positive integer so that when & is a positive integer, the integral
(249) is a repeated indefinite integral. It is called the Riemann-
Iiouville fractional integral of order a. We shall denote it by the

symbol
[CHREOIEI N (2.10)
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Integrals of this kind ocowr in the solution of ardinary linear
differential equations [of. Ince (1927), p. 191 et seq.] where they are

called Buler transforms of the first Jind.

There are alternative notations far 52 a {f(t); x} such as 1%¢(x)
used by Marcel Riess (1949) and If(x) used by other writers. Hardy
and Littlewood (1928) casider the fractional integral

b 4
£ (=) = J 2(t) (x - £)*at, (0< £1)
Love and Yoong (1938) consider the integral
P 4
1 1
£ (a,x) = =TT f‘ £(£) (x - )" as,

in which a £ x € b, £(x) being integrable in (a, b), and Re a > O,
Zygmnd (1959) discusses the same integral but denotes it by Fa(x).
It is easily seen that

f:(a,x) - Qa {f; x} - @a {f; a} .
The only extensive table of Riemann-Liouville fractional integrals
to be published is that included in vol. II of Erdelyi (1954)(pp. 185-200).
It is of interest to note the connection of fractional integrals with

other integral transforms. If we denocte the Laplace transform of a
function ¢(t) by oQ{o(t)g pf » then

- %
Lo {@a (f;t)yp} = F]t‘-’j‘o e'P‘dtJ; £0t)(t = )" lax

which becomes, as a result of an interchange, in the orders of the inte-
grations -

Yo { o J BT L L{""):p}
from which 1t follova that

do {Qa(fn)m} = 2 {2(t)ip] . (2.11)

If we let a-» O we find that JG{R (£ t))p} - {f(t)xp} ‘suggesting
that we adopt the convention

R, {'f(t),x} w £(x) (2.12)

<

e W\T
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Similarly, if we dsnote the Mellin transform of a funoction ¢(t) by
M o(t)se}, then
mi® (f;t)n} I'TT' f +*Lat fo (¢ = 9% Le(x)ax

1 ® sel 1
Ol fo r('l.')d‘tj: 5t - D% at

- 1¢L £(x)dr I'(a)T l_-’c-o 1_305-1

from which we deduce that

TR, (£3t)8 )= %%{ t(t)s + a}. (2413)

The relation (2,11) can be used to derive the solution of Abel's
integral equation
(x = £)™% £(t)at = g(x) (2.14)

[cf. Doetsch, (1937), p. 293, et seq.] If we take the Laplace transform
of both sides of this equation we obtain the relation

I (1~ a) ({R o (f3x)5p } = E(P)

where g(p) denotes J,{g(x)jp} . Making use of the result (2.11) we see
that the Laplace transform of f£(x) is given by the equation

Xe) = Fygy P &)

which shows that £(x) = F!'(x) where

Pe) = gy P E)-
Using (2.11) again with the relation of I'(a) I' (1-a) = n/sin(wa) we find

X g(t)dt
F(x)';ﬁka- fo —(:&;T:“_

80 that the solution of the integral equation (2.1L) is

£(x) = _xS.tl%t__ (2.15)

0 (x=t) "¢

By a simple changs of variable we can write this result in the
form: The solution of the integral squation



afe

P 4
r(x)-f O o¢ ucl, (2.168)

2 (PP’

b 4
g(x) = talm) & f . i% ) (2.160)

We shall also make use of the fact that the solution of the integral
equation

b
) - | —(;5% , 0¢ncl, (2417a)

b
- o 28in d tL(t)dt

is

243. Ths Weyl Fractional Integrsl.
The Weyl fractional integral is a generalizatian of the integral on

the right-hand side of equation (2.8). The Weyl fractional integral of
order a is defined by the equatin

o XS {“””‘S'Fl-(ay ‘[ £(4) (tx)Lat. (2.18)
X

In general x and ¢ are complex, the path of integration being one of the
rayst =xs, s )O0Oort =x+ s, 8 )0, When they occur in the theory
of linear ordinary differential equations, fractional integrals of this
kind are called Euler transforms of the second kind,

A fractional integral closely related to Weyl'!s has been introduced
by Love and Young (1938) who consider the integral

b
£ (x,b) -_Pl-m.fx f(t)(w)“fldt; (2.19)

this integral is sometimes also denoted by Igf. Its relation to the
Weyl fractional integral is expressed through the squation

£7(x,b) =2, {r(t)a(bwt);x} . (2.20) .

e ¥




-9 -
It can also be expressed in terms of the Riemann~Iiocuville fractional
integral through the eguation

£x,0) = B, {204); 2 - x] (2.21)

Some writers also use the notatioms K%f(x), KZf(x) to denote B {r(t)sx} .
The only table of Weyl fractional intlegrals appears to be that
given by Brdelyi (19%), Vol. II, pp. 201-212,
Corresponding to equation (2.11)we have

F {1 (1x); 88 _-2%:7(-5[— 13X ax L £(8) (b=x) Lt

t
1 L2 1Ex () yo-l
J Zﬁj.‘ f(t)dt n (aj f—- ° ( ) dx

ol ift 1 A2y a=l
mf‘ £(t)e dtmfo e 2 d'rl

S 11 g 14

at),

1
¢ mf‘ £(t)e

showing that the expmnential Fourier transform of a Weyl fractional
integral is given by the equation

FlW (528 ) =0 305 Feays] (u22)

Letting a=# 0 in this equation we find that }{‘m-o(r;x), 3’} = }{f(x)) g}
suggesting that we adopt the convention

‘m'o if(t)gx} = £(x).

2; '@& w-xober Operators.

In this section we shall consider the properties of a pair of
operators which are so closely related to operators discussed by A.

Erdelyl and H. Kober that it seems appropriate to call them Erdelyi~-
Kober operators.

3.1 De tionst
d
The operators 1’,” q W g)’ g 4re defined by the formulae
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al0=
b 4
I,\"l £(x) = _z_::_;f"r f (2 v2)®2 o2V ¢(a)dn, (3.1)
x", o £0) = -.-f (o= x2)%L 02V £(y)au, (3.2)

1f Rs @ 0 and Re7) 7 4. §
It is possible to extend simply the results of Erdelyl (1940) to :
investigate the class of functions to which Iq,af belongs if f(x) belangs '
to Lp, but we shall not discuss this problem here.
It should be noted that so far we are restricted to a's for which
Re a¢ > 0. We shall also consider anly real values of a and n and return
later to the problem of defining the operators when a 2 0.
These opsratars are closely related to the Riemsnn-Licuville and
the Weyl fractional integrals introduced in §2. Par instance it follows
immediately from the definition (2.9) that

x3
R-a {t"l f(ti)’xﬂ} - ﬂ_lt-_&_)_ (o {7 f(ti)(x’- ta)ar-ldt

b

. F%EI (o v £(u) (x2= u*)%Lan
o 420%2
x2o*2q ot
In this way we establish the relation
1ot =52 L4 eeh); w] (3.3)

Similarly we have the relation

- h - -
N un) a{t (ias f(t%); x'} -mLa g="e f(t%)(t - x’)““ldt

) P2(a7 ( x o2 20 £(n) (@2 x%)* e
showing that

By, q 1@ = 270, {170 20hy 2] (3.1)
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Some particular cases sre of interest. If we let a =0 and make
use of the equations (2.12), (2.23) we see that the comvention

I, of0) = £(0), K, o2(x) = £(x) (3.5)

is merely a restatement of ths convention
R, &) x} = £(x), I, #e)s x} = 2(x).

Purther, if we put n = O in equatimns (3.3) and (3.4) we obtain the rela-
tions

I ot = 2R iethy ), 5y f) = T, 670eh) )

(346)
Because of the relatims (3.3), (3.4) it is a simple matter to use -
the tables in Erdelyi (195h) to calculate :r,q JLx) and 1:Tr LX) for any
’ L7
presoribed function f(x). For example, if !

£(x) = x2P (x® + o®)Y,

then
" f(ti) - PN (4 ¢ o)

Now, from entry (9) on p. 186 of Vol. II of Rrdelyl (1954), we know that
ifa >0, Bp* n+ 1l >0, then

2y atfen
Pt 0o)jxf = X NE* 1) b ( y,pe el atpen o1y = X
LR pxf re—— 2F1(= Bt nely atpen el - 20

12 |arg x/c®| <w. It follows immediately from equation (3.3) that for
this £(x)

2r.2p
c” x"F T(pern+1) 2F1 (= % B* n¥ly arpe nely -2
D(aspen+1) of

i1f |arg x/c| <3m.
It is often a simple matter to calculate I'1 af directly. For example,
»

I " af(x) -

since

x I(n +14p a+2 N +2r
f (x- u2) @1 ZNOVE gy - %‘ I(a) ﬂg n*F%J Z
0

it follows that
2
I ,a'prq('l’ ooy ‘p’ bl’ coey bq; ul)

)
W 1) byyeeesh ,a¢ nely x2
a* N +1) p*l q*l "1"“9”,’ 2y 129 qs“ n+ls x?)
(3e7)
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whare 15’1 denctes a generalised hypergeomstric funotion.
Y ies of the .
We shall now derive the basic preperties of the operstors I"L a and
K,,“, assuming for the moment that a ¥o. (We cannot do otherwise since

we have not yet defined the operators for negative values of «).

Since
x

2
Inaxz Pex) = ET(;E![O (x®= u2)%1 2N 41 2Be(y)au

=20m2Be2Y) ~X
- xoB & a_ ,2y0~1 2(n+ B+l
x ——TW—L (x u ) '} f(u)du

we have the relatim
T,q ¥reee) = 2P g, ). (3.8)

If we write down the expressions for T“ a and qu-a,pr we find that
»

I"I:“I'l"'“’ ﬂt

~2n-2a [ * -2 n-2ae2p "
- '2"xl"(&T_ fo (x’-u')a-l AR dugd__xn__p L (ua_"a)ﬁ'l vzﬂ’zmlf(v)dv

Interchanging the order of the integrations and evaluating the inner integral
by means of equation (1.1) we find that

=27 =26=28 X
- X 2N+l o a_ a2y0tP=l -
T, chhee, s " fo TR D Llan (LT S
so that we have the product rule
I"b“ I'n'u.B " I"bl"p (9
There ars correspmnding rules for lﬁn, a Since
2 - -
K x2Pp(x) = x2P 2 -9 f (uta x2)% 42 - p)-20+1 £(u)du
Mma c) x
we see that
Koo 2Pe(x) = x2P Kgp,a T (3.10)
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Also, since

Ko Frpa,pfX)

- _.)E{L f.(ul_ xg)b‘l udu f. (v u.)’-l ¥y 2N =20-2p41
P(a)T(p) “x u

we find, on interchanging the order of the integrations and making use of
equation (1.2), that this repeated integral is equal to

2 -
I'(a+p) Yx

showing that

xn’ . lm’ " xm o+’ (3.11)

3.3 Definitions for negative a.
The results we have just established suggest the mgnner in which we

should define the operators I « and X « for a £ 0.
From the results (3.9) and (3.5) we have formally

I'ma,-a I'],at - I‘q,of = £, (3.12)
This suggests that, 1f a < 0, we define
g" ’¢£ (3.13a)
to be the solution of the integral equation
R)*G,-cg - f, (3013b)
Similarly the equations (3.11) and (3.5) suggest that, if a < 0, we define
h= Kn’af (3ellia)

to be the solution of the integral squation

Kn’“’_c h=¢, (Bme)
The equation (3.12) can also be used to give us the inverse of the
T‘) a operator; we have
49

=1
;]’a - Iﬂ"a,-c (3015)
Similarly, we have the relation
-1 _
Kﬂ,a Kﬂ#a,-( (3016)
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W now introduce the operator
b; - i % 1-1 (3017)

to obtain relations from which we derive formulaes by means of which we

mcdcuhte]’.namdxv when a <0,

By the definition of the I,n operator we have that

Lo (7201 9% 42 YL £(4); x)
-20:-211
0 (x - ““132 £2* VL g )d.
a 0

Applying the formula for integrating by parts we find that the integral
on the right-hand side of this equation becomes

-2

- Sl TR AL IOV
a

+ (a-1) f ox(x’- 1) P 2‘1 24V p4)at )

=2(a=1)=21 px 2 .
showing that
I-n’a {t-Z'ﬂ -la-: t2n+v +]l f(t);x }= x-e ]-‘-I {t-Zﬂ -lﬁn—l ntv 4+l f(t)}X} .

If we repeat the process n times we obtain the relatimn

L.a @R ML 2V p()px ) u xR 1, 0n @2 * Y pe)x b (3.18)

Making the substitution a = n, replacing n by n= n, and making use of
equation (3.5) we find that this result can be written in the form

-2m 42n-1 o.n ,2n+ v 41 sme2n+ v
Iwm.n {t=e" gLt £(t)x} = x n* Yex)

and using the relation (3.15) we have the relation

I x+2n-211 +y £(x) = x2n-2~q -18: x2n+v +1 f(x).

- (3.19)
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Putting v= 2v-2n, we obtain the important particular case

-2 neleen 2n+l
I"b"“ £(x) = x ﬂx x £(x), n>0. (3.20)

If we replace nby n + a, c by = and v by 2a + 27 in equations
(3.18) we find that

- I")"'“:"M{tzn Iﬂsa’n f(t)} '

Using equation (3.8) we see that the right-hand side of this equation is
equal to Iﬂ*c*n, In,a*n £(t), which, by equation (3.12) is equal to
f(x). Hence we find that

-] w x=2M =2a=1 pen +2a*2n 41
Thea,ma T0) = % Rz Lo £
which, as a consequence of equation (3.13) can be written in the form

,,q 1) - x~on -2a-1 &n x2nt2aten 41 ¢ £(x). (3.21)

.0t

The special case in which =1 < ¢ < 0 is of same importance. Then
we take n = 1 and obtain the expressimn

- *
Ino fx) =% x 2n -2a-1 4, 2a%2n 2 I o1 £00), 0> @ >a

Inserting the expression for I" lﬂ:1'(x) we find that
3
x-z 1]-20-1

I f(x) =

d f we x2)% w2 2(u)du, <1 0. (3.22
n, @ T Ko( x°)" u (u)du, < & <0. (3.22)

We have similar results for the operator Kn a For exampls, corresponding
14
to equation (3,18) we have the result

Kpo (E5N LY 1) )= (P (FEEn vl

e £(x) ) (3.23)

» G0
Replacingn by n -n, abynandv by 2n = 2y + 1 we find that

Ky (X 1 R 20 00 1= (1 20a),

R —L
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a result which, because of equation (3.16) may be written in the form
R ORNEE Sl S5 Saihel ONIE 132 (3.24)

Finally we have the formula

2(x) = (=1)° x2" i b x20-2m 41 ¢ £(x), n > 0, (3.25)

na 'q-na"n

which can be used to evaluate Kﬂ at vhen a < 0 and n is a positive
»
integer such that 0 < a +n < 1.

3.5 Fractional integration by parts.
This is the name given to the formula

fo xf(x)Ima g(x)ax -fo xg(x)Kma £(x)dx (3.26)

derived by Erdelyl (1540).
The proof is straightforward. We have

-l men =2 a~] 21) +1
fo X1, o glaix = f ® £(x)ax f (x*2) g(t)dt

- f 42141 g(t)dt f (x- t,)a-l 1.2 =284 Yax
I'(a)

f tg(t)x.q £(t)dt,
proving the result.

Modified Opsrator of Hankel Transforms.

In this section we shall define a modified operator of Hankel transforms
closely related to that introduced by Erdelyi and Kober and discuss same of
its properties.

Ls1 Dpfinition and Inversion Thecrem.

The Hankel trmefom—}"'{i‘(t); x} ot orderYof a function f is defined
by the equation

¥(x) %{f(t); x -S t£()J, (xt)at. (4.1)




P

e B L B L I

- 17 -
By the Hankel inversimn theorem we have that
2(6) = H, Rt ) | (4e2)
We define the modified opsrator of Hankel transforms, Sm a by the
formula
!
8, af(x) = 2% 27 j; 170 2(6)0,, 4 (ct)at, (4e3)
8o that“
Smaf(x) - 20 x'“3+2n * @w™% £(t)gx} (Lhaks)

Applying the Hankel inversion theorem we find that

7% () = 27¢ {x“smar(x); t}

2nta
80 that

SORE NN CRER OHEY

from which it follows that
Sa,-a sn.d =5

where I is the identity operator. Hence the inversion theorem for the
modified operator of Hankel transforms can be written in the form

5a " Sma,m (4e5)

Le2 Relations between the modified operator of Hankel transforms and

the Erde}ﬂ-xober gperators.

Between the Erdelyi-Kober operators of fractional integration on
the one hand and operators of Hankel transforms on the other we have a
set of interesting relations.

#In calculations involving these operators it is sometimes convenient
to use squation (Lel) in the form &"p (t3e(t)gx = 29 x™ SiP + ¥, _qf(x).
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Por instance, from the definitions of the operators I"M‘-.B and
a'\ we find that
]

%M,p sﬂa"t(x)
py-20-26-2n
r(g)

Interchanging ths order of the integrations we find that this integral
is equal to

o0+l ~2a~2p=2n
r(g)

The inner integral is Sonine's first integral (1.L) so that the repeated
integral reduces to the single integral

20*p (=a-f [ yA-o-B f(y)Jz‘n +¢+p("7)dy

b 4 -
fo (7.'2- u2)9-1 Q22N 4l 0 -a fo yl'af(y) J2n m(w) dydu.

- b 4
fo 7 2(y)dy fo (x3- u3)P=l 4O+ 2 ™1 Ty +o[)d0

which is merely S f(x)« In this way we have established the relation

n,c*p

Tnayp Snya ™ n,oep (be6)

In a similar way we have

‘1 ’ “SW"G: pt (x)
pL 2 e
-2 r(.:; fx. (uiac8)OL 20-2 #1y =P L‘ yl"pf(y)Jm o200 (W)
L
T (a)

The inner integral can be evaluated by means of the formula (1.6) and we
£ind that the repeated integral has the valus

2 %P x‘“fa fo' yioop £ 4qep )T = Sy g4pfx)s

[, # e [ aran® By, (e

-
X

showing that
R'l,“ s“"“pp " s'bc*ﬂ' @.7)
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«l%a
Turther,
8’7’“’3 sﬂsat(x)

-t [ " () fo 7 G va Wy spuep

The inner integral can be evaluated by means cf equation (1.3) and we
find that the repeated integral is equal to

02 x'a""zﬂ'zﬂf * ot (x® - u2)o*P-1 £(u)du,
0
that is, to I"h a‘pf(x). Hence we have shown that
Snea,8 Fnya ™ Tn, a0 L.8)
In this

There is a similar formula for the product q,'
case we have

S"b a s') +a, ﬂf(x)

’C S"f'“:ﬁ’

. 20 40 fo P 0y sy - fo 0P 3, soaep ()20

- 2%f 57 f o o ) fo. 7P I2n 40V 4204 plW)eT-

Again using equation (1.3), but noting that here the roles of x and u are
interchanged, we evaluate the inner integral to get

2c" f " 1-20-2B=2n (12 4ay®*B=l gy w k £(x)

(c¥F) x natp

for the repeated integral. In other words we have shown that

Snpa Jpa,p ™ Xn,aep he9)

From the definition of the operators involved we see that




| sy

sﬂ""bp R‘Iv"t(x)

- wZa=2 1) t
24 1 2n4
- 2P P fo P 0 g (V)8 Sy fo (4% u3)%L 2" Le(u)an

- 2-1-r;-—” ‘l,x-p ./: 14 g(a)en [ T g12Be2n pa _ yayeel (et )at
u

2a+pe2n

an evalusting the inner integral by means of equation (1.6). This last
integral is S‘ﬂ o:-tpf(x) 80 that we have shown that
»

Sﬂ'“’p I"l:“ " Sﬂo“"'p' (b.10)
By a similar process we can show that
nya Fva,p ™ Sn,op’ (he2)

Written in terms of the operator of Hankel trmsfomsj:{—v these
last two equations take the forms

‘%m 420*?( P In, ofx)E} = 2* E-a’*zn mp{ P 2x)se ) (La12)

and
3‘[—3,,+a ™ 1‘..,+a,pf(")'-€} - 2P 3 pﬁhn +atP (x~P f(x)3e}  (bel3)
respectively.
Particular cases of these results are of some interest in the solution
of boundary value problems [cf. Sneddon (1962)].
Itweput a=4, p~0, n=w% in (4.12) and make use of the fact
that since
cos(&x) = (&n ;;x)* N (g x)
the Fourier cosine transform of a functim may be written as
F, eene) - By o einy, 0w

we find that
M elohe) = &L (2E}, (he15)
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where
e - [Z [P _fhex
o by e - [F 7 Ll (1126)
Similarly if wput c = =% , p =%, 1 = 0 in (4413) we find that
N' O g XEXOHI I (u.17)
whers -i
h(x) = 2"%x X -3 ,% £(x) = J—' fx ._-(.ELE-\/(‘) g (4.18)
Ifweput a =%, =0, n=0in (4.12) we find that
N, Ulesrl = &g, (20,5} (1e19)
where
R - 12 xf(x
Jp) =2 Io,% £(p) f: fo -\-/-(-i—%—;;)— (L.20)
d
. 3. {£(x)s g)= éﬂ% {x"i £(x)3&} (Le21)

is the Fourier sine transform of f£(x).
Finally putting a = B =%, n = 0 in (L.13) we find that

M= e)se) = Finsed (L.22)
whers
h(x) = 2 £(x) = (Le23)
& AT % fx Ve

22. Sonine operators

We shall now introduce two operators Pe:),a and ¢\,a whose two main
properties we shall derive by using Sonine's second integral. For that
reason we shall call them Sonine operators.

We define P‘:b o Q:' by the squations

X
Pl:;, RE fo g™l I (kv (x*= t%)} (x*- t’)*“ £(t)dat, (a ><l1) (5.1)

Ql:'ag - f R J Lk (%= %) } (t2- 8 s()as. (o > -1) (5.2)
X
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! Prom these definitions we have
v
p;’p )h {£Y o(DH(E - k)5t )

x -
- fo gl s {k V(x* « t%)} (x* « t")*‘3 dt fk | gt O(z)J“(Et)dﬁ

- f L (e)ax [ T gl 3 ()T, G Vi = 47) } (< - LI
K Jo

Evaluating the inner integral by means of equation (1.9) we find that
this repeated integral takes the form

WP Pl fk. B 4L g(r)( &r sy B - Tpaury 1% V(22 =)}k

If we change the variable of integration to T =V(E? - k?) we find that
we obtain the result

e ETo(DH(E - 1038} = 1P x 2B (N @nE N g zaee®) 132 )5.3)

with .
AwpBepsl (Sels)

Similarly we can show that

& p N, (EHEH° o5t} = 18 xT I, (ET (BB R oy (e )

(5.5)
where
P=deytrl (506)
We have so far defined thesas opsrators only if a >-1. If a<«l we
define them in the following way. Since
d _atl R
T gy () =TT (ka)
it is easily shown that if a > =l
1 d -
= & P};,ml £ Pl:),af
and if we repeat the process n times (where n is a positive integer) we
have the relatiom
«n,1 d\n -
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This relation suggests the definition of P:. c for ¢ <0, We choose a
poaitivointomgmhthatg-l<-c<nmddeﬁm

rfh XY e (%-&-)n P:’m t. (5.8)

Similarly we are led by the relatim
l1 d - a0k
to define Q: at for ¢ < =1 by the equationn
1
14" k
Gm gD & @-1ca<n. (59

6. Dual Integral Equations of Titchmarsh Type
Dual integral equations of the type

[ e o0s,mame re, o<x<, (60)

) T e (00, ¥k 0G),  x>1 (6.2)

were first discussed systematically by Titchmarsh., Although Titchmarsh
discussed only the case in which g = v and G(x) = O it is appropriate to
describe the equatims (6.1) and (6.2) as being of Titchmarsh type. If
we make the substitutions

o(0) = EW®, £(x) = 2"2% x2% p(x), g(x) = 2% X o(x), (643)
we see that equations (6.1) and (6.2) may be written in the operatar form

Su-a,20Y T 5 Fyopp¥ T8 (6.1)

where the function £(x) is préscribed on the interval - {xt 03x<1}
and the fimction g(x) is prescribed on the interval I, = {xs x> 1},
We shall find it convenient to write any functiom f(x) defined on the
positive real axis as a sum
f(x) = tl(x) + fa(x)

whers fl(x) is defined by the equatioms
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o2l -
2(x), x 81,
g TR
o, xe Iz,
and f.‘,(x) by the squations
0, x el

rz(x) - £(x), x eIz.

In the problem we have posed we may say that fl(x) and gz(x) are known
but that £,(x) and g, (x) are not known.

We shall now discuss same of the mathods of solving the pair of
equatins (6.1) and (6.2).

6.1 Peters! Solutimn.
If we introduce the number
A=g(n+ V) - (a=p) (645)
then it follows from equation (Le6) that

Buea'r o p siuna.Zc - Siu—a, A=pt2a
Similarly fram equation (L.7) we have the relation

By =B, v=2 % vep,2p © g, Aeir2a
It follows immediately from equations (6.l4) that if we define the fimction
h(x) by the equations

By (%) = Tyea, n T ®)s By(x) = Bppg yor 8X)
then

s*l"'a) A '1-"'20* =h
so that
=1
"o - s}w, ).-p.‘tzch(a

Using the inversion formula (Le5) and reverting to the original variables
by means of equations (6.3) we find that the solution of the equatiomms
(6.1) and (6.2) can be written in the form

¢(0 - Es; y...p’ x_ v_zp h(g) (6-6‘)
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where
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Kpeasp, vep 3E)  (66D)

Peters! solution [Peters (1961)] corresponds, in our notation, to the
values ¢ = = 40, B = O in which case

A= & (W vew). (6.7)

In this case equation (6.6;) can be written in the form
o0 = 27V g2 ""{ f 272V (000, (atdas + f 1" M (t)JA(!t)dt}
(6.8)

where )\ is given by equation (6.7) and the functions hl(t) , hz(t)
given by the equations

B (#) = 2080 g L RO, B8 R e \000). (6.9)
We can evaluate the I-integral by means of equation (3.1) provided that
A> p >l (6.10a)
and the K-integral by means of equation (3.2) provided that
pro>el, v>A. (6.10p)

When these conditins are satisfied we have the expressioms

Lo, W2
hy (t) = -2-:(—;:-% f (42 = P O pi e, (6.11)

) -
hy(t) = rz%;'ﬂft (@ = £3) 1" Voran,

for the component parts of the functian h(t). :
When the conditions (6.10) or (6.11) are not satisfied the equatims
(646) still furnish a solution of the dual integral equations but the I-
and K-fractional integrals have to be interpreted in the manner outlined
in S 3.1. We shall not cansider the procedure since it will be illustrated
below when we discuss Titchmarsh's solution,

642 Titchmarsh!s solution.

Titchmarsh's solution [of. Titchmarsh, (1937), p. 33L] is essentially
the solution (6.6) in the case when u = v, B = O so that the pair of dual
integral equations under consideration is
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[ e ows, enee =x,  xemy, (6.13)
f ) g2 o(£)J, (Ex)AE = a(x), x & L, (6.1)
0

Ifweput p =V, B =0, \ = v=a into equations (6.6) we find that the
solution of these equations is

1 -
o(®) = 27 gl*e { fo 1 b, (1), _, (Et)at + f . 1% n(0)g, _ (Etdat .
(6.15)

vhere h, (t) and h,(t) are given by the equations

by (8) = 22 4726 L, FE) Bye) =K o o). (6.16)

In the computation of hl(t) and hz(t) two cases must be distinguished
according as a is positive or negative.
Case 5121 & < 0: We suppose that n is the smallest positive integer for
which n » =a. If & < O, then by equatims (3.1) and (6.16) we have

1¢2a -y

by () = Z iy f - @)™l Y™l p)ar, (a<0, v>al)
and by equations (3.25) and (6.16)

b, (t) = ‘Fia‘%'?ﬁ gv2e-lgn ¢ f (2 - )7L A=V g(a)ar .

Substituting these expressions into equation (6.15) we obtain the solutian

ol 1 t
o(8) = —1;(-51-;5 f 1M g, g (Et)at fo O D M JOTE
1 1
. (.1)“27(%5;; fo 70y _(gnatPyy ¢ f (v2- £2)%271 1"Y(w)av

, (6.17)
valid for =n <a <0, V> a],

In the special case in which G(%) = O we obtain the expression

o(8) --Lﬁl—,—f 170 g, _ (2t [ @ -x )™t ™ ggday,
(6.18)
valid for a <0; this is Titchmarsh!s solution.
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In the special case in which F(t) = 0 and =1 <a <O we find, n
putting F(t) = 0, n = 1 4n equation (6.17) that

g 1 -
o(g) = -%’f 2l ML %f (= )% 22" %(x)dx .
0 ¢ (6419)
This is the form of solution obtained by Noble (1958), Williams (1962)
and Lowengrub and Sneddon (1962).
Case (i1)t @ >0. Ifn >a >0 the, by equatims (3.21) and (6.16) we

have - Wl t
by (¢) = %2}' i fo, (2~ )"0 L p(a)an
Also using equations (3.2) and (6.16) we have
"2 -
hp(t) g'tm;ft (= ) 7 " g(rer,

Substituting thess expressioms into equation (6.15) we obtain ths
solution, .

plta J4a 1 o, t 1 v
o(®) --ﬂ,,-% fo Vg (e)atl] ¢ fo O R TS

l=a *q - -
+2ﬂ'(§;_f1 e { -a(Et)dt ft (- ta)apl vl G(v)dx

(6.19)
The special case 0 < a <] 18 of interest. Putting n = 1 in equation
(6.19) we obtain the solution

26 +a .1 - 2 1
oo 'Fﬂéﬁfo AR CLT il T e [CO

leg 14a . @ .
* gr(r'..éaf £ g (et f 1. (e 1%L Y1 g(g g
! (6.20)
Since

A CEMAE SN SV ERY Tt

J\n-a-fl( &)

we find on integrating by parts in the first term that if24 ve2a>0
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2 1
o(® -'%a&a; {8‘“ Iy (O j; (@ -x®™ ¢* rYey

1 1
+ fo Q- g fo ( g)?® J,_a,l(;t)rczt)at}

L] - -
. 31-;;51—“ [, ¥ e [ e2 - 0" v atca
(6.21)
If we put G(t) = O in this equation we obtain Busbridge's solution
[Busbridge (1938)]. On the other hand if we put F(t) = O in equation
(6.19) we get the salution derived previously by Noble (1955), Williams

(1962) and Lowengrub and Sneddon (1962).
6+3 Noble's Solution.

Noble (1958) gave a solution of the equations (6.L) with p = v,
namely of the equations

5} veq,2a v(x) = £(x), xel (6.23)

Si v=B,2p y(x) = g(x), X e 12

which is based virtually on the same computation. Since

I& vta, f=a S; v=a,2a ) x% v=a,a~p S* v-p,2p
(both being equal to S} v-a, ‘”ﬂ) we can write the equations (6.23) in the
form
Ly +a,5"af "B v, a-pé
or in the form
K veg,0-p 81 " T veq,pa 22 " % (6.2L)
where
’1 L] Ii \M'G,ﬁ—a. fl - Ké v-a’a-p 32. (6025)

Now it will be recalled that fl and g, are prescribed functions but that
f2 and g, are not known.
If we evaluate squation (6.24) on I, we cbtain the integral equation

K% vea,a-p 81 $, xeI; (6.26)

ey




which determines & m('gl*leil coxpletely determined and
may be obtained by means of (4.5) in the form
*. s* pr;a\". (6027)

On the other hand, if we evaluate equation (6.2L) on I, we obtain
the integral equation

Bveapafe”

by means of which we may determine t2. Hence f = fl + 1'2 is completely
determined and y may be found, from equation (4.5), in the form

*- %v ‘a’-za . (6.29)
To 1llustrate the method we shall consider two special casess-

Case (1)1 0<a<l, B =0,

In this case equation (6.26) takes the form
K} wa,a 8 ’1’ x eI.‘

which is equivalent to

-3 (6.28)

19 xel

2

1
[Twr 2 1 g et = 3 TP 8 (x) (6.30)
X

8 ) * Ly 4g,eq LX) - Kyy g 82 (%)

- wVa]l d _2¢V
% x T Lvagi £,(x) - LY ves,a g, (x)

d _2+v =20
X Bygie* HRE - K ves,a 62,(")

d _=2a+v +2
X I}v,l-a l'l(x) = &} ve=a,a GZ(X)

- 220—1 x-v =l

22a ol -] d x

T &, - T nee

2¢a -
-%x(;-)— L (ud - x3)%1 vl Gz(u)du, O0<x<1l, (6,31)
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Writing dom the solutiom of equation (6.30) by means of the formula
(2,17) we find that if 0 <c <1

2v-1 a 1l ,'eo-v-fl !:( id
‘1(t) b "nr_-c" f t.)ﬂ =

From equation (6.27) we then have finally that the solution of the
dual integral squations

,0<t <l (6.32)

f. i’“ o(E)J, (gx)dE =F(x), O<x<1l
0- (6.33)

(0 < ¢ <1) is given by the formula

1 -
oD = &8, o€~ & fo tgy (8)J, ( EL)at + & fl 40, (t)J, (gt)at  (6.34)

where gl(t) is given by equations (6.32) and (6.31).

Case SiiZ: a=0, 0<b<1.

In this case equation (6.28) takes the form

Ii”ﬁ (x) = -#,(x), xela
which is equivalent to

f lx(x’ - )P £ (0)82P*L gy - - 3 T(e)2P* Vbl(x), x> 1  (6.35)

with
L S ey
'Ii.arl'ap P8y yep,p O x>1
L, pf- LR W Y g 10p 00 )
-2
_T;_. - u)PL " p(u)au

2 -] -
T?T:;T%:' fx (ui= x3)™® o™ o(u)ay, (x> 1)  (6.36)

e e b
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The solution of the integral equation (6.35) can be derived by means of
equation (2.16) in the form
w2fe) t 2p+ 4]
-t d #1(7)
£,(t) "W X L W d=. (6.37)

From equation (6.29) we have finally that the sclution of the dual
integral squations

fo. (I (xE)ME = F(x), 0<x <1

(6.38)
fo 2 o(e)y (x ©)ag = 0(x), x >1
(0 < B <1) is given by the formula
1 -
°0) = & [ eR,(£0)a  g J, 0, Ceves (6.39)

where f,(t) is given by equations (6.37) and (6.36).

Gols Gordon=Copson Solution.
The solutian of Gardon (1954) or Copson (1961) is obtained if we

regard
Y %y ap g (6.10)

as a trial solution of the pair of equatioms (6.23) with unknown h.
Substitutian of the form (6.40) into the first pair of squatiomns (6.23)
yields the result

£= siv -a,2a s} V4B, =amf h = I§ V4B, a=p h. (6.41)

by (4e8). This is a functional equation for h from which h, may be found,
Similarly we can derive the equation

8" % vep,2p % vop,mamp B " By oppoc B (6.12)
for the determination of h,.

2
Case (i): a > B.

In this case h‘.\. is determined by the integral equatim

fox(x’- u‘)“’s"l u Y*2PHl hl(u)du -3 r(q__p)xZaw 2(x), x&a I, (6443)
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vitle hy(x) 1s given (as a result of (3,16) in the form
hz(x) - xi vea, o gx) xelj (6.45)
Taking equations (6.3) into account we see that
ny() = PP x| g 0(), xela (6.16)

and that equatian (2.16) implies that, if O < awf < 1,

28 _~v-2p-1 x vl
a2’ X d u F(u)du
hl(Jt) I =a+p I‘-fo _—_S-%:F(xa_ ) » x eIy (6.L7)
Writing equation (6.46) in integral form by means of (3.2) we find that

A9 y-20 =
hyx) = Sy [ ™o o, x ol 68)

It follows from equation (6.40) that if O < a=f < 1 the solution of
the pair of equations (6.13) and (6.1L) may be written in the farm

- 1, *
o(g) = 27>P P { fo P ()0 (gx)ax + [1 24 1, (23 ( ex)dx}

(6:49)
where hl(x) and hz(x) are given by equatimns (6.47) and (6.48).

Case Si:lz: e < B,

In this case it follows as a simple application of (3.15) that
By = I yaq,pea TX)s xel (6450)
while h, (x) is determined by the integral equation
fx.(u’ - x2)P0L (1% (w)au = & 1 (pea)xPV g(x), x 6 Iz (6.51)
It follows from equation (3.1) that

- t
by () = Tt%-t'c';"‘f o - )Pl 2 e

142 - ¢
Bt [ P e, G<s<n, G
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and from equation (2.17) that if 0 < p=a <1,
2p ,=20% vel 1—9—0
S B M 2 t a G(u)du
hy(t) f -(:;_-F)-&},— (¢ > 1), (653)

The. solution-in the case 0 < p=c <1 is now given by equation (6.49)
with b (t) and h,(t) defined by equaticne (6.52) and (6.53).

l; Dual integral equatioms occurring in diffraction theory.
We shall now consider two special types of dual integral equatimns
occurring in diffraction theory.

7.1 Peters' solutian.
Peters (1961) has considersd the pair of dual integral equations

fk' £V 0007,k X)ax = £(x), 0 Sx <1 C (7.)
[ e - e® s (e - ), x>, (7.2)
which may be written in the symbolical form
H @ o(ng- 0} x) = 2w, 0Fx <1, (7.3)
3 & (g® - k% o2 x} = gx), x> 1. (7.4)

If we operate on both sides of equation (7.3) with p i and make use
of equations (5.3), (5.L) we find that equation (7.3 ’is equivalent to

S (2w + k) B o Y ) =@, 08 <,
e (7.8)

hl(x)-k"a a],l; lf(:t:), 0Sx<l

Writing down the form of the operator P:: ;8 given by equation
,li@l’b
(5.1) we find that

by (x) = K x* fox M1 (x2a py~de-te -+ o o = ped V(x®-t3)} £(s)at.

(746)

AP e e S
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Similarly if we operate on both sides of equation (7.l) with
@ _ge yoy Wnd make use of equations (5.5) and (5.6) we cbtain the
»
equation

Iz, (=0mnen) Y ol V() Ipx) = my(e), x> 1 (7.7)
where
hy(x) = k% V*L x™0 q’:’_a,' v 8, x> 1

-k [ T o UV} () E L g,
X

(7.8)
From equations (7.5) and (7.6) we see that

b, w2t " ol yrtnd)gx) = ni) (7.9)

where h(x) = hl(x), 035 x<1and h(x) = ha(x), x > 1. Inverting equation
(7.9) by means of the Hankel inversiomn theorem we have that

B N A B Y GRS

- fo.xh(x)J_c(x't)dx

1 -
- (x)J_ (xt)dx + (x)J _(x%)dx

Making the sbustitution T= V(¥® - k®) we finally obtain the solution

1
o(g) = WI(E‘-k’)}G{fo xh, (x)J_{x V(2 « k*)} ax

' f:-'xh-,,(x)J_a{x Ve - 1)) & (7.10)

where hl(x) and ha(x) are given respectively by equations (7.6) and {7.8).
The integrals defining hl(X) and hg(x) will exist oly if
V>ea >p (7.11)

Te2 Ahieser'!s solution
Ahiezer (195L) has considered the pair of dusl integral equatioms




F

[ stoi e = 2, 0<x <1 (r:12)
fO- (% - k’)u ‘P(E)Jo(xodz =0, x>1, (7.13)

with =1 < a < 1. These equations can be written in ths symbolic forms

S 7 o@E(x-10x) = £),  O<x<l

Y, & (@ =) o(Dix) = 0, x> L.

If we act on both sides of the first of these equations with the operator

0,=a and on both sides of the second one with the operator. Ql;’_l g d

make use of equations (5.3) and (5.5) we find that these equations are
equivalent to the relations

3"1-0. (T-lﬂx * + kz)'& ol vix? + k®)]3x} = x° X1t PI;’_G £(x),

0<x<l, (7.14)
B, 6 kPl s kx im0, x> 1

respectively.
Now, since we have the relation

d _l=a
&* J1-a

we see that the secand of these equations is equivalent to the equation

(x ) = x>0 7 _g(x )

L0 @ P e k) ol v ¢ i) gx) = 0
vwhich may be integrated to give

By o 1717 @ 1) o yia® + 1)1z = ™Y, x> 1, (29)

where ¢ is an arbitrary constant. Applying the Hankel inversion theorem
to equatioms (7.1L) and (7.15) we obtain the solution

(x T)dx

=14 - -
T e ) iv(‘/.,a +K2) = cfl X% e

1
AL O (7.16)
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Now

f: chl walxT)d 1-% (x% _a('rx) - J )]

It-1¢ a <3,

Lim x%J (x) =0
X+ o "'a(

and we obtain the solution

1
-r"l+a(¢a + ka)-i oy ©2 + k3) --[o xJo(‘vx)P:’_ - £(x) -% J _a(‘r).
Writing out the operator Pl;’ - Ve obtain the solution
1
ey Raparat) of w e W e et F e g o)

(1.17)
If % < a <1, then for ¢ to be finite we must have ¢ = 0. This condition

is usually equivalent to a physical condition which is easily recognizable.

9,’\. Dual Integral Equations with General Weight Functim.
The technique developed inf 6 enables us to discuss the slightly
more general dual integral equations

[ LTI ko), (g - P, xe Ty (8.1)

j-" £ o(k)y, (ex)ag = 0(x), xe 1, (8.2)
0
which with the substitutions (6.3) may be written in the form

s* v-a,2a(1 tkN =5, Si vef, 2B ¥=e (8.3)

where fl’ g and k are known. The solution we give here is essentially
that due to Cooke (1956). We again use

V" 5 yep,-ampl (8+L)

with unknown h as a trial solution. Substituting from (8.4) into (8.3)
we find that

5% ves,20 % vep,=a-f® * 5} vea,2d 5 yop,mag? " D (8.5)

s smoan it
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5 wp,2p 5 vep,aep® " € (8:6)

Using the relations (L.9) and (3.16) we cbtain the equation

hg = xi H’w_pg,, on Ig, 8.7)

determining h on Ig. Evaluating equation (8.5) on I, we cbtain the
integral equation

Ii‘ ‘"’ﬂ:"‘hl * S% M,Zak s* ‘"9.""‘#‘1

-f- s} v-a,Zak s} v-tp,-a-ph"' o L
Using equations (3.15) and (4.6) we may rewrite this equation in the form

B % veg,orpt % ovep,epf " 2y (8.8)
% " Ty veg,pa” = % vea,atp™% vp, gl 8.9)
Now

S} v, atg" 5 vap, mamph1 ()

where

. 1
- 2“‘&"""3_[0 0Py g (et (t)at 270y P[ . ot (u)J, g g (ut e

Interchanging the orders of the integrations we find that this integral
can be written in the form

1l
K(x,
fo hl(u) (x, u)du

where

Xx, W) = W@ fo' B8], 4 g(8, oq g(utdes
Equation (8.8) now takes the form
1
K(x, du = & (x), I,
m ¢ [ X6 wm@a - 4@, e

whers &, (x), defined by equation (8.9), is a lnown funotion of x. The
problem is thus reduced to the solution of an integral equation of the
second kind of Fredholm's typs.
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Table I

Relations satisfied by the Erdelyi-Kober Operators
and the Modified Operator of Hankel Transforms

s

Thee Thea,p " Tnyap

Ry Faee,p * By, o0

Ina ™ Beay=

Krys ™ Yree,ms

Ty, f0) = N LGR 214 0

K, 00 - (1) xan-lb: L2 gy

I, o0 = =20-2n -1'5«2 L2n%2a42n#1 I ot

K of0) = ()7 22T e £(x)

K -q,atm
s:\:.la ® Srra,a

hea,p Snya ™ %n,ap

Krpa Jmra,p ™ Snyasp

Srra,B e T T, a0p

Snya “mra,p ™ o0

sn"“'p I"h“ ) s"b”p

Sn,c K"‘“)p - sﬂo"ﬁ

-

(3.9)
(3.11)
(3.15)
(3.16)
(3.20)
(3.24)
(3.21)
(3.25)

(1.5)

(Le6)

(")

(1e8)

(4e9)
(4+20)

(Lo11)
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