UNCLASSIFIED

AD 400'687

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
WATERTOWN ARSENAL LABORATORIES

CRACK STRESSES: AN APPLICATION OF MUSKHIELISHVILI'S EXTENSION PRINCIPLE FOR MULTIVALUED MAPPING FUNCTIONS

TECHNICAL REPORT WAL TR 811.8/4

BY

OSCAR L. BOWIE

DATE OF ISSUE - MARCH 1963

OMS CODE 5011.11.838
BASIC RESEARCH IN ENGINEERING SCIENCES
D/A PROJECT 59925001

WATERTOWN ARSENAL
WATERTOWN 72, MASS.
The findings in this report are not to be construed as an official Department of the Army position.

ASTIA AVAILABILITY NOTICE
Qualified requesters may obtain copies of this report from ASTIA

DISPOSITION INSTRUCTIONS
Destroy; do not return
CRACK STRESSES: AN APPLICATION OF MUSKHELISHVILI'S EXTENSION PRINCIPLE FOR MULTIVALUED MAPPING FUNCTIONS

Technical Report WAL TR 811.8/4

By

Oscar L. Bowie

Date of Issue - March 1963

OWS Code 5011.11.838
Basic Research in Engineering Sciences
D/A Project 59925001

WATERTOWN ARSENAL
WATERTOWN 72, MASS.
WATERTOWN ARSENAL LABORATORIES

TITLE

CRACK STRESSES: AN APPLICATION OF MUSKHELISHVILI'S EXTENSION PRINCIPLE FOR MULTIVALUED MAPPING FUNCTIONS

ABSTRACT

Muskhelishvili's extension principle for the case of geometries involving corners and cracks and hence multivalued mapping functions is considered. It is shown that a useful application of the procedure can be found in the study of the local stress distribution near the base of a crack. The structures of the stress functions on the Riemann surface defining the mapping function in the neighborhood of \(\sigma_0 \), corresponding to the crack root, can be found and the local stress distribution shown to depend on \(\phi' (\sigma_0) \).

OSCAR L. BOWIE
MATHMATICIAN

APPROVED:

J. F. SULLIVAN
Director
Watertown Arsenal Laboratories
I. INTRODUCTION

In the plane theory of elasticity, Muskhelishvili's formulation of the problem in terms of a single complex function defined in both the occupied region and its complement in the plane is well-known. Applications of the concept to regions defined by polynomial and rational mappings of several basic regions have been carried out, e.g., mappings of the unit circle by Kartsivadze. The author recently investigated the extension of the concept to multivalued mapping functions of the type encountered in the description of boundary corners.

This report is intended to show a practical application of the extension principle when applied to multivalued mapping functions. In the study of the local stress distribution near the base of a crack, it will be shown that the extension argument provides necessary information as to the character of the stress function. A simple conversion of the stress function defined in the auxiliary complex plane to the stress concentration in the physical plane is thus provided.

II. THE EXTENSION PRINCIPLE AND MULTIVALUED MAPPINGS

For concreteness, we consider regions in the physical Z-plane corresponding to a closed contour C and its interior S_C. It will be assumed that a mapping relation

$$Z = \omega(\zeta)$$

exists which maps conformally the interior of the unit circle in the ζ-plane, S_ζ, into S_Z and carries the unit circle τ into C. The existence of corner points in ζ implies branch point type of singularities in equation 1 lying on the unit circle, e.g., consider the Schwartz-Christoffel transformation.

Muskhelishvili's original formulation depends on representing the stresses and displacements in terms of two complex functions $\phi(\zeta)$ and $\psi(\zeta)$ holomorphic in S_ζ as

$$\sigma_y + \sigma_x = 2\Re(\phi'(\zeta)/\omega'(\zeta)),$$

$$\sigma_y - \sigma_x + 2i \tau_{xy} = 2(\bar{\omega'(\zeta)}[\phi'(\zeta)/\omega'(\zeta)]' + \psi'(\zeta))/\omega'(\zeta),$$

$$2\mu(u + iv) = \omega'(\zeta) - \omega(\zeta)\phi'(\zeta)/\omega'(\zeta) - \psi(\zeta),$$

where primes denote differentiation with respect to ζ, bars denote complex conjugates, and μ and k are material constants. For boundary conditions in terms of the applied load on C, the corresponding conditions on the unit circle $\zeta = \sigma = e^{i\alpha}$ can be written as

$$\phi(\sigma) + \omega(\sigma)\phi'(\sigma)/\omega'(\sigma) + \psi(\sigma) = g(\sigma),$$

where $g(\sigma)$ is prescribed by the mapping and the given applied load.
The stress analysis requires the determination of the two functions \(\phi(\zeta) \) and \(\psi(\zeta) \) which must be analytic in \(S^+_t \) and obey the condition, equation 5, on the unit circle. Muskhelishvili's extension principle consists essentially in replacing \(\psi(\zeta) \) by an extended definition of \(\phi(\zeta) \). Using the same form of extension as Kartzivadze, we define \(\phi(\zeta) \) in the region exterior to the unit circle, \(S^+_t \), as

\[
\phi(\zeta) = -\omega(\zeta)\bar{f}'(1/\zeta)/\bar{\omega}'(1/\zeta) - \bar{\phi}(1/\zeta), \ \zeta \in S^+_t, \tag{6}
\]

where

\[
\bar{f}(1/\zeta) = \bar{f}(1/\zeta). \tag{7}
\]

Clearly \(\phi(\zeta) \) as defined by equation 6 is analytic in \(S^+_t \) with the possible exception of the point at infinity. It follows from equation 6 that

\[
\psi(\zeta) = -\overline{\phi}(1/\zeta) - \overline{\omega}(1/\zeta)\phi'(1/\zeta)/\omega'(1/\zeta), \ \zeta \in S^+_t. \tag{8}
\]

It is evident for the mapping class considered that \(\psi(\zeta) \) as defined by equation 8 is analytic in \(S^+_t \) with the possible exception of \(\zeta = 0 \).

One of the conditions on the extended definition of \(\phi(\zeta) \) is therefore the insurance of the analyticity of \(\psi(\zeta) \) at \(\zeta = 0 \) in equation 8. The remaining condition arises from the satisfaction of the boundary condition equation 5. Replacing \(\bar{\psi}(\sigma) \) in equation 5 by the definition equation 8, we find

\[
\phi^*(\sigma) - \phi^*(\sigma) + \omega^*(\sigma) - \omega^*(\sigma)]\phi^*(\sigma)/\omega^*(\sigma) = g(\sigma), \tag{9}
\]

where the notation \(f^-(\sigma), [f^+(\sigma)] \), is defined as the value of \(f(\zeta) \) as \(\zeta = \sigma \) through \(S^+_t, [S^+_t] \), respectively.

For polynomial mapping functions, equation 9 reduces to the so-called problem of linear relationship, i.e.

\[
\phi^*(\sigma) - \phi^*(\sigma) = g(\sigma) \tag{10}
\]

and the solution can be found in terms of a polynomial and a Cauchy integral.

When branch points in the mapping function lie on the unit circle the simplification equation 10 is no longer possible. The mapping function equation 1 must be considered as defined on an appropriate Riemann surface. With little loss in generality, we assume the appropriate branch of the mapping function lies on the top sheet and the branch cuts are intervals of the unit circle joining the branch points. It is evident that across the branch cuts, \(\omega^*(\sigma) - \omega^*(\sigma) \neq 0 \) and hence the simplification equation 10 is no longer possible.

Although the effectiveness of the extension principle in the case of multivalued mapping functions as a numerical procedure has little advantage over other techniques, one can argue that considerable insight into the
character of the stress functions is gained. A practical use of such insight will now be demonstrated in the study of the local stress distribution near the base of cracks occurring in geometries involving corner points.

III. AN APPLICATION OF THE EXTENSION PRINCIPLE

Let us assume that part of C corresponds to a crack; thus, there corresponds an interval \(\tau_0 \) on the unit circle which maps into the crack. Let \(\sigma_0 \) denote the point on \(\tau_0 \) which maps into the tip of the crack \(Z_0 \). Then

\[
\omega'(\zeta) = (\zeta - \sigma_0)w(\zeta),
\]

(11)

where \(w(\zeta) \) is analytic in \(S^* \) and nonvanishing in \(S^* \) and \(\tau_0 \). A finite number of branch points are assumed on the unit circle necessary to the description of the corner points of \(C \).

Since \(C \) is a continuous closed curve, the branch cuts can be taken as intervals of the unit circle. Furthermore, it is easy to show that no cut is necessary on \(\tau_0 \). By a rotation, the crack can be considered as falling on the real axis. Then \(w(1/\zeta) \) is the analytic continuation of \(\omega(\zeta) \) across \(\tau_0 \) by Schwartz's reflection theorem. Since \(\omega(\zeta) \) can be continued analytically across \(\tau_0 \), certainly \(\omega(\zeta) \) is analytic at \(\zeta = \sigma_0 \). Noting that \(\omega'(\sigma_0) = 0 \), it follows that in the neighborhood of \(\sigma_0 \),

\[
Z - Z_0 = \sum_{n=2}^{\infty} S_n (\sigma - \sigma_0)^n.
\]

(12)

If polar coordinates \((r, \theta)\) are introduced by

\[
Z - Z_0 = re^{i\theta}
\]

(13)

then by reversion of series,

\[
\zeta - \sigma_0 \approx \sqrt{(Z - Z_0)/S_2} = \sqrt{r/S_2} e^{i\theta/2}.
\]

(14)

From equations 2 and 3 it is clear that an estimate of the stresses requires a knowledge of the local behavior of the stress functions. For simplicity, we assume the crack surfaces are free from applied load. Then it is possible to define \(g(\sigma) \) so that \(g(\sigma) = 0 \) on \(\tau_0 \). From equation 9 it is clear that \(\phi'(\sigma) = \phi'(<\sigma) \) on \(\tau_0 \) for this case. Thus, \(\phi(\zeta) \) as defined by equation 5 is the analytic continuation of \(\phi(\zeta) \) across the interval \(\tau_0 \) in the top sheet of the Riemann surface for the mapping function. In particular, \(\phi(\zeta) \) is analytic at \(\zeta = \sigma_0 \), thus,

\[
\phi(\zeta) = \phi'(\sigma_0) + \phi''(\sigma_0)(\zeta - \sigma) + \ldots
\]

(15)
is valid in a neighborhood of σ_0 overlapping points in S^*_i and S^-_i. Thus, it follows easily that

$$\sigma_x + \sigma_y \approx \Re \left\{ \frac{2\sqrt{2} \left[\phi'(\sigma_0) \right] e^{-i\theta/2}}{\sqrt{\psi'(\sigma_0)}} \right\}.$$ \hfill (16)

To approximate equation 3, the structure of $\psi(\zeta)$ is necessary. From the preceding arguments, $\phi'(\zeta)/\omega'(\zeta)$ is analytic at σ_0 except for a simple pole, thus,

$$\phi'(\zeta)/\omega'(\zeta) = a_{-1}(\zeta - \sigma_0)^{-1} + a_0 + a_1(\zeta - \sigma_0) + \ldots.$$ \hfill (17)

Since $\phi(\zeta)$ and $\omega(\zeta)$ are analytic at σ_0 then so are $\overline{\phi(1/\zeta)}$ and $\overline{\omega(1/\zeta)}$; thus, from equation 8, $\psi(\zeta)$ has a simple pole at σ_0. We can write

$$\psi(\zeta) = A_{-1}(\zeta - \sigma_0)^{-1} + A_0 + A_1(\zeta - \sigma_0) + \ldots.$$ \hfill (18)

Comparison of equations 8 and 18 and the series expansions above yields

$$A_{-1} = -a_{-1} \overline{\sigma_0} = -\phi'(\sigma_0) \overline{\sigma_0}/2S_2,$$

$$A_0 = -\overline{\phi'(\sigma_0)} - a_0 \overline{\sigma_0},$$

$$A_1 = \overline{\phi'(\sigma_0)}/\sigma_0^2 - \overline{\sigma_0} a_{-1}/\sigma_0^4 - \overline{\sigma_0} a_1.$$

It is then a straightforward matter from equation 3 to show

$$\sigma_y - \sigma_x + 21 \tau_{xy} \approx \frac{\sqrt{2} e^{-i\theta/2} \left[\phi'(\sigma_0) \frac{\phi'(\sigma_0)}{\sigma_0^2} - \phi'(\sigma_0) \frac{\phi'(\sigma_0)}{2 \sigma_0^4} \right]}{\sqrt{\psi'(\sigma_0)}}.$$ \hfill (20)

OBSERVATIONS

It was shown in the preceding section that the stresses in the vicinity of an unloaded crack can be approximated by equations 16 and 20. Since $\omega'(\sigma_0)$ can be calculated directly from the mapping function, the key computation is the evaluation of $\phi'(\sigma_0)$. Thus, for geometries involving corner points and cracks, the extension argument can be used to show that the local stresses in the crack vicinity depend on the evaluation of $\phi'(\sigma_0)$, independent of the procedure adopted, e.g., polynomial approximation, power series, integral equations, etc.
Generalizations of the arguments used in Section III to a larger class of geometries are self-evident. Furthermore, the restriction of the loading conditions on the crack surface can be removed by a modification of the argument. In particular, if \(g(\sigma) \neq 0 \) on the interval corresponding to the crack surface,

\[
\phi(\xi) = \phi_1(\xi) + \frac{1}{2\pi i} \int_{\Gamma_0} \frac{g(t)dt}{\tau_c(t - \xi)},
\]

where \(\phi_1(\xi) \) is analytic in the neighborhood of \(\sigma_0 \). Thus, the character of \(\phi(\xi) \) and hence \(\psi(\xi) \) in the vicinity of \(\sigma_0 \) is known and an argument similar to that of Section III can again be carried out.
REFERENCES

Report No.: WAL TR 811.8/4

Title: Crack Stresses: Application of March 1963 Muskhelishvili's Extension Principle for Multivalued Mapping Functions

Distribution List approved by 1st Indorsement from Ordnance Weapons Command, ORDOW-TB, dated 4 January 1962

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Office of the Director of Defense Research and Engineering, Room 3D-1067, The Pentagon, Washington 25, D.C.</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. J. C. Barrett</td>
</tr>
<tr>
<td>10</td>
<td>Commander, Armed Services Technical Information Agency, Arlington Hall Station, Arlington 12, Virginia</td>
</tr>
<tr>
<td></td>
<td>ATTN: TIPDR</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. G. Mock</td>
</tr>
<tr>
<td>1</td>
<td>Solid Propellant Information Agency, Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMCRD-RS</td>
</tr>
<tr>
<td>2</td>
<td>Commanding General, U. S. Army Missile Command, Redstone Arsenal, Alabama</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSMI-RB, Redstone Scientific Information Center</td>
</tr>
<tr>
<td>1</td>
<td>AMSMI-RRS, Mr. R. E. Ely</td>
</tr>
<tr>
<td>1</td>
<td>AMSMI-RICK, Mr. R. Fink</td>
</tr>
<tr>
<td>1</td>
<td>AMSMI, Mr. W. K. Thomas</td>
</tr>
<tr>
<td>1</td>
<td>AMSMI-RRS, Mr. E. J. Wheelahan</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Mobility Command, Detroit 9, Michigan</td>
</tr>
<tr>
<td>1</td>
<td>Commanding General, U. S. Army Munitions Command, Dover, New Jersey</td>
</tr>
<tr>
<td>2</td>
<td>Commanding General, U. S. Army Test and Evaluation Command, Aberdeen Proving Ground, Maryland</td>
</tr>
<tr>
<td></td>
<td>ATTN: AMSTE, Technical Library</td>
</tr>
</tbody>
</table>
1 ATTN: AMSWE-IX, Industrial Division
1 AMSWE-TX, Research Division
1 AMSWE-IM, Industrial Mobilization Branch
1 AMSWE-GU, Security Officer

Commanding Officer, Diamond Ordnance Fuze Laboratory, Connecticut Avenue and Van Ness Street, N.W., Washington 25, D. C.
1 ATTN: AMCDO-TIB

Commanding Officer, Frankford Arsenal, Philadelphia 37, Pennsylvania
1 ATTN: SMUFA-1330
1 SMUFA-0270, Library

Commanding Officer, Picatinny Arsenal, Dover, New Jersey
1 ATTN: AMSMU, Mr. J. J. Scavuzzo, Plastics and Packaging Laboratory
1

Commanding Officer, PLASTEC, Picatinny Arsenal, Dover, New Jersey
1

Commanding Officer, Springfield Armory, Springfield 1, Massachusetts
1 ATTN: SWESP-TX, Research and Development Division
1

Commanding Officer, Watertown Arsenal, Watertown 72, Massachusetts
1 ATTN: SMIWT-EX, Chief, Engineering Division
1 SMIWT-OE, Industrial Engineering Section
1

Commanding Officer, Watervliet Arsenal, Watervliet, New York
1 ATTN: SWEWV-RR

Commanding General, U. S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland
1 ATTN: Technical Library
1

Commanding Officer, U. S. Army Environmental Health Laboratory, Army Chemical Center, Maryland
1

Commanding Officer, Engineering Research and Development Laboratory, Fort Belvoir, Virginia
1 ATTN: Materials Branch
1

Commanding General, Quartermaster Research and Development Command, Natick, Massachusetts
1 ATTN: AMXRC, Clothing and Organic Materials Division
No. of
Copies TO

Headquarters, U. S. Army Signal Research and Development Laboratory,
Fort Monmouth, New Jersey
1 ATTN: Materials Branch

1 Director, Army Research Office, Office Chief Research and Development,

1 Commanding Officer, U. S. Army Research Office (Durham), Box CM,
Duke Station, Durham, North Carolina

Chief of Research and Development, U. S. Army Research and
Development Liaison Group, APO 757, New York
1 ATTN: Dr. B. Stein

Chief, Bureau of Naval Weapons, Department of the Navy, Room 2225,
Munitions Building, Washington 25, D. C.
1 ATTN: NMP

Chief, Bureau of Ships, Department of the Navy, Washington 25, D.C.
1 ATTN: Code 344

Chief, Office of Naval Research, Department of the Navy,
Washington 25, D. C.
1 ATTN: Code 423

Chief, Special Projects Office, Bureau of Naval Weapons,
Department of the Navy, Washington 25, D. C.
1 ATTN: SP 271

Commander, U. S. Naval Ordnance Laboratory, White Oak,
Silver Spring, Maryland
1 ATTN: WM

Commander, U. S. Naval Ordnance Test Station, China Lake,
California
1 ATTN: Technical Library Branch

Commander, U. S. Naval Research Laboratory, Anacostia Station,
Washington 25, D. C.
1 ATTN: Technical Information Center

U. S. Air Force Directorate of Research and Development,
Room 4D-313, The Pentagon, Washington 25, D. C.
1 ATTN: Lt. Col. F. B. Shipp, Jr.

ARDC Flight Test Center, Edwards Air Force Base, California
1 ATTN: Solid Systems Division, FTRSC
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>TO</th>
</tr>
</thead>
</table>
| 2 | AMC Aeronautical Systems Center, Wright-Patterson Air Force Base, Ohio
ATTN: Manufacturing and Materials Technology Division, LMBMO |
| 1 | National Aeronautics and Space Administration, 1520 H Street, N.W., Washington 25, D.C.
ATTN: Mr. G. C. Deutsch |
| 1 | Mr. R. V. Rhode |
| 1 | Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California
ATTN: Dr. L. Jaffe |
| 1 | George C. Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama
ATTN: M-S&M-M |
| 1 | M-PEAE-M |
| 5 | Commanding Officer, U.S. Army Materials Research Agency, Watertown 72, Massachusetts
ATTN: AMOMR-LXM, Technical Information Section |
| 1 | AMOMR-OPT, Office of Programs and Technology |
| 1 | AMOMR, Dr. R. Beeuwkes, Jr. |
| 1 | Author |

69 -- TOTAL COPIES DISTRIBUTED
Muskheilishvili's extension principle for the case of geometries involving corners and cracks and hence multivalued mapping functions is considered. It is shown that a general application of the procedure can be found in the study of the local stress distributions near the base of a crack. The stresses of the stress functions on the Riemann surface defining the mapping function in the neighborhood of σ_0 corresponding to the crack root can be found and the local stress distributions shown to depend on ϕ (ϕ_0).