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PREFACE

In this Memorandum, the author describes the uses

and contributions of the mathematical theory known as

dynamic programming to certain problems in economics.

Examples of these are the optimal allocation of

resources, bnd multistage decision processes that

involve planning and learning in the face of uncertainty

(i.e., adaptive control processes).



SUMMARY

The functions of a mathematical theory in a

scientific field are to furnish a systematic means of

formulation of classes of problems, to indicate various

techniques for their analysis, and to provide methods

for obtaining numerical answers to numerical questions.

At one point in the nineteenth century, serious

doubt was expressed that problems in the field of

economics could ever be handled mathematically. The

introduction of the digital computer changed the situa-

tion drastically. Nevertheless, much remains to be

done, and many new approaches must be devised, before

we can consider ourselves to have a firm hold in the

domain of mathematical economics.

In this Memorandum we outline briefly some of the

principal contributions of the theory of dynamic

programming to the formulation, analysis, and computa-

tional treatment of economic processes.
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DYNAMIC PROGRAMMING AND MATHEMATICAL ECONOMICS

1. INTRODUCTION

The functions of a mathematical theory in a

scientific field are to furnish a systematic means of

formulation of classes of problems, to indicate various

techniques for their analysis, and to provide methods

for obtaining numerical answers to numerical questions.

At one point in the nineteenth century, serious

doubt was expressed that problems in the field of

economics could ever be handled mathematically. The

introduction of the digital computer changed the

situation drastically. Nevertheless, much remains to

be done, and many new approaches must be devised, before

we can consider ourselves to have a firm hold in the

domain of mathematical economics.

In what follows, we outline briefly some of the

principal contributions of the theory of dynamic program-

ming to the formulation, analysis, and computational

treatment of economic processes. Further references,

examples, and detailed discussion will be found in

[1,2,3].

2. ALLOCATION PROCESSES

A fundamental problem in economics is that of the

allocation of resources. Assuming that we possess the

basic utility functions, the mathematical problem in
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many cases is that of maximizing the function

N
(2.1) RN = :Z16(xi,'.2. IxJM)'

subject to the constraints

N
(2.2) •l x j-< cis j =-,2,...,M,

and x j > 0.

The functional-equation technique of dynamic

progranmng transforms this problem into that of the

solution of the functional equation

(2.3) fN(clc2,...,cM) = max [gN(XNIXN2,...,XNM)
R

+ f N 1 (cl - XNl...,IcM - XNM)],

where R is deter-mined by the constraints

(2.4) 0 • xNj _• cis j = 1,2,...pM.

In a few cases, this equation can be treated

analytically. In general, we are interested in computa-

tional algorithms which are independent of the analytic

structure of the functions gi" If the solution can be

obtained numerically, we have the optimal allocation

policy as a function of the number of activities and the

quantities of resources available.
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3. DIRECT COMPUTATIONAL APPROACHES

In view of the rapid-access storage capacity of the

biggest and fastest modern digital computer, a count of

required storage shows that one- and two-dimensional

allocation processes are readily resolved in a direct

fashion. Three-dimensional allocation processes are on

the border line; see 12], Chaps. I and 2.

A very simple analytic device, that of the Lagrange

multiplier, enables us to increase the power of the

method. In place of the M constraints of (2.2), we

impose K constraints,

N
(3.1) il x lj-< cs , J = 1,2,...,K,

and replace the criterion function by

N M
(3.2) RN(X) iZ g1 - Xj 1( x ii).

=1 j=R+I i=l

As is well known, the economic interpretation of the X

is that of a price. The dynamic-programmine approach

now furnishes the optimal allocation as a function of

prices and resources.

We can now consider up to four or five different

kinds of resources without difficulty.

4. ANALYTIC NOTES

If the functions g. are linear, the foregoing

provides a dynamic-programming approach to the general
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linear programming, an approach from which a number of

results can be deduced; see Appendix 2 of [2]. These

methods can also be applied to nonlinear programming.

For an analytic approach to allocation processes

based upon the transform

(4.1) F(x) = max If(y) - xy],yo

see [4], [5].

5. SOPHISTICATED COMPUTATIONAL APPROACHES

Let us now consider two techniques for circumventing

multidimensional difficulties, namely, successive

approximations and polynomial approximation; see [6],

[2]. As usual, the method of successive approximations

cannot guarantee convergence to the absolute maximum, but

it can provide monotonicity. This is important, since

we can use it to test any proposed solution and thus to

improve anything which is being done currently.

To illustrate an application of the method, consider

the problem of maximizing

N
(5.1) i.lgi(xi'yj)

over all xi and Yi satisfying the constraints

xi, Y, > 0 and

(5.2) Z X 1 " 1 , = 1 yi -c 2 "
ii
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Let (xi (0) ,yi(0)] be an initial approximation.

Determine a new approximation by holding the Y )

fixed and maximizing
N (0))

(5.3) y z()

over xi > 0, ,x - C,, a one-dimensional problem.
i I

This yields a set (xi(O)]. Keep this set fixed and

maximize

S(xi(1)

over Yi > 0, Z yi = c 2 " and so on. It is clear that
i

the maximum return increases monotonically.

This technique can be applied to allocation

processes with a considerable number of resources. In

particular, it has been used with success to treat a

Hitchcock-Koopmans--Kantorovich scheduling problem

involving nonlinear shipping costs; see [2].

The dimensionality difficulties encountered in the

direct approach referred to in Sec. 3 were due to the

storage of the values of fN(cl,c 2 ,...,oM) at lattice

points in c-space. Taking advantage of the smooth

behavior of fN which we can expect in general, we can

store the functional values by means of a polynomial

approximation
R

(5.5) fN X•z a (N•)(c)
JMl j ci
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where the gj(c) are polynomials. If the gj(c) are

fixed in advance, storage of fN(c) requires only

storage of the coefficients a (N). By means of a few

hundred, or a few thousand, coefficients, we can obtain

excellent approximations. In this way, we trade time,

which we possess, for space, which we do not. See [2]

and [6] for detailed discussion and applications.

6. MULTISTAGE DECISION PROCESSES

In the main, dynamic programming is most useful in

the study of multistage processes requiring sequences of

decisions. In the parlance of control theory, it is

most powerful in the treatment of feedback control

processes. Processes of this type arise frequently in

economics, multistage investment, purchasing, inspection,

and repair of equipment, multistage production processes,

inventory theory; see [i], [2]. Many of these processes

are Markovian decision processes, such as those arising

in inventory and repair theory; see the various volumes

edited by Arrow, Karlin, and Scarf [7] for numerous

examples of the analysis of dynamic programming processes.

Many further references will be found in [1,2,3].

The basic functional equation takes the form

(6.1) fN(P) - max Ig(p,q) + Z wifN_l(T 1(p,q))].
q i

An advantage of this formulation is that deterministic
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and stochastic processes are treated in the same

conceptual, analytic, and computational fashion.

The computational techniques described above can

all be applied to this equation, as well as that of
"approximation in policy space." (See [1,2,3].)

7. ADAPTIVE PROCESSES

In many processes involving planning in the face of

uncertainty, the classical techniques are not immediately

applicable due to the absence of information which we

usually take for granted, e.g., distributions of random

variables, cause and effect, and so on; see [3].

In these cases, it is necessary to make decisions

and to learn about the process at the same time. The

theory of dynamic programming provides a uniform approach

to decision processes of this type, which we call

adaptive. Detailed discussion and examples are

presented in [31. The simple and intuitive Principle of

Optimality provides the conceptual framework upon which

analytic approaches can be based. This principle can be

stated as follows:

Principle of Optimality. An optimal policy has the

property that whatever the initial state and initial

decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from

the first decision.
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As before, computational difficulties arise because

of the presence of functions of many variables and,

indeed, functions of functions.

8. SIMULATION PROCESSES

One of the advantages of the emphasis on the concept

of policy in dynamic programming is that multistage

decision processes with no criterion for optimal outcome

can still be fruitfully studied. Combining digital

computers with mathematical formulation, we can employ

simulation, or "gaming" techniques; see [8].

9. CONCLUSION

At the present time, we possess a number of

powerful mathematical techniques for the analytic and

computational solution of classes of problems in the

field of mathematical economics. What is now needed is

a systematic exploitation of these methods to provide a

backlog of solved problems which will guide our

subsequent research.
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