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ABSTRACT

This report is a review of currently available techniques for studying the properties of objects
of interest in radar astronomy, which are usually spread radar targets. The report is intended
as a sequel to Lincoin Laboratory Technical Report 234, in which R. Price has presented a
rather complete treatment of the theory and methodology of the detection of such spread tar-

gets.' Here we are interested in measurement (or estimation) rather than detection.

Spread turgets are defined to be those that produce an cbservable smearing of the echo in
range, or an observable rate of echo fluctuation, or both. (Spread targets may or may not be
at the same time extended targets, i.e., ones that fill the antenna beamwidth.)

The approach taken here in presenting the available material on spread target measurements
is to follow what happens to the various ottributes (amplitude, delay, phase, frequency shift,
polarization) of an incident signal upon reflection from such a target. Then the question is
turned around by detailing the ways in which the study of rhese signal attributes by appro-
priate receiver processing con be used to infer target properties. In the case of such rodar
astronomy targets as rotating planets, these target properties might include range, velocity,
shape, size, rotation vector, and surface characteristics. (The last of these may be studied
either as average behavior over the target surfoce or as a function of location on the target
surface.) The possible transmitted signals include simple (unity time-bandwidth product) sig-
nals, or complicated (large-TW)signals, including frequency~spaced sets of sinusoids. The re-
ceiver operations considered include processing of the scho signal received atspaced receivers
(interferometry), and processing of separate compon.-.is received at the same point (polar-
imetry), as well as the much more completely understood case of processing of the output of @

single receiving antenna by various methods.

The concluding section is o summary of presently available information on the variance of the
error in making such measurements (including some very recc.it results obtained by M. J. Levin
and R. Price).

Much cf this report consists of previous resuits that have not been placed in o connected story
before. One topic that is new hore is the extension of Manasse's study of radar interferom-
etry to include the effect cf target rotation, and the resulting motion of the diffraction pattern
observed at the spaced radar receivers on earth.
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RADAR ASTRONOMY MEASUREMENT TECHNIQUES

I. INTRODUCTION

This report deals with the use of radar systems to measure quantities of astronomical
interest. Radar astronomy targets, which may be rotating solid bodies, moving ionized regions,
or clouds of particles, are examples of spread radar targets, i.e., objects that impose on the
probing radar signal either or both of the following two effects: (a) an observable range smear-
ing, and (b) an observable fluctuation rate. It is easy to imagine other examples of spread tar-
gets, for example aircraft, tumbling nose cones, missile wakes, and so forth, to which the ideas
presented here may be more or less relevant, but we shall ignore these possibilities here and
talk in terms of radar astronomy targets.

The theory and practice of optimizing the detectability of spread targets has been treated
rather completely by Px'ice1 in Lincoln Laboratory Technical Report 234, to which this report is
a gequel. The procedures developed there are applicable interchangeably to the detection of
spread objects as radar targets or the use of them as communication channels. In this report
we ignore the radar detection as well as the communication aspects of the spread target problem
and deal solely with the use of the radar system for making measurements of the properties of
the target.

The outgoing and returning electromagnetic signals are characterized by certain quantities,
and we would like to investigate how the parameters of the outgoing signal are altered in the re-
flection process, and then how this alteration may be studied. If we regard the electrical signal
as a scalar quantity, i.e., a narrow-band time function appearing at the two terminals of the an-
tenna, then a description of the amplitude, frequency, and phase as a function of time completely
specifies the signal. If in addition we are willing to take into account the vector direction of the
electrical signals (that is, the instantaneous plane of polarization as a function of time), and the
way in which all the quantities just listed vary from point to point in space, still more sensitive
measurements on the target can be made. As we shall see, certain interesting things may be
learned from such interferometric measurements (correlation between the waves onserved at
two different points) and polarimetric measurements (correlation between components observed
at the same point).

A complete understanding of all these factors embraces a very large area indeed, and only
parts of the subject are well understood. What we shall be doing in this report to systematize
these scattered notions can be stated this way: The radar signal that is transmitted can be

written

X(t) = E(t) cos [2xf,t + @(t)] (1)



which is seen to be characterized by (a) scalar amplitude E, (b) origin of the time scale t,
(c) phase ¢, (d) average rate of change of phase, i.e., frequency wai, and (e) instantaneous
direction of polamzation x/ x. (The arrow indicates a vector quantity.) Corresponding to the
transamitted signal x(t) there is received at a given point an echo signal

wit) = W(t) cos [2rf _t + 6(t)]

likewise characterized by five quantities. It is the fact that these five parameters can be con-
trolled at will in the transmission (as well as measured in various ways on reception) that em-
bodies any advantage that radar astronomy might have relative to radio aatronomy.

It will be found most useful to employ the common representation of the real signal X(t), not
in the trigonometric form (Eq. (1)], but rather as the real part of a complex aignal S'E’(t)

X(t) = Re {$(t)} = Re {X(t) exp [32nf 1} {2)

(in other words Re {9-6. ()} = E(t) cos @{t). The quantity f(t) is called the complex envelope.
Manipulation of X (t) is much less cumbersome than manipulation of x(t) since the usually irrele-
vant carrier frequency has been removed. By exercising reasonable care, the "real-part-of"
operation can be reinserted at the conclusion of the manipulation to give the correct answer. The
hypothetical imaginary part of Q(t) is usually chosen to be the Hilbert transform of our real ob-
gervable waveform x(t). then for X(t) a narrow-band function (center frequency much greater
than bandwidth) Im { Q(t)} always represents the quadrature or out-of-phase component of the real
signal %(t). Roman letters will be used to indicate the real-time function and script letters will
denote the corresponding complex envelope.

In what follows we shall divide radar targets into two classes, hard and soft targets, and in~
vestigate one by one the influence of the target properties on each of our attributes:

amplitude (or actually average power) (Secs. II-B and III-A),
delay (II-C and III-B),

phase and frequency (II-D and III-C), and

polarization direction (II-E and III-D).

After a general discussion of the instrumentation of radar measurements (Sec.IV), we will pro-
ceed in Sec. V to turn things around and ask how various target properties of astronomical in-
terest may be studied by studying the above attributes in the received signal Ww(t). Section VI
discusses errors in such measurements.

It would be desirable to have a concise, and perfectly general notion of how optimally to
measure the interesting target properties in the presence of the inevitable noise, finite observa-
tion bandwidth, finite observing time, and other factors causing errors. Using the statistical
discipline known as hypothesis testing, the presence or absence of the radar astronomy target
has been put on a sound enough theoretical basis .1 Unfortunately the theory of measurement (or,
in the language of the statistician, estimation of target parameters) has been placed on a similar
strong foundation only for certain very simple types of measurements. What we shall attempt
to do here in the case of most of the measurement procedures is to present them systematically
as a collection of gd hog ideas about reasonable ways to measure things about radar astronomy
targets, and, whenever possible, to give an idea of the measurement accuracy.



II. HARD TARGETS

By hard targets we mean bodies that, although they may be moving or changing their orien-
tation, are nevertheless rigid and of fixed shape. The term soft targets will refer here to those
that can change shape with time. The most interesting hard radar astronomy targets are ob-
viously the moon, planets, and minor planets. These are all hodies whose size is much larger
than any reasonable radar wavelength, and which have rough surfaces, in the sense that they
possess surface irregularities having a scale size of the order of magnitude of a wavelength.

With the exception of some smaller minor planets, these hard targets may be safely assumed
to have approximately spherical shapes with rough surfaces, and in our treatment of hard targets
we will be most interested in the spherical case. Where the radar properties depend on a spher-~
ical target shape the fact will be pointed out.

A. The Angular Power Spectrum ¢ o of an Incremental Portion of the Target

When an incident plane wave strikes a rough surface, energy is reflected in various direc-
tions (see Fig.1). In adding up the individual contril:mtionsz one finds that across the wavefront
of the reflection there are variations in delay, phase, amplitude, and direction of the polariza-
tion vector. The distant observer receives a plane wave which likewise containg irregularities
as a function of position laterally on the advancing plane wavefront.

INCIDENT
PLANE
WAVE

REFLECTED
WAVEFRONT

Fig. 1. The manner in which an irregular surface produces
irregularities in the reflected wavefront.

As we shall see, it is possible to work backwards from the statistics of these irregularities
at the distant observing point to get the statistics of the irregularities at some smooth quasi-
planar boundary near but not on the target surfaces (dotted line of Fig. 1), but the question of how
these wavefront irregularities relate to the surface irregularities themselves is a much more
complicated one. The factors that enter include whether there is an undulating or jagged (dis-
continuous) surface, whether irregularities are smaller or greater than the wavelength in the
lateral direction and in the up-down direction, whether the surface material is uniform in di-
electric properties but of a rough shape or whether the body is smooth but of irregular dielectric
composition, and so forth. It is safe to say that a large number of physical surface types could
give rise to the same type of irregularities of delay, phase, amplitude, and direction across
both the dotted boundary and the received wavefront. The reader is referred to Ref. 3 for u dis-
cussion of this question of the relation of terrain properties to properties of the reflected wavefront.
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In this report we shall be content to start with the irregularities in the reflected field produced

at the dotted boundary of Fig. 1 by terrain irregularities, and not with these latter irregularities
themselves. In the rest of this report when we speak of the target surface we shall mean, strictly
speaking, the wavefront of the reflected signal as examined over a quasi-planar region near to

but not actually on the surface of the body.

The radar receiver at a great distance from the target is exposed to an electromagnetic
gignal formed by the propagation outward of the wavefront with all its irregularities. As we shall
gee in the next several sections, radar measurements on hard targets, whether performed by a
gsingle receiver or a set of spaced receivers (interferometer) often amount simply to the meas-
urement of a quantity 0‘0(<p) called the radar angular power spectrum, which expresses the sta-
tistics of the wavefront irregularities in a particular way.

In the next several pages, we shall take the familiar Fourier transform relationship between
field intensity across an aperture (at the target) and the remotely received signal, and derive an
expression for oo(<p) that shows just what statistical properties of the wavefront irregularities it
measures., While we are at it, we shall define several other terms and draw several conclusions

that will be useful later on.

.

POINT (x,y,0}

PLANE APERTURE 20
HAVlNOjLECTlIC
FIELD I3

DIRECTION OF
INCIDENT WAVE

POINT
(xgs Yo Zo)

GROUND PLANE
(elsctric tisld s W)

Fig. 2. Coordinate system for derivation of o,(¢), where ¢ = the angle
that an incident ray mokes with the normal to a plane target region
(aperture), ¢' = similar angle for ray to receiver, 8= equatorial angle
measured in the aperture plane between the projections of the two rays.

Figure 2 shows at z = 0 a plane region of the target surface (in the sense just mentioned)
with the irregular pattern of the electric field intensity of the echo being g (x,y, o). Denote the
component of ? that lines up with the receiving antenna on the ground as €. The script letter
indicates a complex envelope as before, and the distances x,y, and z are expressed in multiples
of wavelengths. For the moment let us assume that £ is non-time-varying. The well-known
relationship giving the electric field W at the distant receiver point (x o Yo 2 o) on the ground
plane as the Fourier transform of & is4

Wi, m) = SS £€(x,y,0) exp [~j2r (& + my)]dx dy ,

Aperture



or, more compactly,
Wi,m) <= Ex,y) ., (3)
where {,m, and n are the direction cosines

z]-x/z

~

= kg~ %) (22 + (=02 +ly -~ )

m = (yo ~-y) [zj + (xo - x)Z + (y° —y)z]"i/Z

il o 2 Y- _wli/2

as=sing'=z (25 + &, —x)"+{y, -y

The equation represents the sum of contributions falling on an incremental portion of the ground
plane having direction cosines in the range fto £+ dfand m tom + dm. The Fourier inversion
of Eq. (3) is, of course,

£ix,y,0) = S‘SWU m) exp [j2r(tx + my)] df dm
ort
Exy) =>WiLm) . (4)

Imagine now that at the target the aperture field distribution & is actually a reflection
cauged by a plane wave incident along the ray path from the direction shown in the figure, and
that this wave arrives on the target at a power level of one watt per square meter of the incident

wavefront. W is then seen to be the radar echo arriving at the receiving location. We want to
determine the number of watts per steradian of time-averaged echo power per square meter of
target when the power level of the incident signal is one watt per square meter of wavefront.
This can be obtained by taking one-half the squared magnitude of the complex envelope W, suit-
ably corrected for the number of steradians subtended by each incremental area df x dm. This

ratio is
2 2
271— Wit m)|2 ¢ - 2 - mii/2
o
If the field & on the aperture is randomly time-varying, then W will likewise vary ran-

domly with time and so will the power ratios just defined. We define the quantity % to be 4»
times this average ratio:

7= TF-Wiem| - £ ®)

where ¢ ) denotes the infinite time average and Z o 18 the characteristic impedance of free space;
o, is called the radar angular power spectrum of the target surface, and its dimensions are
square meters of radar cross section per square meter of target surface. The factor of 4r en-
ters simply by an arbitrary convention whereby all radar cross sections are defined as a ratio

of powers such as Eq. (5) multiplied by 4r. As it stands, % is a function of ¢, ¢', ©, £, and m.

t Note that Egs. (3) and (4) constitute a Fourier transtorm pair all right, but in terms of direction cosines ¢ and
m, and not in either angles such as ¢' or in distance on the ground plane (xo ondy ). Only near pempendicularity
(xo MxOry y) does one have ground distances as an argument.



If one rules out an anisotropic target material, then the dependence is only on ¢, ¢', and 6. I,
further, a monostatic rather than bistatic radar situation is assumed (that is, the transmitter
and receiver are collocated) then only one variable, ¢ = ¢', is left. In most of this report this
assumption will be made and we shall be dealing with the radar angular spectrum o o((p).

——
TYPICAL SMALL
—« PLANE REGION
\OF TARGET
s
t dA —
\ ¥
SN -7\
- N
~7

(0) A hypothetical radar angular (b) Corresponding radar bright- (c) Interrelation of (a) and (b).

spectrum. ness distribution P(x,y).
e(r) e(f)
"
| 2a/c !
(d) Power vs range. (e) Power vs frequency.

Fig. 3. The manner in which the rodor angular spectrum o, (¢) influences the radar echo retumed
from a uniform spherical hard ta, st.

An example of a radar angular spectrum is sketched in Fig.3(a). Perhaps more familiar
examples are the Lambert Law (ao ~ cos2 ¢) and Lommel-Seeliger or Euler Law ((ro ~ cos ¢).

That o °(¢) expressges certain statistics of the echo wavefront irregularities is now clear
from the following reasoning. From Egq. (5), we see that ao(q;) is proportional to the time-
averaged squared magnitude of the received electric field, but this electric field in turn is the
Fourier transform of the aperture distribution [Eq. (3)]. Thus, since the squared magnitude of
the function in one domain is the Fourier transform of the correlation function of the transformed
function in the other domain, it follows that the power observed as a function of direction cosines
is proportional to the Fourier transform of the spatiai correlation function of the electric field
across the aperture. Equations (3) and (4) are for non-time-varying fields. As shown in Appen-
dix A [in particular, Eq.(A-9)], if we introduce the assumption that & is time-varying, then the
time-averaged received power as a function of direction cosines is proportional to the inverse
transform of the spatial correlation function where the average is over time, that is,t

L %;( |u/(l,m)|2)=Const x ;—z’ro S-”S:”(E(u,v) Exu+x, viyPdudv . (6)

t As discussed in Appendix A, this relation depends on the reasonable assumption of space stationarity of the
aperture distribution £ . That is, the power level may vary across the aperture, but aport from this, the cross
correlation of the random time variations occurring at two separate points on the aperture depends only on the
separation of the points and not on their location.



.So in measuring ¢ 0(q:), we are really measuring the spatial correlation function of the wavefront
irregularities at the target; this is as good a statistical description of the irregularities as has
been considered to date.!

By similar reasoning we can show an equally important fact ~ that the spatial correlation
function of the signal received on the ground (time average of the product of two receiver outputs)
is the Fourier transform of the average power as a function of the coordinates x and y at the
target. This fact is of ohvious relevance to radar interferometry, and we shall investigate its
consequences in Sec,II-D. The specific relationship [Eq. (A~10) of Appendix A] goes as follows:

Ex,y) 3D =Wip,W*p + 4, q+m)dpdad= Z(d0) (7

where we define the (complex) number Z (d, A7) as the cross correlation obtained by time-
averaging the product (taken with a relative delay Ar) of the two voltages received at points
spaced by a vector separation d on the ground plane. The station separation d is characterized
by the direction cosine differences fand m.

B. Power Reflected From the Target as a Whole

Radar astronomy targets are of course very large bodics, usually spherical. The received
echo is made up of the superposition of individual echces from a very large number of individual
regions, each of which can be regarded as approximately planar, so that the development of the
preceding section is valid for each region. Moreover, if the echoes from different regions
fluctuate independenily, superposition of power (rather than voltages) is permissible.

The received power (per steradian) per square meter of surface at a given point on the sur-
face will be given, of course, by the radar angular power spectrum oo(¢)/41r, where ¢ is now
the tilt of the radar line of sight from perpendicularity with the local horizontal. (Transmitter
and receiver are assumed collocated and one watt per square meter is agsumed incident on the
target.) Figure 3(a) shows a hypothetical radar angular spectrum plotted in polar coordinates.
An ocean area on the target could be expected to give a large narrow polar plot of ¢ °(¢) concen-
trated near small values of ¢, whereas the o o(;o) function of rcugh terrain would be lower in
magnitude and extend out to greater values of ¢.

There have been two basic approaches to radar study of lunar and planetary surfaces. The
first is to assume that the body is uniform; that is, on the target surface ¢ o((p) is everywhere
the same. Attention then centers on finding out what this vo(w) function is, and then inferring
average terrain characteristics by using the methods discussed in Ref. 3, baged on Eq. (6). The
second approach is somehow to isolate different regions of the target surface, presumably hav-
ing different o o(cp) functions, and to study the power reflected from each region. The methods
of Ref. 3 then re-enter the picture, but now as a tool in determining average features of just the
local region. (We shall see shortly that it is not 1.ecessary to perform the isolation by using
narrow antenna beams; other methods are available.)

1 If the spatial wavefront undulations at the target are o gaussion random process, then statistical information of
a higher order can be inferred from, first-order and second-order data, and these data thus tell the whole story.
If non-gaussian surface variations are suspected, it would be important to consider some form of experiment to
develop higher-order statistical information, since in non-gaussion cases, first-order statistics and second-order
statistics (such as ao(q)) do not specify the higher-order statistics.
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We now introduce the assumption that the target is spherical and see what can be said about
the total received echo power from such a target. If the spherical surface is uniform in the sense
that all parts of the surface have the same angular power spectrum ¢ o(go), say that shown in polar
form in Fig. 3(a), then a head-on view of the body would appear as shown in Fig. 3(b), where the
darkness of the shading is proportional to reflected power per square meter of incident wavefront.
This function P(x,y), representing echo power density across a hypothetical transverse plane in
front of any target, is called its radar brightness distribution. The circular region on this plane
projected by the spherical target is called the target's apparent disk.

At a point on the target where the normal to the spherical surface makes an angle ¢ with the
line of sight from transmitter and receiver to the target, one square meter of the apparent disk
will return toward the receiver [a°(¢) sec ¢]/4r watts per steradian for every watt per square
meter of wavefront incident. The sec ¢ factor is necessary because we have defined a°(¢) as
cross section per unit area of surface rather than per unit area of wavefront; there will be sec ¢
square meters of surface for every square meter of incident wavefront.

Figure 3(c) shows the way in which the polar plot of co(¢) in Fig. 3(a) expresses the intensity
of the reflection at various points on the surface like point P. Note carefully that this co(¢) tells
the story only for reflection back along the direction of the incident radiation; ao(qo) does not say
anything about the power reflected off in other directions. [For this we would need the complete

angular power spectrum ao(qo, @', 8).]

The brightness distribution P(x, y) for a uniform sphere is obtained trivially from the fact
that there are o c,(:p) sec ¢ square meters of cross section per square meter of wavefront. Thus,
P(x, y) dQ is defined as the number of watts per square meter received on the ground in a cone of
unit solid angle 4 with its vertex on the ground; all this assuming still that the target is illumi-
nated with a plane wave of power level one watt per square meter. Since a square meter of tar-
get subtends the same solid angle at the ground as vice versa, we have

-1 sz +y2]
a

P(x,y) = o (¢} secp = o, [sin x2 + yZ <a? s (8)

a
[2_2_,2 '
where a is the target radius.

The total effective cross section o of the target can be obtained by adding up all the ¢ °(¢)
cont:ibutions over the entire surface illuminated by the incident signal. We have for ¢ in

square meters
a 2 /2
c =S‘ 2t RdR o _(¢) sec ¢ = 2ma S‘ o (¢) singp do (9)
0 ° 0 °

since R = a sin¢. (R is the radius of an annular strip of integration on the apparent disk of the
body.) That is, if there is an incident transmitted wave at a power level of one watt per square
meter of wavefront, then o/4r watts per steradian will be reflected back toward the transmitter.

It is interesting to rewrite this expression for total cross section ¢ in terms of two param-
eters of the surface itself, called the reflectivity p, and the gain or directivity g. If the incident
transmitted signal reaches the target at a power level of one watt per square meter, then ob-
viously a total of "Z watts is incident on the target. The total power reflected from the target in
all directions is [by steps similar to those leading to Eq. (9)]
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N WY 7/ e
'/(‘ ~‘f1-;-‘:— sing &g JS 0°(¢. ¢!, ©) dQ
/ 2r steradians
2 px/2 ;1/;: o
// = -z%— o il So do So cow, ¢'.0)8ing sinp'do . (10)

i"m/ et-ect vily p is defined ag the ratio ot totrl reflected power to total incideni power, and is
tf s toom fq.(10),

1 x/2 /2 ~2¢
p= 35 dg do! | 7 (@, ¢'.0) 8ingp 8ingp!' do . (11)
2 ), 0 Jo o

T Yirontivity o ig defined in just the same way as is the more familiar antenna gain or di-
»riny, nemely = pbie catior

Total reflected power if re:lection were as strong
- ——Iinall directions as it is toward the transmitter)

&= [Kctual total reflected power]
‘r/2
g é'o), . ; .41' Jo Zoo(:p) sing do w2
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We see from Eqgs. (9), (11), and (12) that the over-all cross section o can be expressed as

a=nzp¢ .

i.e., as the product of three factors, ral (the area of the apparent disk of the body), the quantity
p, which depends only on the dielzctric properties of the body, and g, which depends on the
terrain geometry. Measurement of ¢ and its subsequent separation into these three factors is
an important radar astronomical problem since krowledge of g gives considerable knowledge
about terrain shape, and knowledge of p reveals rauch about the material of wkich the terrain is
composed. However, as Eqs. (11) and (12] show, th p and g depend on a°(¢, @', ©), and the
simpler co(qa) does not give enougt information to compute p and g separately. As Pettengill
has pointed out,s in order to separete p and g, it is necessary to make bistatic measurements
over a variety of angles ¢, @' and ©, which is not possible on radar astronomy targets from
the earth alone, but instead requires some sort of radar space probe.

C. Time Delay (Range)

We have just looked at one way of spl:tting up the echo power, saying that so much of the
total radar cross section may be attributed to the projected area, so much to reflectivity and so
much to directivity. There are other ways of divid ng up the effect of the target on the echo pro-
duced, for example according to the time delay or frequency shift, and we shall find these to be
much more important. We are particularly interes:ed in any method that will allow resolution
of portions of the echo coming from diffe:ent places on the target.

Different portions of a deep target will return energy at different delays. Loci of all points
having wonstsnt delay 7 will be concentric spheres of radius cr/2 about the transmitter-receiver
location, o1 i rransmitler 2o rreeiver are not collocated, these loci will be ellipsoids of revo-
lution with transmitter and receiver locations as foci, and a semimajor axis equal to cr/2. If



the target is remote enough these concentric spheres or ellipsoids can be approximated by par-
allel planes, and we shall assume that this is the case. Thus, at great distances for a body of
any shape, an observer standing at a point perpendicular to the line of sight from radar to target
center will see a scale of range reading linearly along the line of sight {the solid lines in Fig. 4(b}].
If the target is a sphere, these loci of constant range are circles as one views the target head-on
from the radar [the solid lines of Fig. 4(a)].

(a)

Fig. 4. Contours of equal range (solid lines) ond equa
doppler offset (dotted lines) for a spherical target.

is the rotation vector defining the polar axis of the
body. A pair of regions (heavily shaded) can be asso-
clated with the echo retuming withe givendeloy v ond
doppler offset f.

TO osERvER  (b)

Clearly, one can isolate returns from regions lying at or near one of these loci of constant
range by transmitting narrow pulses and observing the received return after an appropriately
adjusted delay.

Going back to Fig. 3, the sketches (c) and (d) indicate how the average power response to
narrow pulses would look if the target were uniform with a radar angular spectrum c°(¢) of the
form shown in (a). In Appendix B it is shown that the distribution of power (actually cross sec-
tion) as a function of time delay 7 for a uniform spherical target (expressed in asquare meters)
is actually

o(r) = 1raccr0(<:oss'1 %) , ‘ (13)

where c is propagation velocity and a is the target radius.
D. Frequency and Phase

It has been mentioned several times that, because of the inhomogeneous nature of the target
terrain, there will be irregularly different amplitude, phase, and polarization direction of the
electromagnetic signal at different places on the wavefront of the reflected signal, even if these
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quantities are constant across the tranamitted wavefront. As long as the transmitter, receiver,
and target are rigidly fixed relative to one another, there being no relative rotation of the target,
then each transmitted Fourier component sinusoid arrives at the receiver as a sinusoid with a
different but constant amplitude, phase and vector direction. However, at different receiver
points these quantities will be randomly different constant values, if the target is rough.

If now the target rotates, these gpatial irregularities in the wavefront will pass sideways
over the receiving point at a certain speed in a certain dirertion and will give rise to fluctuations
with time of the amplitude, phase, and polarization direction of the sinusoidal electromagnetic
vector.! This means that what started out from the transmitter as a sinusoid will appear at the
receiving antenna output to be 2 narrow-band noise of some type. The faster the rotation of the
body, the wider the bandwidth of this narrow-band noise.

There is a second way of puiting this: since some portions of the rotating and presumably
rough target are moving toward the observer and some away from him there will be a spread or
smearing of the frequency spectrum of any sinusoid incident on the target.

There are, then, these two ways of looking at the behavior of the phase and frequency [the
trigonometric argument of Eq. (1)] in the received signal. Interferometer techniques, those in-
volving more than one receiving point, are more conveniently analyzed by considering the motion
sideways across the line of sight of the irregularities in amplitude, phase, and direction of
polarization. What happens at a single radar receiver can be treated more readily by looking at
the velocity of motion along the line of sight of various parts of the target producing echoes.
These are just two different ways of looking at the same set of phenomena.

Let us look first at the velocity of radial motion of various points on the target. It can be
shown fairly simplyt that on a distant rotating body the locus of all points that have equal com-
ponenta of velocity along the line of sight to the target center is the line formed by the inter-
section of the surface of the body with a plane parallel to the plane of line of sight and polar axis.
Moreover, the separation between this plane and the plane of line of sight and axis is proportional
to the velocity. This means that a head-on view [such as that in Fig. 4(a)) of a body of any shape
would show loci of target points producing equal doppler shift in an incident sinusoid as straight
lines running parallel to the line formed by the polar axis. These lines are spaced proportion-
ately with doppler shift.

Clearly, one can isolate returns from regions lying on or near one of these loci of constant
doppler offset by transmitting a narrow-spectrum sinewave and observing the received return at
an appropriately adjusted frequency offset. These loci are shown dotted in Figs. 4(a) and (b).

Looking at the target from a distant point on a line perpendicular to the radar line of sight
and in the plane containing line of sight and polar axis [Fig. 4(b)}], these same loci of equal ve-
locity toward the radar are still straight lines spaced equaliy with doppler shift. It is now clear
why we have investigated what the loci of constant range and constant frequency look like from
this particular distant point at right angles to the radar line of sight; for this situation only,
range and doppler frequency both read linearly along two perpendicular axes, irrespective of the

1 The sinusoid is generated by motion at the propagation velocity of the electromagnetic field of wavelength A
along the line of sight. This motion should not be confused with the (much slower) sideways motion of the irregu-
larities we have been discussing.

% For exanple from Eq. (B-4) of Appendix B.
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Fig. 5. Method of deducing direction of motion un the ground of corrugations in received wovefront:
(o) hypothetical case of transmitter motion locked to target rotation; (b) actual case of tronsmitter and
receiver stationary and approximately collocated; (c) view of ground plane showina diffraction pattern.
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shape of the body. This distortionless mapping property6 {of points on the body onto points in
the range-vs-doppler plane) will prove to be a convenience later on.

If one looks head-on at the target, as in Fig.4(a), contours of equal doppler shift intersect
contours of equal range (which for a sphere are circles, as described in the preceding section)
in at most two points as shown by the shaded regions. Thus we can isolate and study such a pair
of points on the target surface simply by isolating that part of the echo having a given time delay
and simultaneouely a given frequency shift.

For a uniform spherical target, the distribution of power as a function of f, the frequency
offset from a "zero doppler" represented by the radial velocity of the target center, is shown
in Apperdix B to be

L

c g 1
Zt‘o Q coso 0

-1 cT
g _{(cos e
of )

olf) = 2a

(Real values only)
cT.\2 fc 2| 1/2
x li =3 - (Zfoan cos a) I dr (14)

(expressed in square meters), where f ° is the carrier frequency, 2 is the rotation speed i1
radians per second and « is the tilt of the polar axis from perpendicularity with the line of sighi.
Figure 3(e) illustrates this quantity ¢(f) for the particuiar 0°(¢) sketched in Fig. 3(a).

Now let us look into the other method of visualizing the behavior of the phase and rate of
charge of phase of the received signal. We wish to examine the motion perpendicular to the line
of sight of the corrugations in the wavefront reaching the radar receiver after reflectior; from a
distant target, and we especially want to know iae degree of correlation of the sigials seceived
at two points spaced by a (vector) separation 4 as & function of relative delsy AT of sne station
behind the other one d distant. This is expressed by ¢he quantity Z introdvced e;,fflier in con-
nection with Eq. (7). /'

The method we shall use to deduce ‘ie motion of the wavefro::t -arregularit)és at the receiver
is depicted in Figs. 5(a) and (b). We shiall consider two situsiions, an “urtifigial" but easily
analyzed case [Fig.5(a)], in which th: transmitter rotates witl the \":n-get‘.‘/.{nd the "actual” real-
life situation [Fig. 5(b)}), in which «i.ly the target rotates and the t-ansmit ‘gr and receiver are
close together and are fixed relat.ve to the target center.

Three arbitrary points forr.ing a triangle are chosen on the ‘orget jbody itself. Consider
points 4 and 2 of Fig.5(a) or (L). Line AB is the locus of all poixiix i fa plane at the receiver
(perpendicular to the line of sight) for which the phase angle of t!m/ éomposite sinusoidal signal
reflected by points 1 and 2 is the same value as at the receivef'/ "That is, it is the locus of all
points having the same d'Iference in time-of-flight from trar 4mitter to receiver via the two
points 4 and 2. Simila'ly, the line CD is the locus of all r.ointa satisfying a similar condition
regarding propagatior, via points 1 and 3. Considering -i5w that points 4, 2, and 3 are actually
in motion in different directions due to target rotat! 4%, it is possible to find the direction and
speed of motion of the wavefront irregulariiies ,@e receiver by finding the direction and speed
of motion of poirt Q, the intersection of AR und CD.

Before ge'ting to the desired case /£ transmitter and receiver collocated [Fig. 5(b)], let us
analyze the ertificial situation depicte {in F'ig.5(a). Here the receiver is fixed, but the trans-
mitter is irnagined to swing arom)r', “as the target rotates, always being at the same distance from

s
e
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Fig. 6. The space-time correlation function Z(:,Af) for (o) the
artificial case of o frozen echo pattern and (b) the actual cose.
(The quontity Z can be complex in general. For clarity it is
drawn os a positive real quantity.)
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the target and with the same orientation relative to it Thus, as the target rotates, the reflected
wavefront at the target has its phase, amplitude and polarization corrugations "frozen"; that is,
referring to Fig. 5(a), the times of flight from transmitter to points such as 1, 2, and 3 do not
change. A moment's reflection convinces one that the direction of motion of the corrugations as
observed on the ground must be in the direction in which the line OQ would swing if it, too, were
frozen to the target at point O.

The important thing about this artificial example is that if we imagine two points Q and Q'
equidistant from the target and mutually separated by a distance QQ' lying parallel to the direc-
tion of pattern motion, then the following effect takes place. The pattern of irregularities that
sweeps over the receiver point Q (and thus generates effectively a noise-like fluctuation in the
receiver output at Q) is identical to the pattern at the point Q' at a later time equal to the time
taken for the pattern to move the distance QQ'. The velocity of pattern motion in the neighbor-
hood of Q is clearly

vzQRRcoso |,

where K is the range and « is the polar angle, so that the time delay is

Ql
A“'O = cosa

For radar astronomy targets, all the target points are essentially at the same range R. Fig-
ure 5(c) shows a plan view of the ground plane with the vector v indicated by the arrow, and a
snapshot of the variations of amplitude and phase across the wavefront schematized by the curved
contours. Under certain conditions it may be assumed that, on the average, these contours are
circles; that is, the pattern changes equally rapidly with distance in all directions on the ground
plane. Among these conditions is the case of a spherical target with uniform surface properties,
i.e., uniform o°(¢).

Imagine now that we have two receivers R, and R, spaced by the vector distance g, making
an angle 6 with the pattern velocity Vv, and that we wish to compute

Zd,an =<WiyW* e + 81>,

the cross correlation of the electric field'u/1 and ‘W’z obgerved at the two receivers, as a function
of the separation d and a lag At of the first signal behind the second. The quantity .Z' is complex
in general; that is, it can be viewed as embodying the phase and amplitude of a sinusoid. (Just
how this sinusoid can actually be generated in an interferometer experiment will be discussed in
Sec.1V-F.) We will now describe heuristically how a Z(d, a1), such as is depicted in Fig. 6(a)
expresses certain target properties. (This is an extension of Eq. (7) in which Z(a', 0) was re-
lated to the power across the target aperture.)

For d =0, this function Z is the autocorrelation function of a gingle receiver output, and
we already know the Fourier transform of this; it is just the power spectrum of the fluctuation
a(f) as expressed in Eq. (14) and depicted in Fig. 3{e), except that in this case this power spec-
trum is half as wide, because only the target-to-receiver distance is changing, the target-to-
transmitter distance being constant. Denoting the transform of o(f) by ®(AT), we have?

t Equivalently, the transmitter could be fixed and the receiver move synchronously with target rotation.
$ ®(A1) is a quantity to be discussed further in Sec. IV~E.
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Z (0, A7) = R(AT/2)

It is almost equally simple to determine the zero-delay correlation Z (d, 0), still sticking to
our "artificial" example of the synchronously rotating transmitter. The function Z(d, 0) is de-
rivable from Eq. (7), which states a Fourier transform relationship between ground space cor-
relation function (with zero relative delay) and power across a plane aperture. If we imagine
the aperture to be the apparent disk of the target, then the distribution of power across the ap-
erture ¢| € (x,y)] 2) in Eq. (7) is actually the brightness distribution P(x, y), defined earlier.
Thus

SS P(x, y) exp [j2r(px + qy}] dx dy =<‘u/(l, m) W/*(l +p,m +q))dtdm = Z(a: o) .
Aperture

That is, the inverse transform of the brightness distribution is the ground correlation Z taken
with time shift A7 = 0, and with station separation d given by the two direction cogine arguments
p and q. With no loss of generality, we can take d parallel to one of the axes of the aperture in
Fig. 2, say the x axis (so that q = 0); then

exp [j2rpx] dx S P(x,y) dy = Z(d o)

S Aperture Aperture

In other words, the right side is given by the single inverse transform (in x) of the integral along
y of the brightness distribution P(x, y). Now notice that for a uniform spherical target the shape
of Z(a'. 0) is the same (except for a scale factor) as Z(0, Ar). This has to be so because the sin-
gle Fourier transform with respect to At of the latter is just the echo power spectrum o(f), which
in turn is simply the integral of the brightness distribution P(x, y) along one of the constant fre-
quency strips in Fig.4(a), i.e., the integral prerture P(x,y) dy.

About the only other thing we shall need to know about .Z| (d, A7) in order to discuss inter-
ferometry experiments later is the value of Ar that will maximize Z for a given station spac-
ing d. Referring to Fig. 5(c), in which the spacing d lies between points R, and R,, we see that
if the ground pattern has the generally isotropic character assumed earlier, maximum correla-
tion will be achieved if, in performing the correlation, the first signal is delayed by a At equal
to the time taken for the pattern to move the projected distance R, R); that is,

AT _dcos8 _ _dcosd
max v QiR cos o

We shall make use of such a relation later in deducing the pianetary rotation vector g from v,
the ground pattern velocity. Note that the more nearly d lies along v, the larger the value of
Z obtained by inserting the best delay A'rm ax in procesasing the two receiver outputs; indeed,
when 8 = 0, the full correlation Z(a', A"max) = Z (0, 0) is obtained because, since the diffraction
pattern is frozen,the two received voltages are identical apart from a time shift.

With this "artificial" example now disposed of, most of the groundwork has been laid for
discussing the "actual” case. Figure 5(b) shows the transmitter, target, and ground plane for
this situation, and now the transmitter is assumed fixed. To find the direction and speed of
motion of the ground pattern we once again examine the motion of point Q, the intersection of
equiphase lines AB (due to reflection from target points 1 and 2), and CD (due to reflection from

1 and 3).
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The actual rotation vector of the target is . We can express this as the vector sum of two
components @, and a, along the line of sight and perpendicular to it, respectively. We have
8, = @ sina, and 0, = 0 cosa. We can get the over-all behavior of lines AB and CD by con-
sidering these two rotation velocities lepnrntely,* knowing that the true motion of points 4, 2,
and 3 is the vector sum of motions due to two rotations ﬂ1 and 0 2 Now if we seek the motion
of point Q, the intersection of AB and CD, it is clear that component 0 1 has no effect on lines
AB and CD except that they rotate at an angular rate 2 4 the point of intersection Q remaining
fixed. This is true because the propagation path lengths are not changing. Therefore we need
only consider the motion of point Q due to ﬂz.t Since 0 21isan angular velocity that the target
would have if its polar axis were perpendicular to the line of sight and it rotated with a speed
ﬂz = Q cosa, we can state that the motion of point Q is exactly the same in our "actual" ex-
ample as it was in the "artificial”™ example of Fig. 5(a), except that the speed is twice what it
was before, since both the propagation paths (up and back) to each target point are changing their
length with time, so that point Q must move twice as fast toward Q' to equalize path length dif-
ference via points 4 and 2 and via 1 and 3.

Note that the contribution to the ground pattern produced by reflection from any point on the
target has the same velocity of motion as that produced by a reflection from any other point,
namely in direction QQ', and with twice the speed that a radius vector OQ from the target center
would swing,

v = 20R cos a

This means, among other things, that there is no hope of distinguishing the echoes from differ-
ent portions of the target on the basis of different velocities of their contributions to the ground
pattern. We must go back to resolution according to range (Sec. II-B) or doppler (Sec. II-C) or
the brute force method of using sharper antenna beams.

There is a second difference between the "artificial” and "actual" cases that must be pointed
out besides the double velocity of the ground diffraction pattern motion. Since the propagation
path lengths from transmitter to target are constantly changing as the target rotates in the
"actual” case, the wavefront irregularities of amplitude, phase, and polarization direction at the
target are not "frozen" as was true in the "artificial" case, but are constantly changing with time.
Thus the contours of Fig. 5(c) are not only in motion, as before, but are changing with time.

This means that there will be an additional diminution of the correlation Z (d, Ar) from the maxi-
mum, over and above the factors discussed for the artificial case. (These factors were the fail-~
ure of the direction of d to coincide with that of ¥, and then, of course, the nonzero values of
variables d and A7.) In particular, even if one inserts the A7 that maximizes Z for a given
d, namely AT ax which is now given by

d cosd (15)

A"'m».x = cosa ’

he does not get the full correlation Z (0, 0) when d lies along v because the two received volt-
ages are no longer exactly identical apart from a time shift.

t The author is indebted to J. V. Evans for pointing out this simple method of analyzing the motion of point Q in
the "actual” case.

% True except for the singular case of widely spaced transmitter and receiver points and the target axis appearing
aimost exactly end-on from the ground (Ql >» 02).
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If the time rate of this pattern change were a sufficiently large fraction of the fading rate
produced in a single antenna due to motion of the pattern, then we would know that Eq. (45) would
not be valid. The best value of A7, Afmnx would be shifted toward zero because, since the pat-
tern is decomposing as it moves, a higher degree of correlation would be obtained by advancing
Ar slightly to head off the decomposition. Thus, before we can be sure Eq. (15) is valid, we
must be sure that the pattern decomposition can be neglected compared to pattern motion.

We can determine how big a part pattern fluctuation plays relative to pattern motion by in-
quiring how much of the signal fluctuation at a single receiver is due to motion and how much is
due to pattern changes with time. It will now be shown (in the next paragraph) that all the fluc-
tuation rate observed at a single receiver is due to pattern motion; it then being a safe assump-
tion that for spacings d of the order of several multiples of the correlation distance, patterr
decomposition is small. Egquation (45) is then valid except for the case where one simultaneously
has very small values of the angle & and large values of d.

Comparison of Figs. 6(a) and (b) shows that the profile of Z(0, At) for the "artificial" case
of a frozen pattern of irregularities is twice as wide as the same profile for the "actual™ case
about which we are concerned. This is known from considering the radial motion relative to the
observer of the different points on the target; a given such velocity [Fig. 4(a)) will produce one-
half the doppler shift when the transmitter-to~target distance is not allowed to change [Fig. 5(a) ~
the "artificial” case] as when the transmitter and receiver are collocated [Fig.5(b)). Yet we have
already seen from different considerations that the sideways pattern velocity across the ground
in the "actual” case is exactly twice that of the "artificial" case. But the physical size of the
pattern corrugations is the same in both cases, as ensured by the fact that Z'(d, 0) is the same
for both cases. Thus, if the physical size of the irregularities is the same, and the velocity of
motion along the ground is twice as large in the "act 1" case, then this completely accounts for
the fact that the echo power spectrum is twice as wide in the actual case. The pattern decompo-
sition makes a negligible contribution to the fading rate, relative to the pattern motion.

It is instructive to compare these notions on rotating planets with equivalent ideas that have
been applied for some years to the ionosphere. If one imagines a plane wave incident on a plane
ionosphere overhead, then if the ionospheric irregularities are frozen, the horizontal motion of
the ionosphere (an ionospheric wind) causes a motion along the ground of the frozen irregularities
in the wavefront pattern. In actuality, however, since the ionosphere is a soft target in which
there are turbulent effects, constant random alteration of the wavefront irregularities is present.
With the ionosphere, the inability to recover complete correlation by readjusting r even when
d coincides with v is due to the changing shape of the target; with a planet it is due to the fact
that the transmitter is stationary instead of moving synchronously with target rotation. Briggs,
et 11_1.,7 have made a lengthy analysis of the use of such interferometric methods to study ground
pattern velocity and the way in which the moving ground pattern itself fluctuates with time. Their
analysis goes a good deal further for the ionospheric case than the notions we have presented
here for the rotating sphere case. The aim here has been simply to determine w7 [Eq. (15)]

max
without deriving the complete function.Z (a'. AT).

E. Polarizsation

Most of the radio and visible energy from cosmic sources is relatively unpolarized; that is,
most of the energy in the arriving signal W(t) not only has a randomly time-varying amplitude and
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phase [W/(t) a random complex variable], but algo a random time-varying direction of polariza-
tion. By contrast, in making radar observations the character of the polarization is controlled
on transmission for the dual purposes of conserving system efficiency (by not wasting power into
unnecessary degrees of freedom of the signal) and of studying those target properties that affect
the polarization. Since the target does not in general produce a complete randomization of the
incident wave, it is often found that a large fraction of the received energy arrives systematically
polarized (see, for example, Refs. 5, 8 and 9 for certain lunar results).

Such partly polarized radiation can be resolved uniquely into two parts, the "unpolarized"
(i.e., randomly polarized) component, and the (systematically) "polarized" component. The un-
polarized component will have a narrow-band noigse spectrum (due, for example, to the doppler
spreading discussed in Sec.II-D) and if resolved (for example into two linearly polarized com-
ponents at right angles to one another) will exhibit zero correlation between the two. The polari-
zed component, on the other hand, may or may not have a nonzero bandwidth. In either case the
components at right angles are mutually coherent. That is, the electric vector traces out an
ellipse (Fig. 7) which may be continually fluctuating in size (at the bandwidth rate), but maintains
a constant orientation, ratio of axes and sense of rotation.

Fig. 7. Path traced by head of a vector representing v
received slectric field strength as a function of time
(complete polarization).

The polarized component is specified by its power Pe‘ orientation angle x and axial ratio r.
The sense of rotation is contained in the sign of r; that is, r > 0 for left-hand circular polariza-
tion and r < 0 for right-hand circular. In Fig.7, the wave is propagating along the z axis into
the paper; thus x is clockwise from the x-axis, and, as the arrow indicates, r is negative.

The unpolarized part is specified by a single parameter Pu' its power. The degree of polar-
jzation m is simply P e/ P, where P equals the total power Pe + Pu' Since in radar experiments
the wave ig transmitted completely polarized (m = 1), the term depolarization (1 — m) is perhaps
more frequently encountered in radar usage than is the degree of polarization m. A monochro-
matic (i.e., single-frequency) signal is completely polarized, by definition. It should be noted
that one sometimes encounters other definitions of depolarization in which a monochromatic
wave can be said to be "depolarized." For example, if vertical polarization is transmitted, the
horizontally polarized received component is sometimes called the "depolarized" component.
Such a definition obviously is not equivalent to that employed here.
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There are several differert ways of rearranging the quantities P, m, x and r into a more
usable form, and the preferred rearrangement depends on the particular properties of the radia-
tion that are most interesting. For radio engineering purposes the most interesting choice is
usually the four Stokes plrlmeteuw

I1=P

Q = ml cos Z(tan'1 r) cos 2y

U = ml cos Z(tan" r) sin2y

V = ml sin 2(tan”? r) (16)

because of the ease with which the effect of various forms of targets and receiving antennas may
be calculated. The parameters have the following physical interpretation: I is of course the
total power, Q is the excess of x = 0 linearly polarized power over that at right angles to it, U
is the excess of x = 45° linearly polarized power over that at right angles to it, and V is the ex-
cess of left-hand circular over right-hand circular power. The four quantities are often written
as a column matrix or vector, and are then referred to as the Stokes vector S. (Note that this
is a vector in the mathematical sense and is not a vector property of the wave in physical space.)

The usefulness of the Stokes representation in deducing the effects of signals on specified
antennas is clear from the above description of the parameters. The effect of a target on the in-
cident signal turns out to be simply defined tno. Specifically, the Stokes vector S!. of the re-
flected wave is related to the Stokes vector Si of the incident wave by the set of simple linear
equations given by

sr = usi ) (17)

where M is a four-by-four matrix called the Mueller matrix.}

The Mueller matrix representation has proved quite useful in studies of simple radar targets
such as cones, corner reflectors, and so forth,“ especially when the target is maintaining a fixed
aspect, thus returning a monochromatic (completely polarized) signal.

Of central importance in the study of a hard rotating radar astronomy target is the degree of
polarization

ﬁ___r____w . (18)

Only if the body is extremely simple in shape or not rotating at all relative to the line of sight
does one expect m to be unity. The more realistic situation involves complicated diffractive

and multiple reflection effects giving rise to the wavefront irregularities we have spoken of
earlier. The way in which m drops from the unity value it would have for an ideally smooth
shape (for example a sphere) as the gsurface roughness increases appears not to have been studied

t A matter of terminology is worth mentioning here. The elements of the Muslier matrix (which, like those of the
Stokes vector, deal with powers) are sums of products of the elements of a meatrix of voltages that characterizes
the target also. This two=by~two matrix of voliages is called the scottering matrix of the target and is something
entirely different from the target scattering function to be defined in Sec. IV. The reader may already be familiar
with the scattering matrix; it should not be confused with the scattering function.
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in the literature. Indeed it is not entirely clear that m should drop completely to zero as sur-
face roughness increases \
The theory of depolarization of electromagnetic waves by reflection from rough surfaces
seems to have been given very little attention,} although a great deal of experimental data exists.
P. Beckmann and his coworkers have made an encouraging start on the theory. Beckman‘z has
treated the case of random surfaces with radii of curvature much larger than the wavelength, and
Chytil” has examined a variety of target shapes (such as disks, strips, cylinders, spheres and
prisms) in the region A ~ a to A = a/10 (where a is the target size). Chytil finds that with linearly
polarized radiation incident, as A = a the echo power becomes about equally divided between com-~
ponents parallel with and perpendicular to the incident polarization direction for all shapes.

m. SOFT TARGETS

According to the definition adopted earlier in this chapter, soft targets include those that are
changing shape, such as turbulent clouds of one sort or another. The soft targets of greatest ra-
dar interest are the ionized regions (sun's corona, planetary ionospheres, and the interplanetary
medium), and this part of the present chapter will focus on the influence of such regions on the
transmitted signal.

On the other hand, clouds of material particles, such as the zodiacal particles, terrestrial
raindrops, etc., are of only minor radar astronomical interest and it ig not necessary to say
very much about them here. They are usually so rarified that multiple reflections can be neg-
lected, and a computation of radar cross section of a cloud or portions of it consists simply of
multiplying the cross section of a single typical particle by the number of particles in the region.
If the particles are perfectly conducting spheres,14 for example, the cross section per particle
is that given by Fig. 8, in which it is seen that when the radius a is much smaller than the wave-
length A, the cross section falls off as the fourth power of a/A (the "Rayleigh scattering law")$
This a/A << {condition holds with such soft targets as the zodiacal regions and terrestrial rain
clouds, and it also holds in a rough quantitative way with ionospheric free-~electron scattering.‘s
(The cross section per free electron is obtained by substituting the clasaical electron diameter
in the Rayleigh law.} It is interesting to observe in Fig. 8 that in the spherical case as one passes
from the a/A << 1 situation (relevant to some of the soft radar astronomy targets) over into the
a/A >> 1 case (to which our discussion of hard targets has been directed), the cross section ap-
proaches raz, the projected area of the sphere, as would be expected from the discussion in
Sec. I1-BY

1 In reflection from random medio where there are no muitiple reflections and the individual scotterers have a

strong anisotropy, the depolarization may not b1 gonploh. This is suggested by a study of the reflection of RF
signals from clouds of randomly oriented dipoles'® for which it was found that m = 1/2,

$The %O’ku vector-Musller matrix formalism might have some application to hard radar astronomical torgets.
(Patke '/ gives a very complete survey of this formalism.) This is suggested by the following interesting properties.
In the case of multiple reflections, the M describing the over-all process is the product of the M's describing
the individual reflections, and when a number of wavelets add to give a composite signal, although the over-all
M is not the sum of the individual M's, the summation can be handled in terms of the scattering matrices of the
reflections. Conceptually at least, this sort of formalism then provides the possibility of theorstically studying
the polarization properties (S ) of an echo made up of a sum of multiple reflections.

§ It Is not necessary that the body be spherical for the fourth=po r law to hold.

1 Notice here that the peculiar method of defining all radar cross sactions as a powsr ratio times an arbitrary 4«
(referred to in connection with Eq. (5)] does have the advantage that the cross section of a perfectly conducting
sphere equals its projected area. It is difficult to imagine a single other advantage of “his curious convention.
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As we have just indicated, soft targets of radar astronomy interest are limited for the most
part to ionized media, since clouds of material particles (such as the zodiacal particles) suffer
the (a/?t)4 dependence and are at prohibitively large ranges; and those effects in our own atmos-
phere not associated with its ionized condition are minor.

In discussing the reflection of electromagnetic signals from ionized media it will be neces-
sary here only to review one or two points and to emphasize the dissimilarities of soft targets
and hard targets.

A. Reflected Power and Angular Power Spectrum

The effective radar cross section of a given volume of plasma can vary over the enormous
range from simply the sum of the cross sections of individual free electrons (free electron
scatter) to the unity reflectivity obtained in the case of reflection below the critical frequency
(in the absence of collision losses). Exactly where in this range the effective cross section of
a unit volume of plasma will lie thus depends on many factors, principally the operating fre-
quency, electron and ion densities, collision frequency, magnitude and direction of the magnetic
field and the temperature.

When the target presented to the probing radar signal is a large and inhomogeneous body of
plasma, such as the sun's corona, then matters become quite complicated. Unlike the hard tar-
gets discussed earlier, the target material is in constant relative motion so that it is impossible
to use most of the neat properties one can attribute to rotating hard targets (such as the location
of loci of congtant range or doppler offset).}

However, under certain conditions it may still be useful to retain some of these ideas, par-
ticularly the notion of radar angular spectrum. For example, although our own ionosphere is a
soft target, there are some reasonable constraints on shape {particularly the common assumption
that it has a general horizontal stratification, on which are superimposed statistical irregularities),
and the notion of angular spectrum of reflectionfrom the irregularities has proved quite meaningful

1 And even if the ionized plasma target were rigid, its geometrical properties would be more difficult to evaluate,
since we are not always dealing here with reflection from objects but more often with penetration of the wave to
points where certain conditions on refractive index are fulfilled (these conditions being dependent on the direc-
tion of arrival). Thus it is even more difficult to associate the angular power spectrum with detalled structure of
the medium thon it is with a hard target. (This amociation for the hard target case is discuseed in Ref.3.)
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{see the last paragraph of Sec.1l-D). A first-order approximati.cm18 to the true, highly irregular
state of affairs in the sun's corona has been to assume that it is spherically symmetric with a
general radial decrease of electron density, on which, as with the ionosphere, local spatial irreg-
ularities are superimposed, giving rise to a uniform roughness in the reflected wavefront; i.e.,

& definite radar angular spectrum ¢ o(qp), uniform throughout the corona.

B. Time Delay (Range)

For soft targets, contours of equal time delay will no longer necessarily be contours of
equal range because the group propagation velocity in the plasma may be less than the free space
value. In particular, the total group time delay T will be twice the reciprocal of the integrated
product of group velocity and distance: i.e.,

R
£
T 5‘0 w(s) ds ,

where w is the group velocity and R is the range of the point of reflection. In general, the
medium will be dispersive; that is, w will depend on frequency. In the important case for which
both collision frequency and gyro frequency are negligible compared to the operating frequency {,

w(s) =nc=c /1 - [fp(s)/f]z ,

where n is the index of refraction and t'p is the local plasma frequency in cps;
fp(s) = 9.0 NN(s) |,

N being in electrons per cubic meter. If fp <<f also, then we have the useful formula

R
e B~ f_fn%«g‘o N(s)ds , (19)

which expresses the excess of time of flight over that jn vacuo in terms of integrated electron
density along the propagation path (number of electrons in a one-square-meter column travers-
ing the radar-to-target path). ¢

C. Frequency

We have just referred to the fact that for a soft target, both the reflected power and the prop-
agation velocity can be frequency-dependent, and as is well known, the behavior of these quanti-
ties (and polarization too) can under certain conditions change violently with frequency. This
makes it possible, in principle, to deduce certain parameters in the corona, or in planetary
ionospheres, by means of measurements at different frequencies. This sort of technique has
been richly cultivated for years in the study of our own ionosphere (see, for example, Ref. 19)
whose various layers are studied by noting the frequency below which a test signal no longer
passes through but is refracted back.

It is clear that gross shifts in the frequency of the radar echo are to be associated with radial
components of motion in the soft target. For example, parts of the solar corona having the same
range but different velocities relative to the radar line-of-sight may thereby be distinguished one
from the other much as with various portions of hard targets (Secs. II-C and I1I-D). However, the
lack of target rigidity destroys much of the usefulness of range-doppler echo resolution.
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D. Polarization

The way in which the polarization characteristics of the incident radar signal are altered by
passage through a plasma in the presence of a magnetic field {s quite complicated in the general
cagse. If there is no magnetic field, or if it is the incoherent scatter mode that is being employed,
then the polarization is unaffected; it is as though the reflection were from a smooth hard target.

When a magnetic field is present in the ionized medium, and for the common case of operat-
ing frequency considerably larger than both gyro and plasma frequencies, then propagation takes
place via two independent modes having opposite senses of circular polarization and slightly dif-
ferent phase velocities (neglecting collisions). When present simultaneously, these two waves,
the "ordinary" and "extraordinary,” form an elliptically polarized wave whose ratio of axes and
sense of rotation do not change along the ray path, but whose plane of polarization does, because
of the different phase velocities. The rotation is cumulative in the sense that i. .ontinues on the
return trip from the target rather than undoing itself. The total number of radians Ay of this

Faraday rotation iszo

R
Ay = i;?’.—"' So N(s) B(s) ds |, (20)

where Be(’) is the longitudinal component of magnetic field (in gauss). Note that there is a dis-
persion (strong frequency dependence) of the total amount of rotation. In the special case in
which the incident radiation is linearly (plane-)polarized, it can be considered the sum of equal-
strength right-hand and left-hand circularly polarized components. One propagates by the or-
dinary mode only, and the other by the extraordinary mode only, so that the composite signal
arriving is still linearlv polarized — if not depolarized on reflection (see Sec. II-E) — but with the
polarization axis twisted by Ay radians.

An ideally smooth target converts linear polarization into linear, and right circular into left
circular, and vice versal In preference to linear polarization, one often uses circular trans-
mitted polarization in conjunction with a receiving antenna adjusted for the opposite direction of
circular polarization so that the signal power received from a smooth hard target can be maxi-
mized independently of the Faraday rotation angle Ax.

IV. MEASUREMENT ME)HODOLOGY

In the next few sections of this report, the way in which radar systems perform measure-
ments on radar targets will be systematized. In Sec.V we shall collect all the preceding notions
and list the way in which quantities of astronomical interest can be deduced from these radar
measurements.

The targets dealt with in radar astronomy differ from those discussed in much of the stand-
ard radar literature by their sheer physical size and large differential velocities. Very rarely
will these targets be extended targets, meaning that they more than fill the antenna beam be-
cause they are usually at extreme ranges; but, they will be what we shall call spread targets

t The (normalized) Mucller matrix of Eq. (17) is

00
00
M= 10
0 -1

OO
0O =0
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in both delay and frequency. That is, since they are so deep and since different portions are
apt to be moving differently relstive to the observer, the returns are spread significantly in
both range and doppler.

It neither the range spread nor the doppler spread is discernible to the radar system in use,
we call the target a point nonfluctuating target. If the bandwidth of the signal is insufficient to
resolve the target in range, and yet there is a discernible doppler spread of the received signal,
we shall call the target a point fluctuating target. If the signal resolves the target in range but
with no observable doppler spreading we can treat the target as a deep nonfluctuating target. In
the general case in which observable range spreading and doppler spreading are present simul-

taneously we speak of a deep fluctuating target.

A. The Target Scattering Function o(r, )

It has proved convenient to describe the average reflecting properties of a spread radar tar-
get in terms of its scattering function o(7, f), the average reflectivity as a function of the two
variables delay and doppler shift. The scattering function can thus be depicted as a surface in
three dimensions, as in Fig. 9. The two independent variables are delay r(seconds) and doppler
shift f {cycles per second). The dependent variable o(7,f) drdf is defined as that part of the total
target cross section o(in square meters) that belongs to target regions that both reflect a signal
with delays of T to 7 + dr and at the same time subject the signal to doppler shifts from f to f + df.
A more concise discussion of the scattering function follows in Sec.IV-D.

The concept of a scattering function has proved useful in unifying various techniques of meas-
urement (this report) and detection! Many of the measurement techniques we shall describe
shortly are nothing more than measurements (i.e., estimates) of the scattering function or some-
thing derivable from it. In Ref. 1 it is found that, under certain reasonable assumptions, all one
needs to know about the target in order to discuss its detectability completely is its scattering
function.

Several cases are shown in Fig. 9. For example, a stationary point target at delay T4 would
have the scattering function depicted in Fig. 9(a), namely an impulse of value c at 7 = 7 d and
f = 0. I the point target were moving toward the observer at a velocity v = cf d/ 2f ° £ ° being the
carrier frequency) the scattering function would appear as shown in Fig. 9(b). If the target (at
delay T4 and moving at velocity cfd/ Zfo) could be regarded as having negligible depth in delay,
but as producing rapid random fluctuations in the returned echo, the scattering function o{r, f)
would have the character shown in Fig. 9(c) — there would be a spread only along the f-axis. The
width B along the f-coordinate is proportional to the fluctuation rate. Similarly, if the fluctua-
tion rate were negligible, but the target were still quite deep and thus had a wide range spread,
the scattering function would appear as in Fig. 9(d). The duration of delays or "multipath spread"
is labeled L.

Figure 9(e) shows the scattering function of a hypothetical target having a significant spread
along both axes. Figure 9(f) shows a typical such scattering function for the important special
case of a uniform rotating rough sphere. As mentioned earlier, a uniform sphere is one having
the same radar angular spectrum o c’(w) everywhere on its surface. Appendix B presents a deri-
vation of the following equation for o(r, f) of the uniform sphere of radius a, rotation speed g
and angle a between polar axis and perpendicularity to the line of sight:
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Fig. 9. Scattering function of various forms of targets (the total volume
under the function Is equal to o, the over-all radar cross section).
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where fo is the carrier frequency and c is propagation velocity. The r-origin is at the target
center,

It will be recalled from Sec. lI-D that, because of the mapping property of rotating hard tar-
gets, points in the 7, f plane correspond to locations on the surface of the target. Therefore a
measurement of the scattering function o(r, f) represents a map of reflected power from various
regions of the target with the correspondence being that given in Fig. 4. [Note the occurrence
in Fig. 9(f) of the same semicircular or semielliptical region in the 7, { plane a8 is shown in
Fig. 4(b}.]

The scattering functions shown in Fig. 9 have been labeled to indicate roughly the two param-
eters B and L, the doppler spread and the delay spread,respectively [for 9(c) we have L = 0 and
for 9(d), B = 0). An important attribute of spread radar targets is the spread factor, the product
BL. If BL <1 the target is termed underspread, and if BL, > 1, overspread. As pointed out in
Ref. 1, the radar detectability of a target of given total cross section

o= ‘S{;‘ o{r,f) dr df
-

(the volume under the surface depicted in Fig. 9) decreases steadily with BL if BL becomes
greater than roughly unity. In the neighborhood of BL = 4, even when the over-all system sen-
sitivity is enough to overcome this loss in detectability, we shall see in Sec. VI-D of this report
that it may become difficult to perform an estimation of the scattering function or derived param-
eters, a necessity for studying target properties in detail.

In order to discuss proceases of estimating the scattering function, or derived properties,
we must make a short digression to introduce the notions of a matched filter and the associated
ambiguity function. (For a more detailed discussion see the paper by Turin.u)

B. Detection of a Point Nonfluctuating Target — the Matched Filter

The simplest form of target is one whose scattering function is an impulse, i.e., a point
nonfluctuating target. As is well known, the form of receiver that will develop maximum signal-
to-noise ratio from such a target is a matched filter. (Most conventional radar receivers employ
matched filtering in the IF.) That is, denoting the transmitted waveform as x(t), if the noise
spectrum is uniform, the optimum receiver consists of a filter having an impulse response
mit) = x(t - t) followed by a sampling device that observes the filter output at time t o (where t °
is an irrelevant time delay introduced to make the filter physically realizable, i.e., no response
before excitation). The matched filter has an impulse response that is a time-reversed version
of the signal. Since its complex frequency function is thus the complex conjugate of the frequency
function of the signal, a matched filter is often referred to as a conjugate filter.

It will be relatively simple and quite instructive to prove that this matched condition maxi-
mizes the signal-to-noise ratio as follows. Let X(f) be the Fourier transform of the signal
x(t) (i.e., its complex spectirum), and M(f) be the complex frequency function of the filter. We
want to adjust M(f) so as to maximize the output signal-to-noise ratio, defined as the ratio of
S the square of the output voltage at time t o due to signal alone, divided by N the output

out’
noise power. The latter is

out’
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for input noise of uniform spectral density No/ 2 watts per cycle per second (N ° watts per cps
for a single-sided spectrum). The signal output is

) . LI e 2, (° 2
Sout = X(f) M{f) exp (jarft | df ‘S‘_, |X(u) exp [jlwutoj[ du g-n IM(v}|©dv . (23)

from the Schwarz inequality for two complex quantities A and B:

o 2 ) 2 0 2
[S‘ Al) B(x) dx] < lamitay [ 1B ® e
-l -0 -0
Clearly, in order for the inequality (23) to be an equality, we must have
M(f) = {X(f) exp [erftO]} * = X*{f) exp [-j2rit ]

or in terms of the impulse response mf{t),

mft) = x(to -ty (24)

which was to be proved. When this matched condition exists, Eqs.(22) and (23) combine to give
for the signal-to-noise ratio

Sout - Z& (25)
Nowt Mo '
where E_ is the total signal energy f_: | X(£) I‘?‘ df. This ratio 2E a/No is an important factor in
the detectability of any signal.
The output voltage at time ty produced from any filter of impulse response m(t) due to an

input w(t) is given by the convolution
«©
fo(ti) = S‘.” w(T) m(ti -7)dr ,
which for the matched condition is, by Eq. (24),
L]
fo(ti) = S.“ w(t) x(r - ty + to) dr . (26)

From this last equation, we see that the operation of observing the matched filter output at a
given instant is mathematically equivalent to correlation detection, i.e., a multiplication of the
incoming signal-plus-noise mixture w(t) with a reference copy of the transmitted signal x(t) fol-
lowed by integration over the duration of the product signal. We have already met correlation
operations in connection with Eq. (7), which deals with a complex correlation function. Wr will
return to the question of correlation operations shortly.

C. The Ambiguity Function 02

This matched filtering or correlation detection operation is optimum if the scattering func-
tion has the form of an impulse located at the origin. If the impulse-like scattering function is
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not at the origin but at the point (r,f), the output is in general diminished, and the filter must be
readjusted by the appropriate frequency offset £ and its output observed r seconds later to re~
store the condition of optimality.

Supposé we plot the signal output power from a matched filter set for such a point non-
fluctuating target at 7 = 0 and f = 0 as a function of delay and doppler misalignments r and f.
The result is the quantity wz(-r, f) called the ambiguity function®%23 (or the uncertainty function,
resolution function, or two-dimensional autocorrelation function). More explicitly, the ambiguity
function y(r, 1) is defined as simply [/o(to)lz, the square of the envelope of the output f (t) of &
matched filter at t = t o to an input waveform x(t) that has been misaligned by a lag of r seconds
and an upward shift in frequency { cycles per second:

2 = 1A% =

o 2
S X*(t) X (t + 7) exp [j2nft] dtI (27)

or, alternatively,

2

$inn = , (28)

5 G o) G*(¢ +1) exp[-j2rer] dp

where G(f) is the Fourier transform of %(t), (i.e., G({f) <= %(t)). As before, t, is the time
at which one optimally samples the matched filter output if T = 0 and f = 0. The ambiguity func-
tion expresses the ability of a given combination of waveform x(t) and filter matched to it to dis-
criminate targets in range and doppler. Ambiguity functions for some common sorts of wave-
forms are shown in Fig. 10.

The ambiguity function has a number of interesting properties. The widthin 7 atf =0 is
roughly the reciprocal of W, the bandwidth of the signal; and the width in f at 7 = 0 is roughly
the reciprocal of the signal duration T. If the energy in the signal and the gain of the matched
filter are normalized so that

Sm Ixmlz=S"° IM@]2ar=1

then not only do we find readily from Eq. (27) that the height of the ambiguity surface at the
origin is unity

o, 0=1 29)
but also that the total volume under the surface is invariant to the form of signal,

y Virnndtdr=1 . (30)

The "invariance” relation [Eq. (30)] is highly significant. The diagrams in Fig. 10 show the
ambiguity functions of several +-es of waveforms. In all cases the height at the origin is unity
[Eq. (29)], and the volume is also unity [Eq. (30)}; the difference lies in how this volume is dis-
tributed. The first three examples shown concentrate substantially all of the volume in one cen-
tral peak. Thus, lengthening a simple pulse produces a broadening in delay which would be ir-
relevant if only the doppler were being measured [Fig.10(a)}; or narrowing a simple pulse in
time [Fig. 10(b)] produces a broadening in frequency which would be irrelevant if one were meas-
uring range only.
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The last two examples in the figure represent deliberate efforts to make both dimensions of
the central peak small. This allows range and doppler resolution to be obtained simultaneously.
In the case of the "large-TW pulse train" [Fig. 10(d)}. the rest of the volume goes into subsidiary
peaks. For the continuous large-TW waveform or "pseudonoise” waveform [Fig.10(e)}, the
volume is mostly in the "skirts" away from the central peak. A great deal of study has been
given to ways of making these skirts even, so that there are no large subsidiary peaks (e.g.,

Ref. 24).

Signals of the type shown in Figs. 10(c) through (e) are useful for another reason besides the
availability of simultaneous doppler and range resolution. For a given peak power limitation on
the transmitter, these waveforms allow an increase in signal energy E. by leaving the trans-
mitter on longer, without a sacrifice in range resolution as would be the case with the waveform
in Figs. 9(a) and (b).

In estimating the performance of the various waveforms of Fig. 10 it will be convenient later
on to use the crude approximations given in the right-hand diagrams of Fig. 10. There the volume
in a given peak is assumed to be concentrated uniformly within the half-power contours, and in
the case of the pseudonoise waveform the skirt level is assumed uniform.

D. Interaction of the Signal and the Target in Terms of o and y2

We have now introduced two functions of delay 7 and doppler f, one being the target scatter-
ing functior. o(7, ), a property of the target only, and the other being the ambiguity function
;z('r. f) which describes the transmitted signal independently of target properties. These have
bee, ‘nustraied in Mss. ) 2na 10, Tespoively, We 5lall nuw vbtain Wn expression involving
these ‘wo quantities that shows how a simple matched filter radar sys em responds to a spread
target. This ex;:u-essionZs is a convoiution of ¢ and &z. For the mor¢ complicated radar sys-
terus that provide optimum detectability on spread targetn‘ other exp:essions are obtained, but
they, too, are found to take into acccunt the target properties only through the ambiguity func-
tion, and to involve the same convolution of 7 and #z, as we shall see.

Imagine that we have an engsemble of statistically identical targete. With a transmitted sig-
nal of complex envelope X (t) emerging /rom the transmitter, a signal a{7',f') %(t) represents
the random complex ccho signal returning from the elementary region having a span of delays
lying between ' and ' + ir' seconds, and at the same time having a r«nge of doppler frequency
shifts lying between f' and {' + df' cycles per second. The target scatiering function o(r', ') is
defined as

olr',2') = st %
where the bar represenis ‘i:c ensemble average, and parameters such as range, antenma gain,
etc., are normalized out s that #(r', f’) iv in terms of the number of eifective square meters of
croes section per second of range incremaent per cps of doppler increrment. That is, one watt
per square meter of incident power flux will scatter toward the receiver [o(r', ') dr'df'}/4z watts
per steradian of solid angie subtendc/-d st the tu'get.t

1 In determining the scattering function ':a;' fargets such os clouds of scatterers, 't is uufu!“ o consider
o(v',F') 1o be the average cross section . o typical particle times the probability t-ot such o particle witl fulfill
the condition thot the range Is in the int ssval +' to v + dv' ond the velocity lles in F 1o P +dF,



The easiest way to deduce the effect of the spread target on the radar signal is first to divide
the target up into zones having different delays. Suppose we have isolated such a region of the
target containing all points lying within a range of path delays 7' to 7' + d7'. We next imagine
that the rest of the target is absent and we compute the contribution of this zone to the output of
the matched filter. If those regions within the zone that introduce a frequency offset! lying in
the range f' to ' + df' return an echo s(7', f') %(t), then the envelope of the output from a filter
that is matched to the transmitted waveform (except that the filter is misaligned upward by f in
frequency and the output is observed att =t o ¥ T instead ofatt=t o) will be

l{o(t°)| = Is(f'.f‘)HS k()X (t + 7! =~ 7) expj2n(f —- ")) dt| = $(T' - T, £— 1) ]s(1', 11)]
-0

since the signal arrives with a total time offset (7' — 7) and total frequency offset (f' — f) relative
to the values giving maximum filter output. Use has been made of the relation |AB| = |A| |B|
for two complex quantities A and B. The average power [P(r1,{)] -+ appearing in the output of
the filter offset by 7 and f due to the entire zone having delay near 7' will then be gotten by
integrating the average of the square of this quantity over all frequency (contributions at differ-
ent frequencies always adding as powe. ;, not as voliages):

(Pr, D), = 14,0 )12 =S' War -1, 11 |s(r, 1% art

RS‘ por =1, = 1) olrt, 1) af'
-0

As a final step, we add up the contributions due to all range zones of the target. If we assume
that the echoes from different range elements are tmcorrehted;t ie., Il(-r'i,ti) s(-r'z, f'z)l =0
for all 7! 1 #* -r'z, then we can add together the powers returned in the different range intervals to
get -

-

P(r.1) = (P('r,f)]f, dr' = S‘S‘OZ(T' -1, f=1)o(r" ') dr' df* . {34)
-t -
Thus the power out of the matched filter as a function of the time and frequency offsets is

proportional to the (two-dimensional) convolution of the scattering function with. the ambiguity
function$ Equation (31) says that the process of matched filter reception isolates certain areas

1 The frequency offset might occur becawse at the given range there are regions in motion with the appropriate
velocity. On the other hond, a frequency spread of the energy retuming from a given ronge could just as easily
occur as a result of other physical mechanims. For example, at o given range there might be o single fixed
scatterer whose reflectivity s fluctuating rapidly enough fo cause the assumed doppler broadening.

$As noted later at the close of Sec.V-<E, it is concelvable that the signal retuming from the target in one cell of
the +',F plane might be partially coherent with that appearing in a nearby cell at a later time. In such cases
this step connot strictly be taken. The whole question of such cell-to-cell coherences remains to be studied In
the radar astronomy confext.

§ In order to avoid a weighting proportional fo the antenna gain pattern, we have implicitly assumed that the on-
terna beamwidih is much greater thon the ongle subtended by the target (or equivalently, for torgets broader
than the beamwidth, extended torgets, that the antenna radiates uniformly throughout a certain sl idangle, ond
200 elsewhers). Also, it should be added that whenever the filter and fransmission are not matched, 92 is simply
reploced by the slightly more general "cross ambiguity function."Z/
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of the scattering lunctlon The process can be visualized as a process of overlaying the three-
dimensionsl surface (-r. f), the ambiguity function of Fig. 10, onto a similar representation of
the scattering function e(r, f) of Fig. 9 (after providing the appropriate v and f offsets) and then
reading off the total volume under the product of these two functions.

Let us now investigate the various forms of receivers that are actually used in radar astron-
omy work where adequate signal-to-noise ratio is always & problem. As detailed by R. Price in
the companion report,1 in order to build up the signal-to-noise ratio, one usually builds a re-
ceiver structure that goes beyond simple matched filtering or simple correlation detection as
just discussed in Sec.IV-B.

The matched filter with a sampling of the output volta, tage ot t is approprhte only for a
nonfluctuating point target for which one knows target delay t to withln a fraction of an RF cycle.
Since this means a fraction of a wavelength, in practice, carrier phase is almost always unknown,
and so one samples instead the envelope at t o Figure 11(a) shows two alternate versions of the
matched filter for known RF phase, the matched filter operation itself (as we have described it
in Sec.IV-B), and the correlation detection equivalent (Eq. 26}, The maished filler and equise~
lent correlation detector of Fig. 14(b) are the receivers of Pig. 21{s) sultably modified for opti-
mality when RF phase is unknown. In the case of the matched filter shown on the left, the en-
velope of the output is sampled, and in the correlation detector shown at the right, the envelope
of the (complex) cross correlation of arriving signal w(t) and transmission x(t) is observed,
rather than only the real part as in Eq. (26). The distinction will be discussed further in the next
section.

For uniformity with the other more complicated detectors which we are about to discuss,
Fig.11(b) shows the square of the envelope being sampled, not the onvelme itself. For a point
nonnuctu.ting target, the output power signai-to-noise ratio is (E./N )2 as compared with
Z(E /N ) available when carrier phue is known exactly. In terms of required signal energy

the lack of phase knowledge costs 3db. For a more general form of target, the output power
sigml-to-nohe is

- 2
E
P\ (7. 1) = Conat x ﬁ:- ys;z(r' —r, £—1') o(s', £') dr' af* . (32)

In radar astronomy experiments the duration T of the transmission is usually very long
compared to the received signal fluctuation period 1/B, so that one must regard the target as.
being a point fluctuating target (spread in frequency f), so that its scattering function is

olr,f) =olf) 8(r—-7") ,

where § is the unit impulse. (The condition T >> 1/B is often unavoidable irrespective of the
target properties simply because of limits on the achievable frequency stability of the transmit-
ting and receiving conversion stages.) The usual form of receiver is then the one shown in

Fig. 11(c), where the received signal w(t) is premultiplied or "weighted" by a replica of the trans-
mission x(t) to undo any phase modulation imposed at the transmitter and to accentuate those
portions of the received signal w(t) during which one expects greater amplitude; the weighting

is followed by the familiar predetection filtering, rectification, and postdetection intogration
operations. In the general theory of signal-to-noise ratio optimization developed by Price‘ and
summarized here, such a receiver is called a weighted radiometer because the three operations

33



Wit Gmtnt 2{1 )« 1) | iﬁﬁ: w(t) == MULTIPLIER LP FILTER
—% I SAMPLE
F10) () AT tsT

{0) Matched filter (left) and correlation detector {right) for case of known RF phase.

)
wit) omtnd a(t, - 1) |—ud ENVELOPE # {1) Ot MULTIPLIER FILTER ENVELORE
SQUARER _l fuTER SQUARER
SAMPLE T A
AT, FREQUENCY T
OFFs'ET b0 x(t}
4

() Matched filter (left) and correlation detector (right) for RF phase unknown.

ALTER ENVELOPE A
wit) ome{ ML TIPLIER LT il j; "
FREQUENGY
OFFSET w0 nit)
oy,

(c) Weighted radiometer, for point fluctuoting targets.

L t | !

Hit) Mg (1) He et jo,. Y

FREQUENCY
OFFSET [e—e uit)

/ / /S
MULTIPLIER MULTIPLIER s 00 MULTIPLIER

"""'l —_—— j

DELAY LINE
L

(d) Rake radioneter, for deep fluctuating targets.

Fig. Il. Various signal-to=-noise ratio maximizing receivers.
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following the weighting are precisely those used in a radiometer such as is employed in radio
astronomy to develop maximum signal-to-noise ratio from an incoherent narrow~band source
such as the hydrogen line. For maximum signal-to-noise ratio,! it turns out that the predetec-
tion filter characteristic H(f) must be chosen to match the power profile of the line, or in our
context,

|H(f)]2 = Const x olf) . (33)

For the general case of a target that may or may not be spread in both r and f, and for an ar-
bitrary H(f), the following expression gives the output signal-to-noise ratio for the weighted
radiometer

© 2
E ©
pwR!(T: ) = Const x -NJ S ):(d -f)|Z df S‘S‘ Wit =1, 1 =) o(r', I1) dr af" . (34)
0 Vew

(As before, 7 and { are the offsets inserted in the receiver processing, usually in the timing
and frequency shift of the weighting operation.) That is, the convolution appearing in Eqs. (34)
and (32) is itself smoothed in turn frequency-wise by the squared magnitude of the predetection
filter frequency characteristic H.

The theory developed in Ref. 4 goes on to say that if the target is significantly spread not
only in frequency f but also in delay 7 (deep fluctuating target), then the optimum receiver is
the rake radiometer of Fig. 14(d), which is obtained, plausibly enough, by iterating the w-ighted
radiometer of Fig. 11 (c) at a number of delays successively spaced by a small 87, the total range
of delays being large enough io at least span L, the duration in T of the target acattering func-
tion. For signal-to-noise ratio maximization, it will turn out that the frequency functions of the
predetection filters H‘(f) = H(7, {) (where 7, = some 7+ i87) must obey the condition

|H(r,1)]? = Const X o(r,f) . (35)

That is, the filter squared magnitudes, when read off along the succession of delay-line taps
(and according to frequency at a given tap) must reproduce the target scattering function. For
the more general case of arbitrary H(7, ), the following expression gives the output signal-to-
noise ratio for the rake radiometer:

o © 2
E
an(-r, f) = Consat X i: ‘YS’ |H(.,.l_.,., f'—f)|zd‘r'df' S‘S“,Z(,rn_-rl‘ f'—f") g(r®, £") dt" af" . (36)
- -

That is, the original convolution of Eq. (31) undergoes a two-dimensional convolution with the
predetection filter power-vs-frequency functions read off in r.

Thus we see that for the entire class of receivers considered to be of value from the signal-
to-noise ratio point of view, the convolution Eq. (34) is the central relationship. To see how the
two-dimensional convolution operation works out in practice, consider convolving the scattering
functions of Fig. 9 with the ambiguity functions of Fig.10. In probing a target spread in both

1 As is pointed 2ut In Ref.1, the results quoted here on the form of receiver that Is optimum are strictly true only
for the reatonable condition that the receiver input signal-to-noise ratio is smaller than unity in a certaln sense.
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range and doppler (deep fluctuating target), such as Fig. 9(e) or 9(f), one can resolve the detailed
structure of the o(r, f) surface only by using an ambiguity function whose central peak (with lateral
dimensions of 1/W by 1/T) is sufficiently narrow. As we have seen earlier, such studies of hard
targets are very interesting because of the simple correspondence between places on the target
and places in the 7,{ plane for the received signal.

However, we are often not interested in measuring the whole scattering function itself but
rather certain simpler quantities derivable from it. Two such quantities are the power impulse
response o(r) and the echo power spectrum o(f). These quantities were briefly alluded to in
Secs. lI-C and I1-D, respectively. (Two further quantities, the echo correlation function and the
spaced-frequency correlation function, are described in the next section.) If we are observing a
spherical body with uniform surface properties, any one of these four quantities is sufficient to
specify the angular spectrum ¢ o(cp) of the surface (given the diameter and rotation vector), so a
measurement of the entire scattering function is not very interesting for such uniform targets.
For targets with nonuniform surfaces, measurement of the scattering function is important.

Moreover, it is clear that the design of the optimum detectors of Ref. 4 demands as complete a
knowledge of the scattering function as can be had.

The quantity o(r), the power impulse response of the target, is a plot of power as a function
of range only, and could be obtained in practice by using simple TW = 4 pulses [Fig. 9(b)] of such
a wide bandwidth as to resolve all the interesting variations with 7 of the function o{r,{) and also
exceed greatly its frequency width B. Thus o(7) is defined as follows:

0
ofr) =$ o(r,f) df ; (37)
-
and the average power as a function of range for a short pulu" will be
® 2
P(r) =§ $°(r -1, 0) o'} A7’ , (38)
-8t
the 7-convolution of o(r) with the f = 0 profile of the pulse ambiguity function. According to
Eq. (27), this profile, in turn, is the magnitude of the time autocorrelation of the pulse complex
envelope. For a uniform sphere, the power impulse response is given by Eq. (13), discussed

earlier.
Similarly, the echo power spectrum o{f), defined as

L3
o(f) =S o(r,f) df , (39}
-0
can be obtained by using a simple TW = 1 waveform of such a long duration T [Fig.9(a)}as to
resolve all interesting variations with f of the function o(r,f). The average power as a function

of frequency offset for a long transmitted pulse is thus

P(f)=S $2(0, £ — 1Y) olf") af* (40)

t One occasionally encounters the term "modulation loss® in the literature on lunar communications techniques
(e.g., Ref.28). This term refers simply to the average received power obtained with the nonzerc pulsewidth in
use, relative to that which would result if an indefinitely long pulse of the same energy were used, and cbserved
on reception at the most favorable delay valve.



the f-convolution of o(f) with the 7 = 0 profile of the pulse ambiguity function. Equation (28) says
that this profile is the frequency autocorrelation of the spectrum corresponding to the pulse com-
plex envelope. The echo power spectrum of a uniform rough rotating sphere was presented
earlier as Eq. (14).

E. Spaced-Time and Spaced-Frequency Measurements

There is another important way of measuring the distribution of echo power with range and
doppler (scattering function) besides that of sending a signal whose ambiguity function probes
the scattering function itself. This method involves sending two sinusoids spaced by Af in fre-
quency and then cross-correlating (as a function of delay A7) the corresponding received sinus-
oids. That is, one of the two received randomly varying sinusoids is delayed by Ar seconds,
readjusted in frequency by the original Af, and then the two are multiplied together and inte-
grated. (Variations at the carrier rate are ignored, as was done with the ambiguity function.)
As an engineering matter the measurement would probably be dene most conveniently by passing
the two received functions (with one delayed by Ar) into a multiplying device and then measuring
the amplitude and phase of the difference-frequency sinusoid produced at frequency Af, as will
be discussed in the next section.

The complex quantity derived in this way, &(Af, A7), the two-frequency correlation function,
can be shown to be the inverse Fourier transform of o(r, f), the target scattering function®’

R(Af, AT) =S‘ S o(r, f) exp[j2r(Afr + ATf)]) dr df (41)

or, using the notation introduced in Sec.II-A, ®(Af, A7) == o(T,1).
Setting Af = 0 we find as the echo correlation function ®(0, Ar), which we abbreviate &(A7),
R(Aar) =D o) |, (42)
the inverse Fourier transform of the received frequency spectrum o{f) obtained when a sinusoid

is transn.itted [Eq. (39)], just as one would expect. Similarly, setting A7 = 0 we find that the
spaced-frequency correlation function R(Af, 0) = K(Af) is

R(af) =—>o(r) , (43)

where o(7) is given by Eq. (37). So, referring back to Fig.9, we expect the maximum At value
for which correlation of the fluctuations is still preserved to be roughly 1/B, the reciprocal of
the doppler smear. Also, the maximum frequency separation Af for which the fluctuations are
still correlated is roughly 1/L, the reciprocal of the multipath delay smear.

The three quantities o{(r), o(f), and o(7, f) are all real and positive (since they are powers),
but are not, in general, even functions. Therefore, their inverse transforms, ®(Af), &(Ar)
and R(Af, A7), respectively, will be even functions, but will not, in general, be real. However,
if one of the ¢'s happens to be even {as would be the case for o(f) of a rotating uniform sphere]
then the corresponding transform & will be real.

Figure 12 presents a summary of the interrelations between the scattering function o(7, f),
the two-frequency correlation function ®(Af, A7), and the four derived quantities o(r), o(f), ®R({Af)
and &(A7). The method of measuring each of these will be summarized presently (in Table I).

The reader may wonder at this point why the scattering function has been singled out as the
basic quantity and all the others (including the two-frequency correlation function) spoken of as
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Fig. 12. Summary of the interrelationship of the target scattering function and related quantities. (The
quantities & con all be complex in general. For clarity they are drawn as positive real quantities.)
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TABLE |

Eunction
Power impulse resporss o(r)

Echo power spectrum o(f)

Scattering function o(tf)

Two~frequency correlation
function ®(Af,AT)

(o complex quantity)

Spaced frequency correlation
function & (AF) (camplex)

Echo carvelation function R (Ar)
{complex)

Maethod of Meosurement

Average the power vs range (t) of a large number
of short pulses.

Spectral onalysis of @ long record of the signal
received when a sinusoid is tronsmitted.

Tranamit repeatedly a waveform x(t) with duration
T equal 1o the reciprocal of the desired frequency
resolution, and with o bondwidth W equal to the
reciprocal of the desired range resolution. At the
receiver, either (1) build o filter maiched te x(t)
and observe average envelope squared of the out-
put at desired values of delay and frequency offsets
f ond 1, or (2) use the correlation defection equiv-
alent; is., multiply the incoming signal by o rep-
lica of the transmission x(t), except that the replica
is offset by t in deloy and f + {4 in frequency. The
product Is integrated (in a bondpas filter tuned to
f4) over the arriving signal duration (=T), and the
meon square of the envelope of oll such integrotions
is determined. Repect for other + and f settings
over the range of + and f values covered by the
farget.

Transmit two sine waves of known spacing Af. Arrange
to receive the two sinusoids sep.arately; insert o de~
lay At in one, ond measure average amplitude and
phase of the difference-frequency tone (ot frequency
AF) generated by passing the two into a mixer(mul-
tiplier). Repeat for other values of Af and Ar.
(Phase is measured relotive to that which weould result
from a point torget cbesrved with the Af In we.) The
averaging of phase and amplitude of the difference-
frequency tone is done by passing the mixer output
into @ narrow-band filter tuned to Af.

Same as above except use zero relative delay Ar.

Transmit a single sinusoid. Pam received signal into
one input of mixer and also into the other mixer
input, but with a delay of Ar ond a frequency off-
sot of some fy. Examine average amplitude and
phase of mixer output at fy.
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being derivative from it. Measurement of the entire target scattering function o(r, f) itself [or
equivalently, ®(Af, At)] may not be very interesting in some circumstances (notably where the
target is uniform). However, by starting our presentation with this basic quantity and then dis-
cussing the five derived functions, a more unified presentation has been possible. And more
important, as we have seen from our earlier discussion of hard targets, features in the scattering
function ¢ may be associated directly with physical features on the object; this direct connection
is not available with the correlation function &.

However, in certain circumstances, the two-frequency method leading to & might be pre-
ferable; the scattering function can then be obtained by Fourier transformation. The choice of
method of observation depends on the characteristics of the transmitter (e.g., how it is limited
in power and amplitude form factor of the exciting signal) and receiver signal processing equip-
ment (e.g., how many variables of what fluctuation rate can be operated upon simultaneously).

F. Some Equipment Problems

It is now time to deal in more explicit detail with methode of implementing some of the op-
erations we have discussed. In radar astronomy practice, the choice between matched filtering
and the equivalent correlation detection is usually decided in favor of the latter. For certain
simple waveforms like a single square pulse it often pays to synthesize a filter having approxi-
mately the desired response.3° However, for waveforms with large time-bandwidth products,
only rnrely:“'32 does it pay to synthesize a filter with such a response in preference to simply
generating the waveform and using it in a correlation device.

So at this point we will focus our attention on the practical problems of doing the cross-
correlation operation, with particular attention to the implications of the statement that the de-
sired cross-correlation function is sometimes a complex quantity. We have met the complex
correlation function of signals at spaced antennas (Z) and at spaced frequencies (R); we shall
presently discuss a similar correlation function in connection with polarimetric observations.

First we must explain the operation depicted in Fig. 14(b). It is well known that when the
target is a point nonfluctuating target and carrier phase is unknown, detectability is maximized
by observing the envelope of the (complex) cross correlation of w(t), the incoming signal, and
the transmission x(t). A straight multiplication of w(t) and x(t) followed by integration will pro-
duce a number { (t ) of Eq. {26) which is the real part of the correlation, and so will the matched
filterinz-plus-sampling operation. But the desired envelope |f (t1 M = If (ti)l is the square
root of the sum of squares of this quantity f_(t,) = Re {# (t,)} and its Hilbert transform,

Im {£,(t,)}, and we have no way of observing anything but the former for the schemes described
in Fig.11(a). However, as the reader may recall from a statement made in the introduction to
this report, if we can somehow contrive to make the correlator output { o(tl) a bandpass function,
then Im {fo(ti)} is observable as the quadrature component of this output. And this is easily done
by frequency-offsetting either w{t) or x{t) by an amount { " doing the integration in a narrow band-
pags filter tuned to fd’ instead of the low-pass filter implied by the integral sign, and finally ex-
amining the in-phase and quadrature components of the fd tone appearing at filter output at time
t‘. The in-phase and quadrature components are Re {f (t )} and Im {fo“i)}' respectively, and
the desired lfo(ti)l is of course the envelope of the tone obaerved att,.

Such a device is called a bandpass correhtor. and is not only capable of providing the
correlation function, its Hilbert transform and its envelope, but is also much simpler to build
than the straight correlator indicated at the right in Fig.11(a), for which the integrator is a
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low-pass rather than bandpass filter. The true correlator requires an accurate multiplier of
wide dynamic range and low zero-drift, and the integrator (low-pass filter) must be built with
small DC zero drift. With the bandpass correlator the multiplier can be such a simple element
as a mixer tube biased to minimize undesired intermodulation products at frequency fd' and the
integrator can be any form of narrow-band element, for example, a quartz crystal filter.

As for the matched filter equivalent shown at the left in Fig. 14(b), the observation of the
envelope at t‘ is done by building the filter at bandpass (and without a frequency offset), and
observing the envelope of the output time function in the neighborhood of t1 .

The envelope detection that follows either the bandpass correlator or matched filter can be
performed by using the usual combination of diode and RC circuit to follow the crests of the si-
nusoidal tone. At high output signal-to-noise ratios this registers the envelope exactly,

The correlation function expressions presented in this report have involved infinite time
averages, an obviously academic restriction. In actual practice, not only is the duration of the
experiment finite, but the phenomenon being observed may not persist for very long. Moreover,
lack of complete equipment phase stability over a long period may make it difficult to separate
the real and imaginary parts of the correlator output by in-phase and quadrature-phase detection
over more than just a local portion of the experiment. That is, the integrating filter can be no
narrower than the reciprocal of the stability time of the conversion equipment.

The effect of noninfinite integration time is to introduce noise of two kinds into the correlator
output. The additive noise that is picked up by the receiving antenna and also generated in the
receiver front end will not be integrated out completely. Also, since the processes being cross-
correlated are noige-like fluctuations (usually gaussian), the output resulting from a noninfinite
integration time will not converge to the true value. The fluctuation about the true value due to
finite integration time is classed as gelf-noise, a term describing any fluctuation components in
the output that do not go to zero as the additive noise is removed. The effect of finite-time in-
tegration in bandpass correlators using filters of arbitrary shape has been discussed in Ref. 33.

Often the integration time provided by the methodology just outlined is nct enough to produce
an adequately high output signal-to-noise ratio. One must then resort to postdetection integra-
tion; i.e., integration of the output of the bandpass correlator after envelope detection (which of
course destroys the resolution into in-phase and quadrature components). Figure 11(c) shows
how in the weighted radiometer the detectability of a point fluctuating target is maximized by in
effect following a bandpass correlator (with integration time equal to the fluctuation period 1/B
of the target) with a postdetection integration of the squared envelope.

Often it is desirable to use a linear envelope detector rather than a square-law envelope
detector in systems like the weighted radiometer. The only effect of this is a small reduction
of about 0.2db in the postdetection output signal-to-noise ratio.“

Another artifice that is sometimes resorted to in practice, and one that has more serious
consequences, is the cross correletion of the envelopes of two signals instead of the signals
themselves. This has been done, for example, with interferometry because of the difficulty of
transmitting the two signals to the multiplier point with the phase relations still .-eserved. If
the two signals are gaussian and S (7) is the complex cross-correlation function (normalized to
the product of the two powers), then the (real) cross-correlation function of the two envelopes
?ENv 8 a function of the envelope of S only?’5
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4 6
@gNy(7) = Const X RE(|S|) -1 —lSIZ) K(| 8])] = Const x []SIZ + Ii‘%l + '&' +.. ]

where E and K are ellipiic integrals. Since |S| €1, #pNy dlways differs from |§ ()2 by less
than 6 percent. However, only the magnitude of the camnplex correlation function is preserved,
and also there is clearly a serious loss in signal-to-noise ratio whenever such a nonlinear oper-
ation as envelope detection is carried out on a weak signal mixed with noise. Specifically, if the
signal-to-noise ratio p of one member of the pair is less than unity, then after the envelope de-
tection the signal-to-noise ratio of that member will be pz. This is the well-known weak-gignal-
36)‘

The method= of instrumenting measurements of o{7, f) and related quantities are summarized
in Table 1, which supplements Fig. 42 by giving a short recipe for the measurement of the target
scattering function o(r, f) and the five derived quantities ®(Af, A1), ®(Af), R(A7), o(f) and o(7).

suppression effect (see, e.g., Davenport and Root

G. Interferometry

In Sec. II-D it was pointed out that by computing Z {d, A7), the cross correlation of spaced
antenna outputs, it was possible to determine the strip-integrated brightness distribution, or
what is equivalent to it for a uniform sphere, the echo power spectrum. Moreover, it was shown
that measurements on ground pattern velocity could be made by determining the value of Ar giving
maximum cross correlation for a given spacing d. The ground plane was assumed to be perpen-
dicular to the line of sight.

We now touch briefly on some of the methodology involved in using radio interferometers to
study the received signal. The value of radar interferometric measurements for radar astronomy
was first pointed out by Manasse,37 who suggested interferometric methods of studying surface
roughness and rotation vector. Here we will mention a few of the characteristics of interferom-
eters and defer until Sec. V-D and V-F a discussion of the specific experiments proposed by
Manasse.

In actually carrying out interferometer measurements the stations will not, in general, lie
on the plane perpendicular to the line of sight; therefore, an obvious projective correction is
necessary. As long as the station separation as projected along the line of sight is not an appr2-
ciable fraction of the wavelength in space of the modulation bandwidth, the results of Sec.IlI-D
still apply. (That is, the attempted range resolution of the modulation must not exceed the range
difference of the two stations.) This condition will be fulfilled until radar range resolution of,
say, several tens of miles or less is attempted. Let us then refer to d as the actual physical
bauseline as projected on this perpendicular plane.

The fact that the baseline orientation changes as the earth rotates can be used to advontage.
In Sec. lI-D it was pointed out that the behavior of the correlation Z is interestingly different
when the baseline d is chosen to lie in different directions. In practice, provided opportunities
to observe are sufficiently frequent, it may not be necessary to build more than a two-station
interferometer since different directions and magnitudes of d become available as the earth
presents different aspects.

The directivity pattern of any antenna system is, of course, the Fourier transform of its
aperture distribution (as we have seen in regarding the distant target as a transmitting antenna).
By reciprocity, the same thing holds true for the interferometer, as for any receiving antenna
the outputs of whose elements are combined coherently. Thus, it is easy to visualize why the
interferometer output | Z| drops as the spacing in wavelengths increases by more thon R/D,
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where R is the target range and D is the diameter of the central patch of the brightness distri-
bution in which most of the reflected power is concentrated. The power will drop as the width
of the antenna lobe becomes narrower than D because of phase cancellation (contributions from
alternate lobes combine in antiphase).

Another fact that can be easily visualized using this Fourier transform way of looking at the
directivity pattern is that for planetary radar astronomy experiments we can neglect the finite
size of the individual antennas and regard them as point receivers, a condition we have been as-
suming throughout Secs.II-A and II-D. The planets subtend angles of about one minute of arc at
most, and until the individual elements making up the interferometer attain this order of beam-
width the nonzero size can be neglected. The sun and moon, with their one-half degree angular
widths, do require antenna widths to be taken into account.

A unified discussion, using the Fourier transform picture, of the effects of nonzero element
38,39 whose treatment also allows for such variations in
realization as muitielement interferometers and "crosses," phage-switching techniques, and the
fact that one may not be measuring Z (both in-phase and quadrature components) but onty Re (Z).

In practice, the complex quantity Z would appear as a difference-frequency sinusoid (of
frequency { d) generated by offsetting the local oscillator injections of one of the two receivers by
fd; the in-phase and quadrature components of this sine wave then correspond to Re (Z) and
Im (Z). Gehrels and Paraonsm have described the construction and use of an interferometer
which is associated with the Millstone Hill radar and which has a sufficiently long baseline for
planetary studies. The necessary phase identity of the two local oscillator injections is obtained
by using a special line-of-sight radio link between stations.

size is given in papers by Bracewell,

H. Polarimetry

The object of a radar experiment using polarimetry will usually be to measure total Faraday
rotation x = x o + Ay of a soft ionized target [x ° is the polarization orientation in the absence of
the ionization and Ay is given by Eq. (20)] or the degree of polarization m of the echo from a hard
target, or perhaps both for a hard target echo passing through an ionized region. As mentioned
in Sec.II-E, there are several schemes in use for specifying the polarization of an electromag-
netic signal, for example the Stokes vector, Eq.{16). For radar astronomy the problem of meas-
uring any or all of the four parameters of the Stokes vector does not differ appreciably from the
radio astronomy case, and there is a fairly large literature available on such radio polarimetry
instrumentation. The reader is therefore referred to the survey paper by Cohen.m which dis-
cusses both theory and technique in some detail.

For example, if the receiving antenna structure consists of two elements responding to left-
circular and right-circular polarization, the four Stokes parameters are given by

1=V I+ QVpD2i=p + Py
Q-:Re(VLV§>=zA cosy ,

U=2 m(Vva = 2A siny

A\ <|VL|2>-<IVR|2>'PL_pR . (“)
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®  RADAR EXPERIMENTS RELYIIG PRINCIPALLY ON RANGING
T RADAR EXPERISENTS RELYING PRINCIPALLY ON MEASURENENT OF DOPPLER SHIFT

MLLSTONE RADAR, 1988°
JODRELL BANK RADAR, 1089 *
- RABE, 1980

rronen v, 1900 |
RAGAR 100! ANG
T
1980

SPENCER JONES, 1931

Fig. 13. Various proposed volues of the Astronomical Unit in millions of statute miles
{as of October 1962).
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The two quantities appearing in the equations for I and V are the average powers of the two
antenna outputs. The quantity <VLVE ) is the cross correlation of the two outputs, and can be
obtained in practice by passing the two antenna outputs into the two inputs of a mixer after first
frequency-offsetting one of the two by { & the output tone at frequency fd is then averaged. This
tone will have an average amplitude and phase denoted above by A and y, respectively. In prac-
tice the averaging interval would not be infinite as implied by the abbreviation{ ), partly be-
cause it may be desirable to study the slow time variations in the Stokes vector, in particular
the quantities Q and U which place in evidence the angle x. If the degree of polarization m is
the only interesting quantity and one is not trying in addition to follow slow variations of x in
Fig.7, then the averaging interval can be extended. ‘

Note from Eq. (18) that the degree of polarization m is not given simply by (PL - PR)/
(PL + PR)unless one can be sure that the right- and left-hand received signals are uncorrelated
so that Q = U = 0. In practical terms this means that in order to determine the depolarization
introduced by a target, one must use a true polarimeter which preserves the relative phases of
the two received signals, rather than working only with the powers of the two received compo-
nent signals. The expression (PL - PR)/ (PL + PR) gives a lower bound on m.

V. MEASURING QUANTITIES OF ASTRONOMICAL INTEREST

It is time now to take the material on the effects of target properties on the electromagnetic
signal (Secs. II and III) and turn the question around to inquire what astronomically interesting
target properties can be deduced from the received echo.

A. Ranging

The measurement of interplanetary distances and their various order time derivatives is,
of course, a central astronomical problem. The basic yardstick of the solar system is the
Astronomical Unit (a.u.) — the mean radius of the earth's orbit — whose accuracy has been gub-
ject to steady refinement by optical means over a period of several centuries. Knowledge of the
position of bodies in the solar system to one part in at least 106 is presently possible, so long
as the results are expressed in terms of the a.u. (At present 10” " represents the accuracy with
which free-space light velocity is known.) However, for some years various attempted meagure-
ments of this distance spread over a range of about a part in 103. The extent of this disagree-
ment is evident from Fig. 13, which lists various suggested values of the a.u. The difficulty lies
partly in the fact that all previous nonradar methods of fixing the size of the a.u. depended on
measurements of angle, and thus, by virtue of the short baseline obtainable on the earth and be-
cause of atmospheric refraction, were likely to be permanently limited to about this order of
precision. Recently, measurement of the orbit of a deep space probe with a radar repeater
aboard has been employed“ (see the value labeled "Pioneer V" in Fig. 13). Figure 13 also
shows the results of several Venus radar experiments. The experiments labeled with an aster-
isk used the time of flight to deduce the a.u.; those labeled with a dagger employed doppler shift
{next section). Recent radar range menur-ements"z'43“"'45 of the a.u. agree within several
parts in 10°.

As radar sensitivity improves, more subtle things are being sought in interplanetary distance
meagurements. In addition to providing refinement of the single quantity embodied in the a.u.,
it is possible to use radar data to refine the orbital elements of various bodle-“'"'“ so that
previously undiscernible effects may be measured, for example the effect of higher order
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perturbations due to other planets. Among the interesting things to look for in the future are the
relativistic perihelion motion of an eccentric-orbit planet such as Mars, the depth below the cloud
cover of Venus' refiecting surface, and other quantities. If a given planet has an appreciably
denge ionosphere, then the retardation effects discussed in Sec. III-B will impair the accurate
measurement of range, unless one has some knowledge of the target ionosphere density.

From the discussion in Sec.IV-D, it is clear that to measure the range, one uses a waveform
with as great 2 bandwidth W as possible. The accuracy of the measurement depends on W and
the signal-to-noise ratio as will be discussed quantitatively in Sec. VI-B.

B. Velocity

Precise measurements of the velocity or a planet can also serve to provide a determination
of the a.u. and this technique was recently employed on Venus .45 The accuracy goes up with the
ratio of total relative velocity between earth and target and the frequency resolution of the sys-
tem. A slight disadvantage of this method over direct ranging is thet the required veloctty ac-
curacy increases when the body is closest to the earth (since the total relative velocity is a mini-
mum at thig time) and yet this may be the only time when the object is detectable.

Clearly, to measure the velocity most accurately one uses a waveform with ag great a dura-
tion T as poesible. The accuracy of the measurement depends on T and signal-to-noise ratio,
as will be discussed in Sec. V1-B.

C. Planeiary Radius

Radar measurement of the radius of a target planet or satellite is not of pressing interest,
since usually this quantity is already known optically. To messure target radius from the total
extent of e(r) or #{f) is wnpromising, since the energy returned from the limb will be very small
because of a grazing incidence of the line of sight from the radar, and will thus usually be
buried in noise.

It is worthwhile to recsall, however, that a measurement of the target scattering function of
a hard target gives information on shape and size. As Fig. 4(b) shows, with proper normalisation
of the frequency axis, nonzero values of the scattering function in the 7, f plane occupy a region
that reproduces the shape of the target body, as viewed from the side. Therefors the radiue of
a spherical planet can be determined from the high sigml-to-noise ratio portions of the observed
scattering function (independently of knowledge of rotation vector and thus doppler width) by fitting
an ellipse to the perimeter of observed nonzero values of received power in the 7,f plane and read-
ing off the length of the r semiaxis.

In what follows, we shall assume that the planstary radius a is one of the known quantities.

D. Radar Angular Spectrum of a Uniform Hard Target

The link between the detailed character of a portion of the rough surface of the target and the
received signal is the radar angular power spectrum %, of that portion. As we saw in Sec. II-A,
the angular power spectrum expresses the statistical character of the corrugations of phase, am-
plitude and vector direction of the electromagnetic signsl returning from a plane region near to
the surface of the target on which a plane wave is incident. One of the most useful types of ob-
servation of hard targets to be made by radar is the determination of the angular power spectrum
for different surface regions.
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The astronomical significance of radar information on the target surface is obvious. Indeed,
it is interesting to note how significant the radar observations on the moon have turned out (o be
considering the moon's accessibility to optical observation.

If the spherical surface can be assumed uniform [i.e., co(qo) the same everywhere), then de-
termination of % is straightforward. A narrow-pulse experiment to determine the power tmpulu
response o(r) [Eq. (37)] gives o o") directly by the inverse of Eq. (13),

4 (¢) m v( cosg) . (45)

In practice, as a result of nonzero pulse width one will actually observe not o(r) but P(r) of
Eq. {38).

This short-pulse method of determining o(r) is probably the simplest method of all. A
mathematically almost equivalent method is to measure the correlation between sinusoids spaced
by Af as a function of Af. This gives ®(Af), which then can be Fourier transformed to give o(7),
provided one has been able to measure the complex & and not simply the magnitude.

Obviously 0’0(¢) can also be obtained from a measurement of the echo power spectrum o(f)
Eq.(39), since the two are uniquely related by the integral equation (14) (where the projected
rotation speed 2 cosa is known). Determination of o(f) is accomplished by determining P(f)
(Eq. (40)] from the received version of a long pulse of sine wave either by direct spectral analy-
sis or by determination of &(Ar), the echo correlation function, followed by Fourier transforma-
tion. Taking this data on o{f) is simple enough, but the inversion of (14) is more tedious than
solving Eq. (45) for the short-pulse method. The inversion to Eq. (14) h"

1 -1/2
o,l9)x 52 cosgp

—a +( I
'—z——z_("/z) l(zf nco-a T

x% "(ﬁ:ﬁ‘%u_a)’ a . , (46)

It is worth pointing ont that if the target is a uniform sphere, all four of these measure-
ments [#lr), olf), &(Af) and &(A7)] are mutuslly redundant. That is, any one of them suffices
(it a and @ cosa are known) to uniquely specify the scattering function ¢{r, f) or, equivalently,
the correlation function ®(Af, Ar). This is clear from the development of Appendix B in which
it is shown that the angular power speotrum, target radius and projected rotation speed com-~
pletely define the target scattering function if the sphere is uniform

A fifth method of measuring  (g) is the interferometer method®? of correlating the output
of spaced receivers upnuudlwdllhncc d and with relative delay Ar = 0 to give Z(d, 0) as in
Sec.I-D and Fig. 6(b). If the target is uniform, then the brightness distribution P(x, y) of
Fig. 3(b), will be circularly symmetric and Z becomes independent of the orientation of d. That
is, Zd, 0) = Z(d,0). the meusurement at a number of spacings to get Z(d, 0) will give
the brightness distribution | €| = Pix, y) of Eq. (7) and thence 7 (¢) from Eq. (§). However, one
does not need to go to all the trouble of using variable spacing, because the variable A7 is avail-
able. The echo power spectrum o(f) at a single station is the inverse Fourier transform of the
echo correlation function ®(Ar), which is recognized to be none other than Z(0, Ar). Thus,
Manasse suggests that meagsurement of the power spectrum of the signal received at a single
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station gives the desired radar angular spectrum ’o(") through Eq. (46) unless perchance one
does not know the projected rotation rate 0 cosea, which is a scale factor on the bandwidth of
alf), in which case determination of Z(d, Ar) for a single value of d resolves this secale factor.
That is, both ao(,)‘ and 0 cosa can be determined by a cross correlation between outputs of two
stations plus an autocorrelation at one of them. The experiment gives, then, information about
surface roughness and rotation vector. We shall say more about measurement of the rotation
vector § in Sec.V-F.

The surface roughness of a hard target can also be inferred grossly from measurement of
the degree of polarization m of the returning echo signal, as was mentioned in Sec.II-E. This
type of meagurement has been made on Vemu.so

In case the body can be regarded as composed partly of an ideally smooth and specularly
reflecting material and partly of rough material, the amplitude probability density distribution
affords a crude method of deducing the ratio of powers due to the two ccmpmnu.” For a com-
pletely specular smooth surface, the received signal would not fade ot all but would meiviein a
constant value. A rough surface will profduce a gaussian distribution otwvnln.- about & zero
mean (i.e., a Rayleigh distribution of the envelope). In-belween cases give an intermediate den-
sity dhtrnmtiou.u This first-order statistic is reiatively useless compared to the second-order
quantities we have been discussing, since it is relatively insensitive to the ratio of specular and
scattered power and this ratio would thus be quite difficult to measure accurately with noise
present.

E. Isolating Individual Surface Features

A more realistic model of the surfaces of planets and the moon is achieved by assuming that
they are not uniform in surface properties. Ideally one would like to resolve individual surface
regions and, by studying them at different aspect angles ¢, learn something about their specific
nature through determination of their angular spectra co(y); thence, using the theories discussed
in Ref. 3, one could decide on reasonable physical models for the terrain features. Ons might
also study the polarization properties and the amplitude probability distribution of returns from
isolated regions.

The most cbvious approach is to point a sufficiently narrow antenna beam at the region in
question, but this requires such enormous antenna gains as to appear unpromising at the mament,
except in the case of the moon or sun, where it is only now becoming possible to resolvs to sev-
eral tonths of a target diameter.

Interferometry next suggests itself, but if the interferometer consists of only a pair of an-
tennas with fixed spacing to give the desired resolution, the echoes picked up in the undesired
lobes render the re¢eived data too noisy to isolate a given target feature. Two measures are
then possible: (1) the original element spacing d is filled with n — 1 other equispaced antennas,
whereupon there is only one major lobe every nA/2d radians instead of every A/2d, as would be
the case with only two elements; or (2) many interferometer records are made, using many dif-
ferent spacings, so that the results may be combined to give a Fourier synthesis of the distribu-
tion of power over the target ("aperture synthesis®). The two sachemes are roughly equivalent.

However, it is really not necessary to go to all this trouble, at least for hard targets, be-
cause the variables time delay and doppler offset provide isolation of various surface regions,
as was discussed in Secs.II-C and II-D. This mapping property gives a simple geometrical
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correspondence between points on the target and regions in the 7, f plane of the target scattering
function o(r, f). That is, energy returning with a certain doppler shift and time delay imposed
on it could only have come fram certain places on the target surface. To isolate the pair of
points heavily shuded on the surface of Fig. 4(a), one uses a transmitted waveform x(t) of dura-~
tion T and bandwidth W such that the ambiguity function 'z has the desired frequency width 1/T
and range width 1/W; observation of the power received at the appropriate value of delay 7 and
with the proper doppler offset { then ensures the desired isolation! In order to be able to aver-
age a number of readings of power in the r-f cell 4/T X 1/W in size, the transmission should be
repeated many times (see Sec. VI-D).

It remains to resolve the twofold ar.biguity between the pair of points in Fig. 4(a). This can
be done by repeating the measurement at a time when the apparent rotation axis orients differ-
ently relative to the cbserver. Or, spaced receivers will allow an interferometer null to be laid
onto one of the two regions unless, fortuitously, the baseline lies perpendicular to the ground
projection of the polar axis 3

The range-doppler mapping technique has been used by Pettengill in investigating the char-
acter of the lunar mrface,a’9 and a preliminary such observation on Venus has been reported
by Smith 8

So far we have discussed isolation of a fixed region on the body by examining that part of the
return arriving in the neighborhood of fixed values of range r and doppler f. Actually, as the
body rotates, the return associated with a given target feature lies at different places in the
range-doppler plane as time progresses. That is, there will be a characteristic trajectory or
range-doppler history through the 7-f plane which will be followed by the echoes from each point
on the target as time progresses. In the spherical case, these trajectories are unambiguous
with one another, unless the polar axis happens to lie perpendicular to the radar line of sight,
whereupon there is still the twofold ambiguity just referred to. In Fig. 14 are sketched the tra-
jectories of several poinis on a typical spherical surface.

Knowing the range-doppler history of a given point on the target, one can process returns
taken at different times during a rotation period and build up at least a partial picture of ao(p),
the radar reflectivity as a function of incidence angle. It should be possible also to use this
correspondence to build up the l!gnal-to-noﬁe ratio and also the degree of range-doppler reso-
lution (i.e., the fineness of the "resolution cells” of the range-doppler map). Roughly speaking,
both these quantities increase with increased observing time on a given return. An ingenious
ground-mapping radar using just these range-doppler histories has been built by Cutrona, et n.”
Because there is one trajectory for each of many thousands of observed target points, techniques
of parallel processing of thousands of hypotheses were necessary in this equipment. Two-
dimensional optical methods were chosen and developed to a high degree. This sort of parallel
processing warrants much further investigation for radar astronomical mapping and also for
some of the other less elaborate signal processing procedures we have discussed.

The possibility that the echo in one range-doppler cell will be correlated with that in another
cell after a suitable time delay (and possibly a frequency shift) means that certain previous

$Provided the target Is not overspread, os will be discussed In Sec.VI-D.

$Expressed in terms of voltage, the nulls are narrower than the peoks because the pattern has the character of the
magnitude of a sinwoid. Complete suppression would result then only for very small resolution cells. But this re~

quires lorge bandwidths, which itself cawes a filling=in of the null, unless the center frequency Is sufficiently high.
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assumptions may ultimately have to be re-examined. As pointed out in the footnote preceding

Eq. (31), the scattering function o(r, f) then no longer suffices to completely specify the echo be-
havior and one must extend the definition of this function to take into account these "cell-to-
cell coherences.! Measurement techniques of astronomical interest that take these coherences
into account (as does the ground-mapping radar just referred to) await a systematic investigation.
Likewise, not much is known about the effect on signal detectability of cell-to-cell cvheronces,
although Knilath54 has given the problem some attention. It is clear that known systematic co-
herences in the echo signal should make posaible an increase in detectability.

F. Rotation Vector

The quantity @, indicating the rotation velocity in radians per second, has appeared in
several of the expressions developed in Sec, IV of this report. We shall now inyuire how one
might measure 'he speed 2 and the axial direction. In the case of several planets, notably Venus,
§i is at present largely unknown.

The width of the doppler spectrum constitutes a measure of the projected rotationrate {1 cos a,

where a is the tilt of the axis from perpendicularity with the line of sight. The total over-~
all width of the echo power spectrum o{f) gives § cosa immediately, since this width is equal to
(4a/ct ) @ cosa. (a is the target radius, f the carrier frequency, and c is propagation veloc-
ity.) However, the outer limits of the echo spectrum are usually buried in noise and it is nec-
essary to infer the spectrum width from the width of the central high-energy portions. But if
this is so, one clearly requires more information than data on the spectrum o(f) alone, since a
given width of the center of the spectral peak could have been caused by either a smooth target
rotating rapidly or a rougher target rotating more slowly.

Information on surface roughness is clearly necessary and there are several ways of getting
it. Manaase3 suggested that a single reading of Z(d, 0) (the correlation of spaced receiver sig-
nals as a function of spacing at zero delay) would suffice, since for & uniform spherical target,
the shape of Z is determined ouce o(f) is known, except for a scale factor on width {sce Sec.II-D
and Fig.6). A simpler method 3 that does not involve a separate receiving facility is to deter-
mjne the roughness, i.e., the angular power spectrum uo(tp), from the power impulse response
o(7) by Rq. (45); Eq.(14) then gives the value of the projected rotation rate fI cosa that corre-
sponds to the observed ¢ (¢) and the observed doppler spectrum o(f).

If the target is nonuniform the magnitude 1 of the rotation velucity can also be deduced
from periodicities observed in long-term records of echo power.

Cohen56 has pointed out that one should observe a systematic change of the width of the echo
spectrum o{f) as observed over many months because the rotation vector & remains fixed in
inertial space as the aspect from which the planet is viewed changes. Cohen shows how, by ob-
serving the "phase angle" and "amplitude" of this quasi-periodic oscillation of spectrum width,
it is possible to infer not only the rotation speed but also to cstablish the tilt of the axis. The
ambiguity in axis direction that remains is that the direction of rotation might be clockwise or
counterclockwise and the axis might be tipped at scme angle g or —q to the plane of the orbit.

In his discussion of radar interferometry, Manasse37 suggested a way of resolving the first
of these two ambignities, uansely whether it is the left or the right side of the apparent disk of
the target that ig approaching the observer. One simply narrows the input filters of the two
spaced receivers so that they both pass only the energy arriving from a strip of the apparent disk

51



of the target, detunes both input filters together so that this strip lies either in the approaching
side or the receding side, and then steers the interferometer lobe to maximize received power.
The direction of movement of the best position of the lobe can be compared with the direction of
frequency offset to get the scnse of rotation. ' ‘

The sense of rctation can also he obtained from interferometer c¢xperiments in which time
delays At are allowed, using the effects described in Sec.II-D. As Fig. 6(b) indicates, for a
given receiver spacing-ﬁ, there is a value of Ar that maximizes the correlation Z, namely
Armw of Eq. (15). The true velocity vector v of the ground pattern expresses the ps >jcoted
target rotation velocity £ cos«, and can be found by making two observations of Tmax using
crossed baselines, and solving two equations like Eq. {(15)

As a practical exarple of the application of this technique, suppose we have s radar trans-
mitter at point A, and receivers at points 4 and B (A and B might be Millstone Hill and Lex-
{ngton, respectively, 20km apart). Suppose the transmission x(t) is a train of phase-coherent
pulses 2mwsec in duration occurring every 30msec, and suppose the planetary target, Venus, is
overhead. We desire to determine the ground diffraction pattern velocity as projected along the
baseline AB = d. First, the outputs of the two receivers would be gated into the two inputs of a
correlator for 2msec every 30msec (with the range of the planet known) to give Z (d,0). Then,
to try different values of A7 to find AT hays the one for which Z (d, A7) is greatest, one would de~
lay one of the correlator inputs by various integral multiples of 30 msec. If Venus' rotation
period were 225 days (Q ~ 4 X 10'7 radians/sec), then the ground pattern speed would be some
15 km/sec, ‘and one would find that for the Lexington-Millstone baseline lying along the direction
of pattern motion, maximum correlation would be obtained for values of A7 around 1.3 seconds.

In summary, it appears that by the combined use of several types of radar experiments, it
is possible to determine rotation speed i and resolve all the ambiguities in the direction of the
polar axis except whether it is tipped toward the observer or away from him (a positive or

‘negative). i

G. Ionospheres and Interplanetary ionization

It is reasonable to suppose that above certain levels in planetary atmospheres, recombina-
tion ruates are low enough and the incident solar flux strong enough that a significant density of
free electrons exists. As discussed in Sec.III, if losses are not excessive, such regions inter-
posed between the earth and « 1. {lecting hard target can be studied in terms of the time delay
suffered by the echo components, or in terms of the critical frequencies at which the attenuation
changes abruptly, or (if a magnetic field is present) in terms of the accumulated Faraday rotation.

Equation (19) gives an expression for the round-trip time of flight of a signal reflected from
an object at range R. The second term, the excess of ume of flight over that i_r_1 vacuo, is seen to
be a measure of ele.tron density integrated along the path, and this quantity appears weighted by
the inverse square of the frequency. This strong frequency dependence suggests several methods
of measuring integrated electron density. The most sensitive would be a pair of separate radar
experiments spaced as widely in frequency as possible, and with the lowest frequency as low as
possible.T The two measuremenis of time of flight at two such widely spaced {requencies will give,

1 But not so low that the signal does not escape the terrestial ionosphere. Critical frequencies of the F2 layer vary
from about 2 to 15 Mcps. |f the beam goes through the ionosphere at an angle x from the zenith, the current valua
of critical frequency must be multiplied by sec x to give the minimum useful frequency.
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by simultanecus solution of two equations like Eq. (19), both the true range R and the 1niegrated
electron density. (It is assumed that light velocity ¢ and frequency f are known accurately.)

A more convenient procedures7 is to send a modulated signal and then examine the relative
delays of the various sidebands in the received signal, but the limited frequency spread renders
this method less sensitive than two separate experiments at widely sep=rated {requencies. Also,
as we have geen in Secs.IV-D and IV-E, rapid target fluctuations (doppler spread B) or long
multipath duration L, or both, have their effect on the fading of the sideband components.
Reference 57 presents a discussion of a number of single-station experiments of *2iz tyne em-
ploying various forms of modulation.

In either class of experiments, the fraction of the intcgrated electron density due to the
interplanetary and target regions is not known until the terrestrial component is subtracted out.
The interplanetary component is likely to be much smaller than the terrestrial component. Usu-
ally the terrestrial component is estimated from HF ionograms, but this gives only an approxi-
mate figure because of the variations of electron density with time andplace. !Briscoes8 hag made
the ingenious suggestion that during a planetary radar experiment, or immediately before it or
after it, one can examine the Faraday rotation of incoherent electron scatter returns from a re-
gion well above the F2 maximum of our ionosphere exactly along the planetary radar line of sight.
Knowledge of the earth's magnetic field then gives an accurate figure for the terrestrial compo-
nent by using Eq. (20).

If redar equipment becomes available that will do uccurate ranging over a wide tunable fre-
quency range, planetary ionospheric densities can be studied by noting the critical frequency be-
low which the reflection is from the ionosphere and above which the reflection is from underiying
reglons. The transition will evidence itself most easily by a discontinuity in range or in other
parameters, such as effective surface roughness.

H. Magnetic Field
Faraday rotation has been used to deduce the total electron content of the esrth-moon region
using Eq. (20).i 8 Similarly, using a radar polarimeter for reception of a planetary echo, and sub-

tracting this same near-the-earth component, it is possible to find the integrated field-electron
density product Rs(a) N(s). Then, if the integrated N(s) has been obtained by some alternative

‘means (see the preceding section), one can say something about the magnetic field between the

vicinity of the esrth and the target Unfortunately, it is the product that appears in Eq. (20), so
it is not possible to localize the field contributions even if the location of the election density
contributions is known, unless collateral information of some sort is available. The depolariza-
tion (Sec. II-E) due to target surface roughness may impede the rheasurement of total Faraday
rotation ¢. S

Experiments with tunable radars to discover critical frequencies can provide very interest-
ing information on the magnetic field. Specifically, if the ordinary and extraordinary modes
can be separated either according tn direction of circular polarization or propagation delay
‘imes,! then the critical frequencies for the two modes can be isolated. Onc can then set crude
bounds on the value of the local gyro frequency, which is proporticnal to the magnetic field in-
tensity.

t The indices of refraction cre slightly differert, a: discussed in Ref.19.
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"l. MEASUREMENT ERIY‘HS

A. Statistioal Bstims'l. o

The final sections of - | report will be devoted to various matters relating to errors in
making the meapurement d: cu-sod earlier. In planning and carrying out physical investigations,
it is important notonly t:- 3¢ \lz to conceive the sort of experiment that will place in evidence
the variables to be measz. ed but 3ls0 to know what the sources of erro- are, the expected size
of the errors, and whetke. the “xperiment conceived is apt to minimize them, relative to other
possible alternative ways oi condiicting the experiment. In the radar astr >nomy experiments we
have discussed, the noise added inio tlie echo signal s the principal factee influencing measure-
ment error. I the target itself produces fluctuations in the echo, this t60 is a source of error.

The sbatratt methedology of suiting wp experiments to minimize error 'n the presence of
random influences, the anlation of what ports of error behavior are aeliierrable, and so forth —
thexs are the domain of mathematical statiatics>® Some of the particular theories developed by
Satisticans ha¥h proved te be cxtremely useful to the communications and gader engineer. An
ouistanding example hlhoﬂnoryelw_m which treats the ealler detection opera-
tita, for toampls, as a test hetwess these two mutually exclusive lvpoehum "the received sig-
WAL is noise plus & target echo,” and the reshived signel is soide slome” Tk the an- h
port.! this approach 15 agglied to the class of targets of intevest 10 the radar agtronse¥ tthowe
thst sre spread in ¢ or £ or both) hm-muwdmuﬁnni%u signal and -
roseiver precessing equipment that will minimise the mww- of Si2E 40 @stect the pres-
enve of the object and of falsely concluding that if. is present. 'ﬂxeumm how good the
System will be, that is, to what leve! these probabilities will e Teduood i e A1 system in
use.

There iz an analugous siatistionl theory, estimation theory {see, for example, H«-l.tran.‘o),
which fa spplicsdble to axperiments that are intended to measure somethipg, for examp'e, a radar
target parameter. This theory, too, has proved useful to the radar expamishesler since, in those
cases which are mathematically tractable, it provides him with the form of Gunsmitted signal
and recaivas pracessing equipaeent that wiill minkmise the error with whiok the desired quantity
is registered. The theory goes on tc say 38w good the measurament is, that ia, what the average
opread {variones) in chaervetion values «:al have been if the expertment osulll beve bosh re-
peated a Licge rumiber of titaes uwier statisticslly identical comtitions MW In
this sectict we shall be irderasicd ic prasenting axpressions for error vestanse.!

The gist of the statistical estimetion appioach is as follows. The tromamitted wavelorm x/s)
is reflected from the target, one of whose propestics a we desire to messwre. The proverty a
might be a single parameter like range . it might be 2 parameter set ligs the pair r and {. or
't migit be a funetion like o{r) ur ofr, ). Suppose the trus value of this qEMNIY io the ens do-
not-!by @, The reflecied sigaal ylt) arrives at th: receiver mivad with noise ::(t); the received
oigra. £ wi) gt +aft), Cy.' sl»’. and x! da the probatulity that the actual olserved recsiver
e * varsloen wh) 9id . cise feam the transwisaion x(t) and » certain @ lying & the interval
atra +da. (Ofen tius p+abeaitity can zctumlly be known to the receiver if the :iintistios of the

ﬂn.ﬁ'bm‘uﬂim‘ e e o mwl..wh.»d'yhdm m”m thelr
s thtion, thdﬂnmlcwvymm we vith be sontent to diseuss enl:© the wrlanss of
*.; emvore.
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noise n(t) are known.) The function of the receiver is to produce an output or an estimate a*
which we would like to have correspond to the actual  , but which will not, of course, because

of the noise. Omne logical procedure for the receiver to carry out is to produce as the output

a* that value of a for which p(w/a and x) is & maximum.? Such a receiver is called a maximym-
likelihood estimator. In practice, the way it is designed is first to determine analytically what
plw/a and x) is. Then it often turns out that the expression for this probability can be interpreted
in terms of simple gignal progessing operations on the received signal w(t) that produce an o *

far which this probability s maximized, when the noise statistics and the form of the tranemis-
sion xit) are mewn. After this is done it is usually possible to go back and perform alterations

on the fransmission x(t) to still further improve the performance.

The marimum-likelihood procedure is not just heuristically plausible; when the o to be
estimated is a parameter or a parameter set, it has been shown that the a * based on n independ-
ent such observations appreaches the trus a for all practical purposes as n -~ » {*consistent”
and "asymptotically unbiased” estimator), and the varianee of % approsches zero as fant as
any other possible form of estimator ("ssymptotically efficient” estimator). And, what is more
important practically, for a finite n (e.g.. unity), if the estimator exists giving the theoretical
minimum achievable srror varisnce (an "efficient" estimator) as calculated from the so-oalled
Cramer-Rao lower bound {(on error variance), then that method is a maximum-likelihood estima~
tor. However, not all maximum-likelihood procedures achieve this lower limit. Indeed, in
some taseg, the Cramer-Rao lower bound is lower than that achievable by any realizable estima-
tor; for example, ssmnetimes it is zero.

Suftice it to say that a maximum-likelihood strategy is the most appropriate approach under
most conditions, with an exceptior 48 be mentioned in the next prregraph. It is often mathemati-
cally tractable and gives estimators that have boum faund by experience to.ls wseful and are often,
in fact, minimum-variance estimatora. In measuring the evese section of a point mgmg
target, for exriric, the minimum-variance estimator exists and is & Hremiggpm ~likelihood esti~ -’
awior. For estimat.ng the scattering function o(r,f), on the other hand, metho&s &m the

a! immmelikelihood sstimates have recently been found, but at present it is not known whether
#°- variance of the ertimate is as small as is theoretically achievable. For measurements of
suere ‘nvolved quantities, estimation theory bas been little used up to now. For example, no
.05 vas worked out a naximum-iikelihood estimator of @, the vector target rotation rete.

‘The above discus::ion is appropriate to the often-encountered situation in which the receiver
seerstions take place in ignorance of any prior knowledge of the relative probability that various
tulaee of a will occw. Sometimes one does have such information in the form of an a pricei
¢ inbability distribution pla). Then, instead of having the receiver produce as a * that value of
» ior which p(w/a and x) is maximum, one uses instead p(a) plw/a and x). Also, one may
vint to assign "costs” to estimation errors; for example, & 10-mile error in target range might
L.¢ considered twice as undesirable in the vicinity of 2000 miles range as at 2500 miles range. A
second raodification cu. be made to take care of this. The form of estimation procedure that
s2kes into account cost: and/or s priori probabilities is called Bayes estimation. If the cost

;%wuﬂllthunlhnk represent on estimated velue as distinct from our earlier usage in Indicating the con-
Jviave of a complex quantin; .
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assignment and the a priori probability p(a) are both sprecd broadly over values of o, whereas
the function p(w/a and x) is relatively sharply peaked, then the Bayes and maximum-likelihood
procedures sre equivalent. The reader is referred to Ref. 60 for a discussion of Bayes estima-
tion; we shall assume here that the a priori probability and cost functions are t0o broad to be a
factor in our messurement procedures. For example, if the reader will refer to Fig. 13, he will
probably agree that previous measurements of the astronomical unit have been so widely spread
as to discourage assigning a peak of a priori probability in a region of a.u. values any narrower
than several times the probable error of a new measurement.

B. Point Nonfluctuating Targets

When the target has a scattering function that is much narrower along both the r- and f-axes
thar. is the ambiguity function of any signal we might be interested in using to cbeerve it, then
we can say that it is a point nonfluctuating target.

The effect of a point nonfluctuating target on the transmission x(t) is simply to change its
amplitude in proportion to No where o is the target's actual radar cross section, its delay by
the actual round-trip delay 7, and its frequency by f, the actual doppler offset. Maximum-
likelihood estimators for all these quantities have been found and described im the literature.
Hel:trom,“o among others, gives a reasonably complete treatment of this problem, and we shall
reproduce his resuits here, stating first the signal processing operations implied by the expres-
sions for the maximum-likelihood estimate, and then giving the variance of the estimate. White
gaussian noise will be assumed.

When 7 and { are known, and one wants to obtain an estimate of received signal amplitude
{which will be proportional to No), one forms the quantity

W =

woxt e/ Pma *7)

which, according to Sec.IV-B, can be interpreted as the suitably normalized output at time to
of a filter matched to the transmission [i.e., m(t) = x(t° —t) as in Eq. (26)]). As one might expect,
the variance is the noise-to-signal power ratio times the amplitude squared:

-_—5 N
Var (N3)* | 5 [Wo)* — Wo) I = =, (48)

where the subscript zero indicates the true value.
It can be shown that Eq. (48) is the minimum achievable variance of estimation of amplitude
(by the Cramer-Rao inequality), so no other estimator of ~@ can do any better than the matched

filter.
Assuming that the echo is of unknown amplitude and buried in white gaussian noise, the
maximum-likelihood estimate of the parameter pair v and { is the value of 7 and { that

maximizes

s 2
%*(t) Wit + 7) exp[2rjft] dt . (49)

Qlr,1) =

which is the square of the envelope at time 7 + ¢ o of a filter matched to x(t), except that the filter
is offset by f cycles per second. As in Eq. (27), t, is the time at which the filter would have
maximum response if target delay 7 were zero. In practice, one implements Eq. (49) by building
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a set of matched filters, each followed by an envelope squarer, and all having different frequency
offsets with the total frequency span encompassing all reasonable values of {. One then examines
all the outputs over an interval of time large enough to span all likely values of v, and selects
the delay and frequency of the target peak as representing the estimated values 7* and f*. Since
v and { are continuous variables, strictly speaking there should te a continuum of stagger-tuned
matched-filter-envelope-squarer combinations, and also the continuum of 7-values should be ex-
amined. In practice, of course, the f-spacing and r-spacing would be set for some {raction of
the expected rms error (square root of the variance) in f and 7, respectively.

Formulas for the range and doppler error variances as a function of duration T, and band-
width Wo have been found to be

——— N
Var (%) g (r% ~ 'ro)z = iﬁg 'Lz (50)
[ ] Wo
and
N .
Var (f*) = 2 1, (51)
where

S R e R L R A PO LA S BT
“ .
wo s~ w-tixel¥ (" 1xmitar o g = fx)? df/S‘__° | %02 at

That is, To and W° are the "rms" duration and bandwidth, respectively. The variance expres-
sions (50) and (51) are valid if three conditions are satisfied: (1) the ambiguity function of x(t),
the transmission, can be approximated near the origin by parabolas along the r- and f-anes;
{2) the axes of symmetry of the ambiguity function lie along the 7- and f-axis; (3) the signal-to-
noise ratio is sufficiently large that the error arises from random shifts of the peak of the func-
tion Q near the true value of the parameter, and not from more remote peaks becoming suffi-
ciently large. The first condition is usually met, except for such things as ideally square pulses.
The second condition is met by all the functions of the surt typified in Fig. 40 except for the
*chirp” (swept frequency) waveform of Fig. 10(c). For waveforms that obey condition (2), the
renge error is not a function of signal duration '\’ ° and the doppler error is not a function of band-
width W . Also, the rangs error is not increased by ignorance of the velocity, and vice versa.

Expressions {50) and {51) are seen to involve only the signal-to-noise ratio ZE./N o and the
widths of the ambiguity surface. They express the way in which both the noise and the widths of
the ambiguity function conspire to render the estimate of the true values of f and r imprecise
by causing the maximum of Q in Eq. (49) to shift to the wrong place. Were it not for the noise,
the smearing effect of finite signal bandwidth or duration would be reversible and the position of
the peak could be located to arbitrarily high precision.

One may wonder whether the processor of Eq. (49)6¥ivu error variances [Eqs. (30) and (51))
that are the minimura achievable variances. Manasse = has shown that in a point target-gaussian

57



ot

Sty

U PRS- [ o  + —— 4 T——AOT Vi £ H B 1 koo

noise case like the present one, at large signal-to-noise ratios the estimates are jointly minimum-
variance estimates (i.e., “jointly efficient”) so long as the transmission x(t) is a well-behaved
function of each parameter a. An interesting iiftuation in which the Cramer-Rao lower bound cn
error variance is pot physically achievable is the case where the tranemission is a single rectan-
gular pulse of sinusoid having a duration T. Again, one would expect the range and doppler er--
rors to depend on pulse width and signal-to-noise ratios and, if the noise is small enough, for
range error to be considerably smaller than pulse width, as before. But when one computes the
thedretical lower bound fer range error it turns out to be zero for any finite noise level, and this
does not make physical sense. The derivation leading to Eqgs. (50) and (51) is not usable becatse
Condition (1) is violated. However, uw‘z has developed a different, more heuristic approach
to find the error variances from a matclied filter processor and has found that the error variances
in this square-pulse case are '

Var (r#) = (N f2E )22 T, | (501)

Var {I*) = N /2B, Y (542)

When a number n of sim#iar but stditstically independent measurements are added togetter
the variange is decreased by a factor n. An example of this would be n pulses, each measuring
range or doppler independently. However, in many practical circumstances the n measurenients
may not be independent. For example, tﬂ_gulu train illustreted in Fig. 10(d) has the phue pre-
served from pulse to pulse, so the doppler resaluffoh available is that appropriate tot rtion
of the train (as expressed by the frequency width of the ambiguity fonction), rather than only 1/n
times the variance to be obtained with one pulse. The camputation of error variances of range
and doppler becomes somewhat ¢complicated when the target has an appreciable acceleration com-
ponent, when we desire to measure this lccdention. ar. whep-sliewsd-or-ctirved unbigus:y tiur-
faces ars Allmand fo shtewed cass 1 #hown in Fig. 10(c)]. These tases are particularly hari to
handle when large-TW signals such as pulse trains are considered rather than single pulses.

The best available treatment of these more eomplicated cases has been given by Kelly. 3

C. Targets Spread only in Delay or Doppler

After the point nonfluctuating target, the next class of reder targets in order of complexity
is that for which there is a spread along either the r-axis or the f-axis (relative to the corive-
sponding spread of the signal ambiguity frmction), but not both. ’

For example, with a point fluetuating target, there is a spread only along the f-axis, und the
scattering function is o(r, f) = o(f) 8(7 — 7°) where 7' is the range. With such a target ther: are
at least four quantities one might be interested in estimating: (1) the range 7', (2) the curve o(f)
to whatever frequency resolution is interesting, (3) the bulk doppler shift of the target as a whole,
given the shape a{f) apart from the unknown translation, and (¢) the width of the doppler spectrum,
given both the center frequency and the spectral shape o{f) apart from the unkunown width factor.

With the classical nonfluctuating point target, the real source of error (other than such things
as calibration errors) was the recsiver noise, represented by the density N.. For the fluctuating
target, the echo fluctuations are an additional cause of error. As we shall see shortly, thess
fluctuations place a limit on the measurement acouracy even whea additive received nois: is zero.
Such contributions to the random variation of the estimates will be designated as "self-nuise” as
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before, according to the convention employed here that any random variations in the output that
remain after No goes to zero are to be so designated.
‘To estimate tie range 7', it appears plausible to proceed as with the point nonfluctuating

uirget, namﬁly, t¢ build a parallel set of signal-to-noise ratio-maximizing processors that are

spaced in de]ay anl to pick as the estimate 7'* the delay of the processor exhibiting the largest
output. Since the {arget is fluctuating, the processurs will now be weighted radizmeters rather
th.an the mah'hed-f 1ter-envelope-detector devices implied by Eq. (49). The 7-8pacing between
aitiacent prou:essors will be a convenient fraction of the rms range error. For small iuput S/N,
anc large oiput S/\N, R. Price®® has found the error variance to be

ff $2(0, 1) ol + 1) o(f) df 4f*

-

Var (1'+) = lb/N) ' 52)
2 L]
“'5’"2 [f ¥ (2,0 olf + 1Y olf) df df’
T 720 =co

wiere wz ie the ambiguity function of the transmission, as before, and the output signal-to~-noise
.#tio (S/N) , is given by Eq. (34t

The er th'nltion of the function o(f) i8, of course, just the problem of spectral analysis; i.e.,
g'vena samole segment of a random process of unknown spectral density, one is to estimate the
spactral )“\sity, which in our context is S{f) = o(f) + No‘ where N o is the noise density. Although
there it A sizable literatuso on (ki sub ect of spectral analysis (e.g., Refs. 65 and 66), as matters
naw stand there 18 no ‘wel!-forr.mlated nrocedure leading to minimum-variance estimates of the
spectsum S(f).  However, various recipes for estimation have been analyzed in detail and it is
eftem nou'sible lo glve lpnrmﬂmate exp ressions for the error variance.

.»u‘\,pose,yve have a sample of received signal T seconds long on which we desire to perform
o speciral ‘anilysis‘ Sach a sample might be obtained from a radar experiment ir which the trans-
mission iz aiﬁilxusqzd o duration T. U one either performs a Fourier series analysis of the sam-
pie or 'Fourigi--tramfozms the autococrelation of the sample (these are the two obvious ways of
prosesding), the resulting sstimeted spectrum will have violent variations every 1/T cps, no mat-
tor what “he }rue‘ gpectrum of the random process from which the sample came. Clearly, if one
inxigte in & yij'vrequency rcsolution ¢f that is as small as 1/T, then this jagged picture is the only
estiinate posaible, but s meanit, "ess. In practice, the desired frequency resolution 8f muat be
made larger than 4/7T so that a numter of different samples (or "degrees of freedom" ag we shall
call them) will contribute to each po nt on the estimated spectrum.

Blackman and '.!‘ukey65 suggest -he following procedure which tends to give good estimates
of smoothed values of the true spectral densities: {1 tl.e autocorrelation of the sample is com-
puted, (@) this even function ¢(r) is then multiplied by some suitably chosen even weighting func-
tion or window function D(r) which l,as a maximum at zero and is zero outside the interval
(-1/51, i/df) where 8f represents tne desired frequency resolution of the estimate, and finally
(3) the product @(1) D{(r} i8 Fourie: ~transformed to get the spectral estimate S*{f}). This is
equivaleat to cenvolving the transform of D(r) with the transform of the specimen correlation

I Thiz axpression is valid only for targets having a nonzero doppler spread; it does not reduce to Eq. (50) as doppler
width goos to zero,
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function ¢(r). The proper choice of D(r) is & compromise between effectively throwing away
some of the data by suppressing the extremities of ¢(r) and retaining ihe violent variations of
estimat-zd spectrum with frequency. For gaussian processes, Blackman and Tukey give the fol-
lowing expression for error variance of the spectrum at a given frequency when the true S(f}
varies slowly with frequency (relative to 4,/T):

var [s+(n)] = &ve (32 O] (53)

The average of the estimate S*(f) is essentially the true So(f). Much the samu ~ecenlt will be ob-
tained if the spectral estimate is performed by making a Fourier analyais of the sample and then
adding together the powers in the T 8f frequency increments contained in 8f cps. ‘

Equation (53) places in evidence the well-known rule of thumb that the ratio of variance to
squared mean is inverhely proportional to the number of independent samples or degrees of free~
dom (roughly 2T .8f for a spectral interval 8f wide observed for T secor:ds).T Thus, if one is
measuring S{f) of a radar astronomy target he must try to make thc total observation time T
several times longer than the reciprocal of 8f the desired frequency resolution, as as to increasc
the number of degrees of freedom contributing,

For our radar astronomy purposes the usual recipe for spectral analysis (of which we have
just presented one that has been elaborately studied for practical applicability) suffers from the
defect that it provides an estimate of Sf) = o(f) + N o and not o(f) itself. Without careful calibra-
tion it may be difficult to know just what baseline level to subtract out of the resulting plot S*{f)
in order to isolate the echo component c(f).

The problem of estimating the frequency shift fd of a spectrum of known shape S{f) from =
sample of durction T of a random gaussian function of true spectral density S(f —f o) has been
tregtéd by Swerling67 and Levin.68 Swerling has suggested & procedure in which v < et | 8=
timat,'evs*(f) obtained by the Blackman-Tukey method just described is operated on by a freqaca.y -
weighting factor « (f) so that the estimate fg is given by f S*(f) a(f) df. The functior -*{f) is chosen
from prior knowledge of the S(f) shape to minimize the error variance of fg in terms o error
variances of S*{f). Since the latter quantity S*(f) is obtaine: to begin with by a more or less
ad hoc procedure, as we have geen, the use of S* to get'f(’;‘ is not guaranteed to produce minimum-
variance estimates of fd'

Levin68 sought to find a maximum-likelihood estimator of f g directly and has examined the
Cramer-Rao lower bound nn error variance. He finds that

o0 ' 2 -1
Var (%) > ‘T So laf')'(rﬂﬁ;] dfl , (54)

where ¢'{f) is the derivative of ¢ with respect te frequency. Note that rapid variations of o(f)
with f tend to make estimates of frequency shift more reliable, as one would expect. The
maximum-likelihood estimator of fd is that which picks that value of 4 for which
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1 The factor 2 occurs because at each froequency the signal is characterized by two quantities, e g., an amplitude
and a phase.
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is a minimum, where s, and bn are the Fourier sine and cosine coefficients of a Fourier peries
expansion of the sample function. In other words, one processes the received sample to gen-
erate a jagged function representing the power in the successive Fourier components and then
convolves this with the reciprocal of the known shape Sif) = N + oif) to find the shift £, for which
& minimum output is observed. As the product of observation time T and B of S(f) becomes
large, this maximum-likelihood estimate is a minimum-variance estimate and Eq. (54) converges
to the equality condition.

The frequency width of & spectrum can be estimated by a related procedure also worked out
by Levin®® {Recall that one method of determining the rotation vector of a planet is to measure
the width of the echo power spectrum at various times during the synodic period.) Let the true
Mm.hpobosth(l-fd)]-v[h(f-fd)l-rNo, where {; is the center frequency snd h is a scale
factor on width. If only h is unknown and is to be estimated, Levin finds that the Cramer-Rao
lower bound is

- 2 [ _TU-1
Var(h*]> TSO (f-fd) [ml {56)

which is very similar to Eq. (54). Note again that repid variations of target behavior ¢ with fre-
quinmey facilitate sheasurement of the width factor h; also that the quadratic factor means that
sech variatiens st fyrequencies distant from the band center are more helpful than #iose near the
conter. The maximum-likelihood estimator of h picks thet value of h for which

2,.2 2
. b \

z l"f n N z L +b {. &n
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is a minimum, K being a certain constant. In other words, one processes the received sample
to generate the power in the successive Fourier components {for sxample by using a narrow-band
filter), and then computes the convolution for fixed shift of tids jagged function with the reciprocal
of the profile ofhif —1,)], choosing various values of h until the convolwiion is miuninsized. Aﬂh.
the bound [Eq. (“)]appuelwithmcmmylimwmnhhrp

The otiver form of target spread in one domain only is the desp nonfluctuating target whose
scattering function is o(r, 1) = o(r) 8f —1'). All the notions just presented about errors of esti-
mating 7', olf), £, and h apply through a cortain duality relationship® o the estimation o 1",
ao(r), Ty ®tc. for the deep nonfluctuating target. Instead of dealing with a sample function T
seconds long, obtained perhaps by illuminating the target with a sine wave, the target is effec-
tively illuminated with a single impulse and phase and amplitude of the echo components at vari-
ous frequencies are measured over a bandwidth W. Instead of having a narrow-band received
signal exhibiting fluctustions of amplitude and phase every 1/B seconds in time throughout T, we
have fluctuations of amplitude and phase every 1/Lcps. throughout W.. In situations where
previously we dealt with a Fourier series analysis of a time function T seconds long we deal with
time samples of the echo waveform every 1/2 W seconds. The detailed application of this duality
to get answers for the deep nonfluciuating target will not be pursued any further here. This duality
has been developed in detail by Bello®?
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D. Deep Miustmating Targets

As the reader will see from crumparing the material in the previous two sections the appli-
cation of statistical estimation thecory to the classical nonfiuctuating point target is rather com-
plete, but our present understanding of the more complicated singly spread target, although
filling out rapidly, is still somewhat fragmentary. For the doubly spread or deep fluctuating
target the situation is even worse. Only a few miscellaneous results are available.

In practice one .night want to estimate the following attributes of the true scattering func-
tion ¢{7,f): (1) the center frequency and/or center delay, given the exact shape of o(r, f); (2) the
frequency width and/or delay width, given all other intormation on ¢{r,{); (3) the function o{r, )
itself, given no a priori data about it. Of these, only the first and last have received much
attention.

The simplest method ohpemring o7, {) is the rather direct one that was discussed in
Table I, the use of a simple matched filter or correlation detector with preset v and £ offsets
to probe the scattering function at the point 7,1. This is the method employsd in Pettengill's
moon-mapping work."’ Suppose we desireto do suchan experiment and achieve a freguenty reso-
lution of 8f and a delay resolution 87; that is, we wish to measure the average eche power in &
cell of the 7 — f plane having the dimensions 8f and 87. Bnmhtheltmlhﬂwﬂlhilltnd
theduration /41, then we get in the output squared envelope just such an obeervation of fhe de-
sired cell (Egs. (34) and (32)}, but the number of degrees of freedom of the cbservation is anly two
and the variance equals the mean, as with the simpler specirel anslysis case deseribed bty
Eq.(53). H, howsver, a bandwidth m/8r and/or a duration n/8f is used (m and n >£&ldtln ma
separate received squared envelopes are added together and the square root taken, then the num-
ber of degress of freedom is 2mn and the variance of estimation of o{7,1) is

Var (qt(«r, f” = A—“W—l (5.)

as with Eq. (53).

One defect of this simple procedure is ita behavior when the target approaches the over
spread condition, that is, when the product of total doppler spread B and total multipath spread
L is near unity. As we have gseen earlier, the operstion of such & matched filter or correlation
detection method can be visualized as overlaying onto the surface o(, f) the surface 02(1. N twith
appropriate delay and frequency offsets) and then adding up all the volume under the product
function. As long as the ambiguity function p° has most of its volume in the central peak, very
little output power comes from any place but in or very near the desired cell in the 7, f plane,
no matter how large the area BL covered by the function ¢. However, as the invariance relation
Eq. (30) assures us, such a concentration of the volume in ¢z will occur only when the base of the
central peak has an area of approximately unity, as with the waveforms of Figs.40(a), (b) and (c).
But suppose it is necessary to use one of the large-TW waveforms of Figs.10(d) and ()., This
would be the procedure if it is desiied to resolve a cell in the 7,f plane of size 87 8f = 4/TW << 1.
Because of the secondary peaks of Fig. 10{(d) or the low-lying skirts of Fig. 10(e}, if the area BL
covered by the scattering function is great enough, then the processor output power due to the
desired region of the 7, f plane (the region of the central peak of oz) will have added to it aglf-
noiza power from undesired regions. (Once again we use the term self-noise to designate output
components that do not go to zero even if the additive input noise does.) Clearly, whether such
components will appear in the output depends on the scattering function area BL and on the type
of ambiguity function chosen to probe it.
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Let us illuatrate these ideas by picking some numbers from a specific radar astronomy ex-
periment. Suppose we wish to make a radar map of Mars using a pulse train [Fig.10(d)}. The
muitipath depth L from nose to limb is 24 msec, which means that observations of the received
signal made more frequently than once every 24 msec will be noisy due to time overlap of the
echoes. The echo power near the limb is so small relative to that fram the nose, that a periodic
sampling of the echo from the nose would not be significantly corrupted with echoes from the limb
until the sampling interval became much less than 24 msec, but the converse would not be true;
samples of the echo from near the limb ‘vould be badly corrupted by strong self-noise from the
nose as soon as the sampling period was reduced below 2é¢ msec. Now the carrisr frequency
above which the total doppler spread of Mars is 1/z4kcp. turns out to be 26.5 Mcps. In order to
compute & clean echo spectrum 1/24 kcps wide, the ability to get a clean sample onee every
24 msec must be preserved, and we see that this condition begins o be violated at a carrier fre-
quency of 25.5 Mcps; i.e., this is the lowest frequency for which BL = 4, if by B we mean the
total limb-to-1imb doppler spread and by L. we mean the total multipath duration. ([The fre-
quencies for which BL (so defined) equals unity are given in Table Il for other radar astronomy
targets.)

Now suppose we are operating at 440 Mcps noth-tm.hvuym actually 18, B being
750 cps. H we do not need more than about 18 cells in our radar map, we can send a simple
TW = 1 pulse [Figs.10(a) and (b)] of duration, say, 6 msec, and by averagiag the received power
at the desired receiver 7- and f-offsets get an observation of echo power in a cell of the r-f
plane that is 87 = 6msec hy 8f = 1/6kcpe in area.

We gonclude that when BL is much smaller than tnity, a large-TW signal oan be Mluch
that the self-noise ic negligible. For example, in Fig.10(d), so long as the scattering function
does not spread outside the area enclosed Ly the dotted lines, self-noise duy to noncenirel peaks

TABLE 11

| CARMER FREQUENCIES ADOVE WHICH VARIOUS mm OVERSPREAD
3L Product for en Arbitrary Frequency kf/")

Terge "o
Moon (at maximum |ibretien mie) f=312
Mercury (omuming 88-day refation period) 4280
Venus (awuming 225-day rofation period) 1880
Eorth 9.7
Mors 26.5
Jupiter 1.5
Satun 0.300
Urenus 2.08
Neptune 3.7
Pluto (assuming 16~hour rotation period) 2.25
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will be negligible. We further conclude that when BL is much greater than unity, if one can be
satisfied with a resolution cell of size 87 8f = 4, then a TW = { pulse [Fig. 10(a), (b) or (c}) can
be used, and because of the central concentration of the volume in the ambiguity function, once
again the self-noise will be negligible. It is the in-between values of BL of the order of unity
that produce self-noise difficulties.? For illustration, we have plotted in Fig. 15 several curves

|

e mmo:t&rmn W’OO'IFM
FUNCTION m.n.: txl-‘lzt -/e*)

NUMBER OF RERULUTION CELLS =

e 0 /0vhr

L

8,
T
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——

T 't
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Fig. 15. The manner in which self-noise corrupts the estimate of the scattering
function when the simple maiched Filter procedure Is veed end the target ks moder-
ately overspread.

of self-noise~-to-signal ratio as a function of BL, assuming that the soattering function being ob-
served has a gaussian shape in both f and T directions {i.e., o{r,f) = exp ~ [fz/Lz + !z/BZ]},
and that the size of the desired resolution cell 87 &f is 0.1 BL to lO" BL. It is assumed that
the waveform in use is the pseudonoise whose ambiguity function is idealized at the right of
Fig. 10{e). ‘

The two-frequency method of measuring the scattering function also encounters difficulties
as the target becomes overspread, as is quite easily visualized. By referring to the fourth
entry of Table I we are reminded that one first obtains & (Af, A7) by cross-correlating the outputs

t We may conjecture thet it is impossible 10 realize a physical waveform whose ambiguity function has less than
a certain amount of volume in on area much lorger than the order of unity surrounding the central peak. The
volume may occur in the central peak, as in Fig. 10{a), (b) or (c); in separate pecks, as In Fig. 10(d), or in wide
foothills as in 10(¢). [Such an orea with @ low noncentral volume is the dotted region of Fig. 10(d).] This con-
jecture remains unproved fo date.
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of two filters tuned to ssparately receive two sinusoids transmitted Af apart, and then Fourjer- ’
transforms @ (Af, A1) to get o(7,f). Now & varies with Af at roughly a rate 1/L; that is, we

will want t0 messure & for frequency spacings Af as low gs 1/Lcps. But each sinusoid is
smeared by B ops, so a clean (self-noiseless) signal separation will be possible only if B > 1/L,
i.e., if the target is underspread.

There iz a class of methods of measuring the scattering function o(r, f) that appears to be
devoid of the problem of self-noise due to overspreading, and has other advantages over the
mastched filter (or correlator) method we have described, even though the latter is easier to im-
plement. These methods are the fourth moment method."‘“ the 8/N-maximization method,’2
and the least-squares method.”® Each requires elaborate receiving equipment and/or computer
processing. These three approaches are worth taking a bit of space to describe here, because,
although their advantages and usability are not completely understood at present, they are being
actively investigated and are not ad hoc methods (as is the matched filter approach) but have op-
timum propertied, as we shall now explain. ‘

The fourth moment method proposed by Kailath involves a receiver which processes the re-
ceived signal wft) so as to compute *he quantity

('«)'("a) x«-,) x(t‘.‘ﬂ -,)> » ’ ‘:4'.;;.

in which the transmission x(t) is a white noise. As before, ) represents the infinite time
average. Suarting from swch 2 measurement of this fourth moment, we can then calculnte the
estimated soattering function o%(r, f).

Levin's leagt-squares method is a more general procedure of which e fourth moment method
is the special case for very long integration time and for x(t) a white noise. In the least-squares
procedure one procésses the finite length sample wit) to get the same fourth moment (exoept that
the integration time is now finite). This fourth moment is then opewated on by an explicit linear
transformation involving the known transmission x(t) and the resuit! is a quantity which, when
Fourier-transfosmed once, is the desired o* (7, 1).

Price's 8/N-maximisation methed consists of building & rake radiomster [Fig. 12(d)] with
adjustable filter characteristics [H ()] at sach tap. These characteristios sre then adjusted by
-mmmwwmmwmwmuwm. Re-
calling thet the |H,(n| 's that maximise signal-to-noise retio are a repreduction of the sosttering
function elr, f) (. (35)], we have thus crested an estimete ¢%(7, f) in the "best® settings of the
filters. Price shows that at law input sigmel-to-noise retics, this method produces a maximwm-
likelihood estimete. Levin has shown that the least-squares and S/N-maximisation methods are
equivalent, and therefore that at low input signal-to-noise ratios théy ars both maximum-
likelihood estimsters.

flomMMdﬂwmmMMhWhmb‘ﬂmmbﬁ
tween the coveriance meirix of the sumple wevefem (oall it W) end @ triel coveriance matrix §. Thet is, the
dmb:" of § are adjusied 10 minimize

X (‘||"'||’z :

$ involives both the known and ixed tranemiesion x{1) and the edjusteble irlol target scettering function.
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Ai present, not much is known about the variance of estimates obtained by these methods.
it seeros plausible that some specification of the intended degree of range resolution 87 and dep-
pler regelation 8f must be made, and that then the variance of the estimates will go down as
ér 8f °W. the number of degrees of freedom per resolution cell, goes up (T being the sample
duration and W being its bandwidth).

Pz'i._cu':64 has investigated the problem of estimating 7 o the center range of a deep fluctuating
target whose scattering function is known apart from this range parameter. The result is a more
general eise of that given in Eq. (52), snd amounts to the following. The estimator is an array
of rake rediometers set for various delays. The estimate 'r; is that corresponding to the proc-
essor exhibiting the largest output. Under the conditions of low input and high output signal-to-
noise ratios, and assuming that the output in the absence of noise is parabolic in the neighborhood
of the trie + o Price finde that

ffff pz(f,f) o(r' -7, ' +1) ol7', 1) d7, dfdr'dl’
Var (r#) = (/N ;4 = . (59
_:_xz ffff Oz(f.f) olr'— 7, ' +1) o(r' -, £') drdfdr'df’
A=0 ==

VB. SUMMARY AND CONCLUSIONS

In this report the author has attempted to summarize the techniques by which various astro-
nomically interesting properties of remote objects may be studied by processing of received ra-
dor signals. In the case of "soft” targets such as ionized regions, clouds of amall particles,
and so forth, little that is unfamiliar was said here; conventional sounding techniques are avail-
able for sstimating electron density and magnetic field.

Hard targets are quite interesting from the signal processing viewpoint, since by the choice
of su:table transmitted signals and receiver operations a number of target properties may be de-
term:ned. One of the most important of these is the statistical character of the rough target
surfsce. In this report a number of procedures were discussed for determining the radar angu-
iar power spectrum co(p) of either a portion of the target or the whole surface (the latter under
the assumption of statistioal uniformity of the surface). The function o, expresses directly the
second-order statistics of the random spatial irregularities in the echo wavefront, and it ex-
28 tes indirectly the second-order statistics of the target terrain itself. The relation between
stati. \icsi properties of wavefront and terrain was not dealt with here.

Measurement of a°(¢) of uniform objects can be made by short-pulse, long-pulse, spaced-
frequersy or isterferometer experiments; also, the roughness can be inferred grossly from
polarimetry measurements. This last type of procedure requires at this writing much further
theor-etical work before one can say just how the amount of signal depolarization depends on sur-
face roughness (suitubly defined).

7or nonuniform objects one is interested in determining co(qv) for various regions. Isolation
of various target regions in antenna beamwidth is usually out of the question because of the great
terget ranges; also, it was found to be impossible to perform the isolation on the basis of differ-
ent raotions of the correspording parts of the diffraction pattern observed at the earth. However,
resolution of target regions can be effected by using large time-bandwidth signals such as pulse
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trains or pseudonoise signals to isolate echo power returning at various points in a hypothetical
range-vs-doppler plane (that is, to estimate the "scattering function" of the target). Moreover,
there is a simple distortionless geometrical mapping between points on the target aud points in

this plane.

There are a number of unanswered questions about processing techniques for isolation of
target regions. For example, the way in which one might apply in practice certain measurement
procedures that are known to be statistically optimum is unclear. It is unclear to what extent
one can avoid the added noise injected into the receiver output when examining an overspread
target. The added complexities of processing and the added possibilities for sensitive mapping
experiments using range-doppler trajectories have not been adequately studied.

The measurement of target rotation speed and axial orientation was discussed and various
fairly straightforward methods were outlined for partially determining these quantities by proc-
essing of single station or interferometer echo signals.

The radar measurement of several other target attributes (e.g., target shape) was discussed
briefly.

Explicit procedures for actually carrying out the observations were dealt with in Sec.IV-F,
and particularly in Table I.
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APPENDIX A
A DISCUSSION OF CORRELATION FUNCTIONS AND ANGULAR SPECTRA
OF INTEREST IN RADAR ASTRONOMY

by
Martin Balser

Consider, for simplicity, the one-dimensional problem of a component of the field £ (x, 0)
given on the plane z = 0 as a function of the coordinate x along the plane. Here, x and z are
distances expressed in multiples of a wavelength. We assume & and EZ are integrable; i.e.,
the field is essentially limited to a given region or aperture in the plane. Thus £ has a Fourier
transform, given by

®

Wity = €(x, 0) exp [—j2nx] dx (A-1)

-0

and, inversely,
1 ©0
E(x,0) = Z—"S Wty exp[j2nex) dt . (A-2)
-0
It is easy to see that

E(x,z) = 21?5‘ WAL) explj2x(tx + nz)) ds (A=-3)

where n = 'J 1- !Z‘, is a solution to Maxwell's equations, being a superpositicn of plane waves,
the one of amplitude V/(l) df traveling in the direction ¥, where £ = siny and n = cosy. The well-
known result that structure in the aperture field which is finer than the wavelength does not prop-
agate is seen formally in the observation that such structure corresponds in Eq. (A-2) to values
of |l| >4, which results in Eq.(A-3) in imaginary values for n and hence in damped waves.

It can further be shown4 that at great distances (compared to the size of the aperture) from
the source plane, the field in Eq. (A~3) becomes £(x,z) ~ W(!), where £ = z/‘Jxz + zz; i.e.,
W/(l ) 2 is the angular spectrum, indicating the power radiated in the direction ¢ = si.n"'1 1.
(The aperture distribution is assumed to be in the vicinity of the origin.) Also, the correlation
in the angular pattern

S\ Wip) Wx(p + 2) dp S‘XS‘ £(x,0) £*(x',0) exp[—j2rpx + j2=(p + £) x'] dx dx' dp

L
an' | €(x,0)|? exp[jertx] dx (A-4)
-0
i.e., the Fourier transform of the aperture power distribution or illumination. Since the values
of £ can be immediately related to distances x along the obgervation plane z = z (denoted z_ in
Fig. 2 of the text), this theorern relates a "distance correlation" to the aperture brightness.
A somewhat different concept of distance correlation along the observation plane is, how-
ever, usually considered in practical situations. First of all, the measurement is taken quite
locally, not, as in Eq.(A-4), through all values of £ (or x in the observation plane). Second,
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the averaging (for most practical cases, in time) used to determine the correlation implies a
statistical process, whereas the previously cited results are precisely correct for any individual
distribution €(x,0). Accordingly it may be asked whether the same, or a similar, result exists
for a correlation function more nearly related to this practical concept. To see whether this is
so,! consider the aperture field distribution to be a sample drawn from an ensemble of the form

€(x, 0) = S(x) K(x) , (A-5)

where ¥(x) is a stationary random process in x, and S(x) is a fixed envelope which determines
the power distribution in the aperture plane (| S(x) l 2 is the brightness distribution). The random
function is assumed to have the ensemble averages (expected values) {X(x)> = 0, (‘ch(x)> =1,
Coe(x) 3e* (x + £)> = p{t). If now we form the product

i

JPONSE

i W(p) Wx (pt+t1) = S‘S‘ £(x,0) £€*(x', 0) exp[—j2rpx + jex(p + £) x'] dx dx'

= SS S(x) S*(x') 3(x) 3*(x') exp[—j2np(x —x')] exp[ j2xix) dx dx' (A-6)

-

and take the ensemble average, we find

(7V(p) W (p+ 0H = S‘S‘ S(x) S*(x") p(x — x") exp[—j2xp(x — x")] exp[ j27tx] dx dx' . (A=7)

It is reasonable to assume that the over-all aperture power distribution |S(x) | 2 changes very
little over a correlation distance (i.e., the range of non-negligible values of p), so that in Eq. (A~7)
we can replace S{x') S*{x) = | S(x)| Z. Changing the variable x' — x = u, we find

WipWe(p+ 1)) =S plu) explj2rpu] duS |S(x)17' exp[j2mtx] dx . (A-8)

An incidental result of Eq.(A-8) is found by setting{ = 0; then

AWin) |2 = KS‘ plu) exp[j2rpu} du (A-9)

(where K = f_ : Istx)| % dx), which states that the angular spectrum radiated from the aperture
is the Fourier transform of the correlation function of the field in the aperture. (This was also
shown by Bramleyu). The principal result is, however, the other integral, i.e.,

WipWep+ 1) = <|"/(p)lz>5 IStx) |2 exp[j2ntx) dx . (A-10)

This result is very similar to the one in Eq. (A-4) in that it relates the angular (or distance) cor-
relation to the Fourier transform of the aperture illumination, but in Eq.(A-10) the statement is
made for each value of direction cosine p separately, rather than integrated over all values of pP-

1 This is essentially the approach used by Ratcliffe (Ref. 2, p. 223),
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For different values of p, the angular correlation function has the same form and differs only by
the constont ~f proportionality, the angular spectrum.

At this point the effect of the assumption that S(x) S* (x') ~ |S(x)|% can be seen. [It was this
assumption that allowed the separation into a product of the double integral in Eq. (A-7).] To ne-
gate this assumption, i.e., to state that the corrzlation distance of the aperture field is compa-
rable .o the total size of the aperture, would mean that the angular correlation distance is com-
parable to the width of the angular spectrum. Thus [from Eq.(A-10)], the received power level
in the observation plane would change over distances comparable to the space correlation distance,
destroying the normal assumption of "local stationarity" used in measuring correlation functions.

Note that all the previous analysis has based the angular coordinate system at the origin, lo-
cated at the aperture. Actually, by defining a new set of angles from the point of observation as
origin, it can be seen that Eq.(A-10) is the same as Eq.(A-9), which states that at a given plane
the angular spectrum and space correlation function are a Fourier transform pair. It has already
been mentioned that the ground pattern £ (x, ) at the observation plane is simple related to'u/(s),
the angular spectrum based at the aperture. Thus the left side of Eq.(A-10) is essentially the
space correlation function at the observation plane. Also, it is easily seen that the {received) an-
gular spectrum is proportional to the illumination distribution in the aperture (clearly, the radi-
ation is limited to the angle subtended at the receiver by the source). This duality between angle
at one terminal and distance along the plane at the other terminal thus allows the inference of ei-
ther Eq.{A-9) or Eq.(A-10) from the other.

It might also be mentioned, finally, that most experimental measurements consist of time,
rather than ensemble, averages. This is essentially an assumption of ergodicity, or an assump-
tion that the fields being observed are being replaced in time by other members of the ensemble,
8o that the one average is equivalent to the other. We can thus regard the abbreviation < > used
in this Appendix as representing a time avera'ge‘
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APPENDIX B
SCATTERING FUNCTION FOR UNIFORM ROUGH SPHERES

The problem treated here is the determination of the distribution in range and doppler of
the radar return from a uniform rough rotating sphere. This quantity (defined as o) will depend
on the diameter of the body, its rotation velocity, axial tilt relative to the line of sight, and the
carrier frequency in use. It will also be a function of the radar reflecting characteristic a°(¢)
(to be defined) of the material of which the surface is comjposed, and we will be interested in see-
ing the relationship between the radar return and this quantity LA describing the surface properties.

We define
a = tilt of axis from perpendicularity with line of sight,
© = rotation velocity in radians per second,
fo = carrier frequency,

ao(<p) = reflecting cross section per unit area of surface as a function of tilt
of the radar line of sight from normal (radar angular power spectrum,)

We seek to find the expression showing how these quantities affect the scattering function

a(7,f) = time average radar energy returned in a hypcthetical element of time
delay (range) dr wide at delay 7 and df wide at dopple'r frequency f.

We shall assume that the position of the center of the sphere corresponds to the r-origin and that
the velocity of the center of the sphere (assumed in straight-line motion) corresponds to the f-origin.
Figure B-1 depicts the rotating body cut by a plane Q containing both line of sight and axis.

An arbitrary point P on the surface is shown having coordinates (8,v). Also shown is the angle ¢
between line of sight and radius vector from the center of the sphere to the point P.
The first step is to find the projection on the line of sight of V, the velocity of P. First,

magnitude of V,V = R asin® . (B-1)
The projection of V on the plane Q is

Q asin® siny ; (B=2)
the projection of this quantity in turn along the line of sight is

Q2 a sin® siny cosa (B-3)
and the doppler frequency offset of the echo from P is

2f
f=T° Q a 8in © siny cos« . (B-4)

But the perpendicular distance x from point P to plane Q is

=asinysin® , (B-5)
80
2f
f=—cﬁnxcosa (~a<x<a) . (B-6)

The range (delay) of point P is clearly given by

T = %a- cosg =-T7 , (B=7)
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Fig. B-1. A rotating body cut by a plane Q
containing both line of sight and axis.

Fig. B-2. Head-on view of an annular range strip
and a straight doppler strip on the target.
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Fig. B=3. Plan view of plane containing line of sight and radius

LOGUS OF POINTS HAVING
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from target center to one of the shaded regions in Fig, B-2.
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where for p-esent purposes 7' reads in a positive direction toward the observer.
Now we have defined ao(cp) to be the cross section per unit area of target surface {not per
unit area of incident wavefront); ¢ is as shown in the figure. If we assume unit power flux den-

sity throughout the incident wavefront, the total power returned with delay 7 and doppler { in
@ range of delay dr and doppler df is

{7, 1) = (number of square meters of wavefront corresponding to the
element dfdr) X (cross section per unit area of wavefront). (B-8)
The second factor is oo(:p)/ cos¢g.

Call the first factor A. Figure B-2 shows a head-on view of the target (looking along the
line of sight with the line corresponding to plane Q in the up-down direction). The two regions
making up area A are shown shaded. The width Ax (in meters) of the strip containing all the
energy lying in unit bandwidth at frequency f is [from Eq.(B-6)]

Ax = c/(Zfon cosa) . (B-9)
The width of the annular strip containing all the energy lying in unit spread of delays at delay 7'
we will call Ay. From Fig.B-3,

% cosy . (B-10)

Ay =
The area A is given by
A = 20xAy/cos 8 (B-11)

where 6 is indicated in Fig. B-2, and

giné = —‘S—-/J al—(er/2)® . (B-12)

Zfon cosa

Combining (B-12) with (B-11) and (B-7) with (B-10) and then sybstituting (B-9), (B-10) and (B-11)
in (B-8) we have finally

czoolcos'i(CT'/ 2a)] 2 2,-1/2
- 1 -
oiri gy = | 2 @coma (1= (eT/2a)" = (fe/2t,a @ cose)”) T for real values

0 for imaginary values . (B-13)
From Eqs.(37) and (39), respectively, power as a function of delay only is
olr) = 7 ac o_(cos™*(cr'/2a)) (B-14)

and power as a function of doppler offset alone is

a(f) =S' (B-13) df . (B-15)
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