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David L, Kohlman

ABSTRACT

The purpos«. ol thls study was to develop an apparatus
Jor investigation of phenomena in rectilinear Couette flow,
and to conduct experiments in several such areas. The
projJect was divided into four main parts:

(1) Deslgn and development of the shear flow tank and
related experimental apparatus.

(2) sStudy of circular cylinder drag in Couette flow at
low Reynolds number,

(3) Study of sphere drag in Couette flow at low Reynolds
number .,

(4) Study of instability of rectilinear Couette flow.
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A historical and theoretical background for the
present study 1s given,

The limited validity of Lamb's drag law for cir-
cular cylinders in a finite channel is demonstrated.
As the Reynolds number decreases the walls cause a
transition from Oseen flow to Stokes flow. Empirical
drag formulas are presented.

Stokes formula for sphere drag in uniform flow
is shown also to be valid in uniform shear flow,
Measurements of sphere rotation rates in shear flow
are presented.

Stability studies indicate that rectilinear Couette
flow becomes unstable in the range 103 € Reg <10%. The
primary disturbance is & series of vortices midway be-
tween the walls whose wavelength decreases with increas-
ing Reg. Though quantitative results are not entirely
conclusive, the practical foundation is laid for further
study and experimentation in this area. Recommendations
and improvements are suggested which it is hoped will
lead to more successful experimentation and understand-
ing of this problem,
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CHAPTER I

INTRODUCTION

One of the oldest branches of fluid mechanics
is that of very low Reynolds number flow. G. G. Stokes
(1) first formulated the equations governing pure
viscous flow (in whilch aili inertia forces are negligibly
small) in 1851. This flow regime, now Jnown as Stokes
flow, in practically allléases is 11h1ted to Reynolds

. numbers less than unity.

Since Stokes!' firsé paper, this subject has
received the attention of many investigators. However,
there 1s stili a considerable amount of interest in
low Reynolds number flow, because of the many interesting
unsolved problems which have direct applications
to modern fluid dynamics. A great many meteorologlcal,
sedimentation, and chemical colloid phenomena occur
in this regime, and Hoglund (2) points out that "Reynolds
numbers of interest in gas-particle rocket. nozgzle flows

are usually in.the range O to 100,"



After Stokes fdrmulated his equations, the only
fluid flow regimes which yielded readily to analysis
were the two limiting cases of potential flow, which
neglects viscous forces (Re = w), and Stokes flow,
which neglects inertia forces (Re = 0). Except for a
few very special cases, the vast area inbetween, governed
by the complete, non-linear Navier-Stokes eguations
was largely mathematically intractable.

A major improvement to this situation was made
by Prandtl (3).1n 1904 with his well-known boundary
layer theory. This theory made it pasible to analyze
flows with Reynolds numbers as low as lou and higher,
thugs opening great areas for analysis in the upper end
of the scale.

Progress at the lower end of the Reynolds number
scale has proceeded in a far less spectacular and
successful manner. The first improvement to Stokes
equations was made by Qseen (4) in 1910, in which he
took into account linearized temms for the inertia
forces at large distances from a body. Even though
this technique provides a uniformly valid approximation
to the veloci;y and all its derivatives (Stokes equations
give a uniformly valid approximation to the velocity
only) and provides a satisfactory solution to the



two-dimensional flow past an infinite circular cylinder

(Stokes equations yield no solution in this case), the

Reynolds number of validity is scarecely extended

above unity. .
Since the work of Oseen (5), most attempts to

obtain analytical solutions for flows at higher Reynolds

numbers than are valid for his equations have consisted

of separate infinite expansions for flow regions near

to and far away from the body, which are matched in

a common reglon of overlap. Several investigators

have used variations of this approach (6, 7, 8, 9).

This has provided reliable analytical data (such as

drag coefficients) up tb Re{4. The only other

technique successfully employed has been a numerical

solution of the Navier-Stokes equations by electronic

computer, using relaxation techniques. While perhaps

lacking generality and being somewhat limited in scope,

this method has provided valuable insight into phenomena

significant to this Reynolds number range, such as

separation, vor?ex formation, and vorticity distribution

(10, 11, 12). In many respects, numérical solutions

by relaxation and finite difference techniques appear

to be the most promising theoretical approach to the

intermediate Reynolds number range.



In spite of the progress that has been made, most
of the theoretical approaches have been very limited
due to their complexity and the lengthy, laborious
calculations required. Because of this, and the large
Reynolds number gap between the Oseen regime and the
boundary layer regime,'experimental methods have been
relied upon quite extensively. Even so, experimental
progress has been surprisingly slow, and there are
many areas where practically no data exists. For
instance, Lamb's equation (13) for the drag of a
circular cylinder in a uniform stream, based on Oseen's
equations was not verified until 1953, and then only
to Re 2,06, (14).

In many cases, the existing data is misinterpreted
and its limitations overlooked. An example of this
is found in Ref. 50 which demonstrates the large
effect density ratio between body and fiuid has on
the apparent drag coefficient of a body in free fall.
Hence, there is still a need for considerable
experimental data in the low Reynolds number regime.

One area that has received practically no analysis
1s that of shearing flows, even though in practice

this case ocours far more often than uniform flow.



Hoglund (2) points out that particle rotation and
shearing flow can significantly influence particie
motion in a rocket nozzle. The entrainment and
circulation of ground debris by ground effect machines
and helicopters 1s strongly dependent on the forces on
particles in the ground shear layer. This problem has
been investigated by Vidal (15) but he has entirely
neglected viscous effects which can be significant
under certain conditions. Several other investigators
have treated shear flows past bodies (16, 17, 18) but
unfortunately these are restricted to inviscid flow.

* Theoretical analysis of shear flow past bodies
at low Reynolds numbers has been limited by the
mathematical difficulties encountered. Experimental
investigations have been hampered by the lack of a
method of generating rectilinear simple shear flows in
the laboratory on a reasonably large scale. At present,
there is virtually no experimental data on force
coefficients of bodies in viscous shear flow.

The purpose o: this thesis 18 twofold. The first
objective was to design and develop the equlpment and
techniques necessary for experimental investigation of
rectilinear shear flows and of various bodies immersed

in shear flow. The second was to conduct an experimental



investigation of several cases to check theoretical
solutions where ﬁhey exist, and to present original
experimental data where there is no information
availablg to date.

A thorough analysis of the theoretical history
and background for the investigation of low Reynolds
number flow is given in Chapter II, along with suggestions
of additional parameters which arise in the gase of
shearing flows.

: Chapter III describes in detail the design and
construction of the experimental apparatus used. Of
parsicular interest 18 the unique flow tank in which
a two-dimensional linear aﬁear flow 18 generated by
means of a system of moving belts.

Further chapters describe experimental lnvestigations
of ghe drag of circular c¢ylinders in shear flows, the
drag of spheres in shear flows, and rotation rates of
free spheres as a function of shear rate and Reynolds
number. An investigation was made of the characteristics
of instability of the shear flow leading eventually to
turbulence.

Test results are presented for Reynolds numbers

u‘to 1.8 based on cylinder or sphere

varying from 6.6 x 10~
diameter. All forces have been measured directly by

means of a simple beam balance system,



CHAPTER II

THEORY

2.1 Stokes Equations

In 1851, Stokes (1) formulated his famous equations
for very viscous flow. They represent the asymptotic
approximation to the Navier-Stokes equations as Re-»O,
One obtaips Stokes equations by neglecting the inertia
terms (which are negligibly small compared to viscous
terms) in the incompressible, steady flow, Navier-Stokes

equations. This gives the following system of equations:

(2.1)

along with the equation of continuity,

W LAV LW, .
ax*by+ai o (2.2)



Hereafter, flow which is governed by Stokes equations,
2.1 and 2.2, will be called "Stokes flow." It is
important to note that Stokes equations are linear in
both velocity and pressure, thus solutions to Stokes
equations may be superposed in both velocity and
pressure. Anébher interesting characteristic is
that for Stokes flow past a symmetrical body (fore and
aft) the streamlines in front of and behind the body
must be symmetrical, for by reversing the direction of
flow, 1.e., by changing the sign of the veloclty components
and pressure gradlents in equations 2.1 and 2.2, the
syssem 18 transformed 1lnto itself.

» A8 with all asymptotlcally approximate systems,
the important question of validity must be consildered.
Stokes equations give exact solutions only for Re = O,
In reality, of course, the Reynolds number must always
have some finite, though small, value.

Any body moving through a viscous fluid must
experience some resistance. Hence, if we consider the
momentum flux across a large surface surrounding the
body,‘it i8 clear that the magnitude of the perturbation
velocity cannot fall to zero more rdapidly than the inverse
square of the distance from the body. But the acceleration
of the fluid (proportional to inertia force) 1is a



constant multiple of the first derivative of the
velocity, while the viscous forces are a multiple of
the second derivative of the velocity. Thus the viscous
ferces can dominate everywhere only if the perturbation
velocit}es decay exponentially. Since they clearly

do not, we are faced with the inconsistency that a
solution to Stokes equations (at large distances from
the body) violates the very assumptions on which the
equations are formulated. In mathematical terms,
Stokes solution does not provide a uniformly valid
approximation to all the required properties of the
flow for a small non-zero Reynolds number perturbation
because of a singularity at infinity.

. Fortunately, however, it can be shown that the
solution does provide a uniformly valld approximation
to the total velocity distribution, but not the
derivatives, which are in error at large distances from
the body (6). Thus, one may safely evaluate bulk
properties of the flow, such as drag (see section 2.3).

. The foregoing limitations were realized by Oseen
(5) in 1910. Accordingly, he proposed the following

improvement.
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2.2 Oseen's Equations

Since the lnertia forces are important only at
large distances from the body, Oseen included a
linearized inertia term which accounts for them at
large distances, but remains small close to the body
where the viscous terms clearly continue to dominate.
For the remote boundary condition of a uniform stream

with a velocity, U, Oseen's equations are

W, _ gt
th"}x + SE _//4¢‘7 “u

W

QU v + ?;./av‘v

(2.3)

Q”*g‘?c""%f -t VW

u
%§+%*%=O
Flow governed by these equations will be called "Oseen
flow."

Clearly, equations (2.3) are still linear in
pressure and velocity, but there 1s now another parameter
involved, the freestream velocity, U,. Thus solutions
of the Oseen equations may not be superposed unless they
are both with respect to the same freestream uniform

velocity,
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By changing the signs of the velocities and
pressure gradients in (2.3) we observe that the equations
do not transform into themselves, so Oseen flow about
a symmetrical body does not have symmetrical streamlines,
Instead, the familiar wake characteristics appear,

. Proudman and Pearson (6) point out a popular
misconceptioﬂ concerning Oseen's equations. Consider
the velocity components to be written as u = U_ + u;,
Ve v', w = w!, where u!, v', and w' are perturbations
to the upiform flow. Now if the full incompressible
Navier-Stokes equations are linearized with respect to
therperturbation velocities, one obtaine equations (2.3)
ideRptically. However, this interpretation is entirely
wrong, and has resulted in misleading statements by
such writers as Lamb (13) and Schlichting (19) to the
effect that the equations are inaccurate near the body,
vwhere the boundary condition u' = -U_ would make such
a linearization ridiculous. Oseen's equations were not
intended to give a uniform approximation to the inertia
terms, and the dif:erence between Oseen's and Stokes!
theory near the body is of a small order, which neither
theory is entitled to discuss.
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In order to more clearly illustrate the characteristics,
applications, and validity of the Stokes and Oseen
equations, as well as fuirther improvements, let us consider

the specific problem of the flow past a sphere.

2.3 Flow Past a Sphere

The oldest known solution of Stokes equations was
given by Stokes himself in his original paper (1), for
the casgse of uniform parallel flow past a sphere, Detalls
of the method of solution are given in both Lamb (13)
and 'Landau and Lifshitz (20). For a sphere of radius a
in a uniform stream of velocity U, along the x-axis,

the pressure and velocity components are given as
3ax?/at a 2 ]
—— s D e 9-
u‘uo 4" r* ') q"_(s" r;)*"‘

veU, 3axy ____‘)]

4r’
wsU, i"“"”"(“ 1] (2.4)
- < _ 3 U, ax
P- P -‘%73—‘

Or, in spherical components,

3a ol
v, = U coso[i- -+ = ]
r - r ar (2.5)
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Knowing the velocity and pressure fields it is
a straightforward matter to compute the drag, which
Stokes found to be

D=6mmls.a (2.6)

One-third of the drag 1s due to the pressure fleld,
the remaining two-thirds being a result of viscous
stresses on the surface of the sphere.

In Stokes flow, it 1s common to use viscous force
coefficients, in which forces are non-dimensionalized
witp respect to viscous terms rather than dynamic
pressure as in the more familliar aerodynamic force
coefficients. Stokes drag equation in non-dimensional

form becomes

o= Zusa = " (2.7)

Thus we can make the following generalizations
which characterize the Stokes regime of flow:
1. The viscous drag coefficient, K, for a body
is a constant.
2. The drag of a body is independent of fluld density.
3. The drag of a body is proportional to the first

. power of the viscosity and the relative velocity.
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If we wish to use the more familiar drag coeffioients

based on dynamic pressure, we have

0= C,ma’s eUl = 6mul,a

. 24 = 2Usa
C.- Rc. ; Re —_'o——- (2'8)

Fig. 1 shows a comparison of Stokes drag curve, equation
(2.8), compared with the results of several experimental
investigatdons (38). Stokes drag is valid up to
approximately Re = ,60,

Now we can make a gualitative statement about
the validity of Stokes equations since we have a
speclflc eolution. The inertia forces are proportional
to pu du/dx . From equations (2.5) we see that for
large ©r, they are of order pqwa a/'r2 « Similarly the
viscous forces belng proportional to,/aaua/aya, at large
r are of order/4¢U? a/bj. The Stokes theory becomes
invalid when inertia and viscous forces become
comparable, i.e.,

CUa’ . Re X - 0() (2.9)
A

For very small Reynolds numbers, Stokes solution

does not break down until r is very large and freestream

conditions have almost been attalned. Hence, as Proudman
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and Pearson point out (6), although the higher
derivatives are inaccurate at large distances, the
total velocity field can be uniformly approximated.
Oseen provided the first improvement to Stokes
drag law with a solution to his linearized equations
(2.3) which account for the dominant inertia terms at
large distances from the sphere. It_ia most easily

expressed in the form of a Stokes stream function:

Ue [2¢2 4 @) sinte +
ve Tlers ) s oo
2.
3a® -fRe 5 (1-co36)
— e (| 4+C08O -e ]
==( )1 )
Stokes solution: equations (2.5), may also be expressed

in the same form, becoming
Y= 22 (2r'-3ar + &) sine (2.1)
4 r

Equation (2.10) satisfies Oseen's equations (2.3) and
the boundary condition at infinity. When r is of
order a (2.10) can be expressed in the form

’
@Y= Ys (2r*-3ar+ L )sin?e + O(Re) (2.12)
4 r
which agrees with Stokes solution and the relevent
boundary condition on the sphere, to ‘an adequate
approximation,
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To derive a solution of equations (2.3) which
satisfies the boundary condition at the sphere exactly
is very difficult, and of limited value in that the
governing equaﬁions themselves involve approximations
of the same order as those in the boundary conditions
of the solution (2.10). And the solution of an equation,
even though satisfying all boundary conditions exactly,
can never be regarded as accurate to a higher order
than that of the approximations made to formulate
the original governing equations.

Using Oseen's solution for the veloclty distribution,
the .drag on a sphere becomes

D= 6TuUza (I + -18-"—’35- (2.13)

In terms of a drag coefficlent, we have

Cpm %‘L (1+ % Re) (2.14)
or 3
o = éTr(".TZ»Re)

which clearly reduces to Stokes law (2.8) as Re -»O.

A graphical comparison of the Stokes and Oseen drag

laws with experimental data is shown in Fig. 1. In

spite of the increased accuracy with which the flow

fleld 1s represented, Oseen's law is accurate only to
approximately Re = 1, only a slight improvement to Stokes

formula.,
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The next improvement in theoretical analysis for
increasing Reynolds number was based on an expansion
technique begun by Lagerstrom and Cole (6),and Lagerstrom
and Kaplun (8) and developed further by Proudman and
Pearson (7). This method develops locally valid
expansions based on Oseen flow far from the body
and Stokes flow close to the body. The two expansions
are computed to satisfy their respective infinity and
surface boundary conditions and are matched in a
common region of overlap. This technique offers improved
accwracy to Oseen solutions, but it also becomes
invalid at relatively low Reynolds numbers since the
two expansions eventually fall to have a common region
of validlty.

Using this method, Proudman and Pearson arrived
at the following formula for the drag of a sphere in

viscous uniform flow:

160
Equation (2.15) which obviously reduces to both

C,- %(H%Re + 2 Retln(%i)+0(‘3‘_:f)) (2.15)

Oseen's and Stokes! drag formulas as Re -+ 0, 18 accurate
to approximately Re = 1.6 as shown in Fig. 1. Unfortunately,
this offers very little improvement over Oseen's

solution,
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Fur@her attempts to find more accurate analytical
solutions have been based primarily on relaxation
methods for numerically solving the governing equations.

Pearcy and McHugh (11) performed a numerical
solution of Oseen's equations for the uniform flow past
a sphere at Re = 1, 4, and 10. Unfortunately such solutions
provide little new information, since, as was pointed
out earlier, Oseen's equations become increasingly
inaccurate for Re >»1l.

Jenson (12) carried out a numerical solution by
relaxation techniques of the complete Navier-Stokes
equations for uniform flow past a sphere. He presents
solutions for Re = 5, 10, 20, and 40. This method
appears to be very effective in determining most of
the characteristics of the flow fleld. Drag coefficients
80 determined match very well with experimental values.
His results indicate that separation at the rear of
the. sphere begins at Re = 17.

Now consider the motion of a sphere in a shearing
flow. If the Reynolds number 1s low enough that
Stokes equations are valid, this case may be reduced
to two simple flows which can be superimposed. Since
both velocity and pressure are linear in Stokes!

equations, one may add the forces directly as well as
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the velocity fields. Hence constant shear flow (linear
velocity profile) with a mean velocity V past a

sphere can be considered to be the result of a uniform
flow velocity, V, past the sphere superposed with a
symmetric shear flow of zero mean velocity at the
sphere. Since the symmetric shear flow produces only

a moment, but no drag, the drag of a sphere in a

constant shear flow with mean velocity, V, 18 merely

D= GTy—«.Vq (2.6)

as predicted by Stokes for uniform flow. It is also
clear that if the sphere is rotating, one may again
merely superpose the symmetric flow field for a sphere
rotating in a fluid at rest. Since no drag i1s produced
by pure rotation, equation (2.6) may still be used tr
predict the drag.

All of the above Stokes flow problems have been
solved analytically. The uniform flow, solved by
Stokes has already been given. Vand (21) and Jeffery
(22) give a solution for symmetrical linear shear flow
around a sphere which is rotating freely. To get the
flow for a stationary sphere in shear flow, one mxrely
subtracts the solution for a sphere rotating at zero

mean velocity, given by Landau and Lifshitz (20).
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For a sphere of radius a rotating about an axis
perpendicular to the x-y plane at an angular velocity,
W , the velocity field is given by

3
o
U —— W
rs @Y
(2.16)
3
va £ wx
r'!
and the net moment on the sphere can easily be shown
to be
4
M= - 8dmww (2.17)
Vand's solution for a freely rotating sphere in a
linear shear with infinite boundary conditions
us= SYI vso, wWs=0 (2.18)
i1s given as
se[ 2y (- 2], g0- <
T2 re (l—:‘)]" y(i- 'é',_‘s)
V= 5 g [ O?x!.z(‘ Ol ] S a‘x (2 19)
e Sl (- R)- v

we-ge[ 2R (- 2]
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By setting r = a in the above equations it is clear
that the sphere is rotating with an angular velocity w
such that

= - L
w= 5 S (2.20)

Thus, to obtain the flow fleld for a stationary sphere

1, merely subtract

in shear flow with a shear S sec”

equations (2.16) from equations (2.19) with w= -§/2 .
For uniform flow 1t is usually sufficlent to

desgribe most phenomena in tems of the Reynolds number

given as

Re = %ii (2.21)
where V 18 the relative velocity and d a characteristic
length. However, when the flow is shearing, another
parameter, the shear S, must be included. For this
case the mean velocity can even be zero, Thus it is
proposed that a second Reynolds number based on shear

be formulated as follows,

|
Rei = %‘- (2.22)

A similar parameter was introduced by Taylor (40) in
1923, but it was defined in.terms applicable only to

the flow between rotating concentric cylinders.
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It is obvious that for a constant Re based on mean velocity,
such properties as drag, moment, etc., may very widely
as ReS changes over a wide range. For pure Stokes flow,

the influence of Re, 18 negligible, but it becomes

S
increasingly 1mport;nt as both Reynolds numbers are
increased. Another parameter which may be of importance
in shear flow is the ratio of body rotation to shear
rate, /s,

One should also observe that for pure Stokes
flow, there can be no transverse force developed on a
sphere due to stream shear and/or sphere rotation because
of the complete symmetry of all the component flow
patterns. This may also be seen as the result of the
fact that transverse forces in this case must be the
result of inertlia forces. But Stokes flow neglects
completely all inertlia terms.

Note, however, that as shown earlier, the inertia
terms do exceed viscous terms at large distances from
the body. But they do not affect the bulk properties,
such as drag. However, 1t is quite possible that
second or third order lnertia terms may produce second
or third order effects such as transverse forces which

depend on the effects of lnertia terms. An interesting
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study by Rubinow and Keller (23) illustrates this
phenomenon quite clearly. They used the expansion
method of Proudman and Pearson to show that the 1ift
on a sphere spinning at an angular veloclity w and
moving with a veloclty V through a viscousv}iquid

is given by:

Lift = W o*(@xV)[1 + O(R‘)] (2.23)

This is clearly related to the familiar "Magnus effect",
and is independent of viscosity to the first order.
It is more instructive to form a lift-drag ratio to

illystrate the relative magnitude of the forces.

A8 Re =0
Lirs _ wealwV alw R
- a £ - €w (2.24)
Y
‘i w G
where Re, =
“°79

Thus for a given sphere and fluid, the lift/drag
ratio is directly proportional to angular velocity @W.
However, for decreasing Reynolds number based on w ,
the 1ift/drag also decreases proportionately. This
result applies only for uniform flow past a splnning

sphere,
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One must be very careful in applying the above
results to actual situations for this reason. The
1ift is entirely the result of considering the inertia
effects a large distance from the body. Thus the
presence of a finite wall or boundary even far from
the body which can alter or mask off the inertia terms
will change the 1ift quite radically, while having
virtually no effect on the primarily viscous effects
such as drag. Unfortunately, such effects are most
difficult to predict, but are quite significant, as is
shown clearly in Chapter IV by the effect of a wall on
an infinite circular cylinder. Because the region
of significance of inertia terms moves farther and
farther away from the body as Re decreases, and
because the extent of a fluld 1s always finite,
there l1s always some lower limit for the Reynolds
number for which an analysis based on the effect of

inertia terms must become invalid.
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CHAPTER IIIl

EXPERIMENTAL APPARATUS

3.1 Shear Flow Tank

3.1.1 Introduction - The experimental program

of this thesis required a rectilinear constant shear
flow.(linear velocity pfofile) which was large enough
to generate measurable forces on test models suspended
in the flow. Practically all previous attempts to
analyze shear flow phenomena in the laboratory have
made use of rotating concentric cylinders. Several
investigators have used thilis technique, and a typical
example of such a device 1s described in detall by
Trevelyan and Mason (24).

when the gap between the cylinders is small
compared to theilr dlameters, a nearly linear shear
flow exists between the, cylinders which rotate at
unequal angular velocities. The flow profile 1s not
exactly linear because of centrifugal forces, and is

easily found to be:
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2.2
u(r)= r:_ rt [r(“’zraz“ wrt)- EFG (w;-q )] (3.1)

3
Where u is the radial velocity, r is the radial

distance from the axis of rotation, ry and r, are
the radii, and 601 and 602 are the angular velocities
of the inner and outer cylinders respectively. The

radial distribution of shear then becomes

d(!i'(:))’ (wz"wu) r'.?-r‘z
dr Cr‘l_ r.!) rl

g=r

(3.2)

But S must be constant throughout in a pure constant '
esncar flow (Couette flow).

Besides this drawback, the gap between cylinders
in most practical devices must be so small that wall
efgects predominate for anything larger than microscopic
particles., This makes it almost impossible to generate
measurable forces. Further difficulties result from
the Taylor instability of flow between rotating cylinders,
rendering this device virtually useless for studies
of rectilinear shear flow stability, as well as
interface stability in a shear flow.
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Another method of producing a uniform shear flow
was developed by Owen and Zienkiewicz (25). They
installed a grid of rods in a wind tunnel upstream of
the test section. By properly spacing the rods a
linear shear flow superimposed on a mean flow was
obtained. This same technique was used by Vidal (26)
to obtain a nonuniform shear pattern in a wind tunnel.
Though very successful for many applications, this
ﬁethod cannot be employed for low Reynolds number
experiments. A further limitation resu;ts from the
fact. that a flow generated in thils manner 1is
turbulent, rather than laminar. Also, the flow must
always be superimposed on a relatively high mean
velocity.

‘The first successful technique of generating a
low Reynolds number rectilinear shear flow was
developed by Reichardt (27). He used a single endless
belt rotating on two revolving drums as shown in Fig. 2.
He found that a linear Bhear flow existed on the
free surface between the .two inner side. of the belt.
His apparatus was used primarily for streak photo
studies of flow patterns past cylinders and the effect
of turbulence on the velocity profile (28). Although
it has proved quite useful, it is felt that the Relchardt
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apparatus has several disadvantages: (1) The end
effects extend well into the test section. (2) It is
very difficult to keep the belt perfectly plane and
free of vibration as it moves past the test section.
(3) Visual and physical access is limited to the

free surface at the top of the tank. (4) Only a
perfectly symmetrical flow with zero mean velocity can
be generated. (5) Studies of interface stability

in a shear flow are impossible.

1 The apparatus developed by the author and
described in the following sections overcomes all of
the difficulties mentioned above, and provides a
very versatile technique for investigating phenomena

assoclated with a shear flow.

3.1.2 Description of Apparatus - A schematic

drawing of the apparatus is shown in Fig. 3. Four
rollers are driven by a system of belts-and pulleys
from a variable speed drive. Each pair of rollers
is supported by arms extending from flat plates.

The plates provide rigid walls on each side of the
test section and prevent vibrations and waves from
developing in the flow generating belts. The belts,
which are stretched over each palr of rollers, are

made of rubber sheet.



29

The system 1s immersed in the fluid and induces
the flow indicated by arrows in Fig. 3. It was necessary
to perforate the rollers to prevent the fluid entrained
between the moving belt and roller from acting as a
lubricant and allowing slippage. This allows fluid
to flow through the roller, rather than between the
roller and the belt. In addition, it was found necessary
to glue strips of abrasive gloth on the rollers to
prevent slippage. This arrangement is shown in Fig. 4.
The plate supportipg the driving belts on each side
of the test section needed lubrication to allow the
belts to slide smoothly. Therefore, a number of
holes were drilled in the plates.

. In the course of the investigation, two shear flow
tanks were designed and built. The first one (Tank 1)
was; bullt to test the basic concept, and to refine the
operational difficulties encountered., It was
subsequently used for many of the experimental investigations
of this thesis. The second, (Tank 2) was designed by
the author at the request of Educational Services, Inc.,
for use in an educational movie on volume kinematics.

It incorporated several improvements over Tank 1,
primarily in mechanical details., There were also

minor changes in dimensions. The tank itself was
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constructed entirely of plexiglas,. affording visual
access to the test section from both ends, the
bottom, and the top free surface. Table 3.1 glves a
tabulation of the properties of bhoth tanks. Figs. 5
and 6 are photographs of Tanks 1 and 2 respectively.
Note that the entire system of belts and mechanisms
are mounted on the removable 11d of the tank, for

convenient access.

3.1.3 Calibration and Performance - The apparatus

uscd aqueous glycerol as a working fluid. By changing
the relative concentration of water and glycerine, the
viscosity could be varied by a factor of 103.

To provide a thorough cross check, the velocity
profiles were determined by several independent
methods.

In the first method, velocities Qere determined
by bbserving the motlon of small partlicles suspended
in the fluid. The particles were observed by eye
through two grids, to eliminate parallax, and timed
by stopwatch. The flow field was illuminated through
& 8511t by collimated light from a slide projector.
Velocity observations could therefore be made in one

horizontal plane at a time,
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The results are shown in Figs. 7, 8, and 9, where
velocity U 1is plotted as a function of the distance
nomal to the plane of the belts in the region midway
between both ends of the test section (see Fig. 3).
Clearly, the shear, S = dU/dy, is constant in the test
section. The flow also appeared to be two-dimensional
for a depth of approximately 2/3 the total depth of the
belts. The preceding results were taken with the belts
moving at equal and opposite velocities past the
test section. Data was also taken with one belt
stationary. The velocity profiles for this case are
shown in Flg. 10, The profile 1s no longer linear and,
as shown, 1is clearly a function of Reynolds number,
Thus, all further tests and experiments involving
drag measurements were made with the belts moving
at equal velocities, resulting in a symmetrical linear
shear flow in the test section.

It was belleved that this lack of linearity for
unequal belt speeds was a result of insufflicient
distance between belt and wall in the return flow
section to accommodate[the necessary mass flow. With
a much wider tank, and a sufficiently large length to
wldth ratio of the test section it was believed that

a linear velocity profile with a zero velocity plane
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at any desired transverse position in the test section
could be generated.

To verify this, Tank 1 was modified considerably
after the drag experiments were concluded. The belts
were moved much closer together, increasing the test
section length to width ratio from 4.65 to 13. This
also 1ncrg?sed the width of the return channels. A
further improvement was made to insure the existence
of two-dimensional flow. The working fluid was a
light transmission oil -which floated on water. The
interface was located about midway between the top
and bottom edges. 1In effect, this results in two free
surfaces in the oil, thus minimizing the vertical veloclty
gragdient.

Tests were run with one belt completely stationary.
The velocity profile was determined by taking a time
exposure of white particles suspended on the surface
of the oil. The resulting streak léngths are directly
proportional to the velocity. Fig. 11 shows two
typical photographs. They are negative prints, hence
the streaks are black on a white background, Fig. 12
shows the resulting velocity profiles as measured from
the photos in Fig. l1l. Clearly, the profile 1s linear
for Ress 104, Observation showed that the profile began
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to deviate from its linearity at approximately Re = 120,
This critical Reynolds number should increase with
increasing length/width ratio of the test section
since the deviation is the result of end effects rather
than a flow instability.

Since the velocity profile has been verified to
be linear for the two limiting cases (zero velocity
plane at y/H = 1/2 and y/H = O or 1.0), one may
conclude that the zero velocity plane may be transferred
to any desired y/H by adjusting the relative speeds
of the two belts. This property increases considerably
the ‘versatility of this type of shear flow tank.

Another method of determmining the velocity profile'
at the surface consists of observing the deformation
of a pattern on the surface of the fluid. This technique
is described in section 3.1.4. Fig. 13 shows a series
of photographs taken at.5 second intervals. Clearly,
the straight line arrangement remains straight, indicating
a linear velocity profile.

In order to determine the veloclty profile in
the vertical plane parallel to the belts another
technique was used. A gpot of dye was dropped on the
surface. Then, with the flow fully developed a small
' brass sphere was dropped through the dye spot leaving
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a thin vertical streak in the flow. (The velocity

of fall was much greater than the flow velocity).

The dye streak moves with the flow, showing the shape
of the veloclty profile. A photograph 1s then taken,
from which the velocity profile can easily be determined.
Fig. 14 shows the results of such an investigatlon in
Tank 2. The flow 18 perfectly two dimensional over
approximately half the depth of the belt. The velccity
drops to 90% of the linear velocity profile at
approximately three-fourths the depth of the belt.
Nataarally, the profile is a function of the lateral
distance from the belt, y/H. Fig. 15 shows the
approximate area of the test section’in which the
veloclty at a given point is within 10% of the

surface velocity at the same lateral distance, y/H.
Fig. 16 18 a typical photograph used to determine the
vertical plane velocity profiles.

The entrance length, l.e., the distance from the
ends of the test section required to establish constant
shear depends on the Reynolds number, Re = SHa/Q . By
gradually decreasing the viscosity of the fluid it
was found that the maximum Reynolds number for constant

shear in the test section of Tank 2 was approximately

8
Reg= 55+ » 400



35

This limiting Reynolds number increases with increasing
length to width ratio of the test section, as shown

in Chapter 6. An additional study of the breakdown of
the linear profile and the gradual transition to
turbulence is presented in Chapter 6.

In this apparatus the flow in the return channels
between the belts and the tank walls is also approximately
a constant shear flow, and the flow only has to adjust
to having turned a corner. Thus the region of flow
adjustment at the test gection 1s short.

: To provide a smooth transition from the test
sechlon flow to the bottom of the tank, the distance
from the lower edge of the belt to the bottom of the
tank 18 approximately equal tohalf the widph of the
belt.

The speed of the helts varied from zero up to
about qne foot per second. In this range surface

waves were always negligible,

3.1.4 Applications - As i1s often the case, a

device invented for one‘particular use turns out to
f :
have direct application to a great variety of problems.

Such is the case with the shear flow tank.
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The shear flow tank was originally designed for
the purpose of measuring the forces on various test
models suspended in shear flow from a simple beam
balance., It fulfilled this purpose very well, and
suggested many further investigations for which the
concept of a rectangular test section bounded by moving
belts would be useful.

One major area of usefulness 1s that of flow
visualization. Tank 2 was used by Educational Services,
Inc. in an educational movie on "Kinematics of Deformation."
Using copper bronzing powder forced through silk
screen stenclls, various patterns were lald on the surface
of the test section. As the patterns distorted with
the-shearing fluid, the effects of shear, straln, and
rotation were graphically illustrated. One typical
series of pattern deformations is shown 1in Fig. 13.

Another interesting flow visualizatlon study
was carried out by the author. Figs. 17 and 18 show
examples of symmetric shear flow about a circular
cylinder. With the center of the cylinder at the
zero velocity streamline of the undisturbed linear
shear flow, the unusual double wake phenomenon appears.

Streamlines are visualized by injecting dye from inside
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the cylinder into the external flow. Fig. 18 illustrates
clearly the existence of four stagnation points on the
cylinder.

This_type of apparatus can also be used for a
variety of studies of hydrodynamic stablility. The use
of moving boundaries opens the possibility of rendering
many phenomena at stationary phase, Examples of
pogsible areas of investigation are : stabllity of
an interface in a ahear'?iow; stabllity of a shear layer
withcheat transfer; stability of a shear layer with
suspended particles. The:above investigations require
turning the belt system on its side, so that the belts
move in a horizontal plane. Then the upper and lower
boundaries of the test section are completely independent,
and an interface between two liquids can be maintained
in the test section without contamination, as would

be the case with only one belt.

.2 Balance System

Fig. 19 1s a schematic of the simple beam balance.
A photograph is shown in Fig. 20. All knife edges

are ordinary razor blades resting in steel grooves.
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The sensitivity weight allows one to adjust the '
sensitivity of the balance by varying the distance
below the main knife edge of the balance center of
gravity. The balance has been used to measure forces
on models with a resolution of less than 5 dynes.

A small mirror on the balance reflects a narrow
beam of light from a fixgd source onto a scale approx-
imately 6 feet from the balance. Measurements are made
by balancing the model force with known weights in
the weight tray, untll the light beam indicates the
null position (see Fig. 21).

5.5 Measurement of Fluld Characterlstics

The viscosity of the test fluld was meacured with
Cannon-Fenske viscometers (Fig. 22). Since it is a
gravity flow device, it gives kinematic viscosity
directly. The speciflc gravity of the fluid was
measured with a standard hydrometer. Since the
viscoslity of aqueous glycerol is very sensitive to
temperature, 1t was necéssary to account for the
difference in temperatuﬁe of the fluld in the tank during
experimental runs, and of the sample used to measure

viscosity. A standard mercury thermometer was used,
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The magnitude of the correction was determined from
extensive data on the properties of aqueous glycerol
found in Ref. (29).

All measurements of model dimensions were made
with a micrometer, accurate to one-thousandth of an
inch, and machinist's rule, accurate to one-hundredth
of an inch,

All time measurements were made with an electric
stop clock which read to the nearest hundredth of

a second.,
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CHAPTER IV

DRAG OF A CIRCULAR CYLINDER

4,1 Theoretical Considerations

The flow about a two-dimenslional circular cylinder
presents a very interesting problem because there is
no solution to Stokes equations which will satisfy the
boundary conditions both at the cylinder and at
infinity in an unbounded flow. Thls illustrates a
fundamental difference between the nature of two-and
three-dimensional viscous flow. In two-dimensional
flow the inertia forces a large distance from the body
exert a much greater intluence on the total flow field,
making it mathematically impossible to obtalin a
uniform approximation to the total velocity as was
the case for three-dimensional flow. Thus for a circular
cylinder Oseen'!s equations must be used at the outset.
Lamb (13) obtained the solution to Oseen flow past
a circular cylinder. His solution led to the following
formula for the drag per unit length:

D, _4muV (4-2)

ST
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where x is Eulers constant, ¥ - «5772... If equation
(4.1) is expressed in terms of a viscous drag coefficient,

it becomes

D 546

= ZyT vo (4313 (4.2)
Re

vd

)

Experiments have shown that equation (4.2) is valid

Re =

for Re € .6 (see Fig. 21).

" For analytical solutions at higher Reynolds
numbers, one must either employ expansion techniques
as déscribed by Proudman and Pearson (7) (see section 2.3)
or solve the complete equations by relaxation techniques.

Both Proudman and feérson, and Kaplun have solved

the cylinder flow problem for uniform flow by the
Stokes-0seen expansion method (7, 9). Using this
same. technique, Bretherton (30) solved for the flow
about a circular cylinder in simple shear. Unfortunately
his solution is very restrictive, and the special
casg of uniform flow (S#0) cannot be deduced from his
solution. Kaplun's solution led to a circular
cylinder drag formula as follows:

z““én) (403)

ne2

O
41}«V

=e(l+
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ez[In (ge) + 3 —“J-l

No improvement is realized over Lamb's drag equation (4.2)

where

unless several values of @, are calculated. Kaplun
calculated only a, and indicated the laborious process
by which higher order values of o, may be calculated.

Several authors have employed numerical methods
to obtain solutions for flow about a circular cylinder.
A finite difference method was used by Thom (31) to
solve the full Navier-Stokes equations for flow past
cylinders at Re = 10, qu this method was used by
Kawaguti (32) for flow ﬁast ¢ylinders at Re = 40,
This extremely laborious method was improved by several
workers and developed into relaxation methods which
were used by Allen and Southwell (10) and applied to
fhe cylinder flow problem at Re = O, 1, 10, 100, 1000
with satisfactory results.

Although it 1s impossible to satisfy bouddary
conditions at the cylinder and at infinity using
Stokes equations, it is possible to satisfy boundary
conditions on boundaries which are only a finlte
distance from the wall. This fact can be established
by rigorous mathematical deduction. However, the

following intuitive argument leads to the same conclusion:
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Although the inertia terms become comparable to viscous
terms only at large distances from the body, they
nevertheless dominate the nature of the flow in the
two-dimensional case, making it necessary to use
Oseen'!s equations at the outset for flows of infinite
extent. However, if a boundary 1is placed in the flow
closer to the cylinder than the region for which
inertia terms become significant, then the boundary
will, in effect, shield the cylinder from the inertia
effacts, resulting in a -purely viscous, or Stokes flow.
: The inertia terms become significant at distances
cloger and closer to the -body as the Reynolds number
increases. This is quite apparent in the transition
from, Stokes flow to boundary layer flow with increasing
Reynplds number. Thus, one may regard the flow past
a cylinder between boundaries a finlte distance away
to be Stokes flow for very low Reynolds numbers.
Then as Re increases the flow willl eventually become
Ose¢n flow when the lnertia terms become of importance
inside the boundaries, Further increases in Re should
congiderably minimize the effects of the boundary.
Of course, the Reynolds number at which transition
from Stokes to Oseen flow takes place 1s a strong

function of the geometry of each particular case.
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This transition from Stokes to Oseen flow is
most readily apparent in the drag of the body. For
a circular cylinder, the Stokes drag will be of the

form

/a—VE—D = constant (4.4)

where the constant is a function of the wall distance
and conflguration. At some Reynolds number, equation
(4.4) must become invalid as inertia forces take

effect, and then one must use Lamb's law,

D - 5.46
VL 7 joa( 24
G\ —
A (%)
which indicates an increasing drag coefficient as Re

(4.2)

continues to increase. One would expect this transition
to occwr at lower and léwgr Reynolds number as the
characteristic distance from the cylinder to the

walls 1s increased.

This type of flow behavior was indicated experi-
mentally by White (33) who determined the drag of fine
wires falling sidewise in circular containers by
measuring their velocity of fall. He had set out to
verify Lamb!'s law of drag at very low Re, but found
out that the wall effects completely dominated the flow,

resulting in Stokes flow over almost the whole Reynolds
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number range for which he tested, even for boundaries
500 diameters away. The highest Reynolds numbers did
show a transition to drag coefficlents identical with
accepted values for infinite flow past a cylinder.

The only theoretical solution of Stokes equations
for flow past a two-dimenslonal circular cylinder in
a finite channel was obtained by Bairstow, Cave, and
Lang (34). By means of a numerical method of successive
approximations, they solved Stokes equations for two-
dimensional Poiseuille fdow through a channel past a
circular cylinder with a dlameter equal to one-fifth
the, width of the channel. This solution gave the

drag relationship:

,’;%T‘ =71 (4.5).

where V i8 the maximum velocity in the channel.

Wheh flow past a cylinder is governed by Stokes
equations one may make the same assumptions concerning
shear flow as discussed‘;n section 2.3, That is,
the drag on a cylinder 15 simple shear in a finite
channel with a relative velocity V at the cylinder 1is
identical to the drag produced by a uniform stream in

the same channel moving at a velocity V,
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4,2 Experimental Investigation

4,2.1 Introduction - Although Lamb obtained

his drag law for Oseen flow past a circular cylinder
in 1911, it has only been in comparatively recent
yeargthat reliable experimental drag data for cylinders
has been produced. One of the earliest investigations
was made by Wieselsberger (35) in 1921. Using a wind
tunnel, he measured the drag on thin wires in the

Re range:
6
4% Re <10

An earlier study by Relf (3%6) in 1914 had reached
Reynolds numbers only as low as Re = 10. The next
significant experiments were carried out by White (33)
in f§46. His drag data reached Re = .6 before wall
effects became dominant. This is the threshold of
validity of Lamb's law. The first substantial
verification of Lamb's law did not come until 1953,
when Finn (14) extended drag data to Re = ,06.

He determined the drag by measuring the deflectlon of
fine wires in an air stream. In 1959, a study of
cylinder drag was done by Tritton (37) who observed the
bending of quartz fibers in the range of .5 $Re<100.
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The present experimental study was undertaken
because of the lack of data in the very low Reynolds
nunber range, and the, as yet, undetermined quantitative
influence of wall effects for the simple configuration
of a circular cylinder between parallel plates. 1In
addition, there h#s been virtually no experimental
data for the drag of a cylinder in shear flow.

The purpose of the following investigation was to
determine (1) the magnitude of the drag of a two-dimensicnal
circular cylinder between parallel walls as a function
of :wall-cylinder geometry and Reynolds number, (2) the
nature of the transition from Stokes to Oseen flow,
and (3) the influence of shear on the drag.

The experiments were performed using the shear
flow tanks and experimental apparatus described in
Chapter III.

Drag measurements were made with many different
cylinder sizes under a great varlety of conditions in
order to verify the dimensional similarity relationships
as well as to vary the dimensionless parameters over
as wide a range as possible. As a further check, drag
measurements were made using both Tank 1 and Tank 2

(see Table 1), Table 2 summarizes the range of
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parameter variations in the circular cylinder drag
experiments. Fig. 24 is a photograph of all the
cylinders tested.

4,2,2 Finite Length Effects - It was necessary

to evaluate possible end effects of a finite length
cylinder in order to interpret the data taken in terms
of a two-dimensional, infinite length circular cylinder.
Possible corrections arise from three different sources;
(1) effect of the submerged end of the cylinder on the
two-dimensional drag, (2) surface tension drag, and

() surface wave drag.

In order to evaluate these corrections, drag
measurements were made on cylinders of the sane
diameter, but with different lengths. Figures 25 and 26
1llystrate the results., Since the drag ccefficient
remalned independent of the length to diameter ratio
(aspect ratio) for both diameters tested, (within
the accuracy of the measurements) it was concluded that
all end effects were negligibly small, since for all
additional tests, L/d=28, and end effects will naturally

decrease with increasing L/d.
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4.2,3 Results - Figures 27 and 23 plot drag

coefficient, a, versus Reynolds number, Vd/) , for
various values of the wall nearness ratio, d/H. This
family of data was taken with the cylinder axis located
at y/H = 1/3. This same qualitative variation is
obtained for all values of y/H (until the cylinder
contacts the wall).

It 1s clear that at low Reynolds numbers the
results indicate the exlistence of Stokes flow,

;;g%q:— = constant

With increasing Re, the drag curves eventually merge
with Lamb!s curve and the accepted drag curves for
infinite extent flow. All of the drag data were
taken 1in shear flow., This has no effect in the Stokes
regime, as explained in Section 2.3. It appears also
that in the shear range of this experiment, the shear
has little or no effect during the initial stage of
Oseen flow either. As &/H increases, both the Stokes
flow drag coefficlent and the Reynolds number of
transition from Stokes flow to Oseen flow increase.

Fig. 27 indicates that in the Stokes flow regime,

the viscous drag coefficient is a function only of the
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wall nearness ratio, d/ii. Fig. 29 is a plot of the
Stokes flow drag coefficient as a function of d/H.
These experimental polnts are described quite well by

an emplrical formula of the form

_ D _ 6.3
VL T '109 H
ol

(4.6)

= I*Q

where V 1s the undisturbed relative veloclty at the
cylinder axis. Equation 4.6 is valid for a cylinder
distance of y =<i/3&1frpm the wall. In order to
determine the drag of a.¢ylinder midway bHetween
parallel walls, 1t was necessary to measure the drag
at several values of y/H and extrapolate to y/H = 1/2,
since the veloclty was zero at the center of the test
section. The belts were alﬁays run at equal and
opposity velocity past the test sectlon to insure
perfectly linear shear flow.

Such an extrapolation led to the empirical formula

5.9
H
log "

Pig. 30 shows the variation of a as a function of y/H.

(o4

y (4.7)
L}

- §
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The experimental scatter of data makes it difficult

to give a quantitative formula for the drag variation
with lateral distance., However, one may conclude that
the Stokes drag of a circular cyllnder between parallel
plates is given empirically by the formula

log £ = K(%) (4.8)

where K(y/H) increases monotonically from K(1/2) = 5.9
to K(0) = @, Note that K increases only about 13%
as y/H varies from 1/2 to 1/6.

Thﬁs it is clear that there are two distinct drag
laws for clrcular cylinders between parallel plates;
Equation j4.8); and Lamb's law, equation (4.2).

For low Reynolds numbers (4.8) applies; but with
increasing Re, inertia forces became significant,
"shielding" the cylinderéfrom the effect of the walls
and the drag i1s the same as that in an infinite
fluid. Then (4.2) is valid (if Re £.6). To determine
the approximate region of transition, (4.8) and
(4.2) may be solved Simultaneously for the transition

Reynolds number, ReT.
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As Fig. 27 shows, the actual Reynolds number at which

Lamb's law starts to become invalid may be from 25%

to 50% higher than Re

T

gilven by (4.10) since the

transition takes place gradually over a region in

which Re may vary by a factor of 2,

White (33) made a few measurements of the drag

on cylinders falling midway between parallel plates.

However, hils data had an unusually high amount of

scatter and some questionable end corrections were

also applied. Taking the mean value of his data which

(4.9)

(4.10)

was all in the Stokes regime, he found that K(1/2) = 6.4.

This compares with K(1/2) = 5.9 found in this study

which is believed to be more accurate because of the

reduced scatter and direct force measuring technique.
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. The dreg coefficient found by Bairstow, Cave,
and Leng (34) is given as

= d_ |
x=71l, Q=3 (4.5)

In terms of equation 4.8 this gives a value of

K(1/2) = .§0. However, this is based on the maximum
velocity in the chiannel. Thus, it appears that a
c¢ylinder moving et velocity V through a channel with
the fluid et rest experiences the seme drag as a
cylinder at rest in the same channel with fluld flowing
past in a psrabolic profile with e meximum velocity of
1l.18V. This may be subject to a further correction since
i1t assumes that equation (4.7) can be extrapolatnd to
4/E=.,20, The highest value verified in this study
was 4/H =,104,

One factor bas not been mentioned yet. There is
probably a draz contributicn from the walls due to
asymmetric boundaries when %¢%’ even though the
undisturbed relstive velocity at the cylinder axls
is zero.,. One would expect this drag to be negligible
cbmpared to the draz cdue to the undisturbed relstive

velocity V as long sas

\Y) (4.11)
and Yy
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Since the conditions of cquations 4,11 were met for all
the tests, the drag due to asymmetry of the boundarlexy
was negle cted.,
There 1s another interesting characteristic of tihis type

of [low which should be noted. In the Stokes flow regime, the
drag 1s independent of the Reynolds number, as shown o
Figure 27, and {or 3towes flow between parallel walls, o
drag on a circular cyiiuader is

- D = constant;&fLVL (4.12)
Clearly, the drag is dndeperndent of cylinder diamcter, ws

55 ratio d/h remains fixed, sine2

[

long as the wall :earn
‘the constant In cquation (4.12) is a function of d/..
Altnougn seemingly paradoxical, thils phenomenon nmiy too
explalned quite slmply in physlcal terms. The drag due tb
vigeceslty i3 tao result ol a snearing force at the surface
of tlic cylinder, But as d Increases H must increase pro-

portionately. Thus tihe distances over which velocity

”
S

[¥]
<
1
©
(99
,

sradlionts must ta are Increased, and the shearlay
rates tnen decercase just the sight amournit to compensate oo
tirz loncreasced surlace arca. This same line of rocsoning
2150 aceownts for tho constancy of the drag due to pressuin:,
Tae net reselt s that Tor constant Jr V and o/h, tho
diameter ¢f 2 cylinder may be increased indeflinlitely without

cnon_dng the dran; per unilt length, as long as the Reynolds

naaabar does not oxceed the limits for Stokes flcow.
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CHAPTER V

DRAG OF A SPHERE

5.1 Introduction

Unlike the case of drag of a circular cylinder,
there has been a great deal of experimental data on
sphere drag for many years, Reference (39) gives a
comprehensive bibliography of experimental sphere
drag studies. All previgus data has been for the case
of uniform flow past a sphere. However, the motion
of spheres in shearing Ilows has become of considerable
interest in recent years. Several workers have studied
phenomena assoclated with neutrally bouyant spheres in
laminar pipe flow. But neutrally bouyant particles
are certainly the exception rather than the rule.
Hence, 1t is felt that some basic experimental methods
should be developed for the study of forces on particles
in simple shear flow. Thus one can obtain data which
may shed light on some of the more complex phenomena
assoclated with non-linear velocity profiles and

unsymmetrical boundary conditions.
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This chapter describes the technique used to
- measure the drag of a stationary sphere in simple shear

flow. Results of measurements taken over the range
-2
3.8x10 £Re=2.3

are presented also, In this range there is a lnown
theoretical solution (see Chapter II); thus one can

assess interference effects accurately.

5.2 Experimental Apparatus

Experiments were performed using the shear flow
apparatus described in .Chapter III. The test spheres
were mounted on thi.. circular cylinders which were
suspended from the beam balance (see Fig. 20). During
all tests the spheres were located at a distance
y =(1/3)H from the test section wall (belt), so that
the& would experilence a relative velocity. A wide
variety of model dimensions were used to accurately
confirm the results. The range of test conditions are
summarized in Table 3., Fig. 31 defines the model
dimgnsions. A photograph of all the sphere models
tested 1s shown in Fig. 32.
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'é- 2 Results

The resulta of the experiments are shown in
Flgures 33, 34, and 35. The drag values were deduced
in the following manner, First the total drag on the
sphere and cylinder was measured. Then the drag of a
cylinder alone, of the same dimensions as the cylinder
mount, was subtracted from the total drag. The dylinder
drag was obtained from the data of Chapter IV. The
remaining drag was that of the sphere plus interference
drag. (For detalls of this calculation procedure,
sce Appendix A.) This remainder is plotted in the
above mentioned graphs. These results indicate that
within experimental accuracy, the drag coefficlent of
a sphere 18 independent of the mounting geometry in
the ranges tested. Furthemmore, this drag coefficient
i8 equal to the Stokes drag coefflcient for uniform
flow of the same mean veloclty, as predicted by the
theoretical analysis of Chapter II. This data provides
an excellent experimental verification of the linearity
of Stokes flow in both pressure and velocity.

Since the interference drag appears to be negligible,
this technique provides an exoellené method for similar

studies in the higher Reynolds number range.
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Interference effects would be expected to even decrease
as Re lncreases, since the extent of perturbations
are at a maximun in Stokes flow,

All of the drag data is for a non-fotating sphere.
Several attempts were made to construct a mounting on
whlch the sphere could rotate freely in the shear flow.
However, all attempts proved unsuccessful except with
the sphere at zero mean velocity. The friction due
to the drag forcing the sphere against the bearing
surface was too great compared to the extremely small

moment due to shear to allow the sphere to rotate freely.

5.4 Analysis of Interference Effects

Brenner (38) glves a method of estimating the
effects of the parallel walls and the free surface
on the Stokes drag coefficlent of a sphere. Brenner
shows that for a spherical particle, the effect of the
presence of a boundary can be represented by an
equation of the form 4

I - \ .
emuaV |- e 4 0(%)

(5.1)
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where D 18 the drag in the presence of the boundary,
a/h is the ratio of sphere radius to boundary proximity,
and ¢ is a constant which 18 a function of the particular
sphere~boundary geometry.

For a sphere falling midway between two infinite,
plane, parallel walls, and moving parallel to them,

¢® 1.004 (5.2)

For the largest sphere, a/h = .1035. Then

o . '
ewmaV | (1.004)(.1035)

However, for a sphere moving parallel to an infinite

= (IS (5.3)

free surface, p

¢= - ii
The largest sphere was about 8 radii from the surface,

giving a/h = .125. For this case

) v - 3 J p = ,95%
énma |,,.5(.|z )

(5.4)

Hence, the walls produce an 1l.5% increase in drag, and
the free surface causes U4,5% decrease. Thus for

the worst case, we can expect a 7# increase in drag.
But this is further offset by the fact that the flow
field about the sphere would be expected to decrease



60

the drag of the supporting cylinder below the two-
dimensional value. Hence, by subtracting the full two-
dimensional drag of the cylinder from the total drag,
one obtaing slightly less than the actual drag
experienced by the cylinder, This deficit is about 5%
to 104, This places the final result within 5% of the
Stokes drag of a cylinder in an infinite fluid, if

the sum of all other lnterference effects are of this
order of magnitude or less., This deviation 1is also
less than the expected experimental error (see Appendix B).
This analysis 18 substantiated by the results which
show that the mean value of all the data taken

for spheres is within ¥ 5% of the Stokes drag.

5.5 Free Rotation of a Sphere in Shear Flow

A body immersed in a shear flow will experience
a moment causing it to rotate. 1In a theoretical
analysis, Vand (21) has shown that a sphere immersed
in a linear shear flow with a constant shear S will
rotate under steady state conditions with an angular
velocity w such that

javle % [ (5.5)
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if Stokes equations are valid, That is
at
- s—- «
Rei ) |

Previous investigators (2U4) have verified equation
(5.5) at Reynolds numbers below 10'6. The present
investigation extended the Reynolds number of validity
of equation (5.5) to Reg = 1,0,

Measurements were made by suspending a neutrally
bouyant plastic sphere in the shear flow. The rate
of shear of the flow was determined by measuring the
belt speed by stopwatch, and the rate of rotation of
the sphere was:determined by timing the period of
rotation by stopwatch also,

The results are plotted in Fig. 36. Clearly,
the ratioygys remains constant at 1/2,up to the highest
Reynolds number tested, Re_ = 1,0, within experimental

8
accuracy.
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CHAPTER VI

INVESTIGATION OF SHEAR FLOW CHARACTERISTICS

6.1 Introduction

The purpose of this investigation was to explore
the capabilities and limitations of the shear flow
tank developed as a part of this thesis. In addition,
some preliminary data was taken on the stabllity

characteristics of rectilinear Couette flow.

6.2 Experiments

6.2.1 Effect of Test Section Length-widbh Ratio -

As one would expect, the length to width ratio A/H
has a significant effect on the maximum Reynolds number
for which uniform shear flow oan be obtained. To
demonstrate this, the belts were moved closer together
in Tank 1 and additional velocity proflile measurements
were made, Another improvement was the use of oil
floating on water as a flow medium. Because of the
large difference in viscosity between oll and water,
the interface (located about midway between the top
and bottom of the belts)acted essentially as a second
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free surface. This resulted in a much improved two-
dimensionality of the flow. Measurements were made
with AM = 13,

The first tests were made with one belt stationary.
The results, reported in Chapter III, indicate clearly
the improvement: for A/H = 4,65, the Re, = 76, the
velocity profile was obviously nonlinear (Fig. 10),
But with A/MH = 13, the velocity profile with one belt
stationary was linear for Reynolds numbers as high as
Reg = 120 (Fig. 12).

Tests were also conducted with both belts moving
at equal and opposite velocities. The velocity
profile measurements were made by taking a time exposure
of small white plastic particles suspended on the surface
of the oil. The resulting streak lengths are directly
proportional to the velocity. The photographs were
taken on folaroid transparent film (Type l46L) which
gave positive transparencies from which negative
prints were made. Typical photographs are shown 1n
Figures 37 and 38. The velocity profiles as determined
from these prints are shown in Figures 39 and 40.
Hence a linear velocity profile is maintained for
Reg = 721 and A M = 13, Observatiorsmade in Tamk 2
indicated that the profile began to deviate from linearity
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at Re, & 400 for A/M = 6. This 1llustrates clearly
the strong influence of A/H on the maximum Reg
for the existence of a linear velocity profile in the

test section.

6.2.2 Instability of Couette Flow - To investigate

the stability characteristics of laminar rectilinear
Couette flow, flow pictures were taken for progressively
increasing Reynolds number. In the following study,
the belts were always moved at equal and opposite
velocitles past the test section.

As shown in Fig. 40, the flow remains laminar with
a linear velocity profile up to Re, = 721. Fig. Ula
shows the flow pattern for Re, = 885. 1In this photo,
the first slight deviations from rectilinear flow
appear. The zero velocity plane also shows deviations
from its normal position at y/H = 1/2. At Re, = 1260,
(Fig. 41b) the flow continues to remain basically laminar,
but the same general deviations noticed in Fig. 4la
continue to exist.

The preceding pictures were taken with oll as a
flow medium. The following flow pictures at higher
Res were taken using water as a flow medium. The |

change was necessitateddbecause the increased belt
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velocity required for higher Re’ resulted in objection-
able waves at the free surface and particularly at
the oil-water interface. By using water, with a
much lower viscosity, correspondingly lower belt
velocities could be utilized thus avoiding surface
.waves, With water, aluminum particles sprinkled on
the surface were used for flow visualization. Unfortunately,
with water there was a lower limit to the belt velocity.
This was the result of the fact that surface tension
causes the particles to gradually agglomerate. Hence,
the flow veloclty must be an order of magnitude greater
than the drift velocity of the particles, and the flow
phenomena must occur before the particles have time
to agglomerate and obscure the flow pattern. 1In
addition, the slower the flow velocity the more
difficult it Qas to obtain enough photographic contrast
because of the excessively long exposure time required.
Hence, using water for the flow medium, the lowest

Re_, was 13,500 shown in Fig. 42a. Here the flow pattern

8
has changed drastically from that at Re = 1260,

The velocity profile is obviously non-linéar, and the
flow appears to be dominated by a series of vortices

located approximately in the center of the channel.
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Since several streak lines intersect at finlte angles,
the flow now is obviously unsteady. Visual observation
showed that the vortices were continuously generated
and dissipated after the flow was established. This

. same basic pattern continued to exist for increasing
Reg

Visual observation indicated that the flow had not

up to Regy = 32,000 as shown in Figures 42 and 43,

yet reached fully developed turbulence at Res = 32,000,
The very short wave length oscillations are due to
surface waves rather than a flow instability. Thus
the actual flow is somewhat smoother than indicated by
the photographs.

There were two main characteristics which ylelded
quantitative data: wavelength and amplitude of the
primary disturbances. The wavelength, in terms of
channel width H, 1s defined as the distance between
the centers of adjacent vortices. Using tHe flow
photographs, the wavelength was measured and plotted
as a function of Re, in Fig. 4la, The wave number,
¥s= -2.-,-:!- » 18 plotted in Pig. Ul4b. 1In spite
of the scatter, which is to be expected, a definlte trend

18 established.
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The amplitude is defined as the maximum lateral
width of a band in the center of the channel within
which the fluid is entrained in the circulatory motion
of the vortices. Outside of this "amplitude band",
the fluid continues to maintain a mean rectilinear
motion. Table 4 shows the approximate amplitude of
the main disturbances for various Reynolds numbers.
Over the range investigated, the amplitude appears to

remain approximately constant at .4H.

6.3 Discussion

Rectilinear Couette flow is the mast simple
case of laminar viscous flow. Thus one might expect
a simple stability problem aleo. However, no cofhg¢lusive
answer has yet been reached concerning this problem.
Many authord have dealt with this problem, but all
investigations indicate that the flow is always stable
with respect to small disturbances (42, 43, 44, 45),
Although there have been very few experimental
investigations of the problem, it is an accepted
fact that rectilinear Couette flow does become
unstable at higher Reynolds numbers (41). Of course,
the problem of finite disturbances has not been solved,
and Lin (46) points out that to show that the motion
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is stable with respect o all modes of infinitesimal
disturbances still remains to be done. Orr (47)

has shown theoretically that rectilinear Couette flow
must be stable for Re,< 88.6. Present data verifies
that the flow remains laminar for Res considerably
higher than this value.

One must now consider the question of the validity
of the data reported in section 6.2.2.‘ The scarcity
of experimental data in this area makes this a difficult
task.

Consider first the critical Reynolds number at
which transition to turbulence takes place. The
present study indicates that transition begins
somewhere in the range 103< Re8< 10“. Experimental
data available from Reichardt (28) records that
transition occured in his apparatus at Re8 = 3,000,
Fig. 41 shows deviations from rectilinear flow at a
Reynolds number as low as Re, = 885. This points
out the important question of what is the influence
of the finite length of the test section. Is the
stable linear velocity profile deformed initlally by
the end effects to an unstable profile which then

becomes turbulent? Or does the flow at each end
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become:;table first, and then propagate unstable
dlsturbances into the test section region? Disturbances
generated by the belts themselves may also have
considerable influence in the transition process.
This was pointed out by Reichardt in a later work (41)
in which he constructed a more refined apparatus.
Unfortunately, all tests in the new apparatus were
carried out at Reynolds numbers where fully turbulent
flow was already established. One must also recognize
that there 1s a vertical velocity gradient which
must presumable become unstable eventually.
If this occurs before instability of the two-dimensional
Couette flow, 1t could significantly affect the
the transition process.

All of these factors may influence the form of
the first unstable mode, wavelength, and amplitude.
Unfortunately, Reichardt did not report any observations
of the process of transition 6o turbulence in his apparatus.
He was concerned primarily with the shape of the
velocity profile. As a partial check on the influence
of the length to width ratio, the flow patterns in
Figures 42 and 43 were taken at two different values
of A/H. In Figures 42b and 43b , AM = 7.4, and
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in Figures 42a and 43a, .A/H = 13. This change has
no apparent effect on the basic flow pattern, the
wavelength trend, nor the amplitude, Of course,
this evidence cannot be regarded as conclusive,

A recent experimental study by Thomas (51) has
yielded some very encouraging results. Using equipment
of a much smaller scale (H = .44in.) and a high
length to width ratio (.A/H = 26), Thomas investigated
the stability characteristics of Couette flow. He
found that the first detectable deviations from a
linear profile occured at Re, = 1,410. The vortices
first became visible at approximately Re = 3,400.
wavelength measurements gave the following results:

At Re_ = 9,240, MM 1.4, At Re, = 17,750, MH 1.87.
The close agreement of this data with the results

both of the present study and the work of Reichardt
helps to establish the validity of this type of
experimental approach to the problem of Couette flow
stability.

.Now consider the possible relationship of the
present experimental data to various theoretical
studies., An interesting comparison may be made
between the flow patterns evident in Figures 42 and 43
and the results of an investigation by Hopf (43).
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Using the method of small disgurbances, Hopf{ showed
that there are three primary types of oscillations

in a viscous fluid at rest. The fundamental mode
exhibits a mode shape as shown in Fig. 45a., The
higher harmonics correspond to multiple subdivisions
of the fluid. Type 2 oscillations are generally of
the same character as Type 1, but the mode shapes

are distorted by the primary shear flow velocitlies,

as shown in Fig. 45b. Hopf showed that all the
disturbances are stable, but have the least damping
midway between the walls, Thus the fundamental mode
will persist over the higher harmonics. Type 3
oscillations tend to persist near the wall and behave
independently in their respective stream layers, They
are characteristic of higher Reynolds numbers and

are closely related to the eventually fully developed
turbulence. The higher harmonics appear closer tb

the plane midway between the walls and are highly damped,
thus would not be as readily apparent in a flow picture
as Types 1 and 2. The similarity between the mode
shapes of Types 1 and 2 and the flow patterns of
Figufes 42 and 43 is apparent.
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Now consider whether the wavelengths reported
in Fig. 44 are consistent with data from related
investigations. For the case of plane Poiseuille
motion between plates a distance H apart, Shen (48)
found the highest value of a neutrally stable wave
number to be ¥H = 2,28, This corresponds with a

wavelength of

2.28
For the case of a Blaslius protile, Shen found the
"
largest neutrally stable wave number to be ¥$ = .41,
»
where § 18 the displacement thickness. This

corresponds to a wavelength of
4

}\-l ZITS

4
where § 1s the boundary layer thickness. Note the

=1538%~ 5§

difference between the symmetrical shear layer and

the boundary layer type. Another comparison is gleaned
from the work of Lessen (49) who studied the stability
of the laminar viscous layer between parallel streams.
Some of his results are shown in Fig. 46, where the
wave number ¥ is pdotted as a function of Reynolds

number for constant amplification rate, Here § is
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the width of the viscous boundary layer. The values

of ¥$§ range in the neighborhood of .2 to .5, and the
unstable Reynolds numbers are guite low, But the

most interesting result is the shape of the curves in
Fig. 46 in comparison to the curve in Fig. 44 for
Couette fdow., They bear a definite resemblance to

one another. There is a difference which should be
noted, hawever. Lessen's curves tend to an

asymptotic value of ¥ as Resw, The present data

does not indicate the presence of an asymptote, although
experimenrts must be performed in a wider parameter range
to be certaln. Lessen's data is for small disturbafices.
Also, the presence of the walls in Couette flow may

have a significant effect. Thus one cannot expect

more than a rough qualitative agreement between
Lessen's theory and this experimental data. Nevertheless,
this type of flow bears perhaps the greatest resemblance
to Couette flow. Furthermmore, the somewhat lower
values of ¥§ found by Lessen might be expected if

one considers the following: The results of Hopf
indicate that instabilities will first occur in the
center of the channel. The finite disturbances alter
the velocity profile in the center causing an
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inflection point to appear, which further enhances
the instability. However, this inflection point region
will initially extend only a short distance from the
center. Thus a typical length should more properly
be somewhat less than M. This adjustment woula
result in a closer agreement of the present results
with the data of Lessen.

As stated previously, these results are not
entirely conclusive. There 1s s8till need for
extensive further expeiiments with more refined and
versatile apparatus. The following improvements
and extensions are suggested by the author: Conclusive
experiments will require much higher values of./\/k.
With a high A/H, the stability characteristics will
be independent of the ratio of the two belt speeds
if the flow 1s successfully isolated from extraneous
influences. This must be further verified by changing
the inlet geometry at each end in a variety of ways.
Every effort must be made to limit extraneous flow
disturbances to an absolute minimum. This will require
the belt to always travel against a stabllizing
surface to eliminate belt vibrations. It is felt
that this may considerably increase the critical
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Reynolds number of transition because of the lnherent
stability of Couette flow with respect to small
disturbances. The apparatus must also be large enough
to obtain high Reynolds numbers with relatively low-
belt speeds in order to avoid the effects of surface
waves. Improved photographic and measurement techniques
must also be developed. Present technique allows one
to investigate only the flow at the surface of the
fluid. 1In view of the possible importance of three-
dimensional disturbances, improved visualization
techniques would be very useful.
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CHAPTER VII

DISCUSSION AND CONCLUSIONS

7.1 Experimental Apparatus

A method of developing a laminar, rectilinear
Couette flow hhs been successfully developed. A
two-dimensional, linear veloclity profile was obtained
for Reynolds numbers up to Re8 = 721. The shear flow
tank was especially useful in studying low Reynolds
number phenomena. Studies of Couette flow stability
were limited somewhat by the physical characteristics
of the tank. However, the experiments suggested
several modifications which should improve reliability
considerably.

Although a linear velocity profile was obtalned
for a test section length-width ratio as low as A/R = 4.65,
it was found that in order to avoid end effects at
high Reynolds numbers, A/R should be at least 20, or
higher., This makes it possible to maintaln pure
Couette flow with one belt stationary up to the
Reynolds number of instability. If the test section
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is to be wide enough to afford adequate visual and
physical access, a rather long test section and
correspondingly long belts will be required. Hence,
the following suggestions are offered. To avoid the
excessive drag of pulling a belt past a flat plate,
the stabilizing surfaces should be open grids, rather
than flat plates with just a few holes. Furthermore,
to avoid disturbances arising from belt vibrations,
the belt should always move parallel to a stabilizing
surface. The major problems encountered with the
belts were belt slippage and a tendency for the belts
to ride up or down on the rollers., Both of these
problems can be solved by using a notched belt and sprocket

rollers.

7.2 Cylinder Drag, sphere Drag, and Stebility

The existence of a Stokes flow regime for flow

past a two-dimensional circular cylinder in a finlte
channel was conclusively demonstrated. For sufficiently
low Reynolds number the viscous drag coefficient

became constant, independent of Reynolds number,

In the Stokes flow regime it was found that the drag
could be given empirically by the following farmula:

o(lOg%“ k(%)
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)

Ii<

K (
logq 5

where K 18 an emperically determined constant which

X = (7.1)

=

varies from K(1/2) = 5.9 to K(1/3) = 6.3, and K(0) = =,
This formula applies to a cylinder moving between
parallel walls in which the fluid 1s at rest. It
was also shown that the drag was unchanged if a
syametrical constant shear 1s superposed on the
uniform flow. This is a natural result of the linearity
of Stokes equations in velocity and pressure., With
increasing Re, there is a gradual transition from
Stokes flow to Oseen flow, as demonstrated by the
transition of the drag from equation 7.1l to Lamb's
law (equation 4.2). This occurs as the inertia
forces become significant closer and closer to the
cylinder, eventually shielding the cylinder from
the effect of the walls. In the range of parameters
tested, the shear rate had no apparent effect on the
drag.

Extensive drag measurements on a sphere in
shearing Stokes flow were also made. The linearity
of Stokes flow was experimentally verified. It was

also demonstrated that the interference drag between



the sphere and mounting cylinder, as well as all other
interference effects were negligible. Thus the
techniques developed in this study were established

as a practical method for investigating a much wider
variety of problems involving three-dimensional
bodies. IX is hoped that a more sensitive force
measuring technique will eventually make it possible
to investigate transverse forces on bodies in a shear
flow at low Reynolds number,

The rotation rate of a free sphere in a uniform
shear flow was measured., It was found that the sphere
rotates at a rate equal to one-half the vorticity,
or shear rate S, as predicted theoretically by Vand,
up to the highest Reynolds number tested, Reﬂs 1.0,

The high Reynolds number characteristics of
rectilinear Couette flow were investigated. It was
found that the laminar veloclity profile first begins
to deviate from linearity at approximately Reg, = 103.
Vortices appear midway between the belts at approximately
Reg = 3,000, This 1s the value at which Reichardt
observed the flow in his apparatus to become "turbulent."

Observation showed that as the Reynolds number continued

to increase, the flow was dominated by a system of



vortices midway between the belts whose wavelength
gradually decreased. No trend tpward a definite
asymptote was observed. The flow became more irregular
at higher Reynolds numbers, but a definite vortex
system could still be observed at Reg = 32,000,
Although generally corroborating evidence was obtained
by Thomas (51), much more experimentation remains
to be done in this area. Detalled recommendations
are offered in Chapter VI,

It 18 believed that the development of the shear
flow tank and the accompanying experimental
techniques have opened a wide area for investigation
of various phenomena associated with shear flows.
The fundamental shear flow tank concept can be
applied to argreat variety of stability problems as
well as many more investigations such as fluid dynamic
forces, particle motion, and even heat transfer problems

in shear flows.



8l

APPENDIX A

DETAILS OF CALCULATION OF EXPERIMENTAL DRAG

A.l Circular Cylinder Drag

Experiments were conducted with the cylinders mounted
in the Jacob's chuck of the beam balance, Fig. 20, and
extending into the flow tank perpendicular to the free
surface. The drag 1s measured by balancing the drag
moment about the main knife edge with a known weight w
in the balance tray. It is assumed that the drag per
unit length is constant over the total submerged
length of the cylinder. Thus the equivalent moment
arm is the distance from the main knife edge to the
middle of the submerged portion of the cylinder.. It
this distance is A, and the distance from the main
knife edge to the balance trpy knife edge is B, then
the drag on the cylinder is

D=W % (a.1)



The assumption of constant drag distribution
over the submerged length is verified by testing
several lengths of the same diameter. If the drag is
two-dimensional, the drag per unit length will
remain unchanged, as verified in Pigures 25 and 26.

A.2 Sphere Drag

The geometry of the sphere and mounting cylinder
are shown in Figure 31. The total drag of the sphere
and cylinder 18 measured in the manner described in
the previous section concerning cylinders. Let w be
the known balancing weight, A is the distance from the
center of the submerged cylinder to the main knife
edge, and B 18 balance tray moment amm.

Now the balance weight uc needed to balance the

drag of the cylinder alone 1is
= L A
We= o uV = (A.2)
where o is the two-dimensional drag coefficient of
the cylinder, L is the submerged cylinder length.
Now 1f C is the distance from the center of the sphere

to the main knife edge, then the sphere drag plus all
interference drag 1s given by

D = (W—W‘)% (A.3)



APPENDIX B

ACCURACY OF EXPERIMENTAL DATA

B.l Accuracy of Individual Measurements

This section tabulates the maximum error of
each contributing measurement with appropriate comments
on experimental technique and the method of estimating
the error.

Drag-D

The drag was measured with a simple beam balanece.
Experience showed that it could be balanced within
* 54 at the extreme lower values of the drag measured,
Since the absolute error tended to remain constant,
this value decreased considerably for the large
majority of the experiments, averaging approximately : 2%.

Relative Velocity - V

The relative velocity at the axis of the cylinder
was determined by measuring the velocity of the belt
UB and applying the formula

v=ug(1-2%) (B.1)



The velocity of the belt was determined by measuring
the interval of time required for a mark on the belt
to travel between two points a known distance apart.
The starting and stopping of the stopwatch introduced
a maximum error of 0.1l seconds. Since in all but a
very few cases the time interval was greater than 10
seconds (most were 20 to 60 seconds in length), the
maximum errér in U is t 14,

The maximum error in position, y/H, was .01 in.,
corresponding to & maximum error in (1-2 y/MH) of %14 .

Thus the total maximum error in V is ¥ 2%,

Kinematic Viscosity- 9

The kinematic viscosity was measured with Cannon-
Fenske viscometers which have an accuracy of t .2¢4.
However, it was necessary to correct for the difference
in temperature of the fluid sample in the viscometer
and the tank fluid temperature. This introduced a
possible error of approximately ¥ 2g. The viscosity
was obtalned with the help of conversion tables in
Reference 29 from the kinematlic viscosity, and thus

has approximately the same error as 1) .
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Cylinder Length - L
Length messurements were made with a machinist's rule
snd ocalipers. They are accurate withint .0l in. Thus, the

meximum length error is *.5%; with most cylinders this error

is considerably less.

Diemeter - 4

Cylinder and sphere dismetefs were measured with a
micrometer with an socuracy of +.,0001 in. Thus the maxi-
mum error for cylinders is t,.8%, and for spheres, *,04%,

Density - €

To obtain density, tre specific grevity weas messured
with & hydrometer with an sccuracy of % ,26%.
B.2 Accuracy of Final Results

The drag coefficient o of a circular cylinder is
X = /“__———?/L (B.2)
Thus the meximum expected error inolis found to be * 6.5%.
Typicel results shown in Fig. 27 indicate an experimental
scatter well within this 13% band of possible scatter, with
the great majority of the date lying within a scatter band

of about 5%,

The drag coefficient CD of a sphere 1is

D
= . Be3

Co 3eVEr(d)? (8.3)
Hence, C, may be expected to have a deviation of *6,3%, or

to exhibit scatter over a band of approximately 12.6’.
Figures 33, 34, and 35 show all experimental results fall
within these limits.

The Reynolds number is

_ vd
Re )

and will have & maximum error of *4.8%.
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TABLE 1}

TANK PROPERTIES

Tank 1

Length

width

Depth

Test section length
" Test section width
Belt width:.

Power Sowurce

Speed control

Tank 2

Length

width

Depth

Test Section length
Test Section width
Belt width

Power source

Speed control

29, 3"

13,3"

11,5

22.5"

u,asll

7.5"

1/2 hp AC electric motor

"Vickers" hydraulic transmission
(Model AA16301A)

u 5"

7

™

36“

6"

5"

1/3 hp AC electric motor

"Zeromax" mechanical transmiasion
(Model ML43)
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TABLE 4

AMPLITUDE OF PRIMARY DISTURBANCES IN COUETTE FLOW

Re8 Amplitude
13,500 A3 H
17,000 A3 H
20,800 JA2 H

323000 043 H
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—— Experiments (See Ref. 39)
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Fie, 1 - Drag Coefficient of a Sphere in Uniform Flow
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Fig. 5 - Photozraph of Tenk 1
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Fig. 20 - Photograph of Balance System
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FREE SURFACE

Flg. 31 - Oeometry of Sphere and
Cylindoer Mounting
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Fig. 32 - 8Spheres used in Drag Tests
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