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AND STABILITY IN RECTILINEAR COUETTE FLOW

by

David L. Kohlmati

ABSTRACT

The purposo of this study was to develop an apparatus
.or investigation of phenomena in rectilinear Couette flow,
anid to conduct experiments in several such areas. The
project was divided into four main parts:
(1) Design and development of the shear flow tank and

related experimental apparatus.
(2) Study of circular cylinder drag in Couette flow at

low Reynolds number.
(5) Study of sphere drag in Couette flow at low Reynolds

number.
(4) Study of instability of rectilinear Couette flow.
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A historical and theoretical background for the
present study is given.

The limited validity of Lamb's drag law for cir-
cular cylinders in a finite channel is demonstrated.
As the Reynolds number decreases the walls cause a
transition from Oseen flow to Stokes flow. Ehpirical
drag formulas are presented.

Stokes formula for sphere drag in uniform flow
is shown also to be valid in uniform shear flow.
Measurements of sphere rotation rates in shear flow
are presented.

Stability studies indicate that rectilinear Couette
flow becomes unstable in the range 1043 Res <104. The
p-imary disturbance is a series of vortices midway be-
tween the walls whose wavelength decreases with increas-
ing Res. Though quantitative results are not entirely
conclusive, the practical foundation is laid for further
study and experimentation in this area. Recommendations
and improvements are suggested which it is hoped will
lead to more successful experimentation and understand-
ing of this problem.
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SYMBOLS

p pressure

C density

'OA viscosity

kinematic viscosity,

x0 y, z Cartesian coordinates

u, V, w velocity components in Cartesian coordinates

r,' 0, polar coordinates

Vr$ Ve, V4 polar velocity components

Stokes stream function

U rectilinear velocity in test section

belt velocity

V undisturbed relative velocity at center
of cylinder or sphere

S rate of shear

a sphere radius

ds sphere diameter

d c cylinder diameter

L cylinder length

A test section length

H test section width
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h distance of sphere from a boundary

W angular velocity

M angular moment

D drag

Re Reynolds number based on velocity, V

Re, Reynolds number based on shear, S
and sphere or cylinder diameter, d

Re T Reynolds number at which Lamb's law
becomes invalid

drag coefficient based on viscous forces,D/,AVL

OD drag coefficient based 6n inertia forces,

D/i V2 (area)

log logarithm to the base 10

ln logarithm to the base e

K empirically determined constant in cylinder
drag law

c constant in Brenner's boundary correction
formula

wavelength of a disturbance

wave number, air

boundary layer thickness

Res Reynolds number based on shear, S
and test section width, H



CHAPTER I

INTRODUCTION

One of the oldest branches of fluid mechanics

is that of very low Reynolds number flow. a. G. Stokes

(1) first formulated the equations governing pure

viscous flow (in which all inertia forces are negligibly

mall) in 1851. This flow regime, now known as Stokes

flow, in praotically all cases is limited to Reynolds

numbers less than unity.

Since Stokes$ first paper, this subject has

received the attention of many investigators. However,

there is still a considqrable amount of interest in

low Reynolds number flow, because of the many interesting

unsolved problems which have direct applications

to modern fluid dynamics. A great many meteorological,

sedimentation, and chemical colloid phenomena occur

in this regime, and Hoglund (2) points out that "Reynolds

numbers of interest in gas-particle rocket nozzle flows

are usually in.the range 0 to 100."
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After Stokes firmulated his equations, the only

fluid flow regimes which yielded readily to analysis

were the two limiting cases of potential flow, which

neglects viscous forces (Re - -), and Stokes flow,

which neglects inertia forces (Re - 0). Except for a

few very special cases, the vast area inbetween, governed

by the complete, non-linear Navier-Stokes equations

was largely mathematically intractable.

A major improvement to this situation was made

by Prandtl (3) in 1904 with his well-known boundary

layer theory. This theory made it pcmible to analyze

flows with Reynolds numbers as low as 10 and higher,

thus opening great areas for analysis in the upper end

of the scale.

Progress at the lower end of the Reynolds number

scale has proceeded in a far less spectacular and

successful manner. The first improvement to Stokes

equations was made by 0seen (4) in 1910, in which he

took into account linearized terms for the inertia

forces at large distances from a body. Even though

this technique provides a uniformly valid approximation

to the velocity and all its derivatives (Stokes equations

give a uniformly valid approximation to the velocity

only) and provides a satisfactory solution to the
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two-dimensional flow past an infinite circular cylinder

(Stokes equations yield no solution in this case), the

Reynolds number of validity is scarcely extended

above unity.

Since the work of Oseen (5), most attempts to

obtain analytical solutions for flows at higher Reynolds

numbers than are valid for his equations have consisted

of separate infinite expansions for flow regions near

to and far away from the body, which are matched in

a common region of overlap. Several investigators

have used variations of this approach (6, 7, 8, 9).

This has provided reliable analytical data (such as

drag coefficients) up tb Refv4. The only other

technique successfully employed has been a numerical

solution of the Navier-Stokes equations by electronic

computer, using relaxation techniques. While perhaps

lacking generality and being somewhat limited in scope,

this method has provided valuable insight into phenomena

significant to this Reynolds number range, such as

separation, v9rtex formation, and vorticity distribution

(10, 11, 12). In many 'pspects, numbrical solutions

by relaxation and finite difference techniques appear

to be the most promising theoretical approach to the

intermediate Reynolds number range.
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In spite of the progress that has been made, most

of the theoretical approaches have been very limited

due to their complexity and the lengthy, laborious

calculations required. Because of this, and the large

Reynolds number gap between the Oseen regime and the

boundary layer regime, experimental methods have been

relied upon quite extensively. Even so, experimental

progress has been surprisingly slow, and there are

many areas where practically no data exists. For

instance, Lamb's equation (13) for the drag of a

ciroular cylinder in a uniform stream, based on Oseen' s

equations was not verified until 1953, and then only

to Re 1.06, (14).

In many cases, the existing data is misinterpreted

and its limitations overlooked. An example of this

is found in Ref. 50 which demonstrates the large

effect density ratio between body and fluid has on

the apparent drag coefficient of a body in free fall.

Hence, there is still a need for considerable

experimental data in the low Reynolds number regime.

One area that has received practically no analysis

is that of shearing flows, even though in practice

this case occurs far more often than uniform flow.
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Hoglund (2) points out that particle rotation and

shearing flow can significantly influence particle

motion in a rocket nozzle. The entrainment and

circulation of ground debris by ground effect machines

and helicopters is strongly dependent on the forces on

particles in the ground shear layer. This problem has

been investigated by Vidal (15) but he has entirely

neglected viscous effects which can be significant

under certain conditions. Several other investigators

have treated shear flows past bodies (16, 17, 18) but

unfortunately these are restricted to inviscid flow.

STheoretical analysis of shear flow past bodies

at low Reynolds numbers has been limited by the

mathematical difficulties encountered. Experimental

investigations have been hampered by the lack of a

method of generating rectilinear simple shear flows in

the laboratory on a reasonably large scale. At present,

there is virtually no experimental data on force

coefficients of bodies in viscous shear flow.

The purpose of this thesis is twofold. The first

objective was to design and develop the equipment and

techniques necessary for experimental investigation of

rectilinear shear flows and of various bodies immersed

in shear flow. The second was to conduct an experimental
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investigation of several cases to check theoretical

solutions where they exist, and to present original

experimental data where there is no information

available to date.

A thorough analysis of the theoretical history

and background for the investigation of low Reynolds

number flow is given in Chapter II, along with suggestions

of additional parameters which arise in the ease of

shearing flows.

! Chapter III describes in detail the design and

construction of the experimental apparatus used. Of

particular interest is the unique flow tank in which

a tWo-dimensional linear shear flow is generated by

means of a system of moving belts.

Further chapters describe experimental investigations

of the drag of circular cylinders in shear flows, the

drag of spheres in shear flows, and rotation rates of

free spheres as a function of shear rate and Reynolds

number. An investigation was made of the characteristics

of instability of the shear flow leading eventually to

turbulence.

Test results are presented for Reynolds numbers

varying from 6.6 x 10-4 to 1.8 based on cylinder or sphere

diameter. All forces have been measured directly by

means of a simple beam balance system.
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CHAPTER II

THEORY

2.1 Stokes Equations

In 1851, Stokes (1) formulated his famous equations

for very viscous flow. They represent the asymptotic

approximation to the Navier-Stokes equations as Re-sO.

One obtains Stokes equations by neglecting the inertia

terms (which are negligibly small compared to viscous

terms) in the incompressible, steady flow, Navier-Stokes

equations. This gives the following system of equations:

(2.1)

along with the equation of continuity,

4)L 1i! +.i ý-o (2.2)
ýI y ~
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Hereafter, flow which is governed by Stokes equations,

2.1 and 2.2, will be called "Stokes flow." It is

important to note that Stokes equations are linear in

both velocity and pressure, thus solutions to Stokes

equations may be superposed in both velocity and

pressure. Anebher interesting characteristic is

that for Stokes flow past a symmetrical body (fore and

aft) the streamlines in front of and behind the body

must be symmetrical, for by reversing the direction of

flow, i.e., by changing the sign of the velocity components

and pressure gradients in equations 2.1 and 2.2, the

system is transformed into itself.

As with all asymptotically approximate systems,

the important question of validity must be considered.

Stokes equations give exact solutions only for Re = 0.

In reality, of course, the Reynolds number must always

have some finite, though small, value.

rAny body moving through a viscous fluid must

experience some resistance. Hence, if we consider the

momentum flux across a large surface surrounding the

body, it is clear that the magnitude of the perturbation

velocity cannot fall to zero more rapidly than the inverse

square of the distance from the body. But the acceleration

of the fluid (proportional to inertia force) is a
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constant multiple of the first derivative of the

velocity, while the viscous forces are a multiple of

the second derivative of the velocity. Thus the viscous

forces can dominate everywhere only if the perturbation

velooitles decay exponentially. Since they clearly

do not, we are faced with the inconsistency that a

solution to Stokes equations (at large distances from

the body) violates the very assumptions on which the

equations are formulated. In mathematical terms,

Stokes solution does not provide a uniformly valid

approximation to all the required properties of the

flow for a small non-zero Reynolds number perturbation

because of a singularity at infinity.

SFortunately, however, it can be shown that the

solution does provide a •uniformly valid approximation

to the total velocity distribution, but not the

derivatives, which are in error at large distances from

the body (6). Thus, one may safely evaluate bulk

prQperties of the flow, such as drag (see section 2.3).

1: The foregoing limitations were realized by Oseen

(5) in 1910. Accordingly, he proposed the following

improvement.
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2.2 Oseen's Equations

Since the inertia forces are important only at

large distances from the bOdy, Oseen included a

linearized inertia term which accounts for them at

large distances, but remains small close to the body

where the viscous terms clearly continue to dominate.

For the remote boundary condition of a uniform stream

with a velocity, U , Oseen's equations are

'a M# I a

S Y (2.3)

Ix Iyt'

Flow governed by these equations will be called "Oseen

flow.*"

Clearly, equations (2.3) are still linear in

pressure and velocity, but there is now another parameter

involved, the freestream velocity, U,,. Thus solutions

of the Oseen equations may not be superposed unless they

are both with respect to the same freestream unifo•m

velocity.
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B changing the signs of the velocities and

pressure gradients in (2.3) we observe that the equations

do not transform into themselves, so Oseen flow about

a symmetrical body does not have symmetrical streamlines.

Instead, the familiar wake characteristics appear.

Proudman and Pearson (6) point out a popular

misconception concerning Oseen's equations. Consider

the velocity components to be written as u - U + ut,

v - vI , w wt, where u 3 , vI, and wI are perturbations

to the uniform flow. Now if the full incompressible

Navler-Stokes equations are linearized with respect to

therperturbation velocities, one obtains equations (2.3)

ideqtically. However, this interpretation is entirely

wrong, and has resulted in misleading statements by

such writers as Lamb (13) and Schlichting (19) to the

effect that the equatiqns are inaccurate near the body,

where the boundary condition u' - -U. would make such

a linearization ridiculous. Oseen's equations were not

intended to give a uniform approximation to the inertia

terms, and the difference between Oseen's and Stokes'

theory near the body is of a small order, which neither

theory is entitled to discuss.
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In order to more clearly illustrate the characteristics,

applications, and validity of the Stokes and Oseen

equations, as well as fur'ther improvements, let us consider

the specific problem of the flow past a sphere.

2.3 Flow Past a Sphere

The oldest known solution of Stokes equations was

given by Stokes himself in his original paper (1), for

the case of uniform parallel flow past a sphere. Details

of the method of solution are given in both Lamb (13)

and Landau and Lifshitz (20). For a sphere of radius a

in a uniform stream of velocity U., along the x-axis,

the pressure and velocity components are given as

UuU. [( : I)~f t

[Sax /=" )

U. U+ a+
v L-(! - 1 )r'

Or, in spherical components,

v-U'0 4ro e[ - 01*
rzr-

2 r 2U 'O(2.5)

V,- -U.,Sn[1- i-0 4r 4r=
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Knowing the velocity and pressure fields it is

a straightforward matter to compute the drag, which

Stokes found to be

D - A U.a (2.6)

One-third of the drag is due to the pressure field,

the remaining two-thirds being a result of viscous

stresses on the surface of the sphere.

In Stokes flow, it is common to use viscous force

coefficients, in which forces are non-dimensionalized

witi respect to viscous terms rather than dynamic

pressure as in the more familiar aerodynamic force

coefficients. Stokes drag equation in non-dimensional

form becomes

0 D = I (2.7)

Thus we can make the following generalizations

which characterize the Stokes regime of flow:

1. The viscous drag coefficient, O(, for a body

is a constant.

2. The drag of a body is independent of fluid density.

,. The drag of a body is proportional to the first

.power of the viscosity and the relative velocity.
I
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If we wish to use the more familiar drag coefficients

based on dynamic pressure, we have

C 4 L Re= 2 U"C1 (2.8)

Fig. 1 shows a comparison of Stokes drag curve, equation

(2.8), compared with the results of several experimental

investigations (38). Stokes drag is valid up to

approximately Re = .60.

Now we can make a qualitative statement about

the validity of Stokes equations since we have a

specific solution. The inertia forces are proportional

to pu tu/•x . From equations (2.5) we see that for
2 2large r, they are of order pU% a/r . Similarly the

viscous forces being proportional to/Ou 2Ay 2, at large

r are of order,,^ U, a/r 3 . The Stokes theory becomes

invalid when inertia and viscous forces become

comparable, i.e.,

eu.r = R = 0(1) (2.9)

For very small Reynolds numbers, Stokes solution

does not break down until r is very large and freestream

conditions have almost been attained. Hence, as Proudman
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and Pearson point out (6), although the higher

derivatives are inaccurate at large distances, the

total velocity field can be uniformly approximated.

Oseen provided the first improvement to Stokes

drae law with a solution to his linearized equations

(2.3) which account for the dominant inertia terms at

large distances from the sphere. It is most easily

expressed in the form of a Stokes stream function:

Ye (2.10)

Stokes solution; equations (2.5), may also be expressed

in the same form, becoming

T (2r'-- + Sin e (2.11)

Equation (2.10) satisfies Oseen's equations (2.3) and

the boundary condition at infinity. When r is of

order a (2.10) can be expressed in the form

a~J 2.o (Z~r'ý- 3r+ S!) snle + O(Rc) (2.12)
4

which agrees with Stokes solution and the relevent

boundary condition on the sphere, to 'an adequate

approzimation.
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To derive a solution of equations (2.3) which

satisfies the boundary condition at the sphere exactly

is very difficult, and of limited value in that the

governing equations themselves involve approximations

of the same order as those in the boundary conditions

of the solution (2.10). And the solution of an equation,

even though satisfying all boundary conditions exactly,

can never be regarded as accurate to a higher order

than that of the approximations made to formulate

the original governing equations.

Using Oseen's solution for the velocity distribution,

the drag on a sphere becomes

D-6• Jku.0 (t + 3 Uy 4 (2.13)

In terms of a drag coefficient, we have

-(i + -1 Re) (2.14)

or 0C ~i(O-I + -L Re)

which clearly reduces to Stokes law (2.8) as Re-*O.

A graphical comparison of the Stokes and Oseen drag

laws with experimental data is shown in Fig. 1. In

spite of the increased accuracy with which the flow

field is represented, Oseen's law is accurate only to

approximately He - 1, only a slight improvement to Stokes

formula.
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The next improvement in theoretical analysis for

increasing Reynolds number was based on an expansion

technique begun by Lagerstrom and Cole (6),and Lagerstrom

and Kaplun (8) and developed further by Proudman and

Pearson (7). This method develops locally valid

expansions based on Oseen flow far from the body

and Stokes flow close to the body. The two expansions

are computed to satisfy their respective infinity and

surface boundary conditions and are matched in a

common region of overlap. This technique offers improved

accracy to Oseen solutions, but it also becomes

invalid at relatively low Reynolds numbers since the

two expansions eventually fail to have a common region

of validity.

Using this method, Proudman and Pearson arrived

at the following formula for the drag of a sphere in

viscous uniform flow:

C - (I + -L Re + 9 Rel In(~ + (215

Equation (2.15) which obviously reduces to both

Oseen's and Stokes' drag formulas as Re-.PO, is accurate

to approximately Re - 1.6 as shown in Fig. 1. Unfortunately,

this offers very little improvement over Oseen's

solution.
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Further attempts to find more accurate analytical

solutions have been based primarily on relaxation

methods for numerically solving the governing equations.

Pearcy and McHugh (11) performed a numerical

solution of Oseen's equations for the uniform flow past

a sphere at Re - 1, 4, and 10. Unfortunately such solutions

provide little new information, since, as was pointed

out earlier, Oseen's equations become increasingly

inaccurate for Re 1.P

Jenson (12) carried out a numerical solution by

relaxation techniques of the complete Navier-Stokes

equations for uniform flow past a sphere. He presents

solutions for Re - 5, 10, 20, and 40. This method

appvars to be very effective in determining most of

the characteristics of the flow field. Drag coefficients

so determined match very well with experimental values.

His results indicate that separation at the rear of

the. sphere begins at Re = 17.

Now consider the motion of a sphere in a shearing

flow. If the ReynOlds number is low enough that

Stokes equations are valid, this case may be reduced

to two simple flows which can be superimposed. Since

both velocity and pressure are linear in Stokes'

equations, one may add the forces directly as well as
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the velocity fields. Hence constant shear flow (linear

velocity profile) with a mean velocity V past a

sphere can be considered to be the result of a uniform

flow velocity, V, past the sphere superposed with a

symmetric shear flow of zero mean velocity at the

sphere. Since the symmetric shear flow produces only

a moment, but no drag, the drag of a sphere in a

constant shear flow with mean velocity, V, is merely

D= Va (2.6)

as predicted by Stokes for uniform flow. It is also

clear that if the sphere is rotating, one may again

merely superpose the symmetric flow field for a sphere

rotating in a fluid at rest. Since no drag is produced

by pure rotation, equation (2.6) may still be used tr

predict the drag.

All of the above Stokes flow problems have been

solved analytically. The uniform flow, solved by

Stokes has already been given. Vand (21) and Jeffery

(22) give a solution for symmetrical linear shear flow

around a sphere which is rotating freely. To get the

flow for a stationary sphere in shear flow, one m,•:rely

subtracts the solution for a sphere rotating at zero

mean velocity, given by Landau and Lifshitz (20).
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For a sphere of radius a rotating about an axis

perpendicular to the x-y plane at an angular velocity,

, the velocity field is given by

3
LA - CO

(2.16)

V a,

and the net moment on the sphere can easily be shown

to be

M = - 8 a'r • (2.17)

Van.d's solution for a freely rotating sphere in a

linear shear with infinite boundary conditions

LA= Sy , vZo % a= (2.18)

is given as

u = -r"+ SVi .a,)

v -- [ Y- .S-•)]- ,_;, (2.19)

W : -
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By setting r - a in the above equations it is clear

that the sphere is rotating with an angular' velocity Co

such that

C& - (2.20)

Thus, to obtain the flow field for a stationary sphere

in shear flow with a shear S sec-1 , merely subtract

equations (2.16) from equations (2.19) with Co. -S/2

For uniform flow it is usually sufficient to

desqribe most phenomena in terms of the Reynolds number

given as

Re. (2.21)

where V is the relative velocity and d a characteristic

length. However, when the flow is shearing, another

parameter, the shear S, must be included. For this

case the mean velocity can even be zero. Thus it is

proposed that a second Reynolds number based on shear

be formulated as follows,

Re,= - 5T (2.22)

A similar parameter was introduced by Taylor (40) in

1923, but it was defined in.terms applicable only to

the flow between rotating concentric cylinders.
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It Is obvious that for a constant Re based on mean velocity,

such properties as drag, moment, etc., may very widely

as Res changes over a wide range. For pure Stokes flow,

the influence of Re a is negligible, but it becomes

increasingly important as both Reynolds numbers are

increased. Another parameter which may be of importance

in shear flow is the ratio of body rotation to shear

rate, 61/s.

One should also observe that for pure Stokes

flow, there can be no transverse force developed on a

sphere due to stream shear and/or sphere rotation because

of the complete symmetry of all the component flow

patterns. This may also be seen as the result of the

fact that transverse forces in this case must be the

result of inertia forces. But Stokes flow neglects

completely all inertia terms.

Note, however, that as shown earlier, the inertia

terms do exceed viscous terms at large distances from

the body. But they do not affect the bulk properties,

such as drag. However, it is quite possible that

second or third order inertia terms may produce second

or third order effects such as transverse forces which

depend on the effects of inertia terms. An interesting
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study by Rubinow and Keller (23) illustrates this

phenomenon quite clearly. They used the expansion

method of Proudman and Pearson to show that the lift

on a sphere spinning at an angular velocity w and

moving with a velocity V through a viscous, liquid

is given by:

Lift 0 + (2.230

This is clearly related to the familiar "Magnus effect",

and is independent of viscosity to the first order.

It is more instructive to fozrn a lift-drag ratio to

illistrate the relative magnitude of the forces.

As Re -. O

Lift . IT eat3 WVc aA e*& (2.24)

Drag 6,5VO r

where Re. = C1

Thus for a given sphere and fluid, the lift/drag

ratio is directly proportional to angular velocity 40.

However, for decreasing Reynolds number based on ca

the lift/drag also decreases proportionately. This

result applies only for uniform flow past a spinning

sphere.
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One must be very careful in applying the above

results to actual situations for this reason. The

lift is entirely the result of considering the inertia

effects a large distance from the body. Thus the

presence of a finite wall or boundary even far from

the body which can alter or mask off the inertia terms

will change the lift quite radically, while having

virtually no effect on the primarily viscous effects

such as drag. Unfortunately, such effects are most

difficult to predict, but are quite significant, as is

shown clearly in Chapter IV by the effect of a wall on

an infinite circular cylinder. Because the region

of significance of inertia terms moves farther and

farther away from the body as Re decreases, and

because the extent of a fluid is always finite,

there is always some lower limit for the Reynolds

number for which an analysis based on the effect of

inertia terms must become invalid.
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CHAPTER III

EXPERIMENTAL APPARATUS

3.1 Shear Flow Tank

3.1.1 Introduction - The experimental program

of this thesis required a rectilinear constant shear

flow (linear velocity profile) which was large enough

to generate measurable forces on test models suspended

in the flow. Practically all previous attempts to

analyze shear flow phenomena in the laboratory have

made use of rotating concentric cylinders. Several

investigators have used this technique, and a typical

example of such a device is described in detail by

Trevelyan and Mason (24).

When the gap between the cylinders is small

compared to their diameters, a nearly linear shear

flow exists between thel cylinders which rotate at

unequal angular velocities. The flow profile is not

exactly linear because of centrifugal forces, and is

easily found to be:
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r r

Where u is the radial velocity, r is the radial

distance from the axis of rotation, r 1 and r 2 are

the radii, and COi and 'W2 are the angular velocities

of the inner and outer cylinders respectively. The

radial distribution of shear then becomes

S=r ar -x 2~ _ r,. t (3.2)

But S must be constant throughout in a pure constant

shear flow (Couette flow).

Besides this drawback, the gap between cylinders

in most practical devices must be so small that wall

effects predominate for anything larger than microscopic

particles. This makes it almost impossible to generate

measurable forces. Further difficulties result from

the Taylor instability of flow between rotating cylinders,

rendering this device virtually useless for studies

of rectilinear shear flow stability, as well as

interface stability in a shear flow.
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Another method of producing a uniform shear flow

was developed by Owen and Zienkiewicz (25). They

installed a grid of rods in a wind tunnel upstream of

the test section. B properly spacing the rods a

linear shear flow superimposed on a mean flow was

obtained. This same technique was used by Vidal (26)

to obtain a nonuniform shear pattern in a wind tunnel.

Though very successful for many applications, this

method cannot be employed for low Reynolds number

experiments. A further limitation results from the

fact, that a flow generated in this manner is

turbulent, rather than laminar. Also, the flow must

always be superimposed on a relatively high mean

velocity.

.The first successful technique of generating a

low Reynolds number rectilinear shear flow was

developed by Reichardt (27). He used a single endless

belt rotating on two revolving drums as shown in Fig. 2.

He found that a linear Ahear flow existed on the

free surface between the. two inner sideL nf the belt.

His apparatus was used primarily for streak photo

studies of flow patternu past cylinders and the effect

of turbulence on the velocity profile (28). Although

it has proved quite useful, it is felt that the Reichardt
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apparatus has several disadvantages: (1) The end

effects extend well into the test section. (2) It is

very difficult to keep the belt perfectly plane and

free of vibration as it moves past the test section.

(3) Visual and physical access is limited to the

free surface at the top of the tank. (4) only a

perfectly symmetrical flow with zero mean velocity can

be generated. (5) Studies of interface stability

in a shear flow are impossible.

SThe apparatus developed by the author and

desoribed in the following sections overcomes all of

the difficulties mentioned above, and provides a

very versatile technique for investigating phenomena

associated with a shear flow.

3.1.2 Description of Apparatus - A schematic

drawing of the apparatus is shown in Fig. 3. Four

rollers are driven by a system of beltb-and pulleys

from a variable speed drive. Each pair of rollers

is supported by arms extending from flat plates.

The plates provide rigid walls on each side of the

test section and prevent vibrations and waves from

developing in the flow generating belts. The belts,

which are stretched over each pair of rollers, are

made of rubber sheet.
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The system is immersed in the fluid and induces

the flow indicated by arrows in Fig. 3. It was necessary

to perforate the i'ollers to prevent the fluid entrained

between the moving belt and roller from acting as a

lubricant and allowing slippage. This allows fluid

to flow through the roller, rather than between the

roller and the belt. In addition, it was found necessary

to glue strips of abrasive cloth on the rollers to

prevent slippage. This arrangement is shown in Fig. 4.

The plate supportipg the driving belts on each side

of the test section needed lubrication to allow the

belts to slide smoothly, Therefore, a number of

holos were drilled in the plates.

In the course of the investigation, two shear flow

tanks were desgned and built. The first one (Tank 1)

wasi built to test the basic concept, and to refine the

operational difficulties encountered. It was

subsequently used for many of the experimental investigations

of this thesis. The second, (Tank 2) was designed by

the author at the request of Educational Services, Inc.,

for use in an educational movie on volume kinematics.

It Incorporated several improvements over Tank 1,

primarily in mechanical details. There were also

minor changes in dimensions. The tank itself was
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constructed entirely of plexiglas,. affording visual

access to the test section from both ends, the

bottom, and the top free surface. Table 3.1 gives a

tabulation of the properties of both tanks. Figs. 5

and 6 are photographs of Tanks 1 and 2 respectively.

Note that the entire system of belts and mechanisms

are mounted on the removable lid of the tank, for

convenient access.

3.1.3 Calibration and Performance - The apparatus

uscd aqueous glycerol as a working fluid. By changing

the relative concentration of water and glycerine, the
3

viscosity could be varied by a factor of 10.

To provide a thorough cross check, the velocity

profiles were determined by several independent

methods.

In the first method, velocities were determined

by observing the motion of small particles suspended

in the fluid. The particles were observed by eye

through two grids, to eliminate parallax, and timed

by stopwatch. The flow field was illuminated through

a alit by collimated light from a slide projector.

Velocity observations could therefore be made in on6

horizontal plane at a time.
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The results are shown in Figs. 7, 8, and 9, where

velocity U is plotted as a function of the distance

normal to the plane of the belts in the region midway

between both ends of the test section (see Fig. 3).

Clearly, the shear, S - dU/dy, is constant in the test

section. The flow also appeared to be two-dimensional

for a depth of approximately 2/3 the total depth of the

belts. The preceding results were taken with the belts

moving at equal and opposite velocities past the

test section. Data was also taken with one belt

stationary. The velocity profiles for this case'are

shown in Fig. 10. The profile is no longer linear and,

as shown, is clearly a function of Reynolds number.

Thus, all further tests and experiments involving

drag measurements were made with the belts moving

at equal velocities, resulting in a symmetrical linear

shear flow in the test section.

It was believed that this lack of linearity for

unequal belt speeds was a result of insufficient

distance between belt and wall in the return flow

section to accommodate the necessary mass flow. With

a much wider tank, and a sufficiently Jarge length to

width ratio of the test section it was believed that

a linear velocity profile with a zero velocity plane
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at any desired transverse position in the test section

could be generated.

To verify this, Tank 1 was modified considerably

after the drag experiments were concluded. The belts

were moved much closer together, increasing the test

section length to width ratio from 4.65 to 13. This

also increased the width of the return channels. A

further improvement was made to insure the existence

of two-dimensional flow. The working fluid was a

ligkht transmission oil which floated on water. The

intprface was located about midway between the top

and bottom edges. In er$ect, this results in two free

surtaces in the oil, thus minimizing the vertical velocity

gradient.

Tests were run with one belt completely stationary.

The velocity profile was determined by taking a time

exposure of white particles suspended on the surface

of the oil. The resulting streak lengths are directly

proportional to the vel9city. Fig. 11 shows two

typical photographs. They are negative prints, hence

the streaks are black on a white background. Fig. 12

shows the resulting velocity profiles as measured from

the photos in Fig. 11. Clearly, the profile is linear

for Re s! 104. Observation showed that the profile began
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to deviate from its linearity at approximately Ress 120.

This critical Reynolds number should increase with

increasing length/width ratio of the test section

since the deviation is the result of end effects rather

than a flow instability.

Since the velocity profile has been verified to

be linear for the two limiting cases (zero velocity

plane at y/Hi - 1/2 and yAi = 0 or 1.0), one may

conclude that the zero velocity plane may be transferred

to any desired y/H by a&Justing the relative speeds

of the two belts. This property increases considerably

the'versatility of this type of shear flow tank.

Another method of determining the velocity profile

at the surface consists of observing the deformation

of a pattern on the surface of the fluid. This technique

is described in section 3.1.4. Fig. 13 shows a series

of photographs taken at.5 second intervals. Clearly,

the straight line arrangement remains straight, indicating

a linear velocity profile.

In order to determine the velocity profile in

the vertical plane parallel to the belts another

technique was used. A qpot of dye was dropped on the

surLace. Then, with thq flow fully developed a small

brass sphere was dropped through the dye spot leaving
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a thin vertical streak in the flow. (The velocity

of fall was much greater than the flow velocity).

The dye streak moves with the flow, showing the shape

of the velocity profile. A photograph is then taken,

from which the velocity profile can easily be determined.

Fig. 14 shows the results of such an investigation in

Tank 2. The flow is perfectly two dimensional over

approximately half the depth of the belt. The velocity

drops to 90% of the linear velocity profile at

approximately three-fourths the depth of the belt.

Nat4.xrally, the profile is a function of the lateral

distance from the belt, y/H. Fig. 15 shows the

approximate area of the test section..in which the

velocity at a given point is within 10% of the

sur4face velocity at the same lateral distance, y/H.

Fig. 16 is a typical photograph used to determine the

vertical plane velocity profiles.

The entrance length, i.e., the distance from the

en~s of the test section required to establish constant

shear depends on the Reynolds number, Re = SH2 . BY

gradually decreasing the viscosity of the fluid it

was found that the maximum Reynolds number for constant

shear in the test section of Tank 2 was approximately

S4.00
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This limiting Reynolds number increases with increasing

length to width ratio of the test section, as shown

in Chapter 6. An additional study of the breakdown of

the linear profile and the gradual transition to

turbulence is presented in Chapter 6.

In this apparatus the flow in the return channels

between the belts and the tank walls is also approximately

a constant shear flow, and the flow only has to adjust

to having turned a corner. Thus the region of flow

adjystment at the test *qction is short.

To provide a smooth transition from the test

section flow to the bottom of the tank, the distance

from the lower edge of the belt to the bottom of the

tanX is approximately equal tohalf the width of the

belt.

The speed of the belts varied from zero up to

about one foot per second. In this range surface

waves were always negligible.

3.1.4 Applications - As is often the case, a

device invented for one particular use turns out to

have direct application to a great variety of problems.

Such is the case with the shear flow tank.
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The shear flow tank was originally designed for

the purpose of measuring the forces on various test

models suspended in shear flow from a simple beam

balance. It fulfilled this purpose very well, and

suggested many further investigations for which the

concept of a rectangular test section bounded by moving

belts would be useful.

One major area of usefulness is that of flow

visualization. Tank 2 was used by Educational Services,

Inc. in an educational movie on "Kinematics of Deformation."

Using copper bronzing powder forced through silk

screen stencils, various patterns were laid on the surface

of the test section. AV the patterns distorted with

the-shearing fluid, the effects of shear, strain, and

rotation were graphically illustrated. One typical

serles of pattern deformiations is shown in Fig. 13.

I Another interesting flow visualization study

was carried out by the a,4thor. Figs. 17 and 18 show

examples of symmetric shear flow about a circular

cylinder. With the center of the cylinder at the

zero velocity streamline of the undisturbed linear

shear flow, the unusual double wake phenomenon appears.

Streamlines are visualized Dy injecting dye from inside
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the cylinder into the external flow. Fig. 13 illustrates

clearly the existence of four stagnation points on the

cylinder.

This type of apparatus can also be used for a

variety of studies of hydrodynamic stability. The use

of moving boundaries opens the possibility of rendering

many phenomena at stationary phase. Examples of

possible areas of investigation are stability of

an interface in a shear hfow; stability of a shear layer

withoheat transfer; stabWity of a shear layer with

suspended particles. The, above investigations require

turning the belt system on its side, so that the belts

move in a horizontal plane. Then the upper and lower

boundaries of the test section are completely independent,

and an interface between two liquids can be maintained

in the test section without contamination, as would

be the case with only one belt.

5.2 Balance System

Fig. 19 is a schematic of the simple beam balance.

A photograph is shown in Fig. 20. All knife edges

are ordinary razor blades resting in steel grooves.
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The sensitivity weight allows one to adjust the

sensitivity of the balance by varying the distance

below the main knife edge of the balance center of

gravity. The balance has been used to measure forces

on models with a resolution of less than 5 dynes.

A small mirror on the balance reflects a narrow

beam of light from a fixed source onto a scale approx-

imately 6 feet from the balance. Measurements are made

by balancing the model force with known weights in

the weight tray, until the light beam indicates the

null position (see Fig. 21).

3.) Measurement of Fluid Characteristics

The viscosity of the test fluid was measured with

Cannon-Fenske viscometers (Fig. 22). Since it is a

gravity flow device, it gives kinematic viscosity

directly. The specific gravity of the fluid was

measured with a standard hydrometer. Since the

viscosity of aqueous glycerol is very sensitive to

temperature, it was necessary to account for the

difference in temperature of the fluid in the tank during

experimental runs, and of the sample used to measure

viscosity. A standard Mercury thermometer was used.
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The magnitude of the correction was determined from

extensive data on the properties of aqueous glycerol

found in Ref. (29).

All measurements of model dimensions were made

with a micrometer, accurate to one-thousandth of an

inch, and machinist' s rule, accurate to one-hundredth

of an inch.

All time measurements were made with an electric

stop clock which read to the nearest hundredth of

a second.
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CHAPTER IV

DRAG OF A CIRCULAR CYLINDER

4.1 Theoretical Considerations

The flow about a two-dimensional circular cylinder

presents a very interesting problem because there is

no solution to Stokes equations which will satisfy the

boundary conditions both at the cylinder and at

infinity in an unbounded flow. This illustrates a

fundamental difference between the nature of two-and

three-dimensional viscous flow. In two-dimensional

flow the inertia forces a large distance from the body

exert a much greater inrluence on the total flow field,

making it mathematically impossible to obtain a

uniform approximation to the total velocity as was

the case for three-dimenaional flow. Thus for a circular

cylinder Oseen's equations must be used at the outset.

Lamb (13) obtained the solution to Oseen flow past

a circular cylinder. His solution led to the following

formula for the drag per unit length:

ka 4W A(V (4.1)

L 1I R



41

where Y is Eulers constant, '- .5772... If equation

(4.1) is expressed in terms of a viscous drag coefficient,

it becomes

* V.4(y (4.2)

Re V -
-7)

Experiments have shown that equation (4.2) is valid

for Re .C .6 (see Fig. 21).

For analytical solutions at higher Reynolds

numbers, one must either employ expansion techniques

as dbscribed by Proudman and Pearson (7) (see section 2.3)

or solve the complete equations by relaxation techniques.

Both Proudman and Pearson, and Kaplun have solved

the cylinder flow problem for uniform flow by the

Stokes-Oseen expansion method (7, 9). Using this

same; technique, Bretherton (30) solved for the flow

about a circular cylindpr in simple shear. Unfortunately

his solution is very restrictive, and the special

casq of uniform flow (S4-O) cannot be deduced from his

solution. Kaplun's solution led to a circular

cyl~nder drag formula as follows:

D0E +7.(h (4.3)45)
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where Rei( ) ~~

Ocz = -. 8,
No improvement is realized over Lamb's drag equation (4.2)

unless several values of an are calculated. Kaplun

calculated only a2 and indicated the laborious process

by which higher order values of an may be calculated.

Several authors have employed numerical methods

to obtain solutions for flow about a circular cylinder.

A finite difference method was used by Thom (31) to

solve the full Navier-Stokes equations for flow past

cylinders at Re = 10, and this method was used by

Kawaguti (32) for flow past Cylinders at Re r 40.

ThiA extremely laborious method was improved by several

workers and developed into relaxation methods which

werq used by Allen and Southwell (10) and applied to

the cylinder flow problem at Re - 0, 1, 10, 100, 1000

with satisfactory results.

Although it is impossible to satisfy boundary

conoitions at the cylinder and at infinity using

Stokes equations, it is possible to satisfy boundary

conditions on boundaries which are only a finite

distance from the wall. This fact can be established

by rigorous mathematical deduction. However, the

following intuitive argument leads to the same conclusion:
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Although the inertia terms become comparable to viscous

terms only at large distances from the body, they

nevertheless dominate the nature of the flow in the

two-dimensional case, making it nbecessary to use

Oseen's equations at the outset for flows of infinite

extent. However, if a boundary is placed in the flow

closer to the cylinder than the region for which

inertia terms become significant, then the boundary

will, in effect, shield the cylinder from the inertia

effects, resulting in a.,purely viscous, or Stokes flow.

: The inertia terms become significant at distances

closer and closer to the body as the Reynolds number

increases. This is quite apparent in the transition

fromi Stokes flow to boundary layer flow with increasing

Reynpids number. Thus,, one may regard the flow past

a cyXinder between boundaries a finite distance away

to be Stokes flow for very low Reynolds numbers.

Then as Re increases the, flow will eventually become

Oseep flow when the inertia terms become of importance

inside the boundaries. Further increases in Re should

considerably minimize the effects of the boundary.

Of opurse, the Reynolds number at which transition

from Stokes to Oseen flow takes place is a strong

function of the geometry of each particular case.
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This transition from Stokes to Oseen flow is

most readily apparent in the drag of the body. For

a circular cylinder, the Stokes drag will be of the

form

= constant (4.4)

where the constant is a function of the wall distance

and configuration. At some Reynolds number, equation

(4.4) must become invalid as inertia forces take

effect, and then one must use Lamb's law,

0V_. " (4.2)

,,oVL i~ZL
which indicates an increasing drag coefficient as Re

continues to increase. One would expect this transition

to occiur at lower and ldolr Reynolds number as the

characteristic distance from the cylinder to the

walls is increased.

This type of flow behavior was indicated experi-

mentally by White (33) who determined the drag of fine

wires falling sidewise in circular containers by

measuring their velocity of fall. He had set out to

verify Lamb's law of drag at very low Re, but found

out that the wall effects completely dominated the flow,

resulting in Stokes flow over almost the whole Reynolds
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number range for which he tested, even for boundaries

500 diameters away. Th6 highest Reynolds numbers did

show a transition to drag coefficients identical with

accepted values for infinite flow past a cylinder.

The only theoretical solution of Stokes equations

for flow past a two-dimensional circular cylinder in

a finite channel was obtained by Bairstow, Cave, and

Lang (34). By means of a numerical method of successive

approximations, they solved Stokes equations for two-

dimensional Poiseuille tlow through a channel past a

circular cylinder with a diameter equal to one-fifth

thewidth of the channel. This solution gave the

drag relationship:

D 7.1 (4.5)V L

where V is the maximum velocity in the channel.

Vhen flow past a cylinder is governed by Stokes

equations one may make the same assumptions concerning

shear flow as discussed in section 2.3. That is,

the drag on a cylinder in simple shear in a finite

channel with a relative velocity V at the cylinder is

identical to the drag produced by a uniform stream in

the same channel moving at a velocity V.
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4.2 Experimental Investigation

4.2.1 Introduction - Although Lamb obtained

his drag law for Oseen flow past a circular cylinder

in 1911, it has only been in comparatively recent

jears that reliable experimental drag data for cylinders

has been produced. One of the earliest investigations

was made by Wieselsberger (35) in 1921. Using a wind

tunnel, he measured the drag on thin wires in the

Re range:
-4 

10

An earlier study by Relf (36) in 1914 had reached

Reynolds numbers only as low as Re = 10. The next

significant experiments were carried out by White (33)

in 1946. His drag data reached Re = .6 before wall

effects became dominant. This is the threshold of

validity of Lamb's law:. The first substantial

verification of Lamb's law did not come until 1953,

when Finn (14) extended drag data to Re = .06.

He determined the drag by measuring the deflection of

fine wires in an air stream. In 1959, a study of

cylinder drag was done by Tritton (37) who observed the

bonding of quartz fibers in the range of .55-Re--100.
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The present experimental study was undertaken

because of the lack of data in the very low Reynolds

number range, and the, as yet, undetermined quantitative

influence of wall effects for the simple configuration

of a circular cylinder between parallel plates. In

addition, there has been virtually no experimental

data for the drag of a cylinder in shear flow.

The purpose of the following investigation was to

determine (1) the magnitude of the drag of a two-dimensional

circular cylinder between parallel walls as a function

of wall-cylinder geometry and Reynolds number, (2) the

nature of the transition from Stokes to Oseen flow,

and (3) the influence of shear on the drag.

The experiments were performed using the shear

flow tanks and experime4tal apparatus described in

Chapter III.

Drag measurements were made with many different

cylinder sizes under a great variety of conditions in

order to verify the dimensional similarity relationships

as well as to vary the dimensionless parameters over

as wide a range as possible. As a further check, drag

measurements were made using both Tank 1 and Tank 2

(see Table 1). Table 2 summarizes the range of
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parameter variations in the circular cylinder drag

experiments. Fig. 24 is a photograph of all the

cylinders tested.

4.2.2 Finite Length Effects - It was necessary

to evaluate possible end effects of a finite length

cylinder in order to interpret the data taken in terms

of a two-dimensional, infinite length circular cylinder.

Possible corrections arise from three different sources;

(1) effect of the submerged end of the cylinder on the

two-dimensional drag, (2) surface tension drag, and

(3) surface wave drag.

In order to evaluate these corrections, drag

measurements were made on cylinders of the same

diameter, but with different lengths. Figures 25 and 26

illqstrate the results. Since the drag coefficient

remajined independent of the length to diameter ratio

(aspect ratio) for both diameters tested, (within

the accuracy of the measurements) it was concluded that

all end effects were negligibly small, since for all

additional tests, L/d •28, and end effects will naturally

decrease with increasing L/d.
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4.2.3 Results - Figures 27 and 28 plot drag

coefficient, a, versus Reynolds number, Vd/-) , for

various values of the wall nearness ratio, d/11. This

family of data was taken with the cylinder axis located

at y/H - 1/3. This same qualitative variation is

obtained for all values of y/H (until the cylinder

contacts the wall).

It is clear that at low Reynolds numbers the

results indicate the existence of Stokes flow,

D = constant,, V L

With increasing Re, the drag curves eventually merge

with Lamb' s curve and the accepted drag curves for

infinite extent flow. All of the drag data were

taken in shear flow. This has no effect in the Stokes

regime, as explained in Section 2.3. It appears also

that in the shear range of this experiment, the shear

has little or no effect during the initial stage of

Oseen flow either. As d/H increases, both the Stokes

flow drag coefficient a=d the Reynolds number of

transition from Stokes flow to Oseen flow increase.

Fig. 27 indicates that in the Stokes flow regime,

the viscous drag coefficient is a function only of the
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wall nearness ratio, d/ci. Fig. 29 is a plot of the

Stokes flow drag coefficient as a function of d/H.

These experimental points are described quite well by

an empirical formula of the form

0cy - (4.6)Y 4, W log -H

where V is the undisturbed relative velocity at the

cylinder axis. Equation 4.6 is valid for a cylinder

distance of y =(1/3)H frpm the wall. In order to

determine the drag of a, cylinder midway between

parallel walls, it was necessary to measure the drag

at several values of yA/ and extrapolate to y/H - 1/2,

since the velocity was zero at the center of the test

section. The belts were always run at equal and

opposity velocity past the test section to insure

perfectly linear shear flow.

Such an extrapolation led to the empirical formula

-S.9
-- ((4.7 )

F .y i og a

Fig. 30 shows the variation of a as a function of y/ii.
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The experimental scatter of data makes it difficult

to give a quantitative formula for the drag variation

with lateral distance. However, one may conclude that

the Stokes drag of a circular cylinder between parallel

plates is given empirically by the formula

,(:04 H-. K ý4.8)

where K(yA/) increases monotonically from K(1/2) = 5.9

to K(O) = w. Note that K increases only about 13%

as y/i varies from 1/2 to 1/6.

Thus it is clear that there are two distinct drag

lawp for circular cylinders between parallel plates;

Equation (4.8); and Lamb's law, equation (4.2).

For low Reynolds numbers (4.8) applies; but with

increasing Re, inertia forces became significant,

"shielding" the cylinder from the effect of the walls

and the drag is the same as that in an infinite

fluid. Then (4.2) is valid (if Re:5.6). To determine

the approximate region of transition, (4.8) and

(4.2) may be solved Simultaneously for the transition

Reynolds number, ReT.
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K
Kc -

109 (2' )•T" ' 7./ 41 \ 4.9)

3o 7.41 - Iog ReT _2
s.4(. 4 K

loci Re. .4-1. + oos 7.41

R'.47

As Fig. 27 shows, the actual Reynolds number at which

Lamb's law starts to become invalid may be from 25%

to 50% higher than ReT given by (4.10) since the

transition takes place gradually over a region in

which Re may Vary by a factor of 2.

White (33) made a taw measurements of the drag

on cylinders falling midway between parallel plates.

However, his data had an unusually high amount of

scatter and some questionable end corrections were

also applied. Taking the mean value of his data which

was all in the Stokes regime, he found that K(1/2) = 6.4.

This compares with K(1/2) = 5.9 found in this study

which is believed to be more accurate because of the

reduced scatter and direct force measuring technique.
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.The drag coefficient found by Bairstow, Cave,

and Lang (34) is given as

d
7.1 =5 (4.5)

In terms of equation 4.8 this gives a value of

K(I/2) = .50. However, this is based on the maximum

velocity in the channel. Thus, it appears that a

cylinder moving at velocity V through a channel with

the fluid at rest experiences the same drag as a

cjlinder at rest in the aame channel with fluid flowing

past in a parabolic profile with a maximum velocity of

1.18V. This may be subject to a further correction since

it assumes that equation (4.7) can be extrapolatid to

d/H =.20. The highest value verified in this study

was d/H =.104.

One factor has not been mentioned yet. There is

probably a dra3 contributic-n from the walls due to

asymmetric boundaries when •jj, even though the

undisturbed relative velocity at the cylinder axis

is zero.. One would expect this drag to be negligible

compared to the drag due to the undisturbed relative

velocity V as long as

(<1
Sd
-V-< (4.11)

and y Y>
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Scetho conditions of equations 14.11 were met fo.- all

thie tosts, the dra,*g due to asymmetry of the budLSc

was negle ct(iýd.

Ther is nothr nerest-ing characterlst~c of thiis type

of flow whiLch sliould be noted. In the Stokes f low reý;.ime, tile

dra2 is i.ndcpencient of' the Ac!eynolds numbor, as shown in

Fifgurc 27, and for S3talkcs flow between parallel walls, 'h

drag, on a circi2.ar.c>na is

D = co*.stant itxfrLVL (.4 .12)

Cl.early, theo Jz'aa is Ji..idepier~deut of cylindcr diamete',P

long a:3 the wall ;.!aoczmes ratio d/h remains 17ixed, ,;itu

the corqstant n uato (41.12) is a function of~ d/.;.
A),tiio-ug -;ec-rrnZ'y par'adoxical, this phenomernon m~,

oxpial-Oad qluite simhply in physical terms. Thýý drag 6uiu

vilo~ccs.ty Lo L;io i'es-ult o6"a shearing force at tho u*uý:fae,

of' Llit cylind-er. 3ut as d Increases Hi must increase pr:>-

pov.L atey. Thus tim~ distances over which velocity

~~iotsmvst tal:c pla.aec are increased, and the 3hea2i:~.-I

rat.26 tcnon CiaCc.-aso ,uS~t the :iht mmount to compe--nsate flcu,

th~ Lnr'asdsurface .ra This same line of' ~oi{

;123o azkcow-fLs for th coins-tancy of' 'Uh-c draL; due to jv

T.,,2 r-t 412zl .,at, 'o o~sa tV ad d n U,--

d~unte~ oý a '1i;dc my bu increased indef'In.Ltelj i / e
hui~i~~ tecr'a- pue Lunit len-th, as longý as t~he i''.l3

nn;~Žrdoes not oxcc.ed theý limits for Stokes flcw.
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CHAPTER V

DRAG OF A SPHERE

5.1 Introduction

Unlike the case of drag of a circular cylinder,

there has been a great deal of experimental data on

sphere drag for many years. Reference (39) gives a

comprehensive bibliography of experimental sphere

drag studies. All previous data has been for the case

of uniform flow past a sphere. However, the motion

of spheres in shearing flows has become of considerable

interest in recent years. Several workers have studied

phenomena associated with neutrally bouyant spheres in

laminar pipe flow. But neutrally bouyant particles

are certainly the exception rather than the rule.

Hence, it is felt that some basic experimental methods

should be developed for the study of forces on particles

in simple shear flow. Thus one can obtain data which

may shed light on some of the more complex phenomena

associated with non-linear velocity profiles and

unsymmetrical boundary conditions.
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This chapter describes the technique used to

measure the drag of a stationary sphere in simple shear

flow. Results of measurements taken over the range

5 .8 IO Rc .3

are presented also. In this range there is a known

theoretical solution (see Chapter II); thus one can

assess interference effects accurately.

5.2 Experimental Apparatus

Experiments were performed using the shear flow

apparatus described in iChapter III. The test spheres

were mounted on thi.. circular cylinders which were

suspended from the bea9'-balance (see Fig. 20). During

all tests the spheres were located at a distance

y -4(I/3)H from the test section wall (belt), so that

they would experience a relative velocity. A wide

variety of model dimensions were used to accurately

confirm the results. The range of test conditions are

summarized in Table 3.,,F ig. 31 defines the model

dimpnsions. A photograph of all the sphere models

tested is shown in Fig. ,32.



5.3 Results

The resulto of the experiments are shown in

Figures 33, 34, and 35. The drag values were deduced

in the following manner, First the total drag on the

sphere and cylinder was measured. Then the drag of a

cylinder alone, of the same dimensions as the cylinder

mount, was subtracted from the total drag. The dylinder

drag was obtained from the data of Chapter IV. The

remaining drag was that of the sphere plus interference

drag, (For details of this calculation procedure,

see Appendix A.) This remainder is plotted in the

above mentioned graphs, These results indicate that

within experimental accuracy, the drag coefficient of

a sphere is independent of the mounting geometry in

the ranges tested. Furthermore, this drag coefficient

is equal to the Stokes drag coefficient for uniform

flow of the same mean velocity, as predicted by the

theoretical analysis of Chapter II. This data provides

an excellent experimental verification of the linearity

of Stokes flow in both pressure and velocity.

Since the interference drag appears to be negligible,

this technique provides an excellent method for similar

studies in the higher Reynolds number range.
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Interference effects would be expected to even decrease

as Re increases, since the extent of perturbations

are at a maximum in Stokes flow.

All of the drag data is for a non-Potating sphere.

Several attempts were made to construct a mounting on

which the sphere could rotate freely in the shear flow.

However, all attempts proved unsuccessful except with

the sphere at zero mean velocity. The friction due

to the drag forcing the sphere against the bearing

surface was too great compared to the extremely small

moment due to shear to allow the sphere to rotate freely.

.5.4. Analysis of Interference Effects

Brenner (38) gives a method of estimating the

effects of the parallel walls and the free surface

on the Stokes drag coefficient of a sphere. Brenner

shows that for a spherical particle, the effect of the

presence of a boundary can be represented by an

equation of the form

D - a (5.1)

h
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where D is the drag in the presence of the boundary,

aAh is the ratio of sphere radius to boundary proximity,

and c is a constant which is a function of the particular

sphere-boundary geometry.

For a sphere falling midway between two infinite,

plane, parallel walls, and moving parallel to them,

C s 1.004 (5.2)

For the largest sphere, a/h = .1035. Then

D I ( 5_)6iyav g-(,.oo4)(.,o--) -I., 53

However, for a sphere moving parallel to an infinite

free surface, Is

The largest sphere was about 8 radii from the surface,

giving a/h = .125. For this case

D ( I

Hence, the walls produce an 11.5% increase in drag, and

the free surface causes 4.5% decrease. Thus for

the worst case, we can expect a 7% increase in drag.

But this is further offset by the fact that the flow

field about the sphere would be expected to decrease
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the drag of the supporting cylinder below the two-

dimensional value. Hence, by subtracting the full two-

dimensional drag of the cylinder from the total drag,

one obtains slightly less than the actual drag

experienced by the cylinder. This deficit is about 5%

to 10%. This places the final result within 5% of the

Stokes drag of a cylinder in an infinite fluid, if

the sum of all other interference effects are of this

order of magnitude or less. This deviation is also

less than the expected experimental error (see Appendix B).

This analysis is substantiated by the results which

show that the mean value of all the data taken

for spheres is within t 5% of the Stokes drag.

5.5 Free Rotation of a Sphere in Shear Flow

A body immersed in a shear flow will experience

a moment causing it to rotate. In a theoretical

analysis, Vand (21) has shown that a sphere immersed

in a linear shear flow with a constant shear S will

rotate under steady state conditions with an angular

velocity W such that
lapin -(5.5)
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if Stokes equations are valid. %bAt is

Previous investigators (24) have verified equation

(5.5) at Reynolds numbers below 10-6. The present

investigation extended the Reynolds number of validity

of equation (5.5) to Re a., 1.0.

Measurements were made by suspending a neutrally

bouyant plastic sphere in the shear flow. The rate

of shear of the flow was determined by measuring the

belt speed by stopwatch, and the rate of rotation of

the sphere was'determined by timing the period of

rotation by stopwatch also.

The results are plotted in Fig. 36. Clearly,

the ratio IWS remains constant at 1/2,up to the highest

Reynolds number tested, Re - l.o, within experimental

accuracy.
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CHAPTER VI

INVESTIGATION OF SHEAR FLOW CHARACTERISTICS

6.1 Introduction

The purpose of this investigation was to explore

the capabilities and limitations of the shear flow

tank developed as a part of this thesis. In addition,

some preliminary data was taken on the stability

characteristics of rectilinear Couette flow.

6.2 Experiments

6.2.1 Effect of Test Section Length-Widbh Ratio -

As one would expect, the length to width ratio A/A
has a significant effect on the maximum Reynolds number

for which uniform shear flow can be obtained. To

demonstrate this, the belts were moved closer together

in Tank 1 and additional velocity profile measurements

were made. Another improvement was the use of oil

floating on water as a flow medium. Because of the

large difference in viscosity between oil and water,

the interface (located about midway between the top

and bottom of the belts) acted essentially as a second
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free surface. This resulted Lp a much improved two-

dimensionality of the flow. Npasurements were made

with A•/ - 13.

The first tests were made with one belt stationary.

The results, reported in Chapter Ill, indicate clearly

the improvement: for AA/ - 4.65, the Re. - 76, the

velocity profile was obviously nonlinear (Fig. 10).

But with A/A - 13, the velocity profile with one belt

stationary was linear for Reynolds numbers as high as

Res - 120 (Fig. 12).

Tests were also conducted with both belts moving

at equal and opposite velocities. The velocity

profile measurements were made by taking a time exposure

of small white plastic particles suspended on the surface

of the oil. The resulting streak lengths are directly

proportional to the velocity. The photpgraphs were

taken on Polaroid transparent film (Type 146L) which

gave positive transparencies from which negative

prints were made. Typical photographs are shown in

Figures 37 and 38. The velocity profiles as determined

from these prints are shown in F4;ures 39 and 40.

Hence a linear velocity profile is maintained for

Re. - 721 and A/H - 13. Observatiom made in Tamk 2

indicated that the profile began to deviate from linearity
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at Re. 400 for A•/ - 6. This illustrates clearly

the strong influence of A/n on the maximum Re8

for the existence of a linear velocity profile in the

test section.

6.4.2 Instability of Couette Flow - To investigate

the stability characteristics of laminar rectilinear

Couette flow, flow pictures were taken for progressively

increasing Reynolds number. In the following study,

the belts were always moved at equal and opposite

velocities past the test section.

As shown in Fig. 40, the flow remains laminar with

a linear velocity profile up to Re. M 721. Fig. 4 1a

shows the flow pattern for Re5 = 885. In this photo,

the first slight deviations from rectilinear flow

appear. The zero velocity plane also shows deviations

from its normal position at y/U - 1/2. At Re. - 1260,

(Fig. 41b) the flow continues to remain basically laminar,

but the same general deviations noticed in Fig. 41a

continue to exist.

The preceding pictures were taken with oil as a

flow medium. The following flow pictures at higher

Re .were taken using water as a flow medium. The

change was necessitatedlbecause the increased belt



velocity required for higher Re. resulted in objection-

able waves at. the free surface and particularly at

the oil-water interface. By using water, with a

much lower viscosity, correspoihdingly lower belt

velocities could be utilized thus avoiding surface

waves. With water, aluminum particles sprinkled on

the surface were used for flow visualization. Unfortunately,

with water there was a lower limit to the belt velocity.

This was the result of the fact that surface tension

causes the particles to gradually agglomerate. Hence,

the flow velocity must be an order of magnitude greater

than the drift velocity of the particles, and the flow

phenomena must occur before the particles have time

to agglomerate and obscure the flow pattern. In

addition, the slower the flow velocity the more

difficult it was to obtain enough photographic contrast

because of the excessively long exposure time required.

Hence, using water for the flow medium, the lowest

Re. was 13,500 shown in Fig. 42a. Here the flow pattern

has changed drastically from that at Re. - 1260.

The velocity profile is obviously non-lingar, and the

flow appears to be dominated by a series of vortices

located approximately in the center of the channel.
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Since several streak lines intersect at finite angles,

the flow now is obviously unsteady. Visual observation

showed that the vortices were continuously generated

and dissipated after the flow was established. This

same basic pattern continued to exist for increasing

Re. up to Re. - 32,000 as shown in Figures 42 and 43.

Visual observation indicated that the flow had not

yet reached fully developed turbulence at Re5 - 32,000.

The very short wave length oscillations are due to

surface waves rather than a flow instability. Thus

the actual flow is somewhat smoother than indicated by

the photogrkphs.

There were two main characteristics which yielded

quantitative data: wavelength and amplitude of the

primary disturbances. The wavelength, in terms of

channel width H, is defined as the distance between

the centers of adjacent vortices. Using the flow

photographs, the wavelength was measured and plotted

as a function of Re. in Fig. 44a. The wave number,
f -- , is plotted in Fig. 44b. In spite

71,
of the scatter, which is to be expected, a definite trend

is established.
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The amplitude is defined as the maximum lateral

width of a band in the center of the channel within

which the fluid is entrained In the circulatory motion

of the vortices. Outside of this "amplitude band",

the fluid continues to maintain a mean rectilinear

motion. Table 4 shows the approximate amplitude of

the main disturbances for various Reynolds numbers.

Over the range investigated, the amplitude appears to

remain approximately constant at .4H.

6.3 Discussion

Rectilinear Couette flow is the most simple

case of laminar viscous flow. Thus one might expect

a simple stability problem aleso. However, no conOlusive

answer has yet been reached concerning this problem.

Many authors have dealt with this problem, but all

investigations indicate that the flow is always stable

with respect to small disturbances (42, 43, 44, 45).

Although there have been very few experlmental

investigations of the problem, it is an accepted

fact that rectilinear Couette flow does become

unstable at higher Reynolds numbers (41). Of course,

the problem of finite disturbances has not been solved,

and Lin (46) points out that to show that the motion
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is stable with respect bo all modes of infinitesimal

disturbances still remains to be done. Orr (47)

has shown theoretically that rectilinear Couette flow

must be stable for ReB< 88.6. Present data verifies

that the flow remains laminar for Rea considerably

higher than this value.

One must now consider the question of the validity

of the data reported in section 6.2.2. The scarcity

of experimental data in this area makes this a difficult

task.

Consider first the critical Reynolds number at

which transition to turbulence takes place. The

present study indicates that transition-begins

somewhere in the range 103.Re,< l0. Experimental

data available from Reichardt (28) records that

transition occured in his apparatus at Re. = 3,000.

Fig. 41 shows deviations from rectilinear flow at a

Reynolds number as low as Re.- 885. This points

out the important question of what is the influence

of the finite length of the test section. Is the

stable linear velocity profile deformed initially by

the end effects to an unstable profile which then

becomes turbulent? Or does the flow at each end
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en
becomeAstable first, and then propagate unstable

disturbancesinto the test section region? Disturbances

generated by the belts themselves may also have

considerable influence in the transition process.

This was p6inted out by Reichardt in a later work (41)

in which he constructed a more refined apparatus.

Unfortunately, all tests in the new apparatus were

carried out at Reynolds numbers where fully turbulent

flow was already established. One must also recognize

that there is a vertical velocity gradient which

must presumable become unstable eventually.

If this occurs before instability of the two-dimensional

Couette flow, it could significantly affect the

the transition process.

All of these factors may influence the form of

the first unstable mode, wavelength, and amplitude.

Unfortunately, Reichardt did not report any observations

of the process of transition bo turbulence in his apparatus.

He was concerned primarily with the shape of the

velocity profile. As a partial check on the influence

of the length to width ratio, the flow patterns in

Figures 42 and 43 were taken at two different values

of A/1. In Figures 42b and 436 , A/I - 7.4, and
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in Figures 42a and 430I, -AA - 13. This change has

no apparent effect on the basic flow pattern, the

wavelength trend, nor the amplitude, Of course,

this evidence cannot be regarded as conclusive.

A recent experimental study by Thomas (51) has

yielded some very encouraging results. Using equipment

of a much smaller scale (H - .441n.) and a high

length to width ratio (&A/ - 26), Thomas investigated

the stability characteristics of Couette flow. He

found that the first detectable deviations from a

linear profile occured at Re, = 1,410. The vortices

first became visible at approximately Resin 3,400.

Wavelength measurements gave the following results:

At Re. - 9,240, /I•I 1.4. At Re. - 17,750, NA 1.87.

The close agreement of this data with the results

both of the present study and the work of Reichardt

helps to establish the validity of this type of

experimental approach to the problem of Couette flow

stability.

Now consider the possible relationship of the

present experimental data to various theoretical

studies. An interesting comparison may be made

between the flow patterns evident in Figures 42 and 43

and the results of an investigation by Hopf (43).
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Using the method of small disturbances, Hopf showed

that there are three primary types of oscillations

in a viscous fluid at rest. The fundamental mode

exhibits a mode shape as shown in Fig. 45a. The

higher harmonics correspond to multiple subdivisions

of the fluid. TyFpe 2 oscillations are generally of

the same character as Type 1, but the mode shapes

are distorted by the primary shear flow velocit~es,

as shown in Fig. 45b. Hopf showed that all the

disturbances are stable, but have the least damping

midway between the walls. Thus the fundamental mode

will persist over the higher harmonics. Type 3

oscillations tend to persist near the wall and behave

independently in their respective stream layers. They

are characteristic of higher Reynolds numbers and

are closely related to the eventually fully developed

turbulence. The higher harmonics appear closer tb

the plane midway between the walls and are highly damped,

thus would not be as readily apparent in a flow picture

as Types 1 and 2. The similarity between the mode

shapes of Types 1 and 2 and the flow patterns of

Figures 42 and 43 is apparent.
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Now consider whether the wavelengths reported

in Fig. 44 are consistent with data from related

investigations. For the case of plane Poiseuille

motion between plates a distance H apart, Shen (48)

found the highest value of a neutrally stable wave

number to be WH - 2.28. This corresponds with a

wavelength of

21T-H = 2.78 H
2. ?-$

For the case of a Blasius pro1file, Shen found the
W

largest neutrally stable wave number to be ICS .41,

where S is the displacement thickness. This

corresponds to a wavelength of

.41

where 4 is the boundary layer thickness. Note the

difference between the symmetrical shear layer and

the boundary layer type. Another comparison is gleaned

from the work of Leasen (49) who studied the stability

of the laminar viscous layer between parallel streams.

Some of his results are shown in Fig. 46, where the

wave number I is p&otted as a function of Reynolds

number for constant amplification rate. Here • is
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the width of the viscous boun4ary layer. The values

of tt range in the neighborhood of .2 to .5, and the

unstable Reynolds numbers are quite low. But the

most interesting result is the shape of the curves in

Fig. 46 in comparison to the curve in Fig. 44 for

Couette flow. They bear a definite resemblance to

one another. There is a difference which should be

noted, however. Lessen's curves tend to an

asymptotic value of T as Re.P... The present data

does not indicate the presence of an asymptote, although

experimei,÷t must be performed in a wider parameter range

to be certain. Lessen's data is for small disturbafces.

Also, the presence of the walls in Couette flow may

have a significant effect. Thus one cannot expect

more than a rough qualitative agreement between

Lessen's theory and this experimental data. Nevertheless,

this type of flow bears perhaps the greatest resemblance

to Couette flow. Furthermore, the somewhat lower

values of I found by Lessen might be expected if

one considers the following: The results of Hopf

indicate that instabilities will first occur in the

center of the channel. The finite disturbances altet

the velocity profile in the center causing an
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inflection point to appear, which further enhances

the instability. However, this inflection point region

will initially extend only a short distance from the

center. Thus a typical length should more properly

be somewhat less than H. This adjustment woula

result in a closer agreement of the present results

with the data of Lessen.

As stated previously, these results are not

entirely conclusive. There is still need for

extensive further experiments with more refined and

versatile apparatus. The following improvements

and extensions are suggested by the author: Conclusive

experiments will require much higher values of AI/.

With a high A/H, the stability characteristics will

be independent of the ratio of the two belt speeds

if the flow is successfully isolated from extraneous

influences. This must be further verified by changing

the inlet geometry at each end in a variety of ways.

Every effort must be made to limit extraneous flow

disturbances to an absolute minimum. This will require

the belt to always travel against a stabilizing

surface to eliminate belt vibrations. It is felt

that this may considerably increase the critical
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Reynolds number of transition because of the inherent

stability of Couette flow with respect to small

disturbances. The apparatus must also be large enough

to obtain high Reynolds numbers with relatively low

belt speeds in order to avoid the effects of surface

waves. Improved photographic and measurement techniques

must also be developed. Present technique allows one

to investigate only the flow at the surface of the

fluid. In view of the possible importance of three-

dimensional disturbances, improved visualization

techniques would be very useful.
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CHAPTER VII

DISCUSSION AND CONCLUSIONS

I.1 Experimental Apparatus

A method of developing a laminar, rectilinear

Couette flow hNs been successfully developed. A

two-dimensional, linear velocity profile was obtained

for Reynolds numbers up to Re. = 721. The shear flow

tank was especially useful in studying low Reynolds

number phenomena. Studies of Couette flow stability

were limited somewhat by the physical characteristics

of the tank. However, the experiments suggested

several modifications which should improve reliability

considerably.

Although a linear velocity profile was obtained

for a test section length-width ratio as low as .A4 = 4.65,

it was found that in order to avoid end effects at

high Reynolds numbers, A/R should be at least 20, or

hlgher. This makes it possible to maintain pure

Couette flow with one belt stationary up to the

Reynolds number of instability. If the test section
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is to be wide enough to afford adequate visual and

physical access, a rather long test section and

correspondingly long belts will be required. Hence,

the following suggestions are offered. To avoid the

excessive drag of pulling a belt past a flat plate,

the stabilizing surfaces should be open grids, rather

than flat plates with just a few holes. Furthermore,

to avoid disturbances arising from belt vibrations,

the belt should always move parallel to a stabilizing

surface. The major problems encountered with the

belts were belt spippage and a tendency for the belts

to ride up or down on the rollers. Both of these

problems can be solved by using a notched belt and sprocket

rollers.

7.2 Cylinder Drag. Sphere Drag, and Stability

The existence of a Stokes flow regime for flow

past a two-dimensional circular cylinder in a finite

channel was conclusively demonstrated. For sufficiently

low Reynolds number the viscous drag coefficient

became constant, independent of Reynolds number.

In the Stokes flow regime it was found that the drag

could be given empirically by the following formula:

H

0(1OCd o. a K( U



78

KC )
H=' (7.1)

where K is an emperically determined constant which

varies from K(1/2) - 5.9 to K(1/3) . 6.3, and K(O) -

This formula applies to a cylinder moving between

parallel walls in which the fluid is at rest. It

was also shown that the drag was unchanged if a

symmetrical constant shear is superposed on the

uniform flow. This is a natural result of the linearity

of Stokes equations in velocity and pressure. With

increasing Re, there is a gradual transition from

Stokes flow to Oseen flow, as demonstrated by the

transition of the drag from equation 7.1 to Lamb's

law (equation 4.2). This occurs as the inertia

forces become significant closer and closer to the

cylinder, eventually shielding the cylinder from

the effect of the walls. In the range of parameters

tested, the shear rate had no apparent effect on the

drag.

Extensive drag measurements on a sphere in

shearing Stokes flow were also made. The linearity

of Stokes flow was experimentally verified. It was

also demonstrated that the interference drag between
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the sphere and mounting cylinder, as well as all other

interference effects were negligible. Thus the

techniques developed in this study were established

as a practical method for investigating a much wider

variety of problems involving three-dimensional

bodies. It is hoped that a more sensitive force

measuring technique will eventually make it possible

to investigate transverse forces on bodies in a shear

flow at low Reynolds number.

The rotation rate of a free sphere in a uniform

shear flow was measured. It was found that the sphere

rotates at a rate equal to one-half the vorticity,

or shear rate S, as predicted theoretically by Vand,

up to the highest Reynolds number tested, Re AW 1.0.

The high Reynolds number characteristtcs of

rectilinear Couette flow were investigated. It was

found that the laminar velocity profile first begins

to deviate from linearity at approximately Re. = 103.

Vortices appear midway between the belts at approximately

Re. W 3,000. This is the value at which Reichardt

observed the flow in his apparatus to become "turbulent."

Observation showed that as the Reynolds number continued

to increase, the flow was dominated by a system of
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vortices midway between the belts whose wavelength

gradually decreased. No trend toward a definite

asymptote was observed. The flow became more irregular

at higher Reynolds numbers, but a definite vortex

system could still be observed at Re. = 32,000.

Although generally corroborating evidence was obtained

by Thomas (51), muoh more experimentation remains

to be done in this area. Detailed recommendations

are offered in Chapter VI.

It is believed that the development of the shear

flow tank and the accompanying experimental

techniques have opened a wide area for investigation

of various phenomena associated with shear flows.

The fundamental shear flow tank concept can be

applied to aa.great variety of stability problems as

well as many more investigations such as fluid dynamic

forces, particle motion, and even heat tranSfer problems

in shear flows.
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APPENDIX A

DETAILS OF CALCULATION OF EXPERIMENTAL DRAG

A.1 Circular Cylinder Drag

Experiments were conducted with the cylinders mounted

in the Jacob's chuck of the beam balance, Fig. 20, and

extending into the flow tank perpendicular to the free

surface. The drag is measured by balancing the drag

moment about the main knife edge with a known weight w

in the balance tray. It is assumed that the drag per

unit length is constant over the total submerged

length of the cylinder. Thus the equivalent moment

arm is the distance from the main knife edge to the

middle of the submerged portion of the cylinder. If

this distance is A, and the distance from the main

knife edge to the balance trpy knife edge is B, then

the drag on the cylinder is

D w W I(A. 1)
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The assumption of constant drag distribution

over the submerged length is verified by testing

several lengths of the same diameter. If the drag is

two-dimensional, the drag per unit length will

remain unchanged, as verified in Figures 25 and 26.

A.2 Sphere Drag

The geometry of the sphere and mounting cylinder

are shown in Figure 31. The total drag of the sphere

and cylinder is measured in the manner described in

the previous section concerning cylinders. Let w be

the known balancing weight, A is the distance from the

center of the submerged cylinder to the main knife

edge, and B is balance tray moment arm.

Now the balance weight Wc needed to balance the

drag of the cylinder alone is

WC " V (A.2)

where O( is the two-dimensional drag coefficient of

the cylinder, L is the submerged cylinder length.

Now if C is the distance from the center of the sphere

to the main knife edge, then the sphere drag plus all

4iterference drag is given by

D - - ) B (A.3)
C



SB

APPENDIX B

ACCURACY OF EXPERIMENTAL DATA

B.1 Accuracy of Individual Measurements

This section tabulates the maximum error of

each contributing measurement with appropriate comments

on experimental technique and the method of estimating

the error,
Drag-D

The drag was measured with a simple beam balance.

Experience showed that it could be balanced within

+ 5% at the extreme lower values of the drag measured.

Since the absolute error tended to remain constant,

this value decreased considerably for the large

majority of the experiments, averaging approximately + 2%.

Relative Velocity - V

The relative velocity at the axis of the cylinder

was determined by measuring the velocity of the belt

UB and applying the formula
v- Xu, 0I- (B.1
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The velocity of the belt was determined by measuring

the interval of time required for a mark on the belt

to travel between two points a known distance apart.

The starting and stopping of the stopwatch introduced

a maximum error of 0.1 seconds. Since in all but a

very few cases the time interval was greater than 10

seconds (most were 90 to 60 seconds in length), the

maximum err6r in UB is t 1%.

The maximum error in position, y/N, was .01 in.,

corresponding to a maximum error in (1-2 y/H) of -1%

Thus the total maximum error in V is ± 2%.

Kinematic Viscosity- -0

The kinematic viscosity was measured with Cannon-

Fenske viscometers which have an accuracy of t .2%.

However, it was necessary to correct for the difference

in temperature of the fluid sample in the viscometer

and the tank fluid temperature. This introduced a

possible error of approximately ± 2%. The viscosity

was obtained with the help of conversion tables in

Reference 29 from the kinematic viscosity, and thus

has approximately the same error as
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Cylinder Length - L

Length measurements were made with a machinist's rule

and calipers. They are accurate within- .01 in. Thus# the

maximum length error is t.65% with most cylinders this error

is considerably less.

Diameter - d

Cylinder and sphere diametet's were qpsastred with a

micrometer with an accuracy of ±.0001 in. Thus the maxi-

mum error for cylinders is t.8%, and for spheres, ±.04%.

Density -

To obtain density, the speoific gravity was measured

with a hydrometer with an Poouracy of 1 .26%.

B,2 Accuracy of Final Results

The drag coefficient oC of a circular cylinder is

( = D (B.2)/V L

Thus the maximum expected error ino(is found to be ± 6.5%.

Typical results shown in Fig. 27 indicate an experimental

scatter well within this 13% band of possible scatter, with

the great majority of the date lying within a scatter band

of about 8%.

The drag coefficient CD of a sphere is

C= 0v - a(B.3)

Hence, CD may be expected to have a deviation of ±6.3%, or

to exhibit scatter over a band of approximately 12.6%.

Figures 33, 34, and 35 show all experimental results fall

within these limits.

The Reynolds number is

Re =
and will have a maximum error of . 4.8%.
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TANBE I

TANK PROPEMRT5

Tank 1

Length 29,3"
Width 13, 3"
Depth 11.5"
Test section length 22.5"
Test section width 4.85"

Belt width. 7.5"

Power Source I/2 hp Ac electric motor
Speed control "Vickers" hydraulic transmission

(Mo4ej AA1680oA)

Tank 2

Length 45"
Width 17"
Depth 7"
Test Section length 36"

Test Section width 6"

Belt width 5"1

Power source 1/3 hp AC electric motor
Speed control "ieromaoax" meohanical transmission

(Model m143)
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TABLE 4

AMPLITUDE OF PRIMARY DISTURBANCES IN COUETTE FLOW

Re. Amplitude

13,500 .43 H
17,000 .43 H
20,800 .42 H

32,000 .43 H
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Fig. 20 - Photograph of Balance System
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