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THE CAICULATION OF CONICAL SHELLS BY THE VARIATICNAL
METHCD OF V. Z. VLASOV

B. A. Konovalov, Cancdicdate of Technical Sciences

The purpose of the present investlgation 1s to obtaln equations
for calculating slightly conlcal shells of constant thickness with
allowance for deplanaticn of the cross sections durlng both torsion
and bending and on the basis of these equatlons to show the possibility
of constructing more accurate solutlions for shells of the alrcraft-
wing type.

The theoretical baslis of the present article is Prof. V. Z.
Vlasov's general variational method of reducing complex two-dimensional
contact problems of the theory of plates and shells to one-dimenslional
problems. The entire substance of the article is divided into three
sections, each of which 1s self-contalned.

Glven in the first section 1s the derivation of a system cof
differential equations for calculating a slightly conical shell of
constant thickness with allowance for deformation of the contour (i.e.,
according to.the theory of momentg). These equations are a direct

generalization of equations obtained previosuly [4]. On the basis of
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the resulcs of the first sectlon, in the second and third sectione,
respactively, more accurate solutions for the cases of hending and
torsion of a simply closed conical shell are constructed with the
proviso that the contour be indeformable, |

Thus the equations in the first sectlon are most general, and,
what 1s especlally important to note, on the basis of them sufficlently
accurate solutions for & very wide class of‘problems can be obtained,
The degree of accuracy of the éolutions wlll depend essentlially on
the number of eppreoximesing Junzticrs which figure 1n the argumentation
and satisfy the physical meaning of the problen,

The article 1s devoted mainly to a study of the stressed and
deformed states of a sllghtly conlcal shell with allowance for deplana=-
tion of the cross sections durlng bending by crosscutting forces, Such
a formulation 1s entirely Justlfied, since failure to take into account
the effect of a constralnt of the deplanation of the cross sections
during bending in prismatic shells can result in conslderable errors
in the oalculation, Professor I, F, Obraztsov (Doctor of Tech,
Sciences) studied theoretically and proved experimentally [8, 9] the
fact of the appegrance of conslderable bimomental stresses in prismatic
ghells as a result of a constraint of the deplanation of the cross
sections during bending. It was precisely this circumstance that
moved us to study the effect of a constraint of the deplanation ococure
ring during bending 1n conical shells,

The final results for stresses and displacements 1ln the general
form for any shell parameters and for external loads of sufficlently
general type are obtalned in the article,

In order to ocompare the solution to the problem of torsion of &
conical shell with the results obtained by L. I. Balabukh (4] and
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B. P. Tsibulya [14]*, a numerical calculation of the normal stresses
was made and showed qualiltatlve agreement with the results.

The solutlions for bending and torsion of straight conlcal shells
can be applied to the calculation of swept-back conical shells. In
this case some of the boundary conditions must be written in a.cross
section along a slanting edge [8].

There are no fundamental difficulties involved in taking the
elasticity of the embedding into account, i.e., 1in conslidering the
combined operation of a swept-back conlical shell and & center-section
(subfuselage) shell [8].

The proposed methcd of calculating for bending and torsion can
also be extended to multiply closed conical éhells [9l.

The author deems 1t his duty to express his gratitude to A. N.
Yelpat'yevskly, Cand. of Tech. Scl. and Senior 5c1¢ntif1c Worker at
the Institute of Mechanics of the Academy of Scilences of the USSR, for

a number of valuable suggestlons and recommendations.,

Derivation of the Equations for Calculating Conical Shells

by Approximating the Displacements with the Alid of Power

Functlons

ILet us consider a conical shell of constant thickness related to
a system of coordinates z, S (Fig. 1),

where z 1s the langitudinal coordinate and determines the position
of any transverse coordinate;

S 1s the contour coordinate of a point in the plane of this
cross section of the shell.

# Translator's Note: Reference [14], although cited in the text,
is not found in the list of references at the end of the article,
Possibly reference [13] was the one the author wished to cite,
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In accordance with the bacic idea of Prof, V. Z. Viasov's varia-
tional method, let us represent the longitudinal u(z, S) and the
transverse v(z, S) displacement of a point M(z, S) in the form of
the following finite expansions: '

w(z, =L U, ()% (5) (=1,2. . .m)
i

(1)

v(2, S)=NV,(2)0lS) (k=1.2.. .n)
L]

where Ui(z) and V, (z) are the urknown generalized longitudinal and
transverse (lsplacements;

Qi(S) and wk(s) are distribution functions of the generalized
longitudinal and transverse displacements along
the contour of the cross section of the shell
and are chosen beforehand.

Let us consider a system of i functions ¢i(s), each of which 1s
a power function of the order a with respect to the contour coordinate
S. We shall assume that a system ol k functions wk(s) consists of
power functions of the order B wilth respect to the contour coordinate
S. The approximating functions of which the systems wi(s) and w#(s)
are composed must satlsly the conditicn of linear independence and the
condition of continuity of the longltudinal and transverse displacements

at all points of the contour,

Fig. 1. Over.all
view of & conical
shell,
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Neglecting the normal stresses acting along the coordinate lines

S, let us wrlte Hooke's law for the shell under consideration in the
followlng form:

5= F ou :
dz

yar '
‘~==(1(— ’,+.0‘ ).
as 02

(2)

In order to determine the unknown functions Ui(z) and Vk(z), let
us apply the principle of posslible displacements.

Tet us take from a shell with the cross sections z = const and
z + dz = const an elementary strip (frame) of width dz. The isolated
strip (Fig. 2) is under the action of normal and tangential stresses
exerted in the cross sectlons and gilven surfaces by longltudlnal
p(z, S) and transverse q(z, S) forces and, from the geometrical point
of vlew, possesses m longitudinal (from the plane of the cross section
of the shell) and n transverse ( in the plane of the cross section of
the shell) degrees of freedom., Let us write the work of the forces

acting on the lsolated strip during a possible displacement from the

I
W

1, and in the
i:

plane of the cross section uj wj(s), when UJ(z)

plane of the cross section v, = wh(s), when V, (z)

i

rf (=+“)’° dz);,(S)E(IS—r\.{‘;a?i(S)adS—
(5 oy ‘[,) (s

Tt

(3)

._[{)—."%ﬂdzads+d’)p(z, S)3(S)dzdS =0 (j=1,2...m);
® )
¢ (z-{-%dz)d,a,,(S)adS—d:,—.-p,,(S)BdS—

(S+-{~ls?d:) )

J
is) (s

e et i, i . S S Sl et et st

-—431'—(‘-"—3)—2-—”""-(—')—1—8-+§)q(z. S)94(S)dzdS =0 (h=1,2...n).




6195 4
' a7 dz(‘ T4 g—}dz

Z
) integration S in Eqs. (3) by s= .

d Lq(z,é‘) :
T As a result of this substitution

" Let us replace the varisble of

ag

7 the lIntegrals with respect to the

-

ls*ff dv’/ “{, & variable contours S in these equations

-are transformed into integrals with
Fig. 2. For the derlvatlon

of the equilibrium equaZtilons. respect to contours 8 of fixed cross
The forces acting on an 1so-~
lated elementary frame. section z = 1. Another consequence

of thls substitution is the possi-
bility of comparing the values of any functlon of the systems ¢1(S)
and ¥,.(S) in a moving and a fixed cross sectlon.
Let us calculate the integrands in the function of the new
variable s % .
For each of the functions of the systems ¢1(S) ard Wk(S) the

following equalities hold true:

F4 2\
@ (‘ 7)=(—,-) % (s); (%)
J 2z 2
s (57)*(,5) 2 ().
The derivative of each functlon of the system o,(S) with respect

to the contour 1s determined from the formula

(s 5)=(5) v (5)

The linear bending moment along the contour of the shell due to a

displacement v(z, S) = AR (z) wk(s) is determined by the equality
M(Z.S)aka(z)M.(S)_ (6)
& .

Comparing the displacements in a moving and a fixed cross section,
we obtain a formula for the linear hending moment of the shell mk(s)
(Vk(z) = 1) for the new variable s

b=




My(s -’;) (%) 8y 0s). (7)

The normal and tangentlal stresses and thelr derivatives with
respect to the coordinate'z along the generatirrlces, on the basis of

(1), (2), (4) and (5), are determined from the formulas
e ENY (oo (2. )
3= ELU,(J :’x(s"/“)»

.j;:EEU:(z)?,(S -j—)

(8)

e G[Eui(:)@;(s-;l)}:;: \'}(z)?g(s -j—)]
*

S0 M@ X en().
! % )
Let us assume that QJ(S) and wh(s) are power functions of the
contour coordinate S with the exponents A and n. Since a and B
Include the power values of the contour coordinate S of all the func-
tions of which the systems @i(s) and wk(s) are composed, they naturally
pass through the values A and 7.

Substituting (4)-(8) in Egs. (3), we obtaln, respectively, the
followlng equalities:

(-"

Eq) [ Wi+ dz)("“z)““_vu,( )‘*‘“]x

X‘?I(S)?,(S)';ds—-G({)leo (s)( )u>_1+

L

- +B* Vi@ (5" J‘?;<s>d~’-'>"$+

TJ/)(Z S),.,(s)( ) dzds =0 C(j=12. . . m)

(&)

&{[Z(U +Uidz) (L1 2 "’)’” ZU,(- e+

(s) i

+[ \“(V.+ Vids) (212 ") -23 Vi(5 )”'"”]v.(s)}x

-7~




2.: V,M.(s)( )"""M,.(:)d:u )
£J +

X, (s)eds— S

(l)

+<_§)q(z.s)w.(s)( )'*‘auds-o (h=1,2. . .n)

)

Neglecting terms higher than the first infinitesimal order and
cancelling out dz, we obtaln finally the following equations:

TZ s 2 [(_)wu-n U‘] z( )c+l—l b/,U
_2(_:;)9 HC,. v;+(_l_)x+l ”b‘Pﬁ'"O
I

. (J=12.. .m) ‘ )
>T:cm' :/Ig [('1'_)"'"U,-]'*'}k:’hk%[(-"-)’”“ V;]... ‘

SIS S () o
A.

(Il=1.2. . .n)|

E
where vy = %
ap= oz ()ids | w=Fun e

(n (')
by = pe; (s) i (s) eds; r,,.-—~—{>w, (8) 2 (s) o ds;

g (10)

g . My (%) u /s

S DICIACLL M—--b G e,
L@

®

The constant coefficlents determined by formulas (10) are calcu-

lated for any arbitrarily chosen fixed cross sectlon,

The formulas for the coefficients (10) can also be extended to

shells reinforced with longitudinal elements. In thls case the

quadratures (10) must be understood in the sense of Stieltjes integrals,
The free terms in Eqs. (9) are determined from the formulas
Py ;ﬁp (z. S)¢,(s) ds;
i .

=gz Shlds. | (1)

(T

8=

Ay A O, s Tt A S s e e O 2




Formulas (11) are calculated for each specific case of the distr:
bution of the surface loads p(z, S) and q(z, S) along the contour S.
For example, in the case of a quadratic variation of the surface loads

p(z, 8) and q{z, S) along the contour we obtain

p(2)== :,2 p(zs);

2
q(z = G(=.8) et

Equations (9) constitute a nonhomogeneous system of m + n linear
differential equations wlth varlable coefficlents for the unknown
generalized displacements. Thls system 1s obtalned by approximating
the displacements along the contour with the ald of an arbitrary number
of power functions of any order of the contour coordinate S. Thereforc
the system of equations (9) may, with complete justification, be calle:
a general system of differentlial equations for calculating slightly
conical shells of constant thickness and arbitrary cross sectlon.
Assuming that each “of the sets of functions ¢,(S) and ¥, (S) is orthog-

onal, we obtain

% =§o(8)y, () dF ()=0, 1+ js#i
(3 (12v)

=¥ ()4s () AF ()=0, ¢ ki # k.
()

Under conditions (42) the system of equations (9) assumes the

form Ta//}‘-f;[(-;- 2;+1U;]_E(3;)a+x-x WU, — \
. . i
_E(_;v_):!u "/kV; +(_:_)x.; l‘é‘l’/'—"o
%
U=12.. .m) (13)

St ()" el (8] vi]-

~r B s () e

(h=1,2... .n).
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For a system of 1 functions ¢1(S) consisting of power functions
of the order o = X = const and a system of k functiens ¥, (S) of the

order p= 7 = a - 1= const, on the basis of (9), we obtain

1> ey, (";[( ,)h“ J y( )3._. bU,~— ]

=2 Vit Lm0
4

(jm=1,2. ., .;n); I

""'mj:;[(%)cz o ]+? - K z--xV*]_

i

(%)

—1 W(_j_)’ Su Ve +(7) —é-q,,—o

k

(h=1,2. . .n). )

The system of equations (1l4) for determining the unknown general-
1zed displacements 1s obtalned by approximating the displacements with
the ald of a power function of any order a of the contour coordinate S.

The system of equations (14) is a generalization of a system of
equations [4], where ¢ = 1, i.e., for functisns that are linear @1(8)
and constant (of zero degree) wk(s) with respect to the contour coordi-
nate S. For shells with a rigid contour (when S, = 0) Eqs. (14) are

simrlified and assume the form

-E(%)""%Vrl-(,)' Hé‘/’/-o

]

(j":-l.?. . .m); . (15)

21: Chi ;;: [(':T)h l Ul] + 2; ik ‘:; [(—?)?‘—l V;]"l'
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Equations (15) constitute a system of differential equations
witﬁ varlable coefficients of Euler type with respect to the function:
Ui(z) and Vi(z) with a right member in the presence of surface loads,.

The unknown functions, which are the generallzed displacements
Ui(z) and Vk(z) of the above-mentioned systems of equations (9) and
(13)=-(45), must satisfy the boundary conditions.

The latter are glven in the form of geometrical, static, and mixe:
conditlons, dependling o: the nature of the attachment of the edges of
the shell, and serve to determine the arbltrary constants of Integra-
“ion, Let us show by examples the use of the systems of equations

that have been obtained.

A Study of Cross~Sectional Deplanation During Bending for

the Case Where the Deplanation is Approximated by Power

Functlons

In this section we shall seek a solution for the stressed and
deformed states of a slightly conical shell of constant thickness
with allowance for cross-sectional deplanation during bending.

The deplanatlion along the contour of the cross section may be
given by one function or a system of functlions of any degree relative
to the contour coordinate S, provided that these functions are in
keeping with the physlcal conditions of the problem posed.

Let us study two problems in general form.

1. The deplanation is approximated by linear functions.
2. The deplanation is approximated by quadpatic functions.

A conical shell with a rigid contour (shk = 0) is loaded with a
concentrated crosscutting force Qb and a trangverse linear load'q(z)

given by a linear law (Fig. 3).

-11-




The concentrated crosscutting force QO’ in keeping with the
method being used, 1s understood as a generalized transverse force,
the effect of which is taken into account in the formulation of the

boundary conditions.
Yez)

%’fTTTﬁ\"TTTTTTww~r-;

A

_7
/

|

5 -
~ a
.fw l'“ ¢
w T
— NAF
¢ y

Fig. 3. Loading scheme and geometrical
parameters of a conical calsson.

90 .
Ng=7_, E=bl-wcb<m]
Fu=Udy; Fae=¥gdy

Cross section of shell (z = I)

The transverse linear load q(z) 1s obtained by integrating along
the contour of thevsurface load over the possible displacement in

the plane of the cross section of the shell.

1. The Approximation of Deplanation Along the Contour with
the Ald of Linear Functions

Let us represent the longitudinal and transverse displacements

of the shell in the form of the following finite expansions:

u(z, S)=U,(2) e (S)+U:(8)h($)a]

(2, )=V, (2) ¢, (5). (16)

-12-




. The functions ¢1(S), 95(S), and y,(S) shown in Fig. 4 are chosen
as.follows:
1 (S) =y (5);
72 (S) = ¥[G4 2 (S)] -y (S (17)
4, (S)=y'(S).
- In formulas (17 ) the coordinates x(S) and y(S) and the parameter
d, réfer to a moving cross section z. The functions wl(s) and @2(8)
are linear, while wl(s) is constant wilith respect to the contour coor-
dinate S, and we can use the system of equations (15) for the solution

of the problem formulated.

PG
2 2

— 4
7/ o N2 \\\
0 - 4
$2(5) X
// ¢ (S) x Z( \\\\
@ L4 N, 0.9
\’7L / y -EJ\Q'C 7
Y 7°¢7
I |
98] = §,(S) e
= \- — —— N\
y ' Cc
y \’
s | ’
©,(5) 4 X

»
Fig. 4. Diagrams of approximating functions
along the contour of a caisson,
The system of equétions (15) will be simplified, if the functions
¢1(S) and va(s)‘are chosen orthogonal. The condition of orthogonality
of the functions ¢1(S) and ¢2(S) for a moving cross section has the

form .
au"i)?\ (s) P2 (S)dF (S)=0.

13-




Evaluating this condition, we find.the coefflicient of orthogonali-

zation for & moving cross section

didsls,
Ay

where Jx 1s the moment of inertila of the cross section z = 3 with
respect to the x-axls;

d;» dp, and Fy (ef. Pilg. 3) are also calculated in the cross
section z = 1. .

From the system of equatlions (15) we obtain for the given loads

and displacements (16)

d ' 2 ’ »
Tan';; (-73~U;)—-—:;-(an, + b3 Uy -6, V1)==0;

\

1022 .:_:-(31‘7 U;)_';'(an,-!-bg-,.Uz-i-C,;V'x)-aO; (28)
1
w bl

\ d 2y, ql Z\+! b
A —v)=-v--~-“~—- (-) -,
RRATR (/ ! Gu—b) |\7 1

Equétions (18) can be obtalned from the corresponding system of
equations given by Yelpat'yevskiy and Konovalov [4].

Bearing in mind the functions chosen and the symbols used (cf.
Fig. 4), we determine the coefficients figuring in system (18) in
a fixed cross section z = 1 from the farmulas
)

@y ==/ = g ¢l () dF (s) - ‘13(';‘- + ~-’;" +AF);

)

8= Jiym ()64 (5) dF (5) =
()

Ak ’ .
22| G2 ea-cta v (D ar) (19)

b" b f '.?'12 (s) aF (s)== QFI;
8)
biaw= b, == 43?. () 9, () dF (s) = 2cF;
)

bn‘v-?%?': () aF (s) - 2(c¢*F,+ Fy);

—14-




Eu = 9, ()4, (5T dF ()= 2F,;
(2)

e=ca=§ ¥, (s) %} (s)dF (s) = 20F; (19)

(s)

rye=§ $3(s)dF (s)=2F,,
()]

vhere AF is the area of the cross section of a longitudinal element
of the shell (longeron belt, stringer);

Ji@ 1s the bimoment of berding inertia,
Let us rewrlte the system of equations ‘(18) with the coefficlents
(19) as follows: '

z 2F1

7y Ui H etV =0

s, L LT

| Ui-+3 s U=
R AN 2F b el o

S Ut U= (g e gy My
I { 71" ‘j’V 17y,

LU+ U te(2U 420+ 2V | Vs
— of b
- —2F|Gq(l—- 5) [(':') _7"

Equations (20) constitute a nonhomogeneous system of three ordinary

o)
| (20)
i
,’

linear differential equations with variable coefficlents of Euler type
with respect to U,(z), Uy(z), and Vi(z).

Let us replace the varlable by £ according to the formula:

Z
z
/

!

= ¢

Bearing in mind that U,(z) = Ul(t), Ue(z) = Upy(t), and Vl(z) =
= Vj'_('c), we reduce system (7 !), after performing the necessary opera-

tions, to a system of ordinary differential equations with constant

coefficlents

Ui(t)+2U1 (6)=NU, (- eNU () = N Vi () = 0; | -
Ua()+2U, (= LU, ()= MU, ()= LVi()=0; | (21)
C Ui+ U, () Fc[U2 )+ U, ()] + Vi) + Vi(t)=

2F,G (1= b) ]




~vhere N, L, and M are coefficlents determined by the formulas

New 208
Ve '

‘L2
.“II‘ !

Mes St
7"]'

Let us represent system (21) in the form of Table 1, where D

and .'D2 denote, respectively, the first and second derivatives with

respect to the independent varlable t of the functions in the upper

line.
TABLE 1
VN0 Ua () ‘ Vi@ Right Membor
D2-+2D—~N N ] -N 0
-t D2~ =L 0
e L e i
' 1 @ (.8
S R B “2&0«—6)("‘:)

[T —

Let us introduce into our study a new function £(t) such that:

~¢N -N
Ui)= D 4+2D-M .y !f(t).
D*4+- 20— -
U= O D__iv _ivjf(:); (22)
. | DM2D—N —eN
Viers| "2 pergpm [0

Then the first two equations in system (21) are satisfled identically,
while the last equation gives the resolvent equation with respect

to-tle newly iatroduced function £(t)

«16-
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P 48N (B =P) o (4=3P) f — 2Py (23)

- (a8,

20,6 1= \" T

where P OF 12

"Jy,

Thus the solution to system (21) is equivalent to the solution
of one nonhomogeneous linear differential equation of the fifth order
with constant coefficients (23).

The solution to Eq. (23), as is known, consists of the general
solutlion of the homogeneous equatlon plus the particular lntegral.

The homogeneous differential equation corresponding to (23) has
the form '

S SN (8= P) S+ (1 =3P) f" = 2P =0, (24)

Iet us write the characteristic equation corresponding to (24)

nt-5nt - (8= Pyn+ (4-- 3P) n?— 2Pn=0. (25 )

Equation (25) is satisfied for ng = 0. Moreover, Eq. (25) has
the general roots ny = -1 and ny, = -2 for all shell parameters, which
can be verlified hy direct substitutlon,

Calculating the remalning roots of the characteristic equation,
we obtain finally

m=—1 n,=—2 ny=—~1—k n=-14k ng=0,
where ' :

We can now write the general solutlion of the homogeneous equation

(2%)
. ,m () -_cxc"' +C :e—zc + C,e'(*“" +C,ett=1 4 C,.

The particular integral of the nonhomogeneous equation (23) has

-7~




the following value:

s qof? L qolb
f(t)'lzf.au—»)(l*-a)" 4r,a(l-o)P'

The solution to Eq. (23) has the form
1 @)= W0+ 0. - (26)
On the basis of (22) and (26), we can obtain for the uhknoﬁn
functions Ui(t), Uy(t), and Vj'_(t)

. - 9 - -y gof?
Uy(t)= N[kCc' L PC.e ’*'Fc“"mm,au-n e+

+ s 2= PO):

4F G (I~ 8) P

]| — -t o—(ki 1) (k1)1 .____._.Q’..’___ -

U. () L[ Cie~'+PCye Pt =P8
L ]
TR GU—b)P

Vi) m[1+ N (P+1)+M] et 4-NPCye=¥ +
(P M) Cm 14 P (P= M) et 4

et - \\f‘“n} "

NPy iz
T i 12F,G (1= 6) (P =3)

qylb
tEGu= —oyp PN+ MNP,

Returning to the variable Z, we may write.
U (2)= —N [kac, (37)“ + PC, (-:.)"+Pc,+
ol o) M G )
U,(z)nL['__Cl(f-)-l-i-pC;( ) (k+l)+PC (-)H:-l
+ maui&:w’—m v )H"E?Tc?%ﬁ?]‘
Vi@=[1+N P+ 1)+ MIC (3 +NPC, ($) 7+

(e7)

+P(P~M) c,( )“”*f’+
2\ +hk=1

#P(P=MC, (3" + NPCF

M[3(3-M)+N(P-—3)l
+ S s 5+

m[z(u—pm-wpm-l

+

«l18e
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Integrating the last expression in (27), we obtain
A £ AL

Vi) l{[l-{-N(P-l)—}-Ar}C,lnl NPC,(’) (28)

P 2 -k P 2\ +A z\+1
_T(P-M)C,(—-) ——-(P-—M)C(-—) +NPC,(7) +

g2 {33~ M) - N(P—3)]
Cot- 24F,G (I — b) (P ~3) (1) +

+2m—(”7'§_”—b;-5 [2(1v LMy —NP (m-j-- 1)] (il)’”} .

After the functions Ul(z), U2(z), and Vi(z) are found, we proce
to the determination of the stresses.

The Determination of the Normal and Tangential Stresses in

the Shell

The normal stresses in the shell occurring, on the basis of (2).

during the displacements (16) are determined from the formula

=[5 6(0) '+ o) =gt
4,,16"(“,6 ~(5) ‘}m(SH-L[ l)"..
o RN G -1 (29)
+ 4F,G(I-—q‘:)(l’—3) ]?’(S)'

The tangentlial stresses ln the shell occurring, on the basis of
Hooke'!s law, during the displacements (16) are determined from the

formula
t(2, ) =0[U, (2) %:(S) + U (2) 22 (S) + Vi (2) 4, ()] (30)
A more accurate. value of the tangentlal stresses may be obtained

from the differential equation of equilibrium

52{( )—(--H) d [(: a1 U"]?‘ (S)}&+£-;-=0. (%1)

" For the conical shells under consideration with @ o = 1 the
flux of tangential forces q = T8 can be found by integrating (31):

-19-



o =[5 L) s
d Z2\+3, 0. g | (32)
.;.7;[(7) u,] 5 9:(S) 28! + g, (2).

When determining tﬁe flux of tangeﬁtial forces, it is necessary
to make & cut in the cross section of the shell to serve as the
initial point in calculating the integral terms (32). The flux of
tangential forces qo(z) ir each cross section of the shell in a simply
closed contour is determined from the equation of the moments of the
extarnal and internal forces wlth respect to an arbitrary point in the
cross section.

With the aid of cuts the cross section of a multiply closed shell
should be transformed into an open contour, which makes it possible to
determine the integral terms (32). The fluxes of tangential forces in
each of the i contours q01(z) are determined from the equation of the
moments and a system of 1 -~ 1 equations of compatibility of the defor-
mations.

The {inal expression for the flux of tangential forces has the
form:

6F,G (t— )

c(z.sl-ﬁ—[N[gpcz(_;:)ﬂ et ( )
(33)

~Faiw () ];wn (S)ies—

[(k-l-I)PCq( )‘uﬂ)'{‘“—l)l’c (_ *h—:

qol?
+zn@(t- 2) YYD 5?: ) &A’S}+%(z)

T™he transverse displacement (deflection), on the basis of (16)
and (28), is determined by the farmula

‘ -20~




Xt

(2. )= {[1-N(P+1)+ M) Ciin -~ NPC,(7)' ~
—F(Pmma(E) + fe-mec, ()" weei(z)+

C, 3 7072183 —=A -t N(P—3)) r2\+2
+Cet+ 217G (1~ b) (P —3) <7) + (34)

i LTy P 17 N

The Determinatlon of the Arblirary Constants

For each particular case of attachment of the shell the arbltrary
constants must be determined from the approprlate boundary conditions.

For example, for the shell shown in Fig. 3> the boundary conditions
have the form

end section z = 1 rigldly attached:

1) U;(2)=0, 2)U,(2)=0, 3) V,(2)==0, ‘I

end section z = m freely deplanes: (35)
4) Ui(2)=0; 5) U:(2)=0,
6) G[CxxU1+Cx:Uz+’||V;I ";‘="‘Qo- ,l

Evaluating the boundary conditions (35), we obtaln a system of
linear algebraic equations for the determination of the arbitrary
constants, Thils systemn 1s shown 1n Table 2. It should be noted that
the system of equations for determining the arbitrary constants has
a very simple form ahd can be solved without any difficulties for any
parameters of the shell.

If the transverse linear load acting on the shell is distributed
uriforzly, we must take b = —w 4in formulas (27)-(20), (33), and (%)

and in Table 2,

-2l=



TABLE 2

System of Equations for Determining the Arbitrary
' Constants

v 1]
G, C. ! C . Cu f Cs (Cq Rizht Member
s | ! i
KRN | !
! ! ) | !
| l ! .
| . | K . 2
IS I L N R - e i (P T)
i i -
| | | | _
t , ; ,
-1 0 ‘ 4P i L p | - 4ol ( L )_ LA
i ‘ | ! \ 010 T 4F,G(I—b)(P ~3) P P27 -1)-67
| ‘
H ! ' I . l
! Lop ‘ P | Do qol3(3=M) ~N(P=3)] qolb[2(M+N)+NP)
0 — NP (P A) L (P M) L} -
| P A (P N = e Gl 0 (P —3) 4FIGU—1)P
! , | [
[ ' T i T
‘ -1 ! ‘ : i . {2 +2 b rm\*+!
Yy Qp(_m_> ; 0 R . [ L (_L"_) —aZ _)
v i + 1 | ; 0 : 0 3°} T12F,GU=b)(\ £ 87 (:
} +1-gl 0 | (k+I)P(lL)-k!+(l- ne i")“g 0 ’o' e '(m "
{ ! : t) Y (1 ; % ] T ARG (I~ b) (P —3) 1)
' i f 0
| l : z F
o | : : coi Qe q0l2 [/ m\+2 b(m)u]
kT 0 0 0 Y ; M\ _a P
; i i ! 50 I 2F,G T4F;G(1-b)l_( ] ) 27 ot

Approximation of Deplanation Along the Contour with the

Alid of Quadratic Functions

As was done previously, let us represent the longltudinal and
transverse displacements of the shell in the form of the following
finite expansions:

a(z’ S):Ul (Z)‘Pl (S)+U;(Z)?3(S); } (36) .
v (2, 8)=V,(2)%,(9). -

The functions ¢,(S), ¥,(S) (cf. Fig. 4), and 9,(8) (Fig. 5) are

chosen as follows:




RN T e

?1(S)=y (S); '

2 @=F[ L)t (37)
$1(S)=y"(S). {

The functions ¢1(s) and wi(s) remain the

l,/@ﬂ:>~<:%1~0§’ same as In Sectlion 1. ILet us write the
rondition of orthogonality of the functions
9, 15) 5
Z{/g,/qg \\5;) 9,(S) and 9,(S) in a moving cross section
W4
yv\_g;“i, "7 a = 21(5) 3(S) dF (8)=0,
. 4 2 5]
[
‘~\<::; whence the coefficient of orthogonality of
, ¢
‘Q {; the functions 9,(S) and py(S)
= J 2
A =, =2 4l
c y \ PY 7 o7, y

Fig. 5. Diagram of where Jx 1s the moment of lnertia of the

a quadratic deplana-

tion function and its cross section z = } with respect to the

igiizaﬁivihﬁ“éﬁniﬁar x-axls; dy, dp, and Fp (of. Fig. 4) are
of a calsson. also calculated in the cross section z = 1.,

In this case the function ¢2(S) may be
represented iIn the form
2:(S) =§:- {:e [i:‘ —x’(s)]+i‘§:—’y (s)} . (38)
where the coordinates x(s) and y(s) and the parameter d, refer to a
fixed cross section z = 1.,
Formula (38) shows that ¢2(S) is a quadratic function over the
entire contour of the shell,
In other words, the transition from the function ve(s) of a

moving cross section to the functlon mz(s) calculated in the fixed

cross section z = } can be made according to the formula

. 2oy 22
Y2 (‘S)"’ 7 ¥ (S). :

e R



For the soclution of the problem formulated let us use the system

of equations (9). For the given loads and displacements (36) we have

2 —c )
1% d‘: (Z1 Ul) "b,,U,—-—b,..U --ic“V', 0

Ta:zdz ;suz) 'b"lul b U,——--c,,V'u=(r (39)
et oo
M [fENT L8
= a(:.-b)[(/) l]'
The coefficlents ail’ bil’ b12,= b21, Ciqs Cyo = 021’ and Pyq
figuring in the system of equations (39) are determined from formulas

(19).
For the coefficients ano and b22 we have the following expressions:

Gy iy = $E3(5) AF (5)= |
(s)
_4n [_{_ aLFy . d3FyOF+ Fy 4 68F) . (40)
6 L5 3 EX o

. 2 o t
b= § 6 (VAF (s) = diF-4-20°F,

{5

where Jicp is the bimoment of bending inertla.
After the coefflcients are calculated, let us rewrite the system

of equations (39) as follows:

23 . 2 2 2F 22 2cF z 2F

SUHS U My BN + % )
gty YT e g 0T Vi=0;

‘ - 24 22 9k 3 4 .';

,.MUH. 'U-—~-”U-—5-——”~U.-—-- ’Fl 4
Zyhe ' Bty T Ty V=0 (42)

U U e (Z U2 U5 Vitt-vim
~~iwrau-n (7)) =1 !

We have thus obtalned a nonhomogeneous system of three ordinary

linear differential equations with variable coefficients, each equatlion

bel ng of secdnd order.
The system of equations (41) 1s distinguished by the fact that,

in contrast to the sysyem (20), the equatlons figuring in it are not
24
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of Euler type. Consequently we are unable to obtaln a solution in
terms of a resolvent function. The solution to the system (41) will
be sought by successively eliminating the functions Ul(z), Ua(z), an
Vi(z) figuring in 1it.

Let us intrcduce into our study a new varlable £ according to

the fermula

Performing the necessary operatlions on the unknown functlons,
let us represent the system cf equations (41) in the form

Ui(t) --2U5 (1) — NU, (1) — N Vi (£) — eNe'U, (£) =0, ]
= LU ()= LV} ({) + ' (U3 (1) + 4U2 (1) — MU, (1)) = O; l (42)

Ui (1)U (1) + Vi (1) -+ Vi (0 + ce'[Us (1) +.2U, () = !

|

!

[ —— .A.EO_IE_. - (cf _,L)
2, G (I~ b) 1)

In equations (42) it 1s assumed that

Ve
L= 202

e
M=t

1is

The solution of the nonhomogeneous system (%2) consists of the
general solutlon of the homogeneous system and the particular integra
for Ui(t), Uz(t), and Vi(t) corresponding to the nature of the load
under considerationu

Let us first conslider the homogeneous system,

By eliminating the function Ua(t) and its derivative from the
first and third equations of the system (42);.;e can verify that the
funetion Vl(t) and the corresponding derivatives vanish simultaneously.
The equation obtained wlll contaln only derivatives of the function

-25-




u, (¢)
Ui +3U1+2U=0.
The general solution Hr Ul(t) has the form
UP(t)=Cie¥+Ce-t 1-C,, (43)
After the function Uio)(t) has been determined, we eliminate
Ue(t) and its derivatives from the first and second equations of the
same system. The resulting equatlion contains the functions Ul(t) and
Vi(t) and the corresponding derivatives
Ul +4UT+ (1 ~N=MU; =23+ N+ MU} +NRU, (44)

— NV —2NV - NRV =0,

where
2d3F, 12

=3
R + 37/1;

On the basis of (43), Eq. (44) can be represented as:

Vit 2Vi-RVi=RCe="+ (1 4+ R+LEM) oot 4 e, (45)

The general solution for V)(t) will consist of the general solu-
tion to the homogeneous equation carresponding to (45) and its partic-

ular 1ntegral and will have the form

VI¥ ()= ~Ce —[1 +a:—::+;~] Cre!—Cy+

+ C,e(~1+VRF) 4 Coma1+VRFIL,

Uéo)(t) 1s determined from the first equation of the system (42):

L R R
U () —= Coe= = C -2 +VRFI O o= (2+V RFI,
1 () R+YN? 4 §

The particular integrals for U,(t), U,(t), and Vi(t) in the system
of equations (42) will be sought in the form

U ()= At + 8t |
U, (¢)m A, +B,e~t; ' ~(46)
Vi()=Ag!—B,t+ B,

26
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Substituting the expressions (46) in each equation of the system
(42) and equating coefficients of 1like powers (eP’) in the left and
right memBers, we obtain the following systems of equations for deter-

mining the arbltrary constants figuring in (46):
(3= N)A —eNA,~ NAy=0; |2B,~cNBy—NB=0;

)
" |
At At A= (34 M) By +LBy=0; } (47)
AdcA4+Aym=— 27 B B oy olb
! L 1F\G (1 — b) }c :+ B, +2F,G(I-b) ) ,’

Determining Ai’ A2, B5 from the above, we find the particular

integrals
00 — ey (=37 ) |l
Op(ym = ottllo (2 2o a0y, o (48)
Vi mfiz’r}%ﬁ}[(” - ) —aN 2y 6‘"7-}‘-;’—] |

For the unknown functions of the nonhomogeneous system (42) we

have the following formulas:

U, (t)=Cie~¥ +C,e- + c,—%;(ef—s% t);

L 1 e
U)=-—--"—C,e=¥ m - (~24VR+IH
o )=(R+1)N 2€ p Cie
1 RS of2L 1 2 b
— L C.e— (2 +VEFI} __L._(_____ -a).
c 8 +4F,G(l—b) R—3 RTE)

Vi()=—Ce-2-[14 4FtM_Jeo -t
L (f)=—C,e [1-{ m+n~]c="' C,+

+ C,el=1 VR 4 Csc-u-n‘k.”p‘l)( +

g0l M\ o b, M43 8
+12F,a(1-6)[(N R-,-a)e SNTE+6= T']‘

Returning to the varlable z, we obtain

Uy (a)=C, (-;—)"+c, (—;—)"+ C,—

J . 4
~mrsan | 7) 3 F (49)
U =)= o)
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T 2

1 L. /2 \~02+VRTD)

6 (%) +

i il L by
4F,G(—~b) |R~3 t \1

. 2 \—2 I ': -1 4
V.(z)=—-C(—-) —[1+ ‘:‘;N]C,(T) - - (%9)

R
""Ca"} C( )_l”r-}-cs(-—-)-““.k;a) +

1
S 90! ( 3.M )/ &3
' w,a(t-b)[ N— )i

M-‘-3b
+ M3 1]'

+1 b z
) 3N—I-lﬂ—l—+

The function Vi(z) 1s determired by integrating the last expres-
sion in (49)

Aol dlon oty
+’,—._-__.’_=.C‘(l)+m+x ), C(l)—l’k+l+c +
z \+2

+mﬁ?2—n( “' '%0“‘"‘0( +

ey

(50)

)
1\t j°

The Determination of the Normal and Tangentlal Stresses ln

the Shell

The normal stresses in the shell are determined from the formula

(T)d"% 2 : m,aa—b) [1

_3;'(_;") J}e,(5)+F[“ (thl)m c*(T +

___)-3+VR+1+ 2+ )’k"" L, ( )n(:n R¥1) - (51)‘.

+aroi—ar ) J :(S)-
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The tangential stresses 1n the shell can be found according to
Hooke's law froam (30).

It is recommended that the tangential stresses (or the flux of

tangential forces q = 16) be determined by integrating the differentia
equation of equilibrium (31).

The flux of tangentlal forces in the case under consideration,

where o, = 1 and oy = 2, 1s determined by the following expression:

= 2 2 i )
S .
+4F:73b(llN—b) (") H’ (5)3dS+

_____ (~ _)—4+Vk+l _
¢ ? ‘
__Q+VF€D/F?TCciy0”WﬂL+ (52)

!

o

+2F,Gq(olbﬁ-b)/\( ) H?.(S) dSl+q°(z)

The transverse displacement (deflection) is determined from the

formula
v = () =1+ ] Com
_Ca( ) +»’R+1 ‘(_;_)H’R“_
B 53
- VI%F-'—I'C’(%) e 1+C°+ 24F.tqi°(’1_b) 3f )( )H" (52)

—-GN—(ln——-—-l)( ) +12“+“( ) ]}q»,(.s').

.

The Determination of tiie Arbitrary Constants

If the end sections of the shell are attached as shown in Fig. 3

’

the boundary conditions (35) give a system of linear algebraic equations
for determining the arbitrary constants. This system is shown in Table
B

-29.
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For a uniformly distributed transverse linear load we assume
in formulas (49)-(53) and in Table 3 that b = - «,

Considering shells wlth specific parameters andlload, we deternmine
the arbitrary constants from Tables 2 and 3. Substituting the values
of the arbitrary constants and of the corresponding coefficients (k,

L, M, N, P, R) in formulas (29), (33), (34) and (51)-(53), we obtain
the solutions for the stressed and deformed states of the shell. Thus
the problem formulated is solved in the general form,

As can be seen, the solutlons glven in Section 2 are more 4iffi-
cult to obtain than the solutlon given in Section 1, However, 1t 1s
to be expected that the stresses represented by formulas (51) and (52)
will be closer to the actual stresses than those which can be deter-
mined from formulas (29) and (33). This circumstance was noted by
Obraztsov [8] for an analogous problem in prismatic shells.

In practical calculations it 1s entirely permissable to use the
solutions given in Section 1.

It would be of interest to simplify the solutions obtaihed without
greatly prejudicing their accuracy and to make them more convenlent
for practical application.

The solutions given above can be made more accurate by retaining

a greater number of terms in the expansions (1).

Torsion of a Conlical Shell

It is known that in a conlcal shell normal stresses appear even‘
when the shell 1s subjected to torsion by a constant moment and by
free distortion of the end sections, The normal stresses 1in this case
are a consequence of an internal constraint caused by the conlcity of

the shell,
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TABIE 3

System of Equations for Determining the Arbitrary Constants

-
% I ' '
hd | .
2 G ’ C: Cy C Cs {Cs Right Member
g |
' ! i "
. l 2N
1 1 41 +1 0 gt
T i E 0 0 * TFGU—b)
-— L w—— g - - —— 2
PP 0 -1 - oL 1 _.3_.5_)
| . (R+NN i ! 0 4F,G(I—-b)(R—3 R I
i ! i ! ! _ %[2 [ _ M .
3 1 1 o -1 R i — 24F,G (I — b) R—3 "
f YR+ ; YR+1 + b M43
«6—(N 2 )
—_ i R
t |
| k ‘ | | 1N ()
4 ,;_2(.".‘.) a1 o 0 | o 0 12F,G ({—b) (1
! , ! ; 32 [ mH
__ : i | , % ( l) }
2el ’ m +1'l7"|“ m V‘;—Tl " golbel my+t
s1 0 =R 0 e—vRED(F)T T ey RED(F)T — (%)
;(R7nﬂ @—v 7 ;(T/R+’)t ‘0 FG(—b)R \
|
: . o f ~ ; T l'(_g_)‘-'z
6 0 == i0 0 0 Lo| 2RO TROU~nLL/ T
| A : ; 22(2)")
, | i —obym
! | o ! A ! 1)

Constrained torsion of straight and swept-back slightly conical
shells was studied by Balabukh [1], Yelpat'yevskiy and Konovalov [4],
and Novitsiiy [7].

Let us solve the problem of constrained torsion of a stralght
slightly conical shell of constant thickness with a rigid contour
on the basis of Prof, V. Z. Vlasov's variational method.

In the first approximation we shall assume that the displacements
of the shell have only two degrees of freedom: one in the longlitudinal
direction (only one term 1s retained in the formula for the longitu-

dinal displacement (1)) and one in the transverse direction.
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mn,

j 7 - . ) The shell is assumed
4 H o . '
2.7 7 0'—-: A ) to be loaded with a concen-
*5\\\\ O\ \ \\\_/.,___———‘
’ ~— M ——— trated torque Hy in the
y )
1 3

end cross section z = n

d; and a linear torque m(z)
[ >
f -1/" given by a linear law
v 0 x .
4 4L=,/, ‘)\\ar (Fig. 6).
”. 0,. y Let us give the longl-

tudinal and transverse
Fig. 6. Loading scheme of a conical

cailsson. @ displacements of the shell
m(‘)aﬁ(z—l)l—m < <ml;

Frmiityi Fomtuts in the following form:

Cross section of shell (z = 1) u(Z.S)—U,(z)q;,(s),'} (5h)
v(2,8)=V,(2)4,(S).

The functions ¢,(S) and ¥,(S) represented in Fig. 7 are chosen
as follows:

91 (S)=x(S)y (S }

$1(S)=£(S), (55)

where h(S) 1is the length of the perpendicular dropped from the origin
to the corresponding plate of the shell.

The function 9,(S) is quadratic, while the function wl(s) is
linear with respect to the contour coordinate 8.

For the solution of the problem formulated let us use the system
of equations (15).

For the gliven loads and dlsplacements (54) we obtain

1a iy - (j: U;)"‘is‘bnu "‘f"cuv'l - ]

wia) i v’>=-ﬂ=

A . - ______ +h
aa—n "}

(56)
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The coefficlents figuring in the

\ 'h.d
\\ .65) -~ =L equations of the system (56) are calcu-
!
0
\\x lated in a fixed cross section z = 1}
©
y“‘~\424+£fﬂ from the formulas
—_— ¢ L N T
- ’ - ay=J1y= gf)v‘f (s)dF (s) = 25 BaF + F,1-6aF),
Heiesr > . |
| B
—— b, =‘<(;‘> 3’12(3)‘”:‘5) = ';_(dng +diF,);
N 4 (5
NN 7
N —— - =5 ()4 (6 dF (5) = (dIF, — diF,;
t ‘*J,(S} 2 J ) (s) .
T =) dr©) =L (@F, + aiF,),
! PN . (s)
y gz‘

where le 1s the bimomert of torsional

Fig. 7. Diagrams of approx- inertia.

imating functions along the Let
contour of a calsson.
as=a, £ = o EQId}(F\+ F, + 64F)
by=b,0=r,G= G (diF, +diF,). (57)

by=,, = G(dIF,~ @iF,),

—— e o, e e oo,

After certaln transformations , let us write the system of equa-

tions (56) with the coefficients (57) in the form

W s
by(2U) +3U1)+b|(zV; +3V))=

B

-

(UL 52U — LU = V=0, “
. (58)
|

We have obtained a nonhomogeneous system of two ordinary iinear
differential equations with variable coefflclents of Euler type wiltch
réspeét to Ui(z) am Vl(z); each equatlon being of second order,

We have already encountered the solution of such a system [sjstem
(20)]1.

After replacing the variable z by t according to the formulal
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performing the necessary opera?ions on the unknown functions, let us
write the system (58) in the form of Table 4, where D and D? denote,
respectively; the first and second derivative with respect to the
indpendent variable t ol the functions in the ugper line,

Let us introduce into

m 1
TABLE * our study a new variable
.0 Vidy s vesber £(t), while identically
| : satisfying the first equa-
Ay b - | 0 l
hn(u A= by tion of the system (58)
j‘ Mol? A . U t)= H
b2 (D +3) ey = () l.() +,,f b (59)
j Vx(t):‘~~(/"+4/')-tf.

byl2

From the second equa-

tilon in (58) we obtain a resolvent equation with respect to £(t)

T "+ 4 (12— B) f' = 312 (60)
N PR PR U
i—va (= e,
where 0
ab )
' (61)

Equation (60) is a nornh.mogeneous linear differential equation of
the third order with constant coefficlents,
The homogeneous differential equation corresponding to (60) has

the form
fm+7j” +(12—-k2)f'—3k’/=0.

Its characteristlic equation is wrltten as:

1 70} (12— k%) 1 — 383 e= 0, (62)
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Equation (62) for any shell parameters has the roots
Ry =3 fym—2-VIFR, n=—24VIiTR

Let us write the general solution for the function £(t):
JO(t)m Cie=¥ 4 C,e- @tV 4 Cypt--24V Tk 1,

The particular integral (60) has the following value:

s Mol 46, 1 1
H= -t 2o
AU (l—x)ab,[:’(s-;-k?)e 4441 ¢ € ]

The solution to Eq. (60) has the form
s =100+ 0. (6)

Let us pass, according to formulas (59), from £(t) to Ul('c)

and Vj'_(‘c); we replace the variable t by z and obtaln expressions for
the unknown functlons

U(z)=C ( ) +C’( )(2“4 M-{-C,(-—;—)—“‘W-{—

Moty [ ! ,5_)—1_. RN ZE =]}
i 4 - k2 1( ) J'

(! —2abh, 2(\; kz)(
V'l(z)-;—._. .“," bI_C‘(:)-tx b,c ( )-(3.“4.“.)
!

(6%)

byl

Ml 2 [_3a+~_b_,~lf z da -+ 0,12 2 -2
+(1-x)ab, 2(3+k=)(1) + 44 k2 1(1) J

The function Vl(z) 1s found by integrating the last expression
in (64%)

Vil)= 1(342:2:2"2 C‘(l )-2+bl(l+ ViR sz)c( ) (HH“).'}-

by 2 ~1 +ViEE
+b1(l-—/4+k=)c°(l) +Cot

_Mpi2 [_3¢+b,l2l 3 _dar bt K( ) 1]
(I—Naby| 2@+ 1+ 44k I\ }

(65)




The Determination of the Normal and Tangential Stresses in
the Shell |

The normal stresses in the shell are determined from the formula

24+VIFF (L ~Q+VIFR)
[ : 1)

a(z.S)=E{—-—13— c, (_7_)"_.
~ 22V TER g (1) (66)

+ (:?z.o-:;?bl [_ 23 ~1 5 (’:_).ﬂz'*'fj—ﬁ _:'(':—)—3]} ")

The tangentilal stresses in the shell can be determined from Hooke's

law,

As was done previously, it 1s recom&ended that the tangential
stresses or the flux of tangential forces q = T6 be determlned by
integrating the differential equatlion of equilibrium (31).

In the case of the quadratic function éi(s) (¢ = 2); after perform-

ing the necessary operations, we have for q(z, S)
9(=.8)=— 5 [3¢,(+) " +@+ VIFB)VITRC,x

H(E TR e-vITBYVIER c,(f')*‘*"”"’— (67)

!

s
_ Mllhy 2N s
2(l—Nab; (34 k%) ( ] ) JBS 9, (8)edS+g,(2).

The longitudinal and transverse displacements, on the basis of
(55), (6%), and (65), are found frcm (54)., In practical calculations
for torsion we are interested in the angles of twist of the shell

6(z) = v,(z), which are determined from (65).

The Determ*nation of the Arbitrary Constants

Evaluating the boundary copditions for each particular case of
attachment of the end sectilons df the shell, we obtain a system of
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linear algebralc equations for determining the arbitrary constants.

Let us consider the followlng two cases.

Case 1. .
The shell (cf. Fig. 6) 1s rigldly attached in the cross .section

z = ] and freely deplanes in the section z = m. The arbitrary constants

are determined from the boundary conditions

zml
1. U, (2)=0;
2. V,(Z)':..—O
Z=m
3. U'1(2)=0;
3 ’
4. (—’;'—) (.U, +b, V)= - H,

(68)

Case 2,
The end sections of the shell (cf. Fig. 6) z = 1 and z = m freely

deplane., In order for the shell to be in equilibrium in the section
z = 1 under the action of the glven loads, we apply the torque
Hy=Hy+ Hy,

where Hm=%?ﬁ(l—m) is a torque equalizing the linear torque

m(a) over the length of the shell L= 1 - m.
The arbitrary constants are determined from the boundary condition:
Lozl Ui(2)=0 ]
2. z=m Ui(2)=0;
2 , | (69)
8. 2=z, (b U, +bV))=—H:;
4. 2=2, V,(2)=-0, ]

where H;(,,=H,+?-’l'—’2'—&(z—nz)-' 1s the torque in a moving cross section

of the shell. _
" It is enough to fulfill the third and fourth conditions of (69)

in any cross sectlon of the interval m £ 24 1. The cross section in

3T




which the fourth condition i1s fulfilled i1s the initial section when
calculating the transverse dlsplacements.,

Let us write conditions (58) and (59) in the form of Tables 5 and
6. '

Systems of Equations for Determining the Arbltrary Constants

It would be interesting to‘consider a sﬁell loaded with a constant
linear torque M,.

In this case we assume that A = - » in formulas (64%)-(67) and
in Tables 5 and 6. The problem formulated, as in the éase of bending,
i1s solved in general form. For the purpose of comparing the solutions
obtained by us with the results obtained by L. I. Balabukh [1] and
B. P. Tsibulya [14], a calculation of the normal stresses in a conlcal
shell with a rigld contour was made for the following parameter values
i1n the end section z = 1:

d, = 18 em; d, = 60 om; 5, = 0.2 cm; 8, = 0.3 om; AF = 3.5 e’y
1 =213.5 cm; m= 93.5 cm.

The length of the shell L =1 - m = 120 cm;

The coefficient vy =-g = 2,67.

The conlcal shell in the end sections z =1 and z = m 1s 1oaded}

with a torque HO.
The coefficients (57) and (61) have the following values:

;1=5,527 . 10%6G; b, =9396G; by=235064G; k*==66,36.
The roots of the characteristic equation (62)

n,.==-—3; n3==—10.388; = +G,388.

The normal stresses are determined along the edge of the shell -

(x©)=+25 ()= +L: a6®)=x(S(S))
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from formulas (66).

Graphs of the normal stresses for the two cases

of attachment of the end sections of the shell considered above are

shown in Fig. 8.

TABLE 5 (Case I)

% i
':-é 'Cl ; Cy Cs Cq ' Right Member
(&3 H
! ?
l | Mol4b -1 1
1 +1 : 1 2 £ -
'i ; * * Ot u=Nan [2(3+k=> ‘ 4+k=,1]
! |
.' !
2 3a < b2 ! by by o1 MM dat-5,02
2b4(2 ' 6 (1 +VEFRT) b (1—=v i+ &) ‘ } T(—=))ab, 4+ &2
| i
| | |
| YT LS
, . _ - m
L=V +1 +VATF (I=Naby [ 2@ +i\ 1
| ) (2 - iTET (l’.) '
3l 43 (2+/4+k)(,/ (20— v TFF) (7 0 T l(ﬁ)ﬂ
Ta+rnI\1
i
4 |86 ,i 0 __W_?"_’S l(ﬂ)+2_.)_(.'."_)+x
b,n(s'*'")i ° . 0 1 +H=32\7 7\7
t ' i

o £ SR AR S A i 1




TABLE 6 (Case II)

:::1— C, C E Cs l G l Right _Honbor
T e s
1| +3 VTR 2~V IFR o “'”“"’2 (3;””
e
i . - +sm°14b, [__ 1 (_ﬂ)n_}_
9 +3 (2+m)(_,;,._>+x-ﬂ+vI(2_/m)(_,ln_)+x+ﬂ+ﬂ 0 (l—l)ab.2 2;3+:2)+l1
' s ()]

|

1 ]

| | ]y
3‘JL3 ? o | + Ho zux[z 7

b CTED 0 0 ‘ .}_(_ﬂ “]

1 _1)
, | daEan b, by ! + + MM 4a+ by
2002 h(1+vVi+a) b, (1= TF23) (=M aby 44
i

Comment: Thé third and fourth conditions are written in the cross
section z = 1.

Curve a 1s obtained during free distortion of the end sections
and indicates an internal constraint inherent in conical shells,
Curve b is plotted for a shell with a rigld attachment of the end
section z = ;. The difference between the ordinates of curves a and
b shows the effect of the embedding of the section z = ; of a conical
shell,

Comparing the curves in Fig. 8 with analogous graphs [1, 14], we
can conclude that there i1s an agreement in the nature of the distribu-
tion of the normal stresses over the length of conlcal shells. Such

an agreement should not be regarded as accidental.

FID-TT~-62~1652/1+2+4 ~40-
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As has been shown [4], a calculation for bending of a conical

shell on the basis of Prof. V. Z. Vliasov's variational method in the

particular case corresponding to the hypothesis of plane cross sectlons

gives expressions for the stresses and dlsplacements which entirely

coineide with the sclutlons of the resistance of materlals when shear 1s

taken into account.

/Io Mok
4-\ ‘g}ft’r [+
=) —=
= M9, 5cu -—-
e e e {0213, 8 M e
dfﬁoﬂd—-——
é _.l 4 d‘,-o,?c‘ll
¥ %
v L AF= 2
,,A.!_ﬂ" , IA AF=35cm
0 .
u?i; whon Ty
1 0k—- >_\ - —e ‘{ \
b A
‘/ -4
as - Y
0 .
- L=l-m e

Fig. 8. The loading scheme of a calsson
and its dimensions,
the shell (z = 1).

0

Cross section of
Graphs of the

distribution of normal stresses along
the edge of a conical calsson.

A.more accurate calcu-
lation of the torsion of
a conical shell by the
proposed method 1n the
second and subsequent
approximations can be
carried out by représenting
the dispiacements (1) in
the form of several terms
of a serles, as was shown
above 1in the solution of
the bending problem

Thus the use of Prof.
V. Z, Vliasov's variational
method for calculating
conical shells makes it

possible to obtaln mare accurate solutions for the stressed and deformed

states both in the case of bending and 1n the case of torsion.

FID-TT~62-1652/1+2+4
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THE EQUATIONS OF AXISYMMETRICAL THREE-LAYER SHELLS
WITH A LIGHT FILLER

V. F. Karavanov

In a previous article [1] the basic equations of axisymmetrical
three-layer shells with a light filler were given without derivation
in & linear formulation with assumptions_based on neglecting the
longitudinally directed stresses 1in the filller and the bending

- rigldity in the supporting layers.

In the present article we shall give the derivation of these
equations in detailled form with the scheme and notations of E.
Reissner [2] taken into account. |

The equations obtained for axlisymmetrical three-layer shells
are similar in form to the equations of the theory of thin homogeneous
axisymmetrical shells obtained by E. Meissner [3].

The equations for axisymmetrical conilcal, cylindrical, and
spherical three-layer shells are obtalned from the general equations
as particular cases, .

' ‘In certain practical cases terms dependihg on the transverse.

compressive deformation of the filler can be neglected., For this

FID-TT-62-1652/1+2+4 ; w3
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case the basic equations of axisymmetrical three-layer shells are
glven without taking the transverse compression of the filler into
account. ‘ ‘

The well-known equations for homogeneous thin axisymmetrical
shells are obtalned as a particular case of the equations of axisym-
metrical three-layer shells,

Basic¢ Assumptions‘

The wing and fuselage surfaces of present-day-high-speed alrcraft
must remain smooth under a considerable load. There thus arises the
question of the transition from a stringer covering to a covering of
three-layer type, sinée the latter possesses great rigidity and
strength and yet is light-weilght. Great rigidity of coverings is of
special value in the case of high-speed aircraft, since the question
of sagging of the covering acquires great significance in connection
with the conslderable increase in flight speed, Three-layer structures
wlth a light filler also possess good heat-insulation properties,
soundproofing, good vibrational characteristics, and other qualifies.

A three-layer structure consists of two strong thin outer layers
connected to each other by a filler which ensures the concerted
operation of the supporting layers. Foam plastics, honeycomb struc-
tures, corrugated sheet metal, and other materials may ser#e as the
filler, .

The supporting layers are made of metal, plastic, plywood, and
delta wood. The calculation of three-layer plates and shells with
allowance for deformation of the filler as a thﬁee-dimensional body
is very cumbersome., Moreover, it is of little use in the case of
light fillers, the bending rigidity, tensile rigidity, and loncitudinal
shear of which are small in relation to the rigidity of ths iupporting

FID-TT-62-1652/ 142+ W e
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layers. In most cases approximate theories, based on various schemes
acceptable in practice, are used in calculating such structures.

The present article is based on a scheme proposed by E. Reissner
[2] with the following basic assumptions:

a) the bending rigidity of the supporting layers themselves is
not taken into account (the nonuniformity of the distribution of
stresses over the thickness of the supporting layers 1s neglected);

b) the filler undergoes only transverse shear and transverse
compressive deformation, 1.e., it is assumed that longitudinal stresses
a.n'd moments are absorbed exclusively by the supporting layers, while
the filler totally absorbs the transverse force (i.e., that the modulil
of normal elasticity and shear of the flller are equal to zero in the
longitudinal directions, but differ from zero in the transverse
direction);

¢) the filler is regarded as comparatively thick, light, elastic,
and isotropic with a relatively small modulus of elastlicity;

d) the dissimilarity between the lengths of the median surfaces
of the inner and outer layers 1s taken into account,

The Geometry of the Shell

We shall determine the location of points on the median surface
of an axiaymmetrical.three-layer shell by means of the angles @ and
9 (Fig. 1).

Let 6 be the angle ‘between the normal to the mediaﬂ surface and the
axis of the shell; -

¢ 1s the angle between the two meridional cross sections;

vaia the radius of cwrvature of the meridional cross section;

Ra 18 the second principal Fadius of curvature. oo

By means of the two pairs or meridional and normal coniaal oross

‘mm-62-1652/1+2+4 45
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sections let us single out an element of an axisymmetrical three-layer |
shell with the dimensions dS; and dS, (Fig. 2) and apply to it all.
the internal and external stresses (Fig. 2). '

Let us direct the coordinate axes as follows: the x-axis along
the tangent to the meridian, the y-axls along the tangent to the
parallel, the z-axis along the external normal to the median surface

of the shell (cf. Fig. 3).

The square of a linear element of the medlan surface of the

supporting layers

dS: mdSi+dsi,. (1)
‘ S
?
dg-sin
X 7
7 )
!
U Oy
34 !
FEY R, -
1! X H
1 (Y normal . .
LN
A
Fig. 1. Coordinate system of Fig. 2. An element of an axlisym-
an axisymmetrical shell, metrical three-layer shell,

The subscript " refers to the outer supporting layer, while
the subscript "-" refers to the inner supporting lajer.
In turn, : dS)y = A,y db;. ,, o (2)
dSyym Ayg dy, 7 '
where A;4 and Agy are the Lamé Avconstanvts, for ‘an undctormd md.iir.x‘
surface of the supporting layers. o BRI

oo .
. -

L S S
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My, 85, d(N,, d5y,)

Flg., 3., Stresses, moments, Fig. 4. An element of the
and external loads acting outer supporting layer of a
on an element of an axlisym- three-layer shell.

metrical three-layer shell.
Taking into account the dissimilarlty between the lengths of
the median surfaces of the outer and inner supporting layers, the
Lam€ constants of a linear element on these surfaces are

A.=a.A; Ayym=ay A,
where

ket
a::"‘i"z;—: a,,-li—_-"—"'—f-,
1

s (3)
A=R: A=R,sinb, _
Here t is the thickness of the outer and inner supporting layers and
1s taken identical for both;

h 1s the thickness of the filler layer.

Let us resolve the intensity of the external load acting in the
general case on the' surface of the supporting layers into a force
acting along the normal and a\force acting along the tangent to the
arc of the meridian p_ and q (cf. Fig. 3).

The third compoﬁzht of ;his intenslty, owing to the condition
of symmetry, goes to zero. C

Z
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Equilibrium of the Supporting Layers
In order to obtain the complete system of equations for an

axisymﬁetrical three-layer shell, 1t 1s necessary to consider the
equilibrium of the supporting layers and the filler layer of the
shell separately, By combining these equations we obtain the dif-
ferential equations of equilibrium for the entire composite shell,
The equations of equilibrium for an element of the outer and
inner supporting layer, respectively, of an axisymmetrical three-

layer shell for small displacements of the median surface have the

form
(N12a,.R, sin0)" — Ny, sRcos 0+ (P, F 74) 8,585, RiR, 5in 0=0; (%)
Nlt N2- - —
41:R1+42:Rz 927 01 (5)

Here Nii.and Nai.are, respectively, the specific normal meridiocnal
and annular stresses of the'outer and lnner supporting la&ers of a
three-layer shell (kg/cno o, and T, are, respectively, the normal
and tangentlal stresses in the transverse direction of the filler
layer acting on the outer and inner supporting layers of a three-
layer shell (kg/cm?); gt and %i are, respectively, the components of
the intensity of the external load acting on the outer and inner
supporting layers of a three-layer shell (kg/cm?); the prime indicates
differentiation with respect to the variable 6.

Figure 4 shows an element of the outer supporting layer, while
Fig. 5 shows an element of the inner supporting layer, All other
internal factors, owing to the condition of symmetry, go to zero.

Distribution of the Stress in the Filler Layer

As was mentioned: the filler 1s regarded as light, elastic,

dsotropic, and homogensous, Its bending rigidity, tonsion-oomprosuiohl

.
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rigidity, and shear in the longitudinal direction are negligibly
small. Consequently it operates in the transverse direction during
tension-compression and during shear (F:Ls. 6).

The differential equations of equilibrium of an element for this
stressed state [4#] will be the following:

(04570 +5)] ®
P+ 20 DR @

Here ¢ and T are, respectively, the normal and tangential stresses
in the transverse direction of the filler. The subscripts z and 6
indicate differentiation with respect to the varlables z and 6.
Integration of Eq. (6) glves |

< = ki

R @

The subscript "O" indicates that the stresses o and T refer to

the median surface of the filler (z = 0).

Let us mtegz'ate Eq. (7), after having first substituted expres-
sion (8) into this equation; we obtain

R.R,slne(l +—;T) (1 + .if’_)g.{.

z+| R;sint "" — R\R, $in fo = 0.
TR |,

(9)

The resultant of the transverse shearing stress Q 1s obtalned
from Eq. (8) in the following forms

At
T .
- {102 - A + £ y .
Q 5‘ 't(l+ 7 ds —-‘—-4!- !JLL?—)" . o (10)
2R .
Y '

4



The integration extends over the thickness of the filler layer
and also over half the thickness of the surface layers, as a result
of the assumption that the stresses g, and 7, can act on the median
surfaces of the supporting layers [5]-.- It r-;llows from the meaning

of integration with respect to i,h ; v that the supporting layers are

attached, as it were, to the fliller by thelir median surfaces.*
From Eqs. (8) and (10) it follows that

-l (11)
b4t
This equation was obtalned by discarding the terms QEE_E in com~

parison with unity.

From Eq. (11) it follows that the transverse tangential stresses
are uniformly distributed over the thickness of the filler.

From Eqs. (8), (10), and (11) the following dependences can be

obtalned:
b .
"%i(“uan"‘f + 8,8, )= Q;
(12)
0;4834%4 =30y % = ""','?l— . (13)

When h + t/2R << 1, using Eqs. (9), (10), and (11), we obtain

R\R;sin8(a,,0,,0,—a,_a, 0 )= —(R,sin 6Q); (14)

8403494+ a,_ay_0_m=20,, _ . (15)

§

# Although this introduces a certain inaccuracy, it is so ahaIlA
that it has no significant effect on-practical cslculations in the
_case of comparatively thick fillers for- uh@cﬁ't42;< 0.1. The error -
of this assumption 1s all the greatcr..thq'srtl tthq,rttzo bctuuen y
the thiclmesses of the lavnra t/h : A
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Equilibrium of a Composite Shell

In order to obtain the equations of equilibrium of a composite
three-layer shell, let us introduce the resulting expressions for the
external and internal stresses of a three-layer shell [2].

The specific normal stresses
Nymay N, +a, N Ny=a,,Ny +a,_N,_. (16)

The specific bending moments

A A

' .
M= ;- (@3 Nyy—as N} My= ;t (@14N3p. —a,_N,_). (17)

The components of the external force

P=0,,03,ps+0,03p_; §=0,,8,,9,++ )0y ¢... (18)

The intensity of the moment formed by the action of tangential surface

forces

m-h

+ '
2 (@14234P, —a1_ay_p_), ) (19)
and also

1
8""2' (@148:49+ ‘“l-fz-qf)- (20)

To the above relations let us add the expressions obtained
previously.

The specific transverse force

A
. Q= ;H (@48447, 4 a)_a,t). } ’ (12)
The normal transverse stress in the median surface of the filler

Og ';' (3148349, +¢§-¢s-‘-)5 | ) ( 15)

Using Eqs. (12)-(20), let us add and subtract Eqs. (%) and (5).
After certaln transformations we obtain the equations of equilibrium

3/
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of composite axisymmetrical shells

(N,R, sin 8 — N,R, cos°+(p +-,%)R.R,sm0-0. . (él)
(MyRy 810 8 = MyR, O3 0+ (m = Q) R,R, sin S s 0, (22)
.21:.4.?’}’:.—.7 7 “ S(QRysin0) =0, (23)
otirr (R +R)-E=o (2

The latter equatlion becomes an ldentity, when the bending moments
are expressed in terms of the stresses,

From Eqs. (9) and (10) 1t follows that
R.R, sinbo=R\R, sin Gso—;-i—‘-(QR, sin 6y (25)

According to Egs. (23) and (25), we obtain the law of change of
the transverse normal stress over the thickness of the filler
= ) e
Hence it cﬁn be seen that the transverse normal stress consists .
of two terms, one of which is constant, while the other varies linearly
over the thickness of the filler layér.
The Potential Energy of Deformation of the Shell

The potential energy of deformation of an axisymmetrical three-
layer shell is the sum of the potential energiesa of the deformations
of the supporting layers and the filller layer

N=+1., (21)

The supporting layers are characterized by the following el&st;c‘

constants: the modulus of normal elasticity Ey, the Poisson coef-

ficient p = u,,, and the shear modulus GHliﬁggL:riD;

e , 'td
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The elastic constants of the fillér are as follows: the modulus
of transverse elasticity Ec; the Polsson coefflcient o is taken
equal to zero on the basis of the assumption made concerning the
operation of the filler layer; then the shear modulus of the filler
G, == . |

The supporting layers of the shell being considered undergo only
tenéion-compression deformation; therefore the potential energy of
deformation of the supporting layers

n""SS . ——(Nis + Niyp—
—2N,,N,,)8,,a5,R,R;sin 0 d0 dp + - S 5 (NN~
—2uN,_N,_)a,_a, RR,sin8dbdp.

From Eqs. (16) and (17) we obtain

2a,, Ny, =N, +o7 M,. 2“1+N:+=‘N:+—""Mz- (29)
29
24,.N,..==N,-—-"—;:-‘MI; 2al_N2_=Nz—‘m M'.

Using the relations obtained and the condition h + t/2R << 1,
expression (28) will assume the following form:

=1 ) [+ (NI M= 26NNy +
+-L o (M4 M3~ 26 MM,)] RR, sin 0 48 dy,

(>0)

where C* is the tension-compression rigldity of a three-layer shell;
D* 1s the bending rigidity of a three-layer shell

C*=2E t;
, ; 1
o D* w1/, E t(h4-t). ' ,(} )
On the basis of the assumed distribution of the stress in the
filler layer (cf. Fig. 6), the potential energy of deformation of
this layer will be as follows: : |
P




J

(E?E. + _b‘-:-)(l +7;T)(1" + 7;:)lle,le, sin 08 dp dz.

w3
Femy

m-%j

As previously, we neglect the terms z/R in comparison with unity,
while the values of ¢ and T are takesn from Eqs. (11) and (26),
Then, integrating with respect to z, we obtain

e ar vas it (32)
+ E‘f‘x)‘a_‘] R,R, sin 840 de.

On the basis of (27), (30), and (32), the potential energy of
deformation of an axisymmetrical three-layer shell

“’"H o= NI+ NI= 2NNy + = (M} 4 M3 — 26 M, M) +
. ¢ (33)

REXAP _(_| N
b E [°°+12 R,+

R: ] T+ m] R,Rysin8dbde.

Relationships Between the Stresses, Moments, and Displacements
in the Case of a Composite She.ll

According to Castiglianots principle, the stressed state actually
arising in the shell differs from all statically possible states in
that the potential energy of deformation of the shell II, determined
by Eq. (33), assumes a minimum value.

Thus it 1s necessary to find the minimum of a functional II depend-
ing on six unknown functions N;, Nz, M;, Mz, Q, and oy, which satisfy
the four equilibrium equations (21)-(24). The problem of finding this
arbitrary extremum of the functional I in the calculus of varla-
tions 1s usually replaced by the problem of finding the absolute |
extremum of a certain other functional T. | ,

In order to set up the functional T, let us use the method of
undetermined multipliers, which preserves the complete equivalence .

¥,

' N ‘V" : * ot i “ r
Ly - . L. ","‘ “
R A
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of the variables [6]

e j‘ j‘ O(N,, Ny My, My, Q, ot do., (34)

4
In turn ¢=F+ Y v,

(L3

where F 1s an integrand expression for the potentilal energy Il and is
determined by expression (33); vy (6,9) (L =1, 2, 3, 4) are
unknown nonvarying Lagrange multipliers;

v, are the corresponding equillbrium equations determined by the

expressions (21)-(24).

It can be shown that each of the four nonvarylng Lagrange multi-
pllers 1s nothing other than a displacement in the corresponding
directions vy =4, V2 = B, va = W, V¢ = Kk, _
where u and w are linear displacements of the median surface of a

three-layer shell in the direction of the x- and z-axes;
B is the angle of rotation of the normal to the median
surface of the shell in the direction of the x~axis;
k 1s a quantity proportional to the transverse compressive
deformation.

Thus Eq. (21) 1z multiplied by u, Eq. (22) by B, Eq. (23) by w,
and Eq. (é#) by k.

Then the functional ® will be written thus:

1(1 S
O [ G NI+ M= 20NN+ (ML + ME—2u M, M)+

At 1 (N, N, 2 Q ‘
(R R ) | arger) AR+
+u((N,R,smo)'—N,R,coso+(p+-§l—)R,R,sme]+
_ +PI(MiR, 3in 8) — M;R, cos® +(m— Q)RR sin 8] +
o -}w[(QR,sin oy-—(%-;--%—«;)R,R,sfno]-p

1 ./ M M,
+hlo+ i (R+ 2 -e]-

%
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The extremum of this functional occurs for the Euler condition
2 g
=<5 Do =0,

(36)

where °N1 fis the partlal variation of ¢ with respect to N;;

°BN - 1s the partial variation of ¢ with respect to %—L, ete,

Evaluating Eqs. (36), after elementary transformations, we obtain
the following expressions:

woce s (h+C_ v +w , (A+0g . A
[H' 12E.R ] 2‘7! 12E:R\R; Rt e, (37)
i e R S S €
= G RRT (39)
A et by (40)
(A+3)0¢"p+il;‘: (41) -
Py o Trer o)

Let us reduce the system of equations (37)-(42) to a more con-
venient form.

Let us introduce the variable coefficients Aj;, Ag, &nd As
1 u-q & .'
l £¢

.._‘.____.0“)'.5.
h= TR " (43)

A.- 1 ——-—.‘)_‘ + £,y
2 RRy, &'

Then Eqs. (37) and (38) will assume the fcrm
(t+-~.)N.-(v--l.)Ns-C'[-—l—‘-’-+,;:":‘ o

(l +-%)N.-(p—-~l,)~.-c.['Q‘-—-—gi-—.-ﬂ—’] o  ; P
“ ! B ‘ o ‘:j;":?;,.rfr ! ’
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Let us eliminate k from Eqs. (39) and (40) by using relations
(24%) and (42); we obtain

(1+2) Ml".(l‘-la) My= D'( +-E_g;|-

(1415) My— (e =) M, D*(’°°j'+;,%)

In transforming Eqs. (39) and (40) it 1s assumed that A =

- TEf?T%SETTEF" on the basis of the expressions for D* and A; from

(31) ana (3).

As a result we obtaln a system of equations for an axisymmetrical
éhreé-layer shell: three equilibrium equations (21)-(23) and five
relafionships between the stresses and the displacements (37)-(%1).
From these eight equations eight unlknowns are determined: three

stresses Ny, N2, and Q, two moments M; and My, and three displacements

U, w, and B.

The normal transverse stress in the median surface‘of the flller
0o can be determined from Eq. (24). The action of the fransverse
shear of the filler figures only in Eq. (41), while the action of the
transverse compressive deformation is reflected in Egqs. (37)-(40).

If in Eqs. (21)-(23) and (37)-(4%1) 1t is assumed that

G m E, w00, ), m)ymi =0, D"=— C*=En

and m = 0, we obtain a system of equations for thin homogeneous
axisymmetrical shells. Moreover, these equations completely coincide
with the well-lnown equations [7]

" Reduction of the System of Equations to Two Simultaneous
Equations

Let us reduce the system of equations obtained (21)-(23) and

(37)~(41) to & system of two second-order differential equations.
From Eqs. (40)-(41) let us determine the specific bending moments

M; and Mp

57
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e DA y/Y o L\ fis3% 0
f"x-‘?[(l'r':)\'R—;T Rls‘)-i-(p-@) iy )
S (e o R I o (44)
Here '
8w (1+4y) (14-0a) — (e~—a)2. (45)
Let us introduce Melssnerts function V = QRsx. (45)

Let us introduce the values of M; and M, from (44) into Eq. (22).
As a result, after certain transformations, we obtaln a deforma-

tion-compatibility equation containing the variables B and V

b H(R) R (et - L) -

S 47
= |1 R o8 H (T n et 044 ]p~ TR v, ). n
Here
- 1412 1
’l ;"_‘.1 1) .h-l-*-): [ 1‘ l+)’.
- [(RY + R A A 48
Gy (0=~ () (k= ) oont R (5% (49)

—(3;;—1;-}-1:1.': ]-;"— .RT +T:)%—_ 739'5;7?"""

In order to obtain the second equation, let us consider the con-
dition of equilibrium of the part of the shell cut off by a parallel
circle of radius r = Ry sin 6 (Fig. 7), i.e., let us project all the
forces acﬁing on the part of the shell and on the axis of symmetry of

the shell. Then
00, =2xR,5in 6 (N, sin 6— Q cos 8) — 2xC+

.+ [2eRysin8(psin8—gcos 0) R,db m 0.
This equation can be conveniently rewritten ass:

-C+I&sln9(qcoﬂ-p,;”)&-¢." . B (%)

7 S




Here F(@) i1s a function of the load and the geometrical dimensions
of the shell and i1s the axial component of the internal
forces acting on one radian of the contour of the cross
section;

21C = Pg 1s the axlal component of the concentrated forces (not
shown in Fig. 7).

-Let us express N; and Np in terms of V and F(6).

Then from Eqs. (46) and (49) we obtain

: -t _ vV 0
. Ny Rasin?d + Ry °% 8. (50)

From Egs. (23), (46), and (50) we obtain

v’
Nﬂ-—_ﬂ-'*'qR’.

R, R;3in20 (51)
4
Y N.as,
N, dS,.
Ny dS;.#d(N,.ds,.)
1dS,.dSy.
N1.d53.* d(N). dS;.)
Fig. 5. An element of the Fig. 6. Model of the stressed
inner supporting layer of a state of the filler.
three-layer shell.
Let us introduce the second load function
H(8) =L 2
H(@) =—2 4 qRiR,. (52)
EQuation (51) will assume the form
vk ()
Ny R R
5
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Equations (21) and (23) are identical to zero, 1f we substitute
in them the values of N; and Np from (50) and (53).

Let us eliminate w from Eqs. (37) and (38). We obtain

N, [(1 +".1;)~)Rx+(#—";'7~a) Ra]-Na[(P"“;"la)Rl'*' (54)
+(1 +-§-7.,)R,]§=C‘(ﬂ'—uoot 6). |

Let us substitute in Eq. (54) the value of u from (41) with (46)
taken into account. We obtain ’
W~ S (M [(1 4 FH)R A (-3 0) R~
=Ny[(m =) R+ h) R} FBR oo —

VRy et ¥
u+¢)'a;' Ry (55)

Let us represent Eq. (38) in the following form:

uoot6+w-———[(1+ M)N, (P-—M N,]-""“q

Differentiating once both sides of this equation and substituting
in the equation.obtained the value of u from (41) with (46) takpp' |

into account, we obtain

u—w'sot °=—2-.“{R'2m [(1 +";‘)‘2)Nz“(l" "%"a)N1]+

+ Ryt (1452 ) M= (k= 31) Nit 3Ny oMy | - (56)
— oq'+[p_(h-j-:;0,R, ua:'z'x '

Equating the left-hand sides of Eqs. (55) and (56) and substi-
tuting in the equation obtained the values of N, and Na from (50) a.nd
(53) and their derivatives N{ and N}, after a number of transrmﬂonn,
we obtain the second equation (the equilibriun oquation) ' A

‘ ) v
. R -
4 - B




(432 v D)+ Seems]+

"’%‘*;':’:} [(H‘_) ) a ”2°+(h+‘)ae :: (57)

Lt 2N mO] V+RC*=G,(H).

‘Here
Gy (0)== B (1) iy + B () e+
+Ho=Po)R ]+ + 3R] e,
where

I

B () =(1 31 )R (= £23) R+ (1 = 11,) Ryt
' _%).',R,m 0

By (0= =5 1)R A1 52 Rt (1 302 ) Rirand + 3iRs sed. (58)

Thus Eqs. (47) and (57) are the basic differential equations of
axisymmetrical three-layer shells in the case of small displacements,

Assuming in Egs. (47) and (57) that

G, mE amco, ), mhyml;=0, )

Yym=p, ==, D= E, CoemEhuamm=0,
we obtain the general equations of E. Melssnerts theory of thin
elastic homogeneous axisymmetrical shells [3].

After solving Egqs. (47) and (57) for the given axisymmetrical
three~layer shell and the appropriate boundary conditions, let us
determine the specific normal stresses N; and Np from formulas (50)
and (53), the specific bending moments M; and Mz from formulas (44%),
and the transverse force Q from expression (46). The specific normal
stresses in the outer and inner supporting layers are determined on
the basis of expression (29). Since the thicknesses of the outer and
1nher layer are ldentical, the normal stresses in these layers wlll be
equal to the specific normal stresseé divided by the thiclmess t.

o/




The transverse tangential stress in the filler 1s calculated
from formula (11), while the transverse normal stress is determined
from Eqs. (24) and (29).

Particulaxr Cases

From the baslc differential equations for axisymmetrical three-
layer shells (47) and (57) we obtain the equatiors for certain types
of shells: conical, cylindrical, and spherical.

Conical Shell

In the conical shell the angle 6 is constant, while the radius
of curvature R; = », Let us introduce a new independent variable s,
the distance from the apex of the cone along its generatrix (Fig. 8).
We have ds,; = R;46.

t!()== 20) p 2Q) i 20 _pel)’
Let (). then s R‘ e 2 T _R’ dst

Equations (47) and (57) will assume the form:
Ri(RE+[(R2) +Rx (ror 0+ 1R — S R)|#)-
—[1,—}%"“9 +(—-Rn+1.laR,)m °+n]x

XB— 1.9 L Va0, (s); 4 (59)

(1 +3 )R.R,V"+{(1 +44,) [—Lm 0+R.(—-’-)]+

+= ‘o -R
m, kv ["L l)ka R "'(a+r)ae Rs (60)

—rt 3l =TuR e e]V+RlC‘§-G,'(:).

Here . ‘
0, (&)= ~[R(Z) +(& - )me+k.(1.1;—-‘?-)-
~(n §+wa e —(ELtr)R L ~~ a7, 2,

0;(8)=&(S)-ﬁ-‘-b+8.(5)—5;9.-+ o (62)

. (»—. _;_ WA Rt[’n',%%o’I"’ 1+-;-1,)R.R,{ L ]’+ |
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vwhere
B, (S)-(l +%-M)R, +(.. -%M)R,-}-(p - %—x,);z‘,g‘,m-—
--!-7'.R,R,mo
B (S)-(u—-X)R,+(l+ x,)R, (1+ x,)R,R,.,,o-;- (62)
+1 hR,R,

For a conical shell it is necessary to =ssume that

Ry=co, Ry=5o0st 8, L =)y=0, ).2_____%:5 ,
$

1 (h+ )¢5,
W m — , Qum1 +7‘:—P2 1 - [
2 E ' 1 E »
) 1+ $2 (63)
1
12"’73"w-
1 4 2t

Dividing both sides of Eqs. (59) and (60) by R; and substituting
expressions (63) in these =squations, after certain transformations,
we obtaln the basic equatlons for conical three-layer shells.

[(1—p?) s*+ (2—p?) wtaef 652+ whaet 0] of 4
+[(1=#?) s* + (2+p) wtart 65?4 ohast 0] p— [(1 —p?) 82
+ (1= 2p) orad 0] B — [(1 — ) s +-2 (1 — p?) otan? 52 4

64
+0W0]7:Ttn0-0;(3); ( )

(1 I )sV +(1 —‘1‘!3-)

[+ S
A+ f) a.
+ C" Btand = G} (3). (65)

Here Gi(s)=[(1 —P')$’+wtd0—2pwﬂl.%§k;
) ‘[(1"&*’)3’-{-(01&?0]"“—;-.' s’g‘..,[(l_',t)s,¢+

+2(1-p=)wes=+-=m'ej— < (66)
01( ) - -t

sointcoss PP~ ss0¢ 0+_..___ .

—Q—:'z—g'&,td].q —293 00t 0,
43
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If it is assumed in Eqs. (64), (65), and (66) that E, =G, =
=@, om=m=0, =5, and C* = En, we obtain the well-known
equations for thin homogeneous conical shells [8].

Cylindrical Shell
Let us divide Eqs. (59) and (60) by R; and assume that in these

equations :
0--;-, ds=dx, R1'=°°. R,-a, )'f-)‘i-o'

-—-————‘l+‘)‘ -g-.— -t - -——l
L W  E W i35 T Ta T+

where x 1s the distance from the left edge of the cylindrical shell.
We have

PYIER L . T d LN VRN Y PR T 3 T S

G+ T T URE T o (67)
L)V, ~— Y oo —atfy 122
(1 +5%) Ve~ oo OO+ CB=—a* (0, + 22) (68)

If it 1s assumed in Eqs., (67) and (68) that E, =G, =, D* =
3
= %%—, C* = Eh, and A\, = m = 0, we obtain the equations for thin
homogeneous cylindrical shells [8].

Spherical Shell

Let us assume that in Eqs. (47) and (57)

Ri=Ry=a=const, },mlym)ymiima L 240 Ey
2 o g
-bd - 1
T 142"’ Tam=1, 'ta"m. |
Then we obtain the equations for spherical three-layer shells

N o a[(1 +3)2 = (p —2)2]
F"+om O — (1 et 0) p— 2L

1Y (R —pmlp @ (69)
o> & T ‘
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1431 12(1+3-1)e, 1451

If it is assumed in Eqs. (69) and (70) that E, =G, ==,
= nEp=1, l=m=0, D‘a—%gi.m C* == ER,
we obtain the well-known equations for thin homogeneous spherical
shells [8]. Equations (67)-(70) coincide with the corresponding

equations of E. Relssner [2].
_The Equations for Aiisx%mptrical Three-layer Shells Without
Allowance for Transverse Compressive ormation o e er

In solving the probléms of transverse bending and over-all loss

of stability of three-layer plates and shells, the effect of trans-

verse compressive deformation of the filler is.generally neglected.

From Eqs. (47) and (57) 1t can be seen that the effect of transverse
compression of the filler may be neglected, 1f

P el
Abiding by this criterion, we shall neglect terms depending on
the transverse compressive deformation of the filler.
‘Then, assuming that in the general eﬁuations for axisymmetrical
three-layer shells (47) and (57) E, = ©, A3 = Az = As = O, ‘

Ti™=p Ty=Yy=mlang Quel—pl,

we.obtain .
Bro{f BT -Gy
. A, (71)
B vt o+(%)’] V’—(—%.n'g—p) Ve
T VR (r2)

111




Here D = 20 1s the cylindrical rigldity of a three-layer shell,

ﬂ)’me-J-m+

n3e R (73)
+(3) ] =R R+ #R) - (aRYY.
In operator form Eqs. (71) and (72) will be
L(P)—EP—%V=-£§""‘ (71#)
L~ [(a+oa= ]V+R‘c.?-'(')'_ (T2%)
where the operator
L= () | oo 0+ () ]C = Rren 20 (). (74)

Let us obtain the equations for the particular cases,
Conical Shell

Assuming that in Eqs. (64), (65), and (66) E, = = and @ = 0, we
obtain

R e e (75)
v Vet T Ot =K @) (76)

where |
K(s)-‘-“-."i.%.-.--;psp-s’... 0~ Jqtues 8. (17)

In operator form Eqs. (75) and (76) will be written:




L (p)""v‘"‘h' ——"’

. D
L)~ m"},-peo + Ot =K (),
vwhere the operator
L y=s( Y+ y-LL. (78)

The solution of Eqs. (64) and (65) for a conical three-layer
shell with transverse compressive deformation .of the filler taken
into account gives rise to serious mathematical difficulties. On
the other hand, Eqs. (75) and (76) for a conical three-layer shell
without allowance for transverse compressive deformation of the filler

have a simpler mathematical appearance.

Cylindrical Shell
If 1t is assumed in Eqs. (67) and (68) that E, == and Az = O,

we obtalin the equations for cylindrical three-layer shells without

allowance for transverse compression of the filler
D’ ' ‘ (79)
aV, — m—c +C*m —(q +_L)a! (80)

Spherical Shell

In the case of a spherical shell we assume that in the general
equations (71) and (72) R; = Rz = a (where a is the radius of the

sphere). We obtain ‘
L) ~pp—t Ve -2
Pp_ D DM; (81)

L) =[Gia ]V +aCm—ag = (1 41) pat. (82)
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Here L )m( )4+ Y oot 8= ( Jomts,

1+ (83)
[TRrS Vv :

Boundary Conditions

In order to £ind the magnitudes of all the stresses and dis-
placements occurring during the bending of a three-layer axisymmetrical
shell, regardless of the assumptions E, = ~ or E, # ~, 1t 15 necessary
to assign three boundary condifions on each edge, as in the case of a
homogeneous axisymmetrical shell:

a) for a rigidly embedded edge

. UmmBw=0, -
= (Ny—pN)) = 2222 (84)
or
weu=p=0; (85)-
b) for a shifting pinched edge
wmpmN,=0; (86)
c) for an edge supported on hinges .
10 1 e M e (87)
or
3 om oy um M, = 0; - ) (88)
d) for a freely supported edge |
W MmN, =0, : (89)
e) for a free edge '
MmN, =Qu0, (90) -

FID-TT-62-1652/1+2+4 2




Pig. 7. For the determina- Fig. 8. Notation for a con-
tion of the load function. ical shell.

ds, = R,d 93
dsz = rd ¢;
R = 8 cot 6.
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