FINAL No.1 REPORT ON

CONTRACT NO DA-92-557-PRG-35775

INCLUSIVE DATES 20 January 1962 TO 19 January 1963

SUBJECT OF INVESTIGATION

Genetic, serologic, and biochemical studies on viral infection and lysogenization

RESPONSIBLE INVESTIGATOR

Dr. Hisao UETAKE
Professor of Microbiology
Department of Microbiology
Sapporo Medical College
Sapporo, Japan

U.S. Army Research & Development Group (9852) (Far East)
Office of the Chief of Research and Development
United States Army
APO 343
AD
Div 16/2
Sapporo Medical College, Hokkaido, Japan
GENETIC, SEROLOGIC AND BIOCHEMICAL STUDIES ON VIRAL INFECTION AND LIPOGENIZATION BY HISSA
Uetake.
1111. illus. tables. TI refs. (Contract DA49-037-FRC-2877)
Unclassified

Evidence is presented that lipogenization is affected by viral genetic properties and by the presence of the genome of a second unrelated phage. Rapid establishment of lipogeny of phase $g4$ is attributed to viral genetic properties. Lipogenization with $g4$ is interfered by prophage $g18$ but not by prophage $g16$. Prophage establishment of phase $g4$ is completely suppressed in cells A (gA) but not in cells A. At low m.o.i. phase $g18$ (gA) is interfered with prophage establishment in cells A (gA) while not at high m.o.i.. Even at low

UNCLASSIFIED

1. Antibodies
2. Enzymes

I. Title: Viral Diseases
II. Uetake, Hissu.
III. U.S. Army Research and Development Gp
 (PR) OCHRD, DA, Wash, D.C.
IV. Contract DA 49-037-FRC-2877

UNCLASSIFIED

1. Antibodies
2. Enzymes

I. Title: Viral Diseases
II. Uetake, Hissu.
III. U.S. Army Research and Development Gp
 (PR) OCHRD, DA, Wash, D.C.
IV. Contract DA 49-037-FRC-2877

UNCLASSIFIED

1. Antibodies
2. Enzymes

I. Title: Viral Diseases
II. Uetake, Hissu.
III. U.S. Army Research and Development Gp
 (PR) OCHRD, DA, Wash, D.C.
IV. Contract DA 49-037-FRC-2877

UNCLASSIFIED
m.o.i. $g_15(A_{g24})$ establishes lysogenicity in A_g24 without interference. There is no interference in infection of strains A and A_{g24} with $g_15(A)$ and/or $g_15(A_{g24})$ and in infection of strains A and A_{g24} with $g_15(A)$. Most probable explanation to these findings would be that lysogenisation may be affected by host-controlled variation (HCV).

Phase g_{15} goes under HCV. Cells I-1 which do not allow multiplication of phase $g_15(A)$ by single infection may allow phage growth when multiply infected ("Multiplicity activation"\cdotMA). Phase g_15s (s) is capable of contributing to MA in infection of I-1 with $g_15(A)$ while g_15s I-1 or g_15s-inactivated $g_15(A)$ takes little or no MA effect for $g_15(A)$, indicating that the helper effect is influenced by minor difference(s) in DNA structure. Factors responsible for HCV proved to be thermolabile, highly specific, and capable of interacting with intact phase DNA.

The utilization of chemical mutagens resulted in isolation of temperature sensitive mutants g_15s and others. (Author)

m.o.i. $g_15(A_{g24})$ establishes lysogenicity in A_g24 without interference. There is no interference in infection of strains A and A_{g24} with $g_15(A)$ and/or $g_15(A_{g24})$ and in infection of strains A and A_{g24} with $g_15(A)$. Most probable explanation to these findings would be that lysogenisation may be affected by host-controlled variation (HCV).

Phase g_{15} goes under HCV. Cells I-1 which do not allow multiplication of phase $g_15(A)$ by single infection may allow phage growth when multiply infected ("Multiplicity activation"\cdotMA). Phase g_15s (s) is capable of contributing to MA in infection of I-1 with $g_15(A)$ while g_15s I-1 or g_15s-inactivated $g_15(A)$ takes little or no MA effect for $g_15(A)$, indicating that the helper effect is influenced by minor difference(s) in DNA structure. Factors responsible for HCV proved to be thermolabile, highly specific, and capable of interacting with intact phase DNA.

The utilization of chemical mutagens resulted in isolation of temperature sensitive mutants g_15s and others. (Author)
Evidence is presented that lysogenization is affected by viral genetic properties and by the presence of the genome of a second unrelated phage. Rapid establishment of lysogeny of phage ϕ_4 is attributed to viral genetic properties. Lysogenization with ϕ_4 is interfered by prophage ϕ_6 but not by prophage ϕ_5. Prophage establishment of phase g_1, is completely suppressed in cells A (ϕ_3) but not in cells A. At low m.o.i. phase g_1 (A) is interfered with prophage establishment in cells A (ϕ_3) while not at high m.o.i.. Even at low
m.o.i. g15(Ag34)) establishes lysogeny in A(g34) without interference. There is no interference in infection of strain A and A(g34) with g15(A) and/or g15(A, g34)) and in infection of strains A and A(g34) with g341(A). Most probable explanation to these findings would be that lysogenation may be affected by host-controlled variation (HCV).

Page 15 goes under HCV. Cells I-1 which do not allow multiplications of phage g15(A) by single infection may allow phage growth when multiply infected ("multiplicity activation" MA). Page g15(A) is capable of contributing to MA in infection of I-1 with g15(A) while e15A I-1 or UV-inactivated g15(A) taken little or on MA effect for g15(A), indicating that the helper effect is influenced by minor differences in DNA structure. Factor(s) responsible for HCV proved to be thermolabile, highly specific, and capable of interacting with intact phage DNA.

The utilization of chemical mutagens resulted in isolation of temperature-sensitive mutants g15sA and others. (Author)

m.o.i. g15(A, g34)) establishes lysogeny in A(g34) without interference. There is no interference in infection of strains A and A(g34) with g15(A) and/or g15(A, g34)) and in infection of strains A and A(g34) with g341(A). Most probable explanation to these findings would be that lysogenation may be affected by host-controlled variation (HCV).

Page 15 goes under HCV. Cells I-1 which do not allow multiplications of phage g15(A) by single infection may allow phage growth when multiply infected ("multiplicity activation" MA). Page g15(A) is capable of contributing to MA in infection of I-1 with g15(A) while e15A I-1 or UV-inactivated g15(A) taken little or on MA effect for g15(A), indicating that the helper effect is influenced by minor differences in DNA structure. Factor(s) responsible for HCV proved to be thermolabile, highly specific, and capable of interacting with intact phage DNA.

The utilization of chemical mutagens resulted in isolation of temperature-sensitive mutants g15sA and others. (Author)
D-I-S-T-R-I-B-U-T-I-O-N

The distribution of this report as made by USA R&D Qp (FE) is as follows:

Army Research Office, OORD, Washington 25, D. C. (2)
Army Attache, American Embassy, Tokyo, Japan (1)
U.S. Army Medical R & D Command (4)
ASTIA (10)
Office of Primary Scientific Liaison (1)

Offices of Scientific Cognizance (1)
Evidences are presented that lysogenization is affected by viral genetic properties and by the presence of the genome of a second unrelated phage. Rapid establishment of lysogeny of phage λ^{34} is attributed to viral genetic properties. Lysogenization with λ^{34} is interfered by prophage γ^{15} but not by prophage γ^{15}. Prophage establishment of phage γ^{341} is completely repressed in cells $A(c^{34})$ but not in cells A. At low m.o.i., prophage $\lambda^{34}[A]$ is interfered with prophage establishment in cells $A(c^{34})$ while not at high m.o.i.. Even at low m.o.i., $\lambda^{34}[A(c^{34})]$ establishes lysogeny in $A(c^{34})$ without interference. There is no interference in infection of strains A and $A(c^{34})$ with $\lambda^{34}[A]$ and/or $\lambda^{34}[A(c^{34})]$ and in infection of strains A and $\lambda(c^{34})$ with $\gamma^{341}[A]$. Most probable explanation to these findings would be that lysogenization may be affected by host-controlled variation (HCV).

Phage γ^{15} goes under HCV. Cells $I-1$ which do not allow multiplication of phage $\gamma^{15}[A]$ by single infection may allow phage growth when multiply infected ("Multiplicity activation" = MA). Phage $\gamma^{15}[ts][A]$ is capable of contributing to MA in infection of $I-1$ with $\gamma^{15}[A]$ while $\gamma^{15}[ts][I-1]$ or UV-inactivated $\gamma^{15}[A]$ takes little or no MA effect ($\gamma^{15}[I-1]$). indicating that the helper effect is influenced by minor difference(s) in DNA structure. Factor(s) responsible for HCV proved to be thermolabile, highly specific, and capable of interacting with intact genome DNA.

The utilization of chemical mutagens resulted in isolation of temperature sensitive mutants γ^{15}ts and others.

Analysis of lipopolysaccharide with specificity of γ^{15} antigen γ^{37} prepared from Salmonella sonneii $37A$ showed that α-galactose, mannose, and fucose are main constituents.
FINAL REPORT NO. 1 ON
CONTRACT NO DA-02-557-FEC-32725
INCLUSIVE DATES 20 January, 1962 TO 19 January, 1963

SUBJECT OF INVESTIGATION

Genetic, serologic, and biochemical studies on viral infection and lysogenization

RESPONSIBLE INVESTIGATOR

Dr. Hisao UETAKE
Professor of Microbiology
Department of Microbiology
Sapporo Medical College
Sapporo, Japan
CONTENTS

1. Text
 1. Purpose of researches 1
 2. Analysis of factors affecting on the process of lysogeni-
 zation
 a. Materials and methods 2
 b. Lysogenization with phage ϕ^{cL} of cells without carry-
 ing prophage ϕ^{L5} 2
 c. Interference with establishment of lysogeny of phage
 ϕ^{cL} in cells carrying prophage ϕ^{cL} 3
 d. Test for the hypothesis (1) 3
 e. Tests for the hypotheses (2) and (3) 4
 f. Effect of multiple infection upon establishment of
 lysogeny of phage $\phi^{cL}[A]$ in cells $A(c^{34})$
 and/or $\phi^{cL}[A(c^{34})]$ 4
 g. Lysogenization of strains A and $A(c^{34})$ with $\phi^{cL}[A]$
 h. Infection of $A(c^{34})$ with phage $\phi^{cL}[A]$ 5
 i. Discussion 6
 k. Conclusions 6

3. Studies on the mechanism of host-controlled variation (HCV) 7
 a. Materials and methods 7
 b. Dependence on propagating strains of BOP 8
 c. Phage adsorption and injection of phage genetic materi-
 als into the host cell 8
 d. Cell killing and lysogenization 8
 e. Serological properties of the restricted phage 8
 f. Mixed infection of cells I-1 with $\phi^{cL}[A]$ and $\phi^{cL}vir[A]$ 9
 g. Physiological states of cells 9
 h. Effect on EOP of multiple infection 9
 i. Cell killing and lysogenization after multiple infection 9
 j. Effect of UV-inactivated phage 9
 k. Contribution of $\phi^{cL}ts[A]$ to MA 10
 l. Infection of $A(c^{34})$ with $\phi^{cL}[A]$ 10
 m. Rescue of $\phi^{cL}vir[A]$ by superinfecting $\phi^{cL}ts[A]$ 10
 n. Effects on EOP of heating cells in HCV 10
 o. Effects on EOP of multiple infection of A with $\phi^{cL}[I-1]$ 11
 p. Summary and conclusions 11

4. Isolation of mutants of the converting phage ϕ^{cL} 12
 a. Materials and methods 12
 b. Search for plaque-type mutants 12
 c. Isolation of temperature sensitive mutants with ethyl
 methane sulfonate 12
 d. Properties of mutant phage $\phi^{cL}ts$ 12
 e. Induction of mutations in phage ϕ^{cL} with nitrous acid,
 5-bromouracil, and 5-bromodeoxyuridine 14
 f. Summary 14

5. Chemical structure of somatic antigens and phage recep-
 tors in bacterial strains 14
 a. Materials and methods 14
 b. Extraction and purification of antigenic polysaccharide 15
c. Separation of constituent oligosaccharides from partial acid hydrolysate of nucleic acid-free LPs 15

6. List of papers submitted to publication under the support from the Contract NO DA-52-557-FRC-35775 16

II. List of references 17

III. Appendixes

1. Appendix "A" : Tables
 a. Table 1 see Text 2-e,f,j 21
 b. Table 2 21
 c. Table 3 see Text 3-b 22
 d. Table 4 22
 e. Table 5 c 23
 f. Table 6 d 23
 g. Table 7 f 24

2. Appendix "B" : Illustrations
 a. Fig. 1 see Text 2-c,g 25
 b. Fig. 2 f 26
 c. Fig. 3 g 27
 d. Fig. 4 h 28
 e. Fig. 5 h 29
 f. Fig. 6 see Text 3-h 30
 g. Fig. 7 h 31
 h. Fig. 8 i 32
 i. Fig. 9 i 33
 j. Fig. 10 m 34
 k. Fig. 11 n 35
 l. Fig. 12 see Text 5-c 36
1. Purpose of researches

In the process of viral infection and lysogenization, there are many phenomena, of which mechanisms remain to be elucidated. These may be analysed genetically, serologically, and biochemically.

We have been working on antigenic conversion, viral infection, and lysogenic conversion since 1949, and main important findings are as summarized in application paper. Our system of research consists of Salmonella strains of group E and temperate converting phages carrying genes responsible for the synthesis of somatic antigens 15 and/or 34 of host bacterial cells.

Basing upon the findings obtained, and by making use of the lysogenic conversion system mentioned above, researches are being carried out in order to elucidate genetic and chemical factors involved in the process of viral infection and in the process of lysogenization. And in practice the following research works have been designed to be carried out.

a. Analysis of factors affecting on the process of lysogenization

b. Studies on enzymic activities in cells destined to lysogeny after phage infection

c. Studies on the mechanism of host-controlled variation (HCV)

And during past one year, the following results were obtained.

2. Analysis of factors affecting on the process of lysogenization

The process of lysogenization is different between phages c15 and c34; it takes approximately 3 hours for c15 to establish lysogeny (Uetake et al., 1958), while c34 usually becomes a prophage very rapidly after infection (Hagiwara, 1959a, 1959b; Uetake and Hagiwara, 1959). Some phages resemble to phage c15 and others to phage c34 in establishing lysogeny (see Bertani, 1958).

However, it seems premature to conclude that the difference is due to genetic difference(s) between the two phages, since the host cell of c15, A, is different from that of c34, A(c15), in that the latter carries urophage c15. Hence, the question remains to be determined whether or not the presence of phage genome(s) affects the process of lysogenization of a second unrelated phage. From such a viewpoint, effects of the presence of phage genome(s) upon the process of lysogenization of a second unrelated phage were studied experimentally. And this has eventually elucidated a close relationship between lysogenization and host-controlled variation as described below.
a. Materials and Methods

(1) **Bacterial strains**: Salmonella anatum 293 (=A) and its lyso-
genic derivatives, A(c15), A(c34), A(g341), and A(cy) have been described elsewhere (Uchida et al., 1956; Uetake et al., 1958; Uetake and Uchida, 1959; Uetake and Hagiwara, 1960a, 1960b, 1961).

(2) **Phage strains**: Temperate phages c15, c34, and g341 have been described (Uetake et al., 1955; Uetake, 1956; Nakagawa, 1957a, 1957b, 1959; Uchida et al., 1956). Phage c15 which is propagated on strain A or strain A(g341) is described as c15[A] and or c15[A(g341)], respectively.

(3) **Antiphage sera** have also been described (Uetake et al., 1958). The neutralization velocity constants of anti-c15, anti-c34, and anti-c34 sera are 120 min⁻¹, 180 min⁻¹, and 190 min⁻¹, respectively.

(4) **Follow-up of the process of lysogenization**: Growing cells were infected with phage, and thereafter surviving cells were plated out on agar plates at appropriate time intervals. Resulting colonies were tested for phage production by replicating onto plates seeded with indicator cells (Lederberg and Lederberg, 1952; Uetake et al., 1958; Hagiwara, 1959a). This type of experiments were carried out in various combinations of phage and bacterial strains and at various multiplicities of infection.

b. Lysogenization with phage c34 of cells without carrying prophage c15. To test the effects of prophage c15 on lysogenization process with c34, cells A without carrying prophage c15 were infected with c34. To carry out these experiments special design of experiment was made because cells A do not adsorb phage c34 at all.

When cells A are infected with c15 at a multiplicity of infection (m.o.i.) of about 3, cells which survive infection segregate c15-carrier and non-carrier cells in their progeny. At about 3 hours after infection, about 80% of cells in the culture possess receptors for c34 without carrying c15 (Uetake et al., 1958). Therefore, by infecting the non-carrier progenies with receptors for c34 by c34, cells A might probably be lysogenized with c34 without carrying c15 (Uetake and Hagiwara, 1960a, 1960b, 1961). In practice, this was carried out as follows.

Growing cells of A were infected with c15 at m.o.i. of 7.9. After 10 minute adsorption, the mixture received anti-phage serum to remove unadsorbed phages. After another 10 minutes, a dilution was made into broth containing anti-c15 serum, and kept at 37°C without aeration. After 3 hours, cells were chilled, collected by centrifugation, resuspended in broth at a density of about 10⁸ cells per ml, and infected
with c34 at m.o.i. of 1.8. After 10 minute adsorption and another 10 minute treatment with anti-c34 serum, a dilution was made into broth containing anti-c34 serum, and kept at 37\textdegree C for 6 hours, during which time cells were plated out on agar plates for viable count and resulting colonies were replicated on both plates seeded with cells A and those with cells A(c15) to test for production of phage c15 and c34, respectively.

Approximately 50% of cells survived infection with c34. Among survivors about 80% were c34-producers at first, 70% after 60 minutes, 60% after 90 minutes and thereafter, indicating that c34 establishes lysogeny within 60-90 minutes. This result is consistent with those in experiments in which strain A(c15) was infected with c34 (Hagiwara, 1959a, 1959b, 1959c; Uetake and Hagiwara, 1959). Therefore, it can be concluded that phage c34 establishes lysogeny soon after infection, irrespective of the presence of prophage c15. In other words, it indicates that rapid establishment of lysogeny in c34-infected cells is mainly attributed to genetic properties of phage c34.

c. Interference with establishment of lysogeny of phage c15 in cells carrying prophage c34. To test effects of prophage c34 on lysogenization with phage c15, cells A(c34), which were obtained as described above (Uetake and Hagiwara, 1960a, 1960b, 1961), were infected with c15[A] at m.o.i. of 6-9 and the process of lysogenization was followed up as described. The results of one of these experiments is shown in Fig. 1.

In strain A as control, lysogenization was established in about 3 hours after infection, consistent with the experiments reported by Uetake et al. (1958), but in cells A(c34), lysogenization with c15[A] was so difficult that surviving cells continued to segregate c15-carrier and non-carrier cells in their progeny even until 6 hours after infection. This seems to indicate that the existence of prophage c34 in cells A interferes with phage c15 to establish lysogeny, and for explanation following possibilities may be considered: (1) Some metabolic changes in cells due to the presence of c34 may be responsible; (2) efficiency of plating (EOP) of c15[A] on A(c34) is about 1/3 of that on A, suggesting host-controlled variation (HCV) (Uetake et al. in press), and the HCV may possibly be correlated with the difficulty of lysogenization; (3) steric hindrance due to the attachment of c34 genome to bacterial chromosome may be responsible.

d. Test for the hypothesis (1). To test the hypothesis (1), cells of A were infected with c15 and 30 minutes later superinfected with c34. In this case, phage c15 established itself as a prophage in 180 minutes as seen in the case without c34-superinfection (Uetake et al., 1958), while phage c34 had difficulty in establishing lysogeny and non-c34 carrying progeny cells were segregated out from c34-infected cells for longer than 3 hours.
It can be said, from the aboves that lysogenization with c15 is remarkably affected by prophage c34 but not by c34 when it is in prelysogenic state, and, in addition, that phage c34 becomes a prophage very easily and rapidly in cells carrying prophage c15 and/or no c15, while lysogenization with c34 is interfered in freshly c15-infected cells in which c15 is still in prelysogenic state. And it seems unlikely that the metabolic changes due to genetic functions of phage c34 greatly affect the lysogenization process with c15.

e. Tests for the hypotheses (2) and (3). To test the hypotheses (2) and (3), cells A(c34) were infected with c15, which were propagated on cells of A(c34), at m.o.i. of about 5-10, instead of c15 propagated on cells A. As shown in Table 1, c15 established lysogeny in about 3 hours as phages c$^{15}[A]$ do in infection of cells A, indicating that lysogenization is affected by phage propagating strains, i.e. probably host-controlled variation. This also indicates, on the other hand, that the interference with prophage establishment of c$^{15}[A]$ in A(c34) is not attributed to the steric hindrance due to the presence of prophage c34, excluding the possibility of the hypothesis (3).

f. Effect of multiple infection upon establishment of lysogeny of phage c$^{15}[A]$ in cells of A(c34). As described in Section 3, experiments of HCV which were carried out in parallel with these experiments showed that multiple infection with restricted phages may lead to phage multiplication even in cells which do not allow phage growth when singly infected.

Basing upon these findings, effect of multiple infection on establishment of lysogeny of c$^{15}[A]$ in cells of A(c34) was tested. As shown in Table 1 and Fig. 2, when cells of A(c34) were infected with c$^{15}[A]$ at high m.o.i. (20.0; 24.2), establishment of prophage state of c15 was completed in about 3 hours after infection without interference. This also favors the hypothesis (2).

g. Lysogenization of strains A and A(g34) with c$^{15}[A]$ and/or c$^{15}[A(g^{34})]$. There is no HCV when phage c15 is propagated on A and on A(g34). If HCV were responsible for the interference with prophage establishment, no interference would be expected in this system. And this proved to be true in the following experiments.

Each of bacterial strains was infected with either c$^{15}[A]$ or c$^{15}[A(g^{34})]$ at m.o.i. of about 5, and the process of lysogenization with c15 was followed up with results shown in Figs. 1 and 3.

Phage c$^{15}[A]$ lysogenizes strain A in 3 hours and strain A(g34) in 4 hours, whereas c$^{15}[A(g^{34})]$ lysogenizes strain A in 4 hours and strain A(g34) in 3 hours. However, the difference between 3 and 4 hours seems too small to be regarded as significant.

h. Lysogenization of strains A and A(c34) with g$^{34}[A]$. There is
no HCV either in phage g_341 when plated on A and on $A(c^7)$. and similar result to the above was obtained in this system, too.

In either bacterial strain, phage infection was carried out at m.o.i. of 0.8-4.8. As shown in Figs. 4 and 5, in either strain $g_341[A]$ established lysogeny in 60-90 minutes after infection. There was no difference between the two strains indicating that prophage c^3 has no effect on lysogenization with g_341.

1. Infection of $A(c^3)$ with phage g_341. The strain $A(c^3)$ is resistant to infection with phage C_{341}, a virulent mutant of g_341, although it adsors C_{341} to a considerable extent (Uetake and Hachiwara, 1960a, 1960b, 1961). The same was true in infection with g_341. Adsorption of g_341 to $A(c^3)$ is irreversible but there is neither killing of cells to a demonstrable extent nor lysogenization.

2. Discussion. From the above experiments it should be pointed out that the presence of phage genome(s) may affect on the process of lysogenization of a second unrelated phage. An extreme case is a complete suppression of multiplication and lysogenization of phage g_341 in $A(c^3)$, but more interesting is a relationship between c^{15} and c^3. The experiments described in b and c indicate that the rapid establishment of the prophage state of phage c^3 is attributed to genetic properties of the phage, being not correlated to the presence of the prophage c^{15} in cells A. On the other hand, these experiments also indicate that the effect of c^{15} genome on c^3 varies with the state of c^{15} genome. When it is in prelysogenic state, c^3 is excluded.

Phage c^{15} is interfered with establishment of lysogeny in cells carrying prophage c^3 as shown in experiments c and the mechanism is regarded to be due to HCV as shown in d, e, f, g and h. Efficiencies of plating of phages c^{15} and g_341 propagated on various strains, are summarized in Table 2. Comparing Table 2 with the above experimental results, one can notice a remarkable correlation between HCV and interference with lysogenization. The interference is observed only in combination of phage and bacterial strains in which HCV is also observed. And even in such a combination, infection of cells with restricted phages at high m.o.i. may lead to prophage establishment without interference (?). This is consistent with a phenomenon "Multiplicity activation (MA)" observed in experiments on the mechanism of HCV. (see Section 3), favoring the explanation proposed.

On the one hand, phages $c^{15}[A(c^3)]$ show higher EOP on cells A than on cells $A(c^3)$, and on the other hand, lysogenization of cells A with $c^{15}[A(c^3)]$ is completed in 3 hours even at low m.o.i. (?), as seen in infection of cells A with $c^{15}[A]$. This also favors our hypothesis.

However, there still remains a following possibility to be excluded. The higher the m.o.i., the more frequent would be the collagenase be-
tween phage DNA and bacterial chromosome, leading to more rapid lysogenization. But this should not be the case, because in infection of cells A with c15[A] lysogenization is completed in 3 hours even at as low m.o.i. as 1 (Table 1).

The continuation for a long time of segregation of sensitive progeny cells from c15[A]-infected cells of A(c34), suggests that injected phage genome persists in the cytoplasm without replication. And both infection of A with c15[A] and in infection of A(c34) with c15 [A(c34)], phage genome seems to persist in preprophage state for some time before establishing prophage state. Nevertheless the preprophage state persists for a longer time in the former case than in the latter. What is the explanation?

If the structure of DNA of c15[A] is identical with that of c15 [A(c34)], the above should not be expected. These may rather suggest that DNA of c15[A] and that of c15[A(c34)] have different structures, each of which is fit for attaching to bacterial chromosome of A or A(c34), respectively. If so, such structures must be produced after multiplication of c15 on A and on A(c34), respectively. Then, if DNA of c15[A] is replicated following infection of A(c34), de novo replicated DNA must have a structure fit for attaching to chromosome of A(c34). High multiplicity infection may result in replication of injected phage DNA and eventually lead to unimpaired establishment of lysogeny. The fact that c15[A(c34)] has a higher EOP on A than A(c34) may indicate that c15[A(c34)] replicates and multiplies more easily in A than in A(c34), and in this case lysogenization of A with c15[A] proceeds without retardation.

In short, by assuming that the structure of phage DNA is modified to some extent by the host cell on which it is propagated and this modification reflects on the ability to replicate in bacterial strains to be infected, and that when not easily replicated, infecting phage DNA maintains its structure as is and has difficulty to establish a prophage state, while when easily replicated, de novo replicated DNA takes a structure fit to a new host cell, having no difficulty in establishing lysogeny, all of the above data can be explained clearly and in addition these assumptions are compatible with our findings in experiments on the mechanism of HCV (see Section 3) and recent reports on phage λ (Arber and Dussoix, 1962; Dussoix and Arber, 1962). And the replication of phage DNA before establishment of prophage state has been suggested in phages λ (Stent and Fuerst, 1956), P22 (Luria et al., 1958), and P2 (Bertani, 1962). In phage P2 lysogenization is not affected by m.o.i. and may be multiple even after single infection, and this may be easily explained by assuming that P2 DNA replicates very easily and immediately after injection (Bertani, 1962).

k. Conclusions. Phage c15[A] establishes lysogeny in about 3 hours in cells A, whereas it takes more than 6 hours in cells A(c34) when infected at low m.o.i. On the other hand, lysogenization with c15
can be completed in 3 hours even in cells A(c^{34}) when infected with c15[A] at high m.o.i. and/or with c15[A(c^{34})] at low m.o.i.

In contrast, there is no interference with lysogenization in infection of strains A and A(c^{34}) with c15[A] and/or c15[A(c^{34})] and in infection of strains A and A(c^{34}) with c15[A].

Most probable explanation to these findings would be that the process of lysogenization may be affected by host-controlled variation of the infecting phage of which the mechanism was discussed in detail.

In addition, it has also been shown that the rapid establishment of lysogeny with c^{34} is attributed to genetic properties of phage c^{34}.

3. Studies on the mechanism of host-controlled variation (HCV)

Phages c^{15} and c^{34} go under HCV. HCV is a well-known phenomenon but its exact mechanism is still obscure (Felix and Anderson, 1951; Anderson and Felix, 1952; Luria and Human, 1952; Ralston and Krueger, 1952; Bertani and Weigle, 1953; Luria, 1953; Garen and Zinder, 1955; Maio and Zahler, 1958; Arber and Lataste-Dorolle, 1961; Christensen, 1961, 1962; Drexler and Christensen, 1961; Arber and Dussoix, 1962; Dussoix and Arber, 1962). Basing upon suggestions which we got recently, the analysis of the mechanism has been carried out.

a. Materials and Methods

(1) Bacterial strains: Salmonella anatum 293 (=A), and its derivative A(c^{15}) are described in Section 2. Salmonella butantan (=I-1) is an international standard strain of group E1 Salmonella.

(2) Phage strains: Temperate phage c^{15}, its virulent mutant c^{15}vir (Uetake et al., 1958) and its temperature sensitive mutant c^{15}ts (see Section 4) were employed.

(3) Anti-c^{15} serum is described in Section 2.

(4) Serological tests: Antibacterial antisera, anti-10 and anti-15 sera were prepared by routine procedures, and slide and tube agglutination tests were done as usual (Kauffmann, 1954).

(5) Tests for lysogenicity was done by replica plating (Lederberg and Lederberg, 1952; Uetake et al.; 1958; Hagiwara, 1959a).

(6) Ultraviolet light irradiation: Growing cells from aerated broth culture were resuspended in phosphate buffer (pH 7.0; M/150). Samples were irradiated in Petri dishes at 80 cm distance from a germicidal lamp (Matsuda GR 1510, 15W).
b. Dependence on propagating strains of EOP. Phage c^{15} propagated on cells of A shows EOP of 10^{-2} on cells of I-1, while c^{15} propagated on cells I-1 shows EOP of 10^{-4} on cells A (Table 3). Phages contained in a single plaque on one strain shows similarly lower EOP on the other strain. Single cycle growth of the phage on one strain results in production of phages with lower EOP on the other strain (Table 4).

This reciprocal shifting of EOP proved experimentally to be due to HCV and not to host range mutation by the following experiments.

c. Phage adsorption and injection of phage genetic materials into the host cell. Regardless of the difference in EOP, phages can be adsorbed well even onto cells with lower EOP as shown in Table 3.

Since it has been shown that when cells A are infected with c^{15}, de novo synthesis of somatic antigen 15 on phage-infected cells can be demonstrated several minutes after infection (Uetake et al., 1958), injection of phage genetic material into cells can be tested by de novo synthesis of phage-controlled antigens.

Growing cells of A and of I-1 were infected with either $c^{15}[A]$ or $c^{15}[I-1]$ at m.o.i. of 5-10, and 25 and 50 minutes thereafter, aliquots were removed and heated at 100°C for 4 minutes. After centrifugation, cells were resuspended in 0.2% saline and tested for antigen 15 by tube agglutination. As shown in Table 5, in any of combinations of bacterial and phage strains de novo synthesis of somatic antigen 15 was demonstrated, indicating the injection of phage DNA into bacterial cells.

d. Cell killing and lysogenization. Cells A and I-1 were infected with $c^{15}[A]$ at m.o.i. of about 9. After 70 minute adsorption and another 10 minute treatment with anti-c^{15} serum, cells were plated out onto agar plates for viable count, and resulting colonies were tested for specificity by replica plating.

As shown in Table 6, more cells were killed in I-1 (92.6%) than in A (66.4%), whereas lysogenics among survivors were 99.8% in A and 30% in I-1.

Similar experiments were made in infection of cells A and I-1 with $c^{15}[I-1]$. Surviving cells were 100% in A and 15% in I-1. Lysogenics among survivors were 60.5% in I-1 but not to a demonstrable extent in A (Table 6).

These indicate that in infection with restricted phages infection leading to abortion and curing is very frequent.

e. Serological properties of the restricted phage. Phage $c^{15}[I-1]$ is neutralized to the same extent as $c^{15}[A]$ by antiserum prepared against $c^{15}[A]$.

f. Mixed infection of cells I-1 with c15[A] and c15vir[A]. When cells I-1 were mixedly infected with c15[A] and c15vir[A], number of mixed yielders was far more than that calculated under the assumption that each of c15[A] and c15vir[A] contains a host range mutant capable of attacking cells I-1 at a proportion of about 10-2 and 2\times10-2, respectively, favoring our hypothesis that the difference in EOP should not be attributed to h mutant but to HCV (Table 7).

g. Physiological states of cells. UV irradiation of cells did not affect EOP at all. However, when cells of I-1, which were grown under aeration for about 5 hours after entering stationary phase of growth, were infected with restricted phage c15[A] at m.o.i. of 0.02, EOP increased to 10-1, showing the dependence of EOP on the physiological states of bacterial cells (see also MA in synthetic medium).

h. Effect on EOP of multiple infection. During the course of the above experiments, the data were found which suggest that multiple infection may lead to phage multiplication even in cells which do not allow phage growth when singly infected. This was studied in detail.

Cells of I-1 were infected with c15[A] at various m.o.i., ranging from 0.03 to 16.5, and numbers of infective centers and killed cells were examined.

In experiments in nutrient broth, as shown in Fig. 6, proportion of plaque formers to phage-infected cells increases with increasing m.o.i., reaching 1.0 at m.o.i. of about 10. The data in Fig. 6 also indicate that about 5 particles per cell are required for phage multiplication. Essentially the same results were also obtained in experiments carried out in synthetic medium, and the only difference was in that fewer particles were sufficient to induce phage multiplication (Fig. 7).

i. Cell killing and lysogenization after multiple infection. In complete parallel to the above "Multiplicity activation", it was also shown that number of cells I-1 killed by c15[A] increases with increasing m.o.i., reaching to more than 99% at m.o.i. of 10 or more (Fig. 8).

The proportion of lysogenics among surviving cells also increases with increasing m.o.i. as shown in Fig. 9. But the proportion of lysogenic cells to input cells were not variable, ranging from 1.6% to 2.4%.

These findings indicate that it is the number of killed or lysing cells that increases with increasing m.o.i.. In other words, multiple infection may lead to phage multiplication and lysis in cells which do not allow phage growth when singly infected.

j. Effect of UV-inactivated phage. Multiplicity reactivation is a well-known phenomenon in UV-inactivated phages (Luria, 1947; Luria and Dulbecco, 1949; Harm, 1956; Teasman and Ozaki, 1957; Epstein, 1958;
Baricelli, 1960). The question was to be determined if a similar mechanism is involved in MA. Phages which were inactivated to 0.06% survival by UV irradiation were tested for their ability to contribute to MA, but positive results were obtained in neither c15ts[A] nor c15ts[I-1]. So it seemed likely that MA is different from multiplicity reactivation in its mechanism.

On the other hand, this experiment led us to the suspicion that the spatial configuration of UV-inactivated phage DNA may be different from that of the native one and it is responsible for the inability to contribute to MA. To test this, c15ts was employed. Phage c15ts is able to multiply at 25°C but not at 37°C.

k. Contribution of c15ts[A] to MA. When growing cells of I-1 were mixedly infected at 37°C with c27[A] and c15ts[A] at m.o.i. of about 0.015 and 9 respectively, 99% of c27[A]-infected cells gave rise to plaques, while without adding c15ts[A] only 1% of c27[A]-infected cells were plaque formers. And in addition, when phages c15ts[I-1] were employed in place of c27[A] in the above experiment, about 35% of c27[A]-infected cells were plaque formers, probably due to genetic recombination.

These results suggest that to give rise to MA, phage DNA should be intact and propagating strain-specific.

l. Infection of A(c34) with c15[A]. EOP of c15[A] on cells of A(c34) is about 1/3 of that on A. Cells A(c34) were infected with c27[A] at m.o.i. of 5-10. Surviving cells were plated out 20-30 minutes after infection and resulting colonies were tested for phage production by replica plating. As shown in Table 1, the proportion of lysogenic colonies among survivors was smaller than that calculated from the number of cells infected theoretically. This suggests that injected DNA of phage c27[A] may be destroyed some time after infection. Similar suggestion comes from the fact that 100% of cells A recover from infection with c27[I-1] (Table 6).

m. Rescue of c15vir[A] by superinfecting c15ts[A]. If injected phage DNA were destroyed, it would be expected that the longer the time elapses before adding a second rescuing phage, the lower the efficiency of rescuing a primary restricted phage would be.

Growing cells of I-1 were infected with c15vir[A] at low m.o.i. and at appropriate time intervals thereafter superinfected with c15ts[A] at high m.o.i. to see the efficiency of rescuing c15vir. As seen in Fig. 10, the results showed that the efficiency of rescuing c15vir decreases with prolongation of time intervals between primary and secondary infections, suggesting the destruction of injected DNA of primary phage c15vir[A].

n. Effects on EOP of heating cells in HCV. What factor is responsible for the destruction of DNA of the restricted phage? To look
into the nature of the responsible factor, heat effect was tested.

Growing cells of I-1 were heated in water bath for 30 seconds -- 5 minutes at temperatures ranging from 44°C to 55°C, transferred back to 37°C, kept for 1-2 minutes, and infected with c^{15}[A] at low m.o.i.. As shown in Fig. 11, EOP increased remarkably by heating at 49-50°C for 2 minutes. This suggests that the responsible factor is thermolabile.

1. Effects on EOP of multiple infection of A with c^{15}[I-1]. Infection of cells A with c^{15}[I-1], MA effect was not so remarkable. At m.o.i. of about 50, plaque formers increased by 10 times. But even under this condition, the proportion of plaque formers to infected cells is only 10^{-3}.

2. Summary and Conclusions. Under the conditions employed, phage c^{15} propagated on one strain shows lower EOP on the other, and this reciprocal shifting of EOP proved to be due to HCV by experiments described in c through o.

c^{15}[A] and c^{15}[I-1] are serologically indistinguishable. By infection phage genetic material is injected into the host cell regardless of EOP. Only the fate of injected DNA seems to be different and abnormal when injected into cells on which phage shows lower EOP. Among the data presented, most remarkable is MA. The results showed clearly that cells of I-1 which do not allow multiplication of c^{15}[A] by single infection may allow phage multiplication when multiply infected. As for the mechanism of MA, following possibilities may be considered: (1) Genetic cooperation or complementation; (2) genetic recombination; (3) removal of inhibitors of phage multiplication.

C^{15}ts is characteristic in that it is unable to multiply at 37°C. Nevertheless, c^{15}ts[A] is capable of contributing to MA in infection of I-1 with c^{15}[A] while c^{15}ts[I-1] is incapable (e). This favors the hypothesis (3) but not (1) or (2).

On the other hand, the fact that UV-inactivated c^{15}[A] is incapable of contributing to MA (g) suggests that the intact structure of c^{15}[A] DNA is necessary for MA. And the fact that c^{15}[I-1] or c^{15}ts[I-1] takes little or no MA effect for c^{15}[A], suggests that the helper effect is controlled by only a minor difference in DNA structure.

In addition, the specific destruction of DNA of restricted phage is suggested (1), and the factor(s) responsible for this destruction can be overcome by multiple infection (Section 2-f) and is thermolabile (n).

Summing up the above findings, the factor(s) responsible for HCV to be thermolabile, highly specific, capable in interacting with intact phage DNA, and present in a small amount in a cell. If the factor(s) with such properties were assumed to be a DNase, all the
data could be explained quite easily. The experiments along these lines are under way, and some of preliminary experiments have shown the results favoring the hypothesis but the details will be described in future reports. Recent papers on phage λ (Arber and Dussoix, 1962; Dussoix and Arber, 1962) seem to be along similar line.

4. Isolation of mutants of the converting phage c15

For carrying out experiments on HCV and others, it became desirable to isolate mutants of the phage c15, since a few mutants with abnormal converting properties were on hand but they were found not to be adequate for these purposes.

a. Material and Methods

(1) Bacterial and phage strains, anti-c15 serum, antibacterial antiserum, anti-10 and anti-15 sera are described in Sections 2 and 3.

(2) Physiological saline, phosphate buffer, and M-9 salt solutions were sterilized before use.

(3) Procedures for slide and tube agglutination tests, and test for lysogenicity are also described in Sections 2 and 3.

(4) Phage adsorption, neutralization, single-step growth experiment were done by routine procedures (Adams, 1959).

(5) Bresch's medium (Bresch, 1952; Bresch und Trautner, 1956) was employed for selecting plaque type mutants.

(6) Mutagenic substances. Ethyl methane sulfonate (Bautz and Freeze, 1960; Strauss and Okubo, 1960; Green and Krieg, 1961; Strauss, 1962), nitrous acid (Gierer and Mundry, 1958; Boeyé, 1959; Tessman, 1959; Vielmetter und Wieder, 1959; Sinsheimer, 1960; Vielmetter and Schuster, 1960; Bautz-Freeze and Freeze, 1961; Granoff, 1961; Baylor and Mahler, 1962), 5-bromouracil (Brenner et al., 1959; Litman and Pardee, 1956, 1959, 1960a, 1960b), and 5-bromodeoxyuridine (Freeze, 1959a, 1959b; Lawley and Brooks, 1962) were employed as chemical mutagens.

b. Search for plaque type mutants. Attempts were made to isolate plaque type mutants of the phage c15 by using Bresch's medium, adding as one of ingredients one of carbohydrates such as dulcitol, l-inositol, inulin, maltose, d-mannose, raffinose, rhamnose, trehalose, d-xylose, and l-arabinose. A few plaque type mutants were isolated, but the difference from each other and from wild type of plaque was not remarkable that they were not useful in practice.

c. Isolation of temperature sensitive mutants with ethyl methane
sulfonate. Phages $c^{15}[A]$ were exposed to ethyl methane sulfonate (0.4M; 0.6M; 1M) in broth and or in M-9 salt solution at 25°C for 4 hours. At a concentration of 0.4M for 4 hours, about 95% of phages were inactivated. Surviving phages were propagated on cells A at 25°C for 3 hours for single-step growth. Released phages were plated at 25°C and each of resulting isolated plaques was transferred in duplicate onto plates seeded with cells A, of which one was incubated at 37°C and the other at 25°C, and phage strains which gave rise to plaque at 25°C but not at 37°C were selected out. Only two such strains (c^{15}ts) were isolated among 9080 plaques examined.

d. Properties of mutant phage c^{15}ts. c^{15}ts is able to multiply at 25°C but not at 37°C. At 37°C c^{15}ts-infected cells are either killed without lysis and phage release, or lysogenized. The proportion of surviving cells among c^{15}ts-infected cells is larger at 25°C than at 37°C when compared at the same m.o.i.. Even at 37°C cells surviving infection segregate c^{15}ts-carrier and non-carrier cells in their progeny for about 3 hours after infection, by which time the establishment of lysogeny is completed, as observed in the case of infection of cells A with wild type of phage c^{15}ts+ (see Section 2).

When c^{15}ts-infected cells, which are to be killed and kept at 37°C, are transferred to 25°C before the end of rise period, phage multiplication may be restored. This restoration phenomenon is now under further investigation and the details will be described in future reports.

When stored in broth and/or physiological saline, phage c^{15}ts is as stable as c^{15}ts+. In broth inactivation was not observed to a demonstrable extent for 6 months at 0°C-5°C. It is resistant to chloroform as the wild type is. Plaques produced by c^{15}ts are indistinguishable from those by c^{15}ts+. The adsorption rate constant of c^{15}ts onto cells A is 2.5×10^{-9} ml min$^{-1}$ at 37°C and 2.3×10^{-9} ml min$^{-1}$ at 25°C. c^{15}ts is neutralized to the same extent as c^{15}ts+ by antiphage serum against c^{15}ts+. Single-step growth experiments at 25°C showed that the latent period is about 80 minutes, the rise period 100-110 minutes, and the average burst size about 600.

The spontaneous back mutant was found 4/105 in one strain and 3/104 in the other.

The antigen converting property of c^{15}ts is the same as that of c^{15}ts+. Strain A(c^{15}ts) was obtained by lysogenizing strain A with phage c^{15}ts. By both slide and tube agglutination tests, and by agglutinin absorption test, A(c^{15}ts) was confirmed to possess antigens 3.15 as somatic antigens, the same structure as that of A(c^{15}ts+). No antigenic difference was found between cells A(c^{15}ts) grown at 25°C and those grown at 37°C.

c^{15}ts has also proved to be very useful for the researches on HCV as already described in Section 3.
e. Induction of mutations in phage c15 with nitrous acid, 5-bromouracil, and 5-bromodeoxyuridine. By treating phage c15 with nitrous acid (5x10^-2M), 5-bromouracil (50μg/ml) and or 5-bromodeoxyuridine (250μg/ml), mutants, especially of plaque type, have been searched for. Several strains which give rise to larger plaques than that by wild type of c15 have been isolated and their properties are now under investigation in detail.

f. Summary. Search for mutants of c15, which are useful for carrying out experiments on HCV and others, has been attempted by using Bresh's color medium with various carbohydrates and or chemical mutagens.

Temperature sensitive mutant strains c15ts were isolated after treating c15 with ethyl methane sulfonate. Their properties are as described in 4-d, among which most characteristic is their inability to multiply at 37°C. And on account of this special character, c15ts has provided a very useful tool for the researches into the mechanism of HCV as described in Section 3.

Several other mutants have also been isolated with the use of other chemical mutagens.

5. Chemical structure of somatic antigens and phage receptors in bacterial strains.

Our analysis of monosaccharide composition in specific somatic antigens of group E1 (3.10), E2 (3.15), E3 ((3)(15)34), and E4 (1.3.19) revealed that they are qualitatively indistinguishable from each other, showing glucose, galactose, mannose, rhamnose, xylose and glucosamine (Ise, 1954; Nakagawa, 1954; Sasaki, 1955, 1956a, 1956b). These also seemed to suggest that different specificities of somatic antigens might be determined by different configurations of polysaccharide chains. And further studies have been being carried out to clarify the structures of determinant groups, in collaboration with the Massachusetts Institute of Technology, Cambridge, U. S. A., where we sent Dr. T. Uchida, one of our collaborators. Receptors for phages c15, C14, and or c34 are associated with somatic antigens 3.10 or 3.15 but their exact properties remain to be determined.

Since Uchida, with collaboration of Dr. P.W. Robbins, has clarified the structure of determinant groups of antigens 10, 15 and 34, our main concern at present has been directed toward the structure of antigen 7. And for this purpose, strain 87Aa', a mutant of Salmonella senftenberg (Ise, 1954), was employed, since it possesses factor 3 alone, which is common to group E Salmonellas, as somatic antigen. Although researches are on the way and the results obtained are preliminary, the followings have been observed so far.
a. Materials and Methods

(1) Bacterial strains: Strains A, A(c_{15}), A(c_{24}), and A(c_{15}, c_{24}) are described in Section 2. Strains 87A and 87Aa' of Salmonella senftenberg were reported by Ise (1954).

(2) Bacterial cells: Strain 87Aa' was grown in nutrient broth enriched with yeast extract under aeration, and bacterial cells were harvested by Shavles centrifuge.

(3) Antibacterial antiserum, anti-10 and anti-15 sera are described in Section 3. Anti-7Aa' O serum was also employed.

b. Extraction and purification of antigenic polysaccharide. A crude lipopolysaccharide (LPs) was prepared from cells of 87Aa' by hot phenol extraction (Westphal et al., 1952), dialysis of the aqueous phase, and repetitive acetone precipitation, followed by lyophilization. The crude LPs preparation was separated by ultracentrifuge into sediment and supernatant, both of which contained LPs and a small amount of protein. This protein was removed by passing through anion exchange resin column. The supernatant fraction showed a strong absorption at 260 μm, indicating the presence of nucleic acid, while the sediment fraction showed no absorption at 260 μm, being free from nucleic acid. The nucleic acid moiety in LPs-NA was confirmed to be of ribonucleic acid type by paper chromatography and by fractionation method of Schmidt-Thamhauer. Among several attempts to separate RNA from LPs in LPs-RNA preparation, only alkali hydrolysis was found to be effective. These findings are suggestive concerning the type of linkage between LPs- and RNA-moieties in the LPs-RNA fraction. Both fractions are reactive with anti-7Aa' O serum to a similar extent, containing glucose, galactose, mannose, rhamnose and a trace of xylose monosaccharide components. An additional monosaccharide component, ribose, was found in LPs-RNA fractions.

c. Separation of constituent oligosaccharides from partial acid hydrolysate of nucleic acid-free LPs. LPs was hydrolysed partially with N-sulfuric acid at 100°C for 20 minutes. Hydrolysate was neutralized with Ba(OH)₂, centrifuged and concentrated for charcoal-celite chromatography. Fractionation was carried out by H₂O-ethanol gradient elution, and the sugar content in each of separated fractions was measured by phenol-sulfuric acid (Fig. 12). Paper chromatography revealed that fractions 5, 6, 7, and 8 contain separable oligosaccharides, although overlapping each other. Fractions 12 through 18 also contain oligosaccharides indistinguishable by paper chromatography. It is noteworthy that galactose, mannose, and rhamnose are main constituent monosaccharides in partial hydrolysate (peaks 3 and 4) and even in complete hydrolysate. These findings are suggestive in that main structure of polysaccharide would be composed of these three monosaccharides.
6. List of papers submitted to publication under the support from the Contract No DA-92-557-FEC-39775

Uetake, H. and Hagiwara, S.: Effects of the unrelated phage upon lysogenization. Virus (in Japanese)

Hagiwara, S., Uetake, H. and Toyama, S.: Lysogenization and host-controlled variation. Virus (in Japanese)

Uetake, H., Toyama, S. and Hagiwara, S.: Host-controlled variation and multiplicity, activation. Virus (in Japanese)
REFERENCES

Bertani, G.: Multiple lysogeny from single infection. Virology 16, 131-139 (1962)
Christensen, J.R.: The fate of genes from restricted T1 in lysogenic Shigella dysenteriae, Sh(P1). Virology 16, 133-139 (1962)
Felix, A. & Anderson, E.S.: Bacteriophages carried by the Vi-phase types of Salmonella typhi. Nature 167, 603 (1951)
Hagiwara, S.: Analysis of the process of lysogenization in phage c34 system (II). Appearance of 0 antigen 34 in freshly phage-infected cells. Virus 2, 472-475 (1959b) (in Japanese)
Kauffmann, F.: Enterobacteriaceae (1954), Munksgaard, Copenhagen
Luria, S.E. & Delbecq, J.: Genetic recombination leading to production of active bacteriophage from ultraviolet inactivated bacteriophage particles. Genetics 24, 93-125 (1949).
APPENDIX "A" TABLE

Table 1 Time required for establishing lysogeny at various multiplicities of infection in various combinations among bacterial strains

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>Phage</th>
<th>m.o.i.</th>
<th>Surviving cells* (%)</th>
<th>(15^-) producing colonies (%)</th>
<th>Prophage state was established (in hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c^{15})[A]</td>
<td>1.05</td>
<td>47.1</td>
<td>43.3</td>
<td>ca 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>35.0</td>
<td>99.9</td>
<td>ca 3</td>
<td></td>
</tr>
<tr>
<td>(A(c^{34}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c^{15})[A]</td>
<td>6.1</td>
<td>26.1</td>
<td>44.8</td>
<td>> 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>25.0</td>
<td>51.2</td>
<td>> 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.9</td>
<td>36.7</td>
<td>86.7</td>
<td>> 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.0</td>
<td>65.5</td>
<td>98.7</td>
<td>ca 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.2</td>
<td>74.6</td>
<td>98.9</td>
<td>ca 3</td>
<td></td>
</tr>
<tr>
<td>(c^{15})[A(c^{34})]</td>
<td>4.8</td>
<td>46.2</td>
<td>92.7</td>
<td>ca 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>53.3</td>
<td>98.9</td>
<td>ca 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>69.1</td>
<td>99.1</td>
<td>ca 3</td>
<td></td>
</tr>
<tr>
<td>Heated (A(c^{34}))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c^{15})[A]</td>
<td>3.9</td>
<td>23.3</td>
<td>33.6</td>
<td>> 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>21.9</td>
<td>42.9</td>
<td>> 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td>17.1</td>
<td>97.3</td>
<td>ca 3-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.4</td>
<td>20.2</td>
<td>98.1</td>
<td>ca 3-4</td>
<td></td>
</tr>
</tbody>
</table>

*Surviving cells were plated out 20 minutes after infection and the resulting colonies were tested for \(c^{15}\) lysogenicity by replica plating.

Table 2 Efficiency of plating (EOP) of \(c^{15}\) propagated on various strains and of \(g_{341}[A]\)

<table>
<thead>
<tr>
<th>Phage strain</th>
<th>EOP on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
</tr>
<tr>
<td>(c^{15}[A])</td>
<td>1</td>
</tr>
<tr>
<td>(c^{15}[A(c^{34})])</td>
<td>1</td>
</tr>
<tr>
<td>(c^{15}[A(g_{341})])</td>
<td>1</td>
</tr>
<tr>
<td>(g_{341}[A])</td>
<td>1</td>
</tr>
</tbody>
</table>

21
Table 3 Efficiency of plating and adsorption rate constant

<table>
<thead>
<tr>
<th>15 c propagated on</th>
<th>EOP</th>
<th>Adsorption rate constant (x10^{-9} ml min^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>I-1</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>10^{-2}</td>
</tr>
<tr>
<td></td>
<td>I-1</td>
<td>10^{-4}</td>
</tr>
</tbody>
</table>

A = S. anatum 293
I-1 = S. butantan

Table 4 One-cycle growth of c^{15}[I-1] on cells A

<table>
<thead>
<tr>
<th>Indicator strain</th>
<th>A</th>
<th>I-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial phages of c^{15}[I-1]</td>
<td>3.7x10^3/ml</td>
<td>3.65x10^7/ml</td>
</tr>
<tr>
<td>Initial cells of A</td>
<td>1.04x10^8/ml</td>
<td></td>
</tr>
<tr>
<td>Free phages after neutralization of free phages</td>
<td>0</td>
<td>2.0x10^2/ml</td>
</tr>
<tr>
<td>Phages adsorbed in 10 min</td>
<td>3.64x10^7/ml</td>
<td></td>
</tr>
<tr>
<td>m.o.i. = 0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaque counts after burst</td>
<td>1.16x10^5/ml</td>
<td>1.0x10^3/ml</td>
</tr>
<tr>
<td>Burst size</td>
<td>31.4</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX "A" TABLE

Table 5 Formation of antigen 15 on freshly phage-infected cells

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>Phage c<sup>15</sup></th>
<th>Time after infection (min)</th>
<th>Dilution of anti-15 serum</th>
<th>Saline control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1:80 1:160 1:320 1:640 1:1280 1:2560</td>
<td></td>
</tr>
<tr>
<td>I-1</td>
<td>c<sup>15</sup>[I-1]</td>
<td>25</td>
<td>+ + + + ± - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>+ + + + ± - - - -</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>25</td>
<td>+ + + + - - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>+ + + + - - - - -</td>
<td></td>
</tr>
<tr>
<td>I-1</td>
<td>c<sup>15</sup>[A]</td>
<td>25</td>
<td>+ + + + ± - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>+ + + + ± - - - - -</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>25</td>
<td>+ + + + - - - - -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>+ + + + ± - - - - -</td>
<td></td>
</tr>
</tbody>
</table>

+ = positive agglutination
- = no agglutination

Table 6 Proportion of cells killed or lysogenized by infection with host-controlled variants

<table>
<thead>
<tr>
<th>Phage c<sup>15</sup> propagated on</th>
<th>Cells killed by phage (%)</th>
<th>Cells lysogenized among survivals (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>I-1</td>
</tr>
<tr>
<td>A</td>
<td>66.4</td>
<td>92.6</td>
</tr>
<tr>
<td>I-1</td>
<td>0</td>
<td>85.0</td>
</tr>
</tbody>
</table>
APPENDIX "A" TABLE

Table 7 "Mixed infection of cells I-1 with c^{15_A} and $c^{15_A}_{vir}$"

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell input</td>
<td>1.01×10^8/ml</td>
</tr>
<tr>
<td>c^{15_A} input</td>
<td>7.1×10^7/ml</td>
</tr>
<tr>
<td>$c^{15_A}_{vir}$ input</td>
<td>7.2×10^7/ml</td>
</tr>
<tr>
<td>Infective centers</td>
<td>2.78×10^6/ml</td>
</tr>
<tr>
<td>Mixed yielders</td>
<td>1.8×10^5/ml</td>
</tr>
<tr>
<td>Mixed(?) yielders</td>
<td>3.3×10^5/ml</td>
</tr>
<tr>
<td>Calculated number of mixed yielders*</td>
<td>1.87×10^4/ml</td>
</tr>
</tbody>
</table>

*Theoretical calculation was made by assuming that each phage suspension contains h mutant at a proportion of 10^{-2} and 2×10^{-2}, respectively.
Fig. 1 Process of lysozymization in strains A,
$A(\epsilon_{34})$, and $A(\varepsilon^{34})$ infected with $\epsilon^{15}[A]$

Growing cells of each strain were infected with
$\epsilon^{15}[A]$ and proportions of phage-carrier cells were
followed up at appropriate time intervals.

Since experiments were not carried out at the same
time, total viable cells in the experiment with cell A were taken, for comparison, as standard for viable
cells, and phage-carrier cells were plotted according
to the ratios of carrier to total cells.
Fig. 2 Process of lysogenization in strains A and A(\(c^{34}\)) infected with phage \(c^{15}[\Lambda]\) at m.o.i. of 5 and 24.2, respectively.

Growing cells of A(\(c^{34}\)) were infected with \(c^{15}[\Lambda]\) at m.o.i. of 24.2, while cells A as control at m.o.i. of 5.
Fig. 3 Process of lysogenization in strains A and A(g341) infected with c15[A(g341)]

Growing cells of A and A(g341) were infected with c15[A(g341)] and proportions of phage-carrier cells were followed up at appropriate time intervals.
Fig. 4 Process of lysogenization in strain A infected with $\xi_{341}[^{2}]$.

Growing cells of A were infected with $\xi_{341}[^{2}]$ at various m.o.i., and proportions of phage-carrier cells were followed up at appropriate time intervals.
Fig. 5 Process of lysogenization in strain *A(c*) infected with ϕ_{34-Y}

Growing cells of *A(c*) were infected with ϕ_{34-Y} at various m.o.i., and proportions of phage-carrier cells were followed up at appropriate time intervals.
Fig. 6 Effect of multiple infection upon efficiency of plating (plaque formers/infected cells) in cells grown in nutrient broth

The proportion of plaque formers to infected cells was determined (*) at various m.o.i. At each m.o.i., theoretical values were also calculated under the assumption that each cell may become plaque former, which receives at least 4(e), 5(e), and/or 6(e) phage particles, according to the formula shown in Fig. 7, where

\[Pr = \text{proportion of plaque formers to infected cells} \]

\[m = \text{m.o.i.} \]

\[r = \text{number of phage particles adsorbed to a single cell} \]

\[n = \text{MOI in single infection} \]
Fig. 7 Effect of multiple infection upon efficiency of plating (plaque formers/infected cells) in cells grown in synthetic medium

Notes are the same as in Fig. 6, except that calculations were made under the assumption that each cell may become plaque former, which receives at least 2(e), or 3(a) phage particles.
Fig. 8 Proportion of cells killed by phage infection at various m.o.i.

The proportions of killed to infected cells were determined (e) at various m.o.i. At each m.o.i., theoretical values were also calculated, assuming that each cell may be killed by infection, which receives at least 4(e), 5(e), and/or 6(e) phage particles.
Fig. 9 Proportion of lysogenic cells among survivors at various m.o.i.

Phage-infected cells of I-1 were plated for surviving cells 20 minutes after infection, and resulting colonies were tested for lysogenicity by replica plating.
Fig. 10 Rescue of $c^{15}\text{vir}[A]$ by superinfecting with $c^{15}\text{ts}[A]$
Fig. 11 Effect of heating cells on efficiency of plating (plaque formers/infected cells)

Growing cells of I-1 were heated for 2 minutes at various temperatures, transferred back to 37°C, infected with phage c19[A] at low (<0.1) m.o.i., and plated out for infective centers with cells of I-1 before lysis.
Fig. 12 Charcoal-celite column chromatography of acid hydrolysate of SβAČ lipopolysaccharide

Partial acid hydrolysis: N H₂SO₄, 20 min.
Column: Acid-treated norit A (50 μm)/celite 545 (100 gm)
Color development: Phenol-Η₂SO₄ reaction