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L1sT or syvpoLs”’

r,0,s e Cylindrical coordinates locating source points,
ses Fig. (A-1).
r,a,% = Cylindrical coordinates locating field point,
‘ see Pig, (A-l).
u,V,V _ = Longitudinal, tangential and radial displacements
of the cylindrical shell.
'} =<« Raedius of cylinder.

Radius of small circle approximation.
c = Bource strength coefficient per unit of circumferential
length for acoustic fluld (in%/sec.).

Y = Velocity of dilatational waves in elastic cylinder.
°, = Velocity of shear waves in elastic cylinder.

] = Velocity of sound in wvater.

0,H,L = Source strength coefficients per unit of circum-

ferential length for elastic solid (1n%).

i « BSource band index.

b ] = TField point index.

%Ko _ Coefficient -‘3 evalusted for 0 = ¢, , C, , C a8
s

K, 21,2,3 indicated in text; K is non-dimensional form <= .

L « length of cylinder.

) | « RNumber of bands into wvhich cylinder is divided,

n =  HNumber of circumferential waves in the cylinder

displacements.

*) Mditional sysbols are defined as they occur in the text.
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Pressure in flutd (1b/in).

Expension coefficient of externally applied normel
traction to cylinder (1b/in®).

Distance between field point and source point,

See Eq. (III-16).

. Distance between field point and origin.

Contribution of small circle of distridbuted souxces,
see Appendix C of Reference (1].

Time.

Computational verieble.

Integral coefficients of source strengthe.
Elasticity constants of cylinder.,

Potential function associated with velocities of
acoustic fluid.

Potential functions associated with displacements of
elastic cylinder.

Angle between field and source points, see Fig. (A-l).
Mass density of fluid.

Non-dimensional varisbles in radial direction.

Non-dimensional variables in g direction.

Cylinder stresses.

Angle locating small circle of distributed sources,
ses Fig. (C-1).



e Frequency of vibration.
t - Blope of R, , see Mg. (5).

NOTE: r or s appearing as & superscript for the coefficients a gl * [ nyt * 7&“
denotes differentiation vith respect to the particular varisble used.

Dots indicate differentiation with respect to time.
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1 INTRODUCTION.

The theoretical work and analytical procedures leading to the evaluation
of the pressure and velocity fields produced in an acoustic fluid by the forced
vibrations of an elastic circular cylindrical body of finite length which is
submerged in the fluid have been presented in Reference (1] l). The epplication
of the theory to problems of practical interest is discussed in the present
report and numerical results are presented for & semple axi-symmetrical problem,
i1.e. & case in which the cylinder excitation is independent of @ and the response
is given by the n = O component only. For convenience, specific formulas in
computational ferm are given and the major computations are summarized by flow
charts. In the sections which follow, it i1s assumed that the reader is familiar
wvith the material contained in [1] and that all unprefixed formula numbers 2)

and section designations refer to the materiel in that report.

A potential theory epproach was used in [1] to evaluate the pressure and
velocity fields in the fluid due to the time-harmonic excitation of a submerged
cylindricel body of finite length. The stresses and velocities in the elastic
cylinder vere expreseed in terms of three displacement potential functions, each
of which satisfies the wave equation. Similarly, the corresponding fluid quanti-
ties vere expressed in terms of a single fluid velocity potential. Each of the
four potential functions were considered to be caused by & group of simple sources
of unknown strength which were distributed over the boundaries of the elastic body
and the fluid surface at the cylinder-fluid interface. A finite difference approach

1) "FPorced Vibrations of an Elastic Circular Cylindrical Body of Finite Length
Submerged in an Acoustic Fluid", by M.L. Baron, A.T. Matthews and B.H., Bleich,
Paul Weidlinger, Consulting Engineer, Office of Navel Research Project
NROS4-46L, Contract 3454(00)FEM, Technical Report No. 1, June 1962.

The numbering of formulas in this report will be prefixed by the section number
LT O ho (nl-l)o

e)
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vas used in which the boundary of the fluid-cylinder interface was divided into
a series of bands. On each band, the unknown source strengths were considered to
be constant. Conditions on the stresses and velocities at the fluid-elastic body
interface gave rise to a system of simultaneous lineor elgebraic equations on the
source strengths, The coefficients in these equations are dcfinite integrals
wvhich are evaluated numerically by suitable quadrature formulas for a given

geometry and forcing frequency.

In order to solve the coupled forced vibrations problem for erbitrary
excitations, the time-harmonic exciting forces were expanded into a Fourier series
in 6 around the circumference of the cylinder. In this manner, each term corres-
ponding to n, the number of circumferentiel waves in the particular component,

could be treated separately.

The solution of these problems inherently involves & major computational
effort directed towards the evaluation of large systems of linear simultaneous
algebraic equations on the source strength coefficlients. If the cylinder-fluid
interface 1s divided into N bands, sets of 8N (n % 0) and 6N (n = 0) simultancous
equations are obtained. It will be shown that in each case, the computations can
be reduced to the evaluation of & number of systems of 2N equations. For the
application of the theory to practical problems in which as many as 50 or more
bands might be considered, large electronic computers cepsble of solving systems

of one to two hundred linear equations would be required.

Section II of this report gives the procedures and detailed formulas for the
evaluation of the n » O response components. Section III gives similar information
for the axi-symmetrical case, n = 0, and includes en illustrative numerical exeample

for a case with the parameter ratios -I‘-‘ =« 2 and % = 2.01.
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It is felt that the present theory may find useful applications in evaluating
the response in a fluid due to the harmonic excitation of large transducers. In
addition, current work on the extension of this epproach to the case of thick

valled elastic shells submerged in an acoustic fluid, is under wvay.
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I1  COMPUTATIONAL PROCEDURES, n w O,

This section describes the computational procedures for the evaluation of
the source strength coefficients on tpe cylinder-fluid interface and the sube
sequent evaluation of the pressure and velocity fields in the acoustic fluid.
The formulas on the real end imeginary parts of the source strength coefficients
are presented in a form perticularly suiteble for computations. The computational
procedure is conveniently divided into three major portions 3) 1 &) Evaluation

of the coefficients @ and 7nJ1 and their space derivatives, using

310 Pagt
Eqs. (29), (30) and Eqs. (45)-(52); b) Solution of Eqs. (80)-(87) for the

source strength coefficients G, , H , , L, and C, ; and ¢) Evalustion of
the pressure and/or the velocity field in the fluid, using Eqs. (67)-(69) and

Eqs. (89)-(89a).

For a particular set of input parameters, 1.e. the cylinder geometry; the
elastic constants of the cylinder material; the fluid constants; and the space
distribution of the time-harmonic excitation, the cylindrical shell is divided
into a number N of subdivisions and the computations are started, The number N
of bands on the shell-fluid interface whicn are chosen for any particular problem
will depend essentially on the complexity of the applied excitation and the accuracy

required in the results.

The evaluation of the coefficients “nJi ’ ani » 7nJ1

vatives have been described in detail for the n = O case in Section (IV) of

and their space deri-

Reference {1] and no further amplification is required here. The computational
formulas for the real and imeginary parts of these coefficients for n ¥ O are

given in Appendix A of this paper for the two cases, { = J and 1 » J.

3) 8ee Reference {1], Section IV, Pg. 37 ff.



The second major computational effort is the evaluation of the complex
source strengths Oni , B g I'ni end C ¢ With four such complex unknown
coefficients for each band N on the cylinder-fluid interface, this leads to a
system of 8N simultaneous linear algebraic equations on the real and imaginary
parts of the source strengths I‘). For the axisymmetrical case n = O, all the

coefficients Lo are zero and a system of 6N equations is obtained.

1

The source strengths and the coefficients a and their

nit ? BnJi ’ 7nJi
space derivatives appearing in Egs. (80)-(87) are written in terms of their

real and imaginary parts, e.g.

and the resl and imaginary parts of each of Egs. (80)~-(87) are equated, thus

leading to the following set of equations in computational form 5) :

Point } on the surfece r = a

N
Re o -Z{cmal T AR TS TS - I A T A TR -
i=1

+ cniah} =P (11-1)
I's8

k) Recent developments in the progremming of systems of simultanecus linear

algebraic equations with complex unknowns may allow the direct evaluation

of the complex source strengths Gni ) B nt ? Lni and C nt without breaking them
into their real and imaginary parts. This would reduce the problem to the

solution of systems of LN (n » 0) and 3N (n « 0) equations respectively.

5) In the formulas vhich follow, the subsecript njJi in each of the 4 coefficients

vill be understood, e.g. 62 [ ] ete,

dpj12



elle

. Z{ NEE W0 ARSI A A S A TR A

i=1
.- w
+ cnidh} =0
ru=8

Z{ -aae—ﬂ aas.n aa6+f.a.{ 'niﬁ.r «0
{el r=g

Z{ 5+Gnias+ﬁn1ad6+Hmaﬂ6+f.n167+Ln1&7}

il I'=8

Re 0 g .Z{Gmae -G, dg+ maa9 - Hjadg + L.d - nidm} -0
1=l r

In o, = {c Yo+ Bly s Byedy s Rl + L300 L 2L <o
i=l

Tmd

Rev-Z{ Gnin.)i' ninJi"ﬁ “"n.u”‘ aBnJi nir nJi
i=l

g ¢

= n= ni .r ni =r

- I'ni?pnai * o 7ndi "o 7n,11} -0
r=a

et 3 re
In ¥ = {G Pngs ~ OngPnys = RagBnys ¢ HogoBryy + Loy 2By, -
{=1
= n- ni =
Ly PRt ot w’xrm} =0

I's8

(11-2)

(11-3)

(11-4)

(11-5)

(11-6)

(11-7)

(11-8)



Point J on end surfaces, z = O and 2z = L

Re 0yy 'Z{amau - Cpydyy + Bpedyy - Bjady, + 88, 4G, } R TRY

iel 2=0,L
(11-9)
N
Ino,, 'Z{dnid‘ll +6,d), + 0 jed, +H,ad, -0 ,d + cnidh} =0
1=1 z=0,L
(11-10)

Reg =0 Apply Eq. (II-3) at point.

Ine, =0 Apply Eq. (II-4) at point,

N
- = - -‘ rz - Grz
Re 0.4 'Z{anialg; - Oydig+ Redyy - Hged) - LB+ Lni”nn} =0
1-‘1 !-O,L

(I1-11)

N
In 0.4 'Z{anidu + O d g Bady ) + Hoadyy - Ly - Lnian,ji} =0

i=1 z=0,L
(11-22)
N -
Re & 8 a%, -G a° + & a3 _+H_ad +EE-!'-2 -i:n—"mz =0
eds= - nio'n,ji ni™nji nis‘dl.s niadls o 7nJ1 w 7nJi
1-1 Z-O,L
(11-13)

N =
o] c
2 n mg - = ni =z nl .2
In ﬁ,-}:{bmam = oy = fpyedy g+ Hjady o ¢ == 700 + -5 7n.11} =0
&t 2=0,L

(11-24)



Expregsions for the coefficlonts &k and Ek are given in Teble II-l and
the expressions for the real and imaginary parts of the cocfficlents ahJi ’

ani ’ 7nJi and their space derivatives are glven in Appendix A of this report

[Sce Eq. (A-6) - (A-38)].

The spplication of Eqs. (II-1)-(II-1Lk) at the points on the fluid-cylinder
interface ;ields the set of ON simultaneous linear equations on the source strengths.
These equations can be solved by either of two approaches:

1) a direct solution of the system of 8N squations on a large electronic computer, or

2) a reduction of the system of 8N equations to a series of 2N systems end their
subeequent solution on an electronic computer. These alternatives will be
1llustrated in detall in Section III of this report in which the illustrative

problem for an axieymmetricel problem, n = 0, is presented.

Once the source strength coefficients ere evaluated, the complex fluid pressure
at a field point J is obtained by direct substitution of the source strength coef-

ficients C_, into Eqs. (89)-(89a):

ni

N - .
fat | _

1=l
The far field pressures in the fluid can be evaluated from the simplified

asymptotic expression, BEq. (89a):
iw Ro

" Te
I, (#35 cos ] e R

n*lw Py cOB nb eia* N

- Ak
Pn,J - |- 5 Cnir e

[V
=
[
-]
s
<]

e

(11-16)




=lhe

The use of this asymptotic expression greatly simplifies the numerical
corputation of the far field fluid pressure, since it eliminates the computation
of the 7nJ1 integral cocfficients for each point along & specific ray in the fluid.
An eadditional convenience is the fact that once the pressure pn,J has been evaluated

from Eq. (1I-16) for a given point P, on the ray specified by R, and E, it cen

J
easily be evaluated for any other point on that ray by changing the scale factor
_ iw Ro
e ¢
R » [See Figure III«3].

°
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- 6)
Table I « Evaluation of the Coefficients ak end &

-

.- -— 4 2pa:§1 g .- 2@""“
c

e

g,

- 2“[ Bt "é in.u] = Pg® Fpgq

2
~T'L . rzz o
PR } 36"‘" 2Bos1 * 75%1]
2
n=zz 2n = 2n .r
a‘{'?in.ji 3 ae"ﬁ"na " T %oyt
2n =2 2n -rz
19";?3::.11‘?%.11 3 - 3»31 “Eﬁn,u nJi
..M’aa + 2,528 -2 -2u & 32
4, 2 "y "1} 3 4. “n.u "T nji
1
2
on .2 2n xz3 nw
3= F Ty } ﬁu‘?inaz‘;:ianu
2
2
315'251\11 nji
2
é)

The formulas for the coefficients ;k are obtained by replacing the
single ber values by the corresponding double bar values in each case.
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IITI COMPUTATIONAL PROCEDURES AND NUMERICAL EXAMPLE, n = O.

For illuetrative purposes, the following axisymmetricel problem is presented.
An elastic cylinder of radius a and length L, immersed in an infinite acoustic
fluid, undergoes an electromegnetically induced time - harmonic uniform strein,

Syt o.im‘ , in the exial direction, while the radiael and clrcumferentinl

strains Cor and €y BT kept equal to zero (Fig. III-la). By superpusition, the

pressure field that is produced in the fluid by the straining of the cylinder
vill be equivalent to the fluid pressures produced by a set of fictitious surface
tractions which are epplied to the solid cylinder in the ratio

o
b o A v ( B.)

—— - .
L AN+ 1w

To illustrate this, consider first, the cylinder under *he action of applied

surfece tractions L and L. (Fig. I1I-1b). These tractions are chosen so as

to bring the cylinder back to its original unstreined state, i.e.

dut
Or ™ ° )stoe

(v)

g =~ (M 2u) coeiwt

Finally, a set of surface tractions which are equal and opposite to those of
Eq. (b) are applied to the cylinder (Fig. III-lc).

The superposition of the three states of stress of Fig. (III-1) shows that

the pressure field which is produced in the fluid by the uniform straining of

—_— .o.lwt, 18 equivalent to that which is produced by the

fictitious surface tractions of Fig. (IIX-lc), namely

the cylinder, ¢

0" - XCoaim
(e)
Ope ™ (N + 2u) cooi“*' .
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1b

For the illustrative problem, the poruwi:ters v = f and )\€° 3 103 = have

been chosen.

in

The problem thus consists of the evaluation of the pressure field

produced in the fluid by the fictitious time harmonic tractions Opp ™ 103 eim

and ¢ .z " 3(103 ) em’t which ere epplied on the boundary surfaces of the elastic

cylinder,

1.

3.

b,

and

The following paramcters are used in the numerical example:

Elastic Cylinder

La2a

$ (Leea N mp)
12(10%) 1v/1n3

<
[ ]

) -4
]

€
[4

0.2833 1b/tn3

2. Acoustic Fluid

v = 62,5 1/re3

c5 = 5000 ft/cee

Computational Ceometry and Pressure Loading [See Fig. III-2).

(6 side bands on the
6 ring bands on the

6 ring bands on the

Symmetrical Loading:

eurface r = 8

surface £ = 0 N = 18 bands.

surface 2 = L],

P ) eiwt

- (103 -
rr, o} (10 J on the surface r = &

Pzz.oJ‘ - 3(103) it J on surfaces £» Qand 2 =» L

With the input values chosen, the propagation velocities of the pressure

sheor waves in the medium become respectively

c, = 5‘%2-& - 25_& = 18,460 ft/sec.
o, = % - %5 = 10,660 ft/sec.

ey (fluid) = 5,000 f£t/sec.
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The following values of the nondimensional paremeters En - -‘3‘; vere used in the
computations:

k) = 0,544k

k, = 0.9425

is - 2,0100

For example, a possible combination of forcing frequency w and cylinder radius

for vhich the numerical results would apply is @ = 400 cps and a = b f¢.

The cylinder geometry for the choice of N = 18 bands is shown in Fig. (IIX-2).
It should be emphasized that this value of N was chosen only as a reasonable com-
putational geometry to illustrate the general method in a sensible manner. It
does not necessarily represent, however, the number of bands which might be
required to cbtain physically meaningful results of sufficient accuracy for
spplication to practical problems. In the latter case, & larger number of
bands N would generally be required.
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a) Computation of the Real and Imaginary Portions of the Coefficients

°‘o,11 ’ ’oJi ’ 7031 and their Space Derivatives,

Bome representative numerical values of the coefficients a’odi » ;OJI s their
space derivatives, and the corresponding quantities for g T and 70.]1 are given
in this section for the illustrative problem. Recalling that each coefficient

is wvritten in terms of a real and imeginary part e.g.

°'0J1 ® u'oJ:l +4 “oJi ’

analytical expressions for these quantities are given in Appendix B and Appendix C

of Reference [1}.

Por the cases in which 1 f‘.,.'!! the quantities °’oJi ’ aoJi ’ 70,)1

space derivatives are evaluated by numerical integration [Bimpsonts Rule], using

and their

Eqs. (B-7)-(B-15) of Reference [1]. Sharp peaks which occur in the integrands
for values of ¥ < 40° neceesitated the use of & varisble spacing in the numerical

integration as follows:

v(degrees) | Av(degrecs)
0-8 1
8-20 3
2 - o 5
b0 - 60 10
60 - 180 20

A similer numerical integration was used to evaluate the quantities ;'o.‘ji ’

;031 , ;631 and their derivatives, Eqs. (B~16)-(B-2k) of Reference (1]. For
each quantity, an integration spacing of Ay = 18 degrees was used.
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For small values of the variable X, computational accuracy required that certain
of the trigonomstric expressions eppearing in these equations be expanded into
powver series so that the leading terms in the 1ntegrmd' could be cancelled
snalytically. Expressions for the evaluation of these coefficients are obtained
by setting n = O in Eqs. (A-27)-(A=35) of this peper. Equations (A-36)-(A-38)
give the anelytical expressions and the range of application for the functions
appearing in the integrands. It should be noted that these ranges will vary

for different problems end that they must be detefmined separately in each case

by a series of trial integrations using the expressions given in Eqs. (A-36)-(A-38).

For the case 4 = J in which the field points and the source points are on
the same band special formulas are required for the evaluation of the coefficients
am ’ EoJi , ‘70‘,1 and their derivatives because of an infinite discontinuity in
their integrends at the value defined by R = 0. To evaluate these improper (but
convergent) integrals, Eqs. (126)-(127) and Eqs. (C-4)-(C-8) of Reference (1] are
used. The values of the limit 6 in Eqs. (126)-(127) are evaluated separately by

trial integrations in each case,

Table II gives the nondimensional values of the quantities p, p and (g-i)‘
for the calculation of the real and imaginary parts of the coefficients °'o.11 ’
Post 294 7oyq
not practical to list the values of these coefficients for all combinations of

and their derivatives in the illustrative problem. While it is

1 and J, some representative values of these quantities for the two cases J = 7,
1m6and §= 3, 41«9 are given 4n Table III for the convenience of those readers
vho may wish to work through a sample computation. Representative values for the
evaluation of the real portions of the coefficients ®otq and its pertinent derivae
tives are given in Table IV for the two cases, L = J =« 5 (topband) and { w § =« 7
(side band).
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mable II - Nondimensional Values of the p, p and (§-§) - Illustrative Problem
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Table III - Representative Values of «

ojt * Pogt * oyt

and their Space

Derivatives - { = J
CASE I CASE II
J=T7,1-6 J=3,1=9
k (sincie var) | - (dousie vax) | (stngie var) | - (doubre bar)
6y | -+4858500 +.22754170 -.2860010 +.2478359
“;Ji -+ 7521002 +.003807k10 +.2421691 -.02119497
u;Ji +.61530L0 -.02273441 +.03017070 -.01027833
§\ agry | + 3.92009% | -.0002299027 +.04672336 | +.0005205666
. apgy | * 47.66267 +.001377773 - 42926517 +.0006060587
) :S: + b,430315 -.0002201613 . .-
ooy —ee- R -.09011387 -.02437010
aiji + 2.07Th596 -.02138003 . ——n-
arst -e-- - - .201060k +.003792008
Boys -+ 3542777 +.3262738 -.1225355 +.3522680
B:Ji - 7726809 +.01807612 +.2918503 -.09819865
Bogs | *+-6556329 -.09997833 +,0366748k -.0b451797
“ 9231 + 3.941736 -.003183777 +.03799412 +.007139976
%% Bogr | * 47-68707 +.01903262 -+3136065 +.007779862
‘u;“ p:;: + 4,533949 -.002781721 cam- .-
’:Zi ceen - -.09717981 -.1025629
Bogy | + 2229123 -.08195736 . —---
Boss - - -.3392487 +.05333224
3 LZeJ* -+ 06006077 +.2492022 +.3011386 +.1673313
b .1;31 -.8155342 +41005983 +.,1056342 - 4913962
W 7;41 +.4507052 -+3588395 ~+1396592 -.1167767




Table IV = Representative Values of G,q4 %04 1its Bpace Derivatives — 1 = J

isjmh LtejaT?
a H
: - .1180 '; - 01750
\a = 6000 AN = 2097
a -.6800 -.63758
Ea -43540 «.2590
ol + 3.00 0
.B: + 3,00 0
vhl +.34636 +1.8215
‘.E: 0 + 1.14850
o5t 0 0
;2§: z 0 0
a3gFee + 59.820 + 11,501
;355“ 0 0
«25%t - 20.582 .-
‘EE:‘ - 2501‘0,‘ Ll
3.xzz2y
R -.88911 —ee
;3§:“ -.88911 -
‘3am ecoe 0
oJ5T P, 0
[+ A
.2Err ose - 50"126
.25" bt - 8050
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Determination of the Set of Simultaneous Linear EFquations on the Source

Strengths G

no and c°i

ol ’ "ol

parts, e.g.

0, =08 ,+140

ol ol ol

- -
Tog = oy * 1 %y

As for the case n » 0, the source strengths and the coefficients o, 0j1 * [ ]

and the real and imaginary parts of Eqe. (11.7)-(122) are equated, thus leading

to the following set of equations in computationel form:

Point )} on the surface r = a

Re ¥ E:{ oi th oi oJi + ﬁoia'Bo.ji + H aBoJi

}Z{?bial L+ Bogedy - Bypedy + Byl + coxaé}

i=1

I'm8

E:{?oidl + Goial + ad2 + H 08, - 8,8, + coidé}

{éoi 5+ Goias + 301‘46 + Hoiaaé}
1al rea

isl

I'n@
coi 7r
"o ot

Prr,oj

ot o
o ‘oji

b 1§

oL’
and their space derivatives are written in terms of their real and imaginary

(III-1,

(IT1-2]

(111-3

(III-k

=0

(111-5
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N -
8 c
e - rz = _2{ > -
In ¥ 'Z{Goi"’oai - oi oJi - ByoBg ¢ 01'3031 Toit * 7w °J"} "0

i=l r=a

Point j on end surfaces, z w 0 and z = L.

Z{ o1diy = Gogdyy * Bogads - Hoged)p + 8,3, + coiah} RRFTRY
i=l 2=0,L

(111-7)

Imo, -Z{Goian + coian + f adm + n .am - éoiah + Coidh} =0 (III-8)
i=) z=0,L

Reg =0 Apply Eq. (III-3) at point.

Imo,, =0 Apply Eq. (III-U4) at point.

o
ol .z oi et 4
Re U = Z{ 801 oji = G,q8 By * Roydys + Bpgdys + o= Toit "o 031} -0
1-1 z-O,L
(111-9)
2 ¢
' - = ol =z _oi
Ind -Z{G 1%031 - oi o,u < Byadig v Boadio+ =R T v 031} =0 .
i-l hO,L
(111-10)

Expressions for the coefficients ak and Ek are obtained by setting n= 0 in

the expressions which are given in Table I of this report [See Pg.15 ).
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Yor the illustrative problem under consideration, a symmetrical fictitious
pressure loading sbout the plane g = é of the cylinder is applied. Consequently,
for N « 18 bands, the system of 6N equations reduces to one of 3N = 54 equations

on the real and imaginary portions of the source strengths.

A convenient form which illustrates the order of the matrix coefficients
for the source strength equations, which was used in the present problem is given
in Table V. The rows of the matrix, denoted by p, represent the expressions for
the real and imaginary portions of the stresses and velocities at each of the in-
dicated field points J, while the columns, denoted by q, indicate the coefficients
of the appropriate source strengths at each of the indicated source points i. The
last column represents the forcing function which is applied to the cylinder. It
should be noted that the symbols 5; which appear in Table VI are d?fined in terms
of the & coefficients of Table I as follow:
2
E’; - -;-‘-'1 [Eo sk * To3(19-1 )k] . (111-11)

While it is not practical to list all of the numerical values of the matrix

" coefficients for the illustrative problem being considered, some representative

values of these quantities for the cases q = 1 to 4 and p = 1 to 20 are given in
Table VI for the convenience of those readers who may wish to work through a

sample computation.



e) 8olution of the Bet of Simultanecus Linear Equations on the Source Strengths

Clo1 » no and co

1 1 °

The solution of the system of the 54 linear simultaneous squations on the
real and imaginary parts of the source strength coefficients can be approached
in twvo ways. First, the homogeneous equations in the system can be used.to
elininate a number of the unknowns such that the 6N system reduces to a series
of 2N systems which may then be solved on an electronic computer. This procedure
would be justified in a large problem in which a system of several hundred
equations would have to be solved. For the present problem, however, it is a
comparatively simple matter to solve the system of 54 equations directly, using
an IBM 7090 computer. The values of the source strength coefficients are given
in Teble VII.
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Tohle VI = Numericnl Values of Matrix Cosfficients g = 1 to 4 p = 1 to 20.
q 1 2 3 L

P

1 - 19.108 + 10.552 + 3.2568 + 1.6250
2 + 3.5100 + 22.599 + T.7992 + 2.4019
3 +.65136 + b.6795 - 23.672 + 7.0535
" +.2321h + 1.029% + 5.0086 - 20.832
5 +.11003 +.141256 + 1.1664 + 5.2229
6 +.061533 +.21305 +, 48391 + 1.2406
7 -+ 068969 -.22186 -.h2763 - TH187
8 -.032897 -, 09141k -.11941 -, 063712
9 =+0085599 -.016324 +.0035093 +.070570
10 -.0098308 -.029L21 -. 048797 -. 067817
u -.0098062 -.029349 -.048678 -, 067653
12 -.0097593 4029207 -.0LBLL3 -.067326
13 | - 40096882 -.028994 -.048090 - . 066837
1k -+0095939 -.020712 -, 047623 -.066189
15 -.0095101 -,028362 -, OkT0L43 -.06538
16 -.0097595 -.029190 -.0L8358 -.067078
17 -+0099396 -.029730 -.049253 :.06833h
18 -,010031 4030002 -.0k9705 -.068963
19 -.0016023 -.00l5155 -. 0066488 - 0077498
20 - . 0046601 =+013163 -.020737 -, 026749
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Table VII < Source Btrength Coefficients.

Source Point _ _ _ o = _
1 Coy T, [@Pa, |aPe, | @hHE, | adE,
1el - 17,411 37.887 « 1.7202 | + .16903 + ,00k0134 | + .00011319 |

] - 16,701 N.727 « 13930 | + J13b2k - JO0k3571 + .0012951
3 - 14,030 2k.860 -1.2809 | + .11856 +.12250 | + .0039739
b - 9.h095 38.316 - 1.3849 | + 2127h - 27677 + .0089387
5 - 2.9858 | 17.601 - 1.2055 | + .082023 | + .43680 + 019710
6 8.2628 | 36.282 - JIUTT0 | + (028792 | - .82265 + .0U8730
7 - 45.238 T.0u47 | - 65266 | + .26290 - 93899 - »13509
8 « b7.408 24,673 - 1.0528 | + .39733 - 78204 - ,.051806
9 - 50.463 28.362 - 1.2582 | + .b3650 - ,088151 - 402501k
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d4) Evaluation of the Fluid Pressure Field.

The complex pressure and velocity components at field points in the fluid

are evaluated from the relations

Po, 4 Z’t‘“ o [ (coi7o,ji * coi7oJi> +1 < oi’o.u o17o.31>] (111-12)
i=l
N
flat = =r .r = =r u -r
Yo, 'z' [ ( Cot7041 ~ oi’o,:i) -1 (c.n’o.u * coi’o,u)] (111-13)
i=)
N
iwt = =t =7 = =z T ‘
) 'Z' [ < Coto0j1 * o17o.u> -1 (%17031 * coi7oai>] (111-14)
iml

The coefficients ; and their space derivatives are evaluated from

-
oyt * Yoyt
Bqs. (A-1)-(A-38) of Appendix A of this paper vhere R is the distance between
the source point 4 and the field point j in the acoustic fluid at which the

pressure and/or velocities are being computed.

The quantity X = —E; is given by Eq. (A-k) where p = :? cos § 5 L = :? sin E, and
Bo represents the distance from the field point j at which the pressure is being

evaluated, to a reference point O which for convenience is located at the center

of the cylinder, i.e., at the point 0 defined by the coordinates r = O and ¢z = %;,
Mg (III-3).

The far field pressures in the fluid, i.e. the pressures at distances R
vhich are lerge multi{ples of the cylinder dimensions, are of practical interest.
A simplified asymptotic expression for the fluid pressure, po,J in the far field,
vas derived in Reference [1] in terms of the fluid source strength coefficients
c°1 and a prescribed distance and slope angle, Ro and { respectively, es shown

in Fg. (11I-3). For the axisymmetrical loading and geometry of the present



-‘&0—

problem, the asynptotic value of the far field fluid pressure is given by the

relation io R
1p,0 X . 1k35 sin . Lt e' c 2
pO,J - [- T Zcoil’ L} JO (k3r cos E) e ] —_—R:-— . (III-ls)
1=}l

It should be noted that once the pressure p 0,3 has been evaluated from Eq. (III-15)
’
for a glven point P 3 on the ray specified by Ro and E s 1t can easily be evaluated

for any other point on the ray by changing the scale fector
in Ro

since the quantity in the bracket will be a constant for a given ray. The use
of Eq. (IIX-15) in the evaluation of the far field fluid pressure greatly
simplifies the computation which would be required if Eq. (III-12) were to be
used, since it eliminates the neceseity for the numerical computation of the

70“ integral coefficients for each field point J in the fluid.

A simple formula for the evaluation of the mbsolute value of the pressure

P 3 in the far field is given by the relation
»

N 1k,% #in {
p e N
PO,J - —%—w anir g—ﬁ;—— Ja(k3r cos ;) -R-g - SR;EI (111_16)
i=l

[

Rc
vhere Rc refers to some reference point on the rey under consideration and R°
refers 10 the field point on the rey at which the pressure is to be evaluated.

For points which are closer to the cylinder so that the asymptotic formula for

the fluld pressure cannot be used, the absclute value of the pressurs p

0,4 is

glven by the relation,



P

ohle

N 2 N 2 é
T T 5 - - == 13
Po,d = pf“’{[Z(coﬂoJi + 0017031>] + [2(0017031 - 0017°J1>]} (111-17)
1=l 1=l

Rumerical computations for the ebsolute value of the prcssure p have

0,d
been carried out elong rays ranging from o°(22{,°)9o° as shown in Figs. (III-4)
and (IIX~5). 1In each figure, the lines of constant pressure in the fluid are
shown. The results which are plotted have all been derived using Eq. (III-17)
and checked, beyond R = 20a, by Eq. {(III-16). For the benefit of those who may
wvish to work through a sample computation, a representative set of numerical
values is given in Table VIII. The values of the constants cRay alppearing in
Eq. (III-16) are given in Table IX. In the present example, Eq. (III-16) can

be used vith good accuracy for those points for which Ro > 20a.

It must once again be emphasized that these numericel results may not
represent an accurate solution of this problem because too few bands vere
purposely used in the computational work for the cylinder and fluid source
strength coefficients. This was done in order to present the simplest possible
numerical example vhich illustrated all the complexities of the application of
the general method. For a practical problem with a real transducer, a considerably
finer finite difference breakup would be required in order to evaluate accurate

values of the pressures in the fluid.
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Table VIII -~ Computation for Pressure in Fluid - Numerical Example;

. R
Ray 3, § = 45°, 2 = 7.07.

R Tf Tost Tost

1 %5 1 - .006182 + 0019395
e | 1 - .017912 + 0056330
3 | |2 - .027798 + 0087756
. I-% 1 . .034809 + 011021

5 |4 1 - .038191 + .012058

6 |8 | 2 - .037537 + .011626

7 |1 g - .032898 + 018512

8 |1 : - .022015 + .031663

9 |1 % - .0054818 + ,038822
10 |1 -3 + .013308 + .037367
nla -3 + 4029733 + J026TTL
12 |1 - ¢ + .03918 + .0089625
B H | -2 + 040008 - .001136h
w | g -1 + 037455 - 100062594
15 | & | -2 + 032219 - .00022219
16| & | -2 + 024782 + .000022490
17 | -1 + 015590 + .000097948
18 IIZ .1 + 10053152 + 000047970

p°)J

« + .001860 - .00LLOBYL ; |p°’J| = ,002333 psi.




L

-hs-

Taeble IX - cnay Values [Re = 20a].

- CR [Calculated from
¢ Crqy (Ea¢ III-16) &y
&y Eq. (III-17) at R = 20a)

o® 0.9204 0.910

22,5° 0.8929 0.683

4s° 0.8168 0.824

67.5° 0.7559 0.788

90° 0.7456 0.798
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IV DISCUSSION AND CONCLUSGIOUS.

This psper is part of a study on the development of methods for treating
the forced vidrations of elastic bodies of revolution submarged in an acoustic
fluid. A method, based on & potentiwl theory epproach, for the evaluation of
the pressure field in an infinite acoustic fluid due to the harmonic excitation
of an elastic circular cylindrical body of finite length has been derived in

Reference [1] and is illustrated in the presvat paper.

The i{llustrative example is presented for the case of an axisymmetriecal
(@ {ndependent) excitation of the cylinder. The spplication of the method to
more general excitations of the cylindrical body, which vary in both z and 6,

follow & similar computational rattern and are described in Part II of this

report.

The general procedures may f£ind application in problems relating to the
response of fluid to the harmonic excitation of large cylindrical transducers.
In eddition, the general approach is also being epplied to problems involving
the evaluation of fluid pressures produced by the harmonie excitations of
submerged cylindrical shells of finite length.
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APPENDIX A - EVALUATION OF THE REAL AND IMAGINARY PORTIO!S OF THE COEFFICIENTS

cndi ’ ”nat ’ 7n31 AND THEIR SPACE DERIVATIVES.

For computational purposes, the complex coefficients “nJi ’ BhJi » 7nJ1

are written in terms of their real and imaginary parts, e.g.

%nye andi +1 andi (A-1)

The following nomenclature which is similar to that used in Appendix B

of Reference [1] for the cese n » 0, is used in this Appendix:

R= [(z-i)2 + 7. r2 - 217 cos ']i (A-2)

Ry = ic-“: ;4 =1,2,3 (A-3)

X @ xRk ((1-D)2 + 5%+ % - 205 cos ¥ (A-4)
vwhere

L= é 3 b= i } P E and p = E (A-5)

Specific equations for the coefficients ahJi » ahJi and their space
derivatives will be given in the Appendix. The corresponding expressions
for the coefficients andi and 7nJ1 and their derivatives are obtained by
o
o |
in the equations which follow.

replacing &, = 2= vith £, = %’5 (for ’nai) or 23 - %5 (for ¥ nJi) respectively
2



Real Part &

ni1 of Coefficient an I and Derivetives

3 -
w:di " —:-'é-'—[ (-0 cos v)!‘l(&-) cos ny dy

g3 ¥
ol -k f (E-D)2,(9) cos oy ay

825 ¥
T - f (%, (¥)+(0-5 cos ¥)°#,(¥)] cos ny ey
£3%
S o 2 [ (D (0] cos ny gy
0
5.
o . L (3(; E)Po(0)+(£-1)F,()] cos oy &y

k36
-’0;'31 . 5—}- f (p~B cos ¥)(1-E)R(¥)con ny &y
0

§5; ¥
AT . { [(4-D100)4(e-T)(o-5 con 9)2H,(1)1 con ny ey

(A-6)

(A-T)

(A-8)

(a-9)

(A-10)

(A-11)

(A-12)

(A-13)
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% [
0 e [ 1o con BOM(E-D26-5 o0 O] con b av (A1)
0

vhere
’1(') - L‘-il.xj.:_.c&‘_x. (A-15)
X

By0) = t‘-—ﬂ—-—;—ﬂ-—"a‘ °°; X 3X ein X (A-16)

’3(*) - [ 1 -6x2 cos x.r* 1 -xe X sin xl (A'17)
X
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b) i=)

Yor the case i = J, 1.,e. vhere the field points and the source points lie
on the same band, special formulas are required for the computation of Trgq
g nig ? 7n1 1 and their space derivatives. The reader is referred to Appendix C
of Reference [1] for the derivation of these expressions for the cese n = O.

The corresponding formulas for n ¥ O are gliven belov.

- X sin (EE)
- ko [cos X ; [_ ) ] .
X, == 52 o8 DY + A8 | - c———— (A-18)
nii % X ok
3. *
ag’ EB [(o- F. (v) 4 urt 0,L
nii ® B3 p-p cos ¥) l(v cos ny av J on surfaces =0,
0
(A-19)
3. X
%—;E (p-p cos ¥) Fl(v) cos ny 4ay + % J on surface r=a
0
% B
;) = J on surfaces z=0,L
i © T ’ (A-20)
0 J on surface r=a
3. X
a""a:{i - I‘é;éﬁ?l(v) + ka(p-ﬁ cos v)a Pa(v)] cos ny Ay +
3
, cos (-E—a-)
+ A [:- £ ] J on surface r«a (A-21)

2
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n ka

3 cos (=—

‘2‘_"::1 %éffl(ﬂ cos ny 4y + M[ ——-{!‘— J on surfaces z=0,L
23

3&::: = [ ;] J on surfaces 2«0,L
;25.:1 =0 J on all surfaces
. aﬁ{ -0 J on. all surfaces

5 1
3&:;: %;é f (p-p cos ¥) Pz(v) cos ny 4y J on all surfaces

(A-22)

(A-23)
(A-2L)
(A-25)

(A-26)



-
Imeginary Part o, m of Coefficlent o nid and Derivatives.

¢) For all combinations of 1 end {.

ko [~

1 ein X
“nJi"_-exf 3 cos ny dy
0

- 3_ x
-ur klp - -
a%yyq 5;-Jf(o-o cos V) rl(*) cos ny ay
)

k36 %
g E%'u/\(l'!) F (¥) cos ny av
0

..3_ ‘
kIp - . -
1?5231 - —%"thil(') + (p=p cos v)? Fz(v)] cos n¥ 4y
0

=3_. =
k5 7. -
AR N XORN(E v XOEE
0

k% *

p - - -
o327 = o5 [ 130D iy + (1) F3()1 cos v av
o]

k5 * .
‘?5231 - 5%- (p-p cos ¥)(g-E) F,(¥) cos n¥ ay
0

=5. =%
a};:s: - §§E~/\[(!-E) Fo(¥) + (t-E)(o-p cos ¥)° F(¥)] cro nv av
0

\A-27)

(A-28)

(A-29)

(A-30)

(A-31)

(A-32)

(A-33)

(A-34)
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a7t . s { [(p5 cos ¥) F,(¥) + (8-1)%(p-5 cos ¥) F5(1)] cos n ay

vhere
F,(v)
;2(') -
and

- L
The quantities & ,, , B,  &nd 7,,, and their derivatives do not contain en
infinite discontinuity in their integrands at the value defined by R = 0.

Consequently, Eqs. (A-27)«(A-35) mey be evaluated directly end there is no

1, 2 x*
372080 °°*°

[x ¢o8 X = 8in i] .
%)

15 ~ 210 © Js60 °°°

(3-X2) sin X = 3X cos X

X’

b

e X
105 T 189 T B3 180 °

(6x2- 15) sin X + (15 - X2) X cos X

‘s X > 0.40

X< 1.0

X'

X.Z 1.0

(A-35)

(A-36)

(A-37)

(A-38)

need for special formules as in the case of the reel (single barred) components,
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APPENDIX B~ DIACRAMMATIC SUMMARY OF COMPUTATIONS.

The necessary computations for the evaluation of the pressure field in
the fluid due to ths time harmonic excitation of an elastic cylindrical
body of finite length are summarized in Figs. (B-1) to (B-3). The computations
are conveniently broken into three basic blocks as shown in the diagrans.
The order of computatinns can, if necessary, be reorganized in accordance vith

the specific requirements of the particular electronic computer being used.
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FIG. B-2 - DIAGRAMMATIC SUMMARY - BLOCK II.

Computation for unknown source
Strengths Cni ’ Gni ’ Hn1 » Lni
]

Compute successively
forpel, 2, === 8N

Compute gsuccessively
for gml, 2, --= ON

I
Compute ak and Ek and all

ccefficients of unknown source
strengths for large matrix as
they appear in Toble V

End successive incrementing
of p

End successive incrementing
of q

This computation results in a coefficient matrix
of 8N x BN terms, with column matrix an .

Solve for cni ’ Gni s Hni ’ Lni

by a suitable program for the
solution of simultancous equations.

l

This computation results in 8N unknowns
- - - -

Cng » Opg » By » By n Ly 5 Ly

Cpy » Cpy




FIG. B3
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DIAGRAILIATIC SULLIARY

Computation for pruscures |
at field points

Pny

Compute wsuccessively
for J » l’ 2’ hndedd F

Y

Compute successively
for { =1, 2, «a=u N

Y

Compute P, 3

{"

\ 4

BLOCK III.

Very far field
(Asymptotic)

!

Compute p nJ by
Equation III-l5

A

) |

Intermediate field

Y

Compute pn,j by
£quation III-17

A

Y

- I
End succesoive
incrementing of 1

Y

"End succcsnive
increnenting of §

Y

This computation yields pressures

at fleld pointa J along one ray.

Computation moy be repeated slong

other rays as desired.
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