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SUPPLEMENT TO RM-3491-PR
SOME LIMIT THEOREMS ASSOCIATED WITH A RECURRENT EVENT

The following is intended to correct some errors in
the above Memorandum and to add a few comments which
seem appropriate. We start with errors.

Page 6, line 12 should be:

o 1 - Ak

lim Z '—TF._'I < oo,
t-1" k=1

Page 17, line 8: Change 1 -y to 1 - Y.
Page 52, line 11: Change < to D>.
Page 54, line 7: Change &88 to cos.

As to the supplements, we first note that Theorem
6.13 can be considerably extended, and should be

changed to read as follows:

Theorem 6.13. If e 1s aperiodic and positive,

then

(6.29)  tm P(V, = k) = ()T g,
and thus

(6.30)  1m =9 %

nwo PV, =3) Y

More generally, we have that a necessary and sufficlent

\
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condition for (6.30) to hold is that (6.21) be satisfied.

Proof. We have

P(V, = k) = 1>(Yn+k_1 >k -1) - P(Yn+k > k)

and as P(¥ . =r)=u . . q., wehave that

k k-1
Now if e 1s aperiodic and positive, (6.29) follows
from (6.31) upon taking limits by the renewal theorem.

If (6.21) is valid then (again from (6.31)) we have
Un u "t (Y, = k) = q,

which establishes (6.30) for the case of J = O. The
general case then follows at once from this result.
Conversely if (6.30) i1s valid then

P(V_ = 1) W,
1
q = lm —D = um ( B2 g0 4 g, -
1 neo P(Vh = 0) n o) %o 1~ o(

and thus

1im Eﬂil = 1.
n-o
As 18 clear from Sec. 6, a great many results depend
on whether or not 1lim um_l/un = 1. In general, this
limit need not exist. In this regard, it might be of
interest to point out that 1im unl/n always exists.
n

More specifically, we have the following:
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Theorem. If e 1is an aperiodic recurrent event,

then

1/n _ 1
lim u =
nw ° R

where R 18 the radius of convergence of the series
()

b uhzn.
n=0 1 /n
Proof. let e be aperiodic and let 1lim sup u, =

Then for infinitely many n we have for any ¢,
0 < €< 1/R, that

w, > (§ - &)™

Suppose the above is satisfied for n = m. Then for

any k = 0,1,2,..., we have

wo > (w)¥ > (g - )

But since e 1s aperlodic, we have u >0 for m > No-
If n>2m then n=(k+1)m+r, k= 0,1,2,...,
0 r<m and thus

Yy 2 Yoy 2 (% - e)km Yngr 2 (% - &) a>o,

where A = inf um+r > 0. Hence 1f n > 2m > 2NO, we
o<r<m
have

1/n

w," > (§ - ),

and thus 1im inf unl/n >21/R—~€. But as & was
arbitrary, we must have 1lim inf unl/n > 1/R.

YR »
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Remark. The above argument is a straight adaptation
to the setting of general recurrent events of an argument
due to Kakutani in [2] to prove the result for the
special case of "return to zero," for integer—valued

random variables.



MEMORANDUM
- RM-3491-PR
MARCH 1863

SOME LIMIT THEOREMS

ASSOCIATED WITH A RECURRENT EVENT
8. C. Port

This research is sponsored by the United States Air Force under Project RAND -
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force.

24 LA 1D grpren

1700 MAIN 3T * SANTA MONICA + CALIFORNIA m————————




~-11i-

PREFACE

Part of the Project RAND program consists of basic
supporting studies in mathematics. The mathematical research
presented in this Memorandum deals with the theory of
recurrent events, a subject of basic interest in the theory

of probability and i1ts military and scientific applications.
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SUMMARY

The asymptotic behavior for large n of various qQuantities
assoclated with a recurrent event is 1investigated. The
results are applied to give information about certain

functionals of sums of independent random variables.
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SOME LIMIT THEOREMS ASSOCIATED WITH A RECURRENT EVENT

1. INTRODUCTION
In this Memorandum we study the asymptotic behavior

for large n of various random sequences associated with a
recurrent event, extending results found in (4], (7], (8],
(9], and [12]. The results found for general recurrent
events are then applied to the study of various functionals
of sums of lndependent random variables, with the explicit
purpose of trying to encompass results on the fluctuation
phenomena of sums within the framework of the general
theory of recurrent events. However, these are to be
looked on as examples only, since no attempt has been

made to try to exhaust this method. Applications to other
Markov processes are not considered, but no doubt could be
given.

In summary, then, Sec. 2 1is devoted to a review of
the definitions and notational conventions which are used
in this paper. 1In Sec. 3 criteria for transience,
positivity, etc., are presented in terms of the sequence
{EYn}, where Yn i1s the time, as observed from n, that the
event last occurs. Section 4 1s devoted to finding
explicitly the joint limiting distribution of (Nn, Yn),
where Yn is as above and N, is the number of occurrences

of the recurrent event by time n. In Sec. 5 other joint



ey

limit distributions with Nn are given, and conditional
limit distributions of Nn are found. Iocal 1limit theorems
for the various random sequences associated with recurrent
events are given in Sec. 6. In Sec. T some strong laws
connected with Nn are investigated. The results of these
sections are applied to sums of independent random
variables in Sec. 8. The criteria of Sec. 3 are applied to
give useful results on ladder points, which contain

results implicit in the work of Spitzer in [17]. The joint
limit distribution of the maximal partial sum and its time
of occurrence, and the conditional limit distribution of
the maximum gliven its time of occurrence, are given for

the speclal case of summads of mean zero and finite
variance. FPFor integer valued Sn the recurrent event

"Sn = 0," is also investigated. The paper concludes with
an Appendix containing extensions of known Abellan and
Tauberian theorems that are frequently useful in
probability work and are needed in the proofs of some of

the theorems in the paper.

2. PRELIMINARIES

Iet e be a recurrent event on the nonnegative integers,
with waiting times (wk], these being independent and identi-

cally distributed, positive, integer-valued, random variables
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that can also assume the value o, We recall that e 1is

called
(1) transient if P(w1 <®)=p<]l,
(11) certain if p = 1,
(111) null if p = 1 and W, = =,
(1v) positive if p = 1 and EW, <=,
(v) periodic of period r if e can only occur
at times nr forn=0, 1, 2, ... .
Definitions.
(2.1) N_ = sup {(k: W, + ... + W_ < n} (number of
n 1 k -~
occurrences by time n),
(2.2) Y =W, +W,+ ... + W, (time of last occurrence),
n 1 2 N

n

(2.3) Vv =W, + ...+ wNn+l

occurrence as measured from n).

- n (time till next

For |t| < 1, denote

W
(2.4) F(t) = Elt 1 W,

(2.5) u(t)

[ ]
: P(Y, = n)t" (Y., = 0)
ne=0 n 0 ’

» . [
£ P(Y, =0)t" = £ P(wW; >n)t",
n=0 n=0

(2.6) T(t)
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In addition, let

u, = P(Yn = n), Q, = P(Yn = 0).
Unless otherwise specified, t will always be such that
|t] <1 and x, y will be quantities such that |x| <1
and |y| < 1. If X 1s a random variable and A an event

we shall denote [ X dP by E(X; A).
A

3. CRITERIA FOR RECURRENT EVENTS
Lemma 3.1.

B Y
(3.1) zo t" E(yNn x ) = p(t)[1 - yR(xt)]1™t .
N=

Proof. P(Nn = k, Yn =r) = P(wl + oo + wk = r)P(wk+l
and 3.1 follows upon taking generating functions. We shall
need (3.1) in the next section. All we need here is the

special case with y = 1, which is

(3.2) ; t" E xYn = p(t){1 - F(xt)]"t .
n=0

Theorem 3.1. let 4, = E(Yk - Yk—l)' Then

(3.3) U(t) = exp 5 5/ o,
kel

>n-r),
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Remark. This curious exponentlal identity shows
that knowledge of {E Yn] for all n completely determines
the recurrent event e. It came to our attention through
Professor M. Dwass.

Proof. Differentiate (3.2) with respect to x at 1
to obtain

(3.4) (1-%) 2 ™ lEy = U(8)/A(5).
n=0

Thinking of the left hand side as a known function of ¢,
we see that (3.4) is a differential equation for the
function U(t). Since U(0) = 1, the right-hand side of
(3.3) 1s the unique solution to this equation. We ﬁre

now in a position to prove the following result.

Theorem 3.2. Suppose that e is a recurrent event

and that 8, = E(Yk - Yk_l). (AO = 0). Then

- 2
(3.5) 1-p=P(W=m)=e k=1 Ak/k

If e 1s aperiodic, then

(3.6) oy - e S (1 - a0/
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in the sense that both sides are finite or infinite

and always equal.

Proof. Since 8, > O, (3.5) follows from (3.3) and a
generalized version of Abel's theorem. Now suppose e is
aperiodic and that (1 - 4,)/k converges. Then

EW, = lim_ T(t)

t-1"
k k
Itk - 24 t/k
= 1lim_ e e
t-1
8 1- &y tk
= 1m_e ! k
t-1

X k1 (1-8,)/k
Since e 1s continuous in x, the above 1limit is e

by Abel's theorem. To establish the converse, we must

show that

l1-24
implies that 2 ——E——E converges. If we could show that

1lim Ak = 1, then the desired conclusion would follow at

K~

once from Tauber's theorem. To see that 1lim Ak = 1],
K~e '

observe that



(3.7) (1-¢t)2a, t" = tRr(t)U(t)(1 - t) ,

and

F'(1) = EW, < =,

and that the series U(t)(1l - t) becomes at 1 the series

u; + (u2 - ul) + ... =lmu_,

N>

where u_ = P(Yn = n). Now, by a well-known renewal

theorem (see [8]) we have lim u_ = 1/EW,, and so the
n—e 0

series in (3.7) converges at 1 to 1 by Merten's theorem.

This completes the proof.

As a corollary of the proof we have the following.

Corollary 3.3. If Ewl <= and e 1s aperiodic, then

1lim A_ = 1im E(Y_ - Y ,) =1,
oo B e n n-1

® (1-24)
and the series 2 '__TT_Jl- converges to a finite positive
n=1

value.

Theorem 3.4. Suppose e is a null recurrent event.

If for some B (O < B < 1) we have

(3.8) 1im n~ = 1im Yn/n =8,
n-e k=1 n—e



then
1 - F(t) = (1-¢)P Ll1/(1-¢)] ,

where

(3.9) L1/(1-8)] = e By (B - 8 )t

is a slowly varying function of 1/(1-t).* Conversely, 1f

1 - P(t) = (1-t)P nl1/(1-t)]

for some B (0 < B < 1) and slowly varying function h,

then (3.8) holds and we must then have h(x) = L(x), where

L(x) is given in (3.9).
Proof. Lamperti in [10] showed that (3.8) and

1-F(t) = (1- )P n(sdp)

were equivalent, where h(x) is a slowly varying function.
To identify h[1/(1-t)] as L[1/(1-t)], observe that by (3.3), we have

_ _ _ k
(1 - t)"P[1 - F(t)] = e pin(1-t) e Bk by

Btk - = %k o
=e e ,

which establishes the result.

*A function L(x) is called slowly varying if it is
positive for x sufficiently large, and if for each positive
a, we have L(ax)/L(x) = 1 as x-e,
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Remark. When EW, < =, § = 1 and we have shown
that 1lim Ak = ]. It is an open question as to when this
1s‘tr§;.for 0 <pB <1l. (See, however, theorem 8.3.) 1In
line with this remark 1t might be well to point out that
there not only exist recurrent events for which

lim Ak = B, but there 1s even a recurrent event for which
K~

"

B, To see thls, observe that if 0 < 8 < 1, then 1if

2]

A B we have by (3.10) that

k

F(t) = 1- (1-t)P.

Thus f, = (—)k (g), which is positive and < 1, and

F(1) = kgl £, = 1, showing that these [Ak] do indeed

-determine a recurrent event.

4. THE JOINT DISTRIBUTION OF (N, Y ).

This first theorem is only to establish the case of

greatest interest.

Theorem 4.1. If e is transient, then (Nn’ Yn) con-

verges with probability one to a finite random vector

(N, ¥), and

(4.1) E(xY ™= - p)(1 - yF’(x)]'1 .
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If e is recurrent, then (Nn’ Yn) converge to ® with

probability one, and if e is positive, then
(4.2) (Nn/n, Yn/n)~——> (1/EW,, 1)

with probability one.

Proof. Since a transient event takes place finitely
often with probability one, (4.1) follows from (3.3); (4.2)
is well known (see e.g., [6]).

Thus, the case of greatest interest will be the null-
recurrent case. The limit marginal distributions for this
case were first found by Feller in [9] for N, and

independently by Lamperti in [12] and Dynkin in [8] for Y .

Theorem 4.2. Suppose e 1s a null-recurrent event.

Then in order that there exist constants a, > 0, b >0

such that (N /b , Y /a.) should converge in distribution

to (N, Y) having a nondegenerate distribution, it is

necessary and sufficient that

(4.3) 1- F(t) = (1-6)P L (3)

for some B, 0 < B < 1, and some slowly varying function L(x).

If condition {4.3) is satisfied, then we may choose

(4.4) a, =n, b =nP/L(n)
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and the distribution of (N, Y) will be uniquely determined

by its moments:

(h5) B0 ) - Getm (- Ay

(Remark: An explicit formula for the (N, Y) distribution
will be given below in Corollary 4.3).

Proof. Necessity: This follows at once from known
facts. If (N /b, Y /a ) is to have a nondegenerate limit
distribution, then clearly Nn/bn must have one. But it
was shown in [4] that this is true if and only if
condition (4.3) holds for some B, 0 < B < 1.

Sufficiency: By (3.3) we have

- Y N
(4.6) 2 Elx My P = p(t)(1 - yR(xt)1"},
n=

which 1s an analytic function in (x, y, t) for |x| <1,
|yl <1, |t| < 1. Taking the m-th derivative of (4.6) with

respect to y at 1 results 1in

(4.7) ;o " E(xYn Ném)) = m!F(tx)™1 - F(t)1(1 - ¢)°!
n=

. (1 - R(xt)) (M)
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where

N oN (v - 1) (- me)

Set x = e~ A(1-t) in (4.7) and expand in powers of A to

obtain
(4.8) f:(')k/“’ M (1-)¥ ;:_'O £ E(rk w{™)
n=

= [1 - F(£)1(1-t) " p(te M (2E)ympy | p(gemt(2-t))-(me1)
As t-1",

- A(1-t) _

l1-ce (1 + 2)(1 -¢) ,

and so, taking account of the slowly varying nature of L,
we obtain from (4.8) and (4.3) (after a slight rearrange-

ment)

= (-)K kimt (1 + a)"B(m1)
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Since the quantity in (4.8) is analytic in A, t for

|t] <1 and X > 0, and the right-hand side of (4.9) is
analytic in A at A = O, we obtain from (4.9)

(100 m (-0 (P 3o aek ) - o )

= (-)k k! m! (’B(Tl)> .

Now, E(Yﬁ Ngm)) is, for each fixed k and m,a monotone increasing
function of n. Hence we may apply Karamata's Tauberian

theorem (see [5], p. 507) to (4.10) and conclude that

(1:22) 20" 3{09) ~ o o 1oy SRt (B

Finally, as E(Ngm) Yﬁ) ~ E(Nﬂ Yﬁ),n - », we have (4.5).

To complete the proof, we must show that these moments
uniquely determine a distribution. By theorem 1.12 of [15]
this will be true provided that the seriles

(4.12) 5 E(NZ 4 y3y Ven
n=0

A simple computation shows that
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2n 2n

E(N°" + Y°') ~ 1/2, n-~e
and so (4.12) certainly holds. This completes the proof.
If we set k = 0 in (4.5), we obtaln the known result

that

(4.13) ENT = 1/T(pm+l) .

These are known to be the moments of a distribution on

the positive axis with density

J-1

(4.14) gy(x) = (18)™ = (-)37Y/31 r(pg+1) stn mpy xI71 .

[
i™Ms
f]

(See [4]). If we setm =0 in (4.5), we obtain the known
result that

(4.15)  EY* = () (CB),

which are seen to be the moments of a distribution on the

interval [0, 1] with a density

(4.16) fB(x) = sin wB/w xP-1 (1-)()"3 .
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‘It 1s possible to give an interesting characterization
of the distribution of (N, Y) and even to write down its

density function.

Corollary 4.2.%# (N, Y) is distributed like (N YP, Y),

where (ﬁ, Y) are independent, and Y has density given in

(4.16), while N is a positive random variable with a

distribution uniquely determined by its moments:

-~ m1)! T(p+l
(4.17)  EN" = T (et

These are the moments of a distribution on the positive

axls with density

(%.18) hg(x) = T(p+1) x gga(x),

where ga(x) is given in (4.14).

Proof. A simple calculation shows that

K
=) k! m! 7-g(m+1)N _ (ml)! I'(p+l r(s(m+l
(4.29)  trmrir ( (k > = :T'(l'+' 'gs(lrr»%)l T(s’)’l"{'am‘@'l]')

and

*
We are indebted to Prof. M. Dwass for bringing this
corollary to our attention.
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mtk  T(k+p(mIl .
(v20) =P - CHSREER LY

The result now follows from (4.20), (4.19), and (4.17).
Using this corollary, we have (N, Y) has a density on
(0, ») x [0, 1) which is

(4.21) Ky(x, ¥) = ha(xy™P) y7P £o(y) =
r(g) sin 78/r° 51(-) 3-1/31 sin wpIr(pi+1)x" Iy PI=1(1-y)7P.
J:—.

The case of B = 1/2 1s of special interest. For this

case we have

(4.22) (1) gl/a(x) _ W‘L/Q o x2/4

(11) jx h1/2 (x)ax = 1 - e
0

]

(111) Ky (%, ¥) x/er e x2 /4y vl (1-y)"¥2

Corollary 4.3. let ?n =n - Y (time since last

occurrence of e). Then condition (4.3) is both necessary

and sufficient for (Nn/bn, Yn/n) to converge in distribution

to (N, ?) having & nondegenerate distribution. Moreover

we have



-17_
L (K (B-1
(4.23)  E(N"¥) = 1l'l((i?‘:(l—)("('1'1)&)'2

+I+p(m+

which are the moments of a distribution on [0, =) x [0, 1]

with density

(4'24) Rl-B(x’ y) = KB(X: l'y)

where KB(X’ y) is given in Eq. (4.21).

Proof. We have

(4.25) iiﬂ E[<Nn/bnjr (Yh/ﬁ)k] - iif E[(Nn/‘njf (1 - Yn/n>k]

= (" (l-y)k> = EN" E YP" (1-y)% .
A simple computation now completes the proof.

5. OTHER GLOBAL LIMIT DISTRIBUTIONS

From the joint distribution of (N, Y) we may obtain
the joint limit distribution of (N /b , v /n) and

N - N
A n + [rn) n
(Nn n’ bn '

Since the proofs of these follow
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closely those used by Lamperti in {12] for Vn/n and Dynkin

N

N -
in (8] for -2 +A£rn] I respectively, no proofs will be
n

included.
Theorem 5.1. Condition (4.3) is both necessary and

sufficient for (Nn/bn, V_/n) to have a nondegenerate limit

distribution. The density of the limit distribution is

(5.1) hy (x(24u))(14+u)P fB(l/l+u)(l+u)°2 ,

where hB and fB are given in (4.8) and (4.16, respectively.

Theorem 5.2. Under condition (4.3),

N - N
(5.2) 1im P(N /b < X, I +L§n17 0> )
- n

X

r
- j j Gg (;§§%> Koy, s) dy ds ,
00 u

where K., is given in (4.21) and G.(x) is the stable law

B
of index B with laplace transform

g

J“ o M ga -a\P .
0

From corollary 4.2, it follows at once that
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P(N<x | ¥Y=y) = P(ﬁ < xy'B) s
and so P(N <x | Y =y) 1s a continuous function of (x, y),
0<x <% 0<y<1. This makes it plausible that for bn

given in (4.4), we have

(5.3) Lim P(N /b < x | Y, = [sn]) = B(N < x s™B)y

n-

when condition (4.3) holds. Let us first observe that

1f (5.3) is to hold for all s, O < s < 1, then condition
(4.3) is necessary. However, we have been unable to show
that (4.5) is sufficient, and can only establish (5.3)

under a more stringent condition.

Theorem 5.3. Suppose e 1is a null-recurrent event

such that

(5.4) (Y, = n) ~ P Y/0(g) L(n)"Y, n-e,

where L(n) is a slowly varying function.* Then (5.3) holds

for each s, 0 < s < 1,and in fact uniformly for O < € < s < 1.

Proof. P(N /b < x | Y = [sn]) = P(N[sn]/bn < x ly[sn] = [snl])

and so

um P(N /b < x l Y = (sn]) = lim P(Nn/b[n/s] <x| Y =n)

) —m™ n—®

*
By Theorem 3.4, L(x) must then be given by Eq. (3.9).
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Now, by known properties of slowly varying functions (See
[11]), we have b[n/S]b;1~ 8P for o <s <1, and uniformly
so for 0 < e <8 <1. Thus all assertions of Theorem 5.3

will be established if we show that under (5.4),

(5.5) lim P(N/b <x | ¥ =n)=PN<x) .

In (7], Dwass has shown this to be the case if L(n) is a
constant. To establish (5.5) for a general L(n) we
need the following:

Lemma 5.4. If C, 1is the (m+1)- st convolution of the

sequences {P(Yn = n} with itself, and if condition (5.%)

holds, then

nP™1 i - (m+1)
n B m-

Proof. The proof is a direct consequence of

Corollary (A.5) in the appendix.

To complete the proof of (5.5), we observe that

N
=t E(x T Y =n)=[1- xF(t)1°1

and thus
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s th E[Nﬁm); Y

n = n] =m! [1- F(t)]-(m+1):

from which 1t follows that

E(Ngm); Y

n = n) = m! Cp»

where Cn 1s given in the lemma above. Hence,

E(Ngm)lYn =n) ~ ;%%%%%TTT (nP/L(n) 1™
- MG oo

which by (4.17) are the moments of N.

Remark. At this point we shall pause to point out
the connection between condition (5.4%) and condition (4.3).
If (5.4) holds for O < B < 1, then a well known Abelian

theorem (see [5), p. 460) assures us that

(5.6) 1 - F(t) ~ (1-t)B L(1/1-t), ¢-1"

and thus condition (5.4) holds. On the other hand, if
(4.3) holds, then in general one may conclude (via Karamata's

Tauberian theorem) only that
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h _ nf 1"i(n .
(5-7)  Z R(% =K e

On the other hand if we know that P(Y, = k) is a monotone
function in k, then we may conclude (see Theorem A.3 in

the Appendix) that

-1 -1
(5.8) P(Y, = n) ~EB_T%F)_1£)- :

For future reference let us record at this point the

following equivalence relation:(5.6) and

-B
(5.9) By, =0) ~Efnl

are equivalent. To see this, observe that if (5.6) holds,

then

() ~ (1-8)P"1 ()

and thus by Karamata's theorem

But, since P(Yn = 0) 1s monotone, we have by Corollary A.3

that (5.9) holds. Conversely, if (5.9) holds, then the
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Abelian theorem mentioned above shows that

T(t) ~ (1-6)P" 1(Zp)

and thus (5.6) holds.
Theorem 5.5. Suppose condition (5.4) holds. Then

for0<a<l, 0<s<a andb = nP/L(n), we have

(5.10) 1im P(Nn/bn < x| Y(na] = (sn]) = P(Na g 2 %),
n-e »

where Na s 1s distributed like
3

sP ﬁl + (l-a.)B N, .

Here ﬁl and N, denote two random variables independent of

each other and distributed 1like N and N respectively.

Proof. For A > 0 we have

- AN /b
(5.11) E(é " Y[ha) = [n81>

< g Mol " Mo lanl/Pn)

" Yns] = [ns]]E[e

By the remark following Theorem 5.4 we have that condition
(4.3) holds. Hence we may apply Theorems 5.3 and 4.2 to
Eq. (5.11) to conclude that



-2

N, /b - 8P ﬁ]E(e_ X(l-a)ﬁN)’

1im E[e- n | Y[na] - [ns]] = E[e

n--e
which establishes the assertion made in (5.10).

6. IOCAL LIMIT THEOREMS

In this section we shall investigate various "local
limit theorems" for the functionals associated with a
recurrent event. We start our investigation with Nn’
where we have the following general result.

Theorem 6.1. For any recurrent event

n+m

z P(Nr = k)
lim :0 pk/pJ
oz PN, = 3)

r=0

where m 13 fixed and p is given in Eq. 3.5.

Proof. It 1s clearly sufficlent to establish (6.1)

for the special case of j = 0. From the relation

n
P(Nn = k) = JEO P(W; + ... + W, = n-j) ay

we obtailn

n n

r=0 J=0
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But for each fixed r we have

< n—J):Tl -~ 0 as n-e,

k

n
Appp (JEO PW, + oo + U

and thus by an elementary theorem on Norlund summability

(see [3], p. 20) we have

n+m n+m
§0 P(N, = k) 20 P(wl + .o+ W< n-3) ay
11m I = 1im J= .
n=e s P(N, = 0) n-e 2 a,
r= J=0
k
n—o.

which establishes (6.1) for the case of j = O.

Under certaln general conditions 1t is possible to
greatly improve upon Theorem 6.1. Thus we have the
following:

Theorem 6.2. If e is transient, then

Lim B(N_ = k) = p(1-p)

n-e

and thus

PN =k
(6.2) 11 it )
‘ N n

= pk/pJ .
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If e is null and
(6.3) 1- F(¢) ~ (1-)P i(FEp)

where O < B < 1 and L(x) is a slowly varying function,#

then

(6.4) lim r(1-a)n‘5L(n)'1 P(Nn =k) =1,
n-e

and thus (6.2) holds in this case as well.

Proof. If e 1s transient, then it follows from Theorem
4.1 that Nn converges to a finite random variable with a
geometric distribution of parameter p. Now suppose (6.3)

1s satisfied. If we set x = 1 in Eq. (3.1), we obtain

- N
2 t"Ey ® = [1-F(t)](2-t) [ 2-yF(t) ]t
n=

~ (1-6)P71 (1) (), e
Thus by Karamata's Theorem we have

7 E er _nl"P L’n! (1-y)~1 .
r=0 -B

: N
But, for O < y < 1 we have that E y " 4s monotone in n, and

»
L(x) must then be given by Eq.(3.9.
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thus we may apply Corollary A.3 in the Appendix to conclude
that

(6.5)  1umr(1-p)n® ()" By P = (1-y)7L .
N~e

let

&n k = r(1-¢3)n5 L(n)'l P(N, = k) .

Now, it follows from (6.5) that a, , 1s bounded for each
value of k, and thus we may extract a subsequence (by

the diagonal procedure) anr,k which converges to, say,

a, as r~=. But then 1t follows (again from (6.5)) that
8, = 1. If then there were another convergent subsequence
of an,k’ the same argument as used above would show its

limit to be 1. Thus we have

1lim a
noe 0

k=

which 1s the same as the assertion made in (6.4).
When condition (6.3) holds (or more generally when
(6.2) holds in the recurrent case) we have the following

curious result.

Corollary 6.3. If e is certain and (6.2) holds, then

for 0 < J < k we have
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(6.6) 1m P(N, = J | Ny <k) = (k+1)"1 .
n-e

Proof. If e is recurrent, then p = 1, and if (6.2)

holds, we have

k
lim 3 P(Nn = r)/P(Nn = J) = k+l.

From this (6.6) is evident.

Remark. It 1s easy to exhibit aperiodic positive
events for which (6.2) fails to hold, and it can be shown
that (6.2) may also fail for null events.*

Turning our attention next to Yn, we have the
following result.

Theorem 6.4. For any recurrent event,

n+m
£ P(Y, = k)
(6.7) 1im r;O = uk/'uJ
n—-»
z P(Y, =)
r=0

Proof. (6.7) is a simple consequence of the

following two facts:

(6.8) P(Y, = k) =w q _,

*
The null event given in the Note proceeding Theorem 6.5

provides an example.
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and

n+m n -1
(6.9 um (2 0, )(2 a) =2

Again, as in the case of Nn’ we may lmprove upon
this result in many instances. Thus, if e 1s transient,

we have P(Yn = k) = uk(l-p) as n-e and thus

P(Y.. = k)
n+m
(6-10) iim ——-F-(-Yn—:__j-)- = uk/uJ

More generally, it 1s easily seen from (6.8) that in order
that (6.10) hold, it is both necessary and sufficient that

(6.11) um Inel
nwe g *

In the transient case this is always true and in the
certain case we have the following simple sufficient
conditions.

Theorem 6.5. If e i1s certain, then (6.11) holds if

elther of the following two conditions i1s satisfied;

(1) a, ~ n"® L(n) for a > O and some slowly

varying function L(x).

(11) e 1s null and u_ 1s monotone.
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Note. If O < a <1, then by the remark following
Theorem 5.5 we have that (1) and condition (4.3) are
equivalent, and in this case L{(n) 1s given by (3.9).

It is easy to see that (6.11) may fall in the
positive aperiodic case. Indeed, it may not even be
possible to write the ratio in (6.11) (e.g., if W, 1s
bounded). In the null case the following example shows
that (6.11) may also fall. Take P(W, = k) = O unless
k = 2) and P(w; = 2%) = (1/2)). Then q_ = (1/2)7 1r

2"5n<21‘+l

. We then have qn/qn_1 =1 1i.0. and

thus 1im sup g, /q _, > 1. On the other hand q /q , = 1/2

1f n=2"forr=0,1,2, ..., and thus Um inf q /a__; < 1/2.
Proof. If (1) holds, it i1s easy to see that (6.11)

1s true; so we need only establish (6.11) when (ii) holds.

If e 13 null, then Q, > 0 for all n. For if not, then for

some n_ we have q =0 and thus q_ =0 for all n > n_ which
[e] no n -0

would give P(w1 < no) = 1. Consequently EW, < ®, a con-

tradiction. From the monotoneity of q, we have
(6.12) qm_l/'qn <1.

From the relatioh

1= 3 u



™

Lo

-31-

it easily follows that

n-1
Q, = kfo Qe 1 = Ypoy) 2 Qp_p(2-up).

By the renewal theorem (see [3], p. 26) we have u =0,
and thus
(6.13) 1lim inf qn/qn-l > 1.

Combining (6.12) and (6.13), we obtein (6.11).

Corollary 6.6. If (6.11) holds, then for 0 < J <k

we have

)L

(6.14) iif P(Y, =3 | ¥, <k) = uJ(uo + oo Uy

Proof. Obvious.

If e 18 null and satisfies condition (5.4), then we
have the following local version of the generalized arc

sin laws for Yn’
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Theorem 6.7. Assume condition (5.4) holds. Then

(6.15) P(Y, = k)k' P (n-k)P = ST B 4 o(1)

where o(1) converges to zero uniformly in n, k as

min (k, n-k) -~ ® .

Proof. By the remark following Theorem 5.5 we have

that if (5.4) holds, then

g
a, ~ n Lin; .

Thus, from (6.14) we have

(6.16) P(¥, = k) ~ k"1 (nek) P 1(0)™F Ln-K) yrayIEY

as min (k, n-k) ~ =, But, since L(k)'l L(n-k) - 1

uniformly as min (k, n-k) ~ ® and

1 _S8in T B8
g)f(l-g) = 7w !

we see that (6.15) follows from (6.16).
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Corollary 6.8. If k ~ [sn] for 0 < s <1, then

(6.17) lim nP(Y_ = k) = ST B -1 (1 5)P

=

and the convergence 1s uniform in s for 0 < e <8 < 1.

Proof. A direct consequence of Theorem 6.7.
Turning our attention to Th =n - Yn’ we have the
following result.

Theorem 6.9. For any recurrent event e

n+m
z PY.=k)
r=0
(6.18) rllﬂ\ = = q/a .
= P(Yr = J)
r=0

Proof. This result follows from the relation

(6.19) Y, =k)=vu,_, q ,

by an argument very similar to that used to prove the
corresponding result for Yn' The detalls will therefore
be omitted.

Going to the strong version of (6.18), we have the
following.

Theorem 6.10. In order that
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P(Y = k)
6.20 1m —2 . ,
( ) n-f P(Yh = J) qk/hJ

it s necessary and sufficient that

In order that (6.21) hold it is sufficient that one of the

following conditions hold;

(1) e be aperiodic and positive.

(11) u, be eventually monotone and e be nulil.

(111) condition (5.4) be satisfied.

Proof. (6.20) holds if and only if

P(Y. =k
(6.22) 1im -f-ll--z = q-

However, 1t is apparent from (6.19) that (6.22) holds if

and only if (6.21) does. That (6.21) holds under condition
(1) 1s a direct consequence of the renewal theorem (see [3],
Sec. 6), while the validity of (6.21) under (ii1) is obvious.
It remains then only to demonstrate that (ii) implies

(6.21). To show that this is true, observe first that by

assumption, there 1s an n, such that n > n, implies un
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is nonincreasing. If e is null, then un >0 forn > n,,

for if u, = 0O form > ngs then u, = O for all n > m,

and thus % u, < e, which 18 a contradiction. Thus 1if

n>n,, we have u . <u, and thus

n+ n

(6.23) um_l/'un < 1.

On the other hand, if n > n, ve have

n n '
= 2 P(wl = n-k)uk > % P(W > n-k)uk

R = ken
)
>u, P(W; <n+l - n))
and thus
(6.24) 1im inf un+l/un > 1.

Equation (6.21) now follows from (6.23) and (6.24).

Corollary 6.11. If condition (5.4) holds, then

(6.25) lim P(Y, = k) (n-k)1"P &P - ST B 4 o(1),

where o(1) converges to zero uniformly in n,k as
mn(k’ n"k) - e,
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Proof. The result follows directly from Theorem 6.7
and the definition of Yn‘

We shall conclude this section with the investigation
of Vn. As with the preceding quantities, we first have the
following general result.

Theorem 6.12. For any recurrent event we have

n+m
2 P(vr = k)
(6.26) 1m 2 - q/ay -
3 RV, =)
r=0

Proof. It suffices to establish (6.26) for the case
of J = 0. From the relation

P(Vn > Kk, Yn >3) = P(¥

n+k z k+3)’

for k > O we obtain
( ) "3 ( )
P(V. =k) = 2 u_ P(W, = ntk-r).
n 0 r 1
Using the fact that

-1
U n (u1 + iee + un) -~ 0 as n-e,

we obtain for k > 0O



n+m n+m

Z P(V, = k) b ur[P(Wl < némk+l-r)-P(W, < k)]
(6.27) 1im =2 = lim

r=0

= lm (P(W; < n+m+l+k-r) - P(W; < k)} = q .

N =e»
On the other hand, if k = O, then

n+m
Z P(V, =0)

(6.28) 1im ";0 =1l=q_ .

n7® 2 PV, =0)
r=0

Equations (6.28) and (6.27) together establish the special
case of (6.26) for j = O.

For the strong version of Theorem 6.12 we have the
following.

Theorem 6.13. If e is aperiodic and positive, then

6.29 1im P(V_ = k) = 1
(6:29)  1im P(V, = k) = /By g
and thus

P(Vim = )

6.30 lim = q,/9, o
(6:30)  lm -l - q/a,
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On the other hand,if condition (5.4) holds, then

(6.31) P(V, = k) ~q nP"1/r(p) L7H(n),

and thus (6.30) is valid in this case as well.

Proof. We have

P(V, = k) = B(Y,, | > k-1) - B(Y , > k)
and
P(Ypape = ) = Uppe p 9y
Thus,
k k-1
(6.32) P(V = k) = jio Unsk-3 33 < JEO Ynek-1-3 93 ¢

Now, 1f e 1s aperiodic and positive, then the renewal theorem

assures us that

u, = 1/EW, as n-=,

and thus (6.29) follows from (6.32) upon taking limits. On

the other hang, if condition (5.4) is satisfied, then

g=-1 .=-1
o ! L “(n
Un T(B)

and (6.31) now follows from (6.32).
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T. A STRONG LIMIT THEOREM

If e is a positive-recurrent event, then Nn/ENn -1
with probability one as n—-e, On the other hand, if e 1is
null recurrent, then Sec. 3 shows that under very wilde
conditlons Nn/ENn has a nondegenerate limit distribution
and so Nn/ENn will not converge to 1 in probabllity. The
theorem presented below shows that in a certaln sense Nn
does behave like ENn. ffor the special recurrent event,
"return to zero," in a one-dimensional random walk, it
becomes Theorem 6 in [2]. The proof in the general
case 1s almost the same as in the particular case in [2],

and 1s presented only for completeness.

Theorem 7.1. Let Un = 1 if the null-recurrent event

e takes place at time n, and let Un = 0 if not. Take

Pn = ENn and u, = EUn. Then

(7.1) (an 1)l 3

T.1 lim (4n T Z u = 1
— n kel k/rk

with probablility one.

Remark. The above result perhaps gains in interest

by comparison with

n
(7.2) (4n N)"' = U, =1, with probability one.
k=1
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-1 0 ,
(7.3) (tn T,) kfl u/T, ~1,

both of which are a direct consequence of the Abel-Dini

theorem.

Proof. As (7.3) shows,

n
(7.4) E kil U/, =T +o(amT),

(7.5) E(% v /r)%= % w/orl+2 3 ur, 3 Vis
. = u + u u .
k=1 K Kk k=1 ¥ K g=1 I k=g KK

Hence,
n n u,(l-u, ) n n u,_ .,-u

(7.6) var { = u/r,}= z K K +y2 2 /T, & ke

{k=1 k k} k=1 ——;;2-—— =1 ¥ kege1 Tk
Now, if n-j < j+1, then

n u -u
k- k
ke 341 -_-JT;__— S Y1 Tneg STgn/Tyen = B

while 1f n-j > j+1,
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u J+1

n u -
k- k
z -—JH-—-—- < T £ u, =1,
k=41 k - Hl oy k7
for j 2 Jo’ where Jo is such that rjo > 1 . Hence,

var {kgl Uk/Fk} = 0(4n rn) .

Now, Chebyshev's inequality says that for any ¢ > O,

(7.7) P (|2 U /T, - tn Pnl >e tn T} =0(4n Tn)'l .

Since e 1s null recurrent, rn/e " 40 as n-=, and so we

may choose a subsequence n, such that

Thus,

Mg
Z U,/T, -1 as k= ,
J=l J J

(7.8) (4n rnk)'l

by the Borel-Cantelli Lemma.
To finish up the proof, we next observe that if

n<ns<n.,, then
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n
k werem e
(7.9) (e T, ' 3 ur,
k+1 k=1
) -1 M+l
< (tn rn) z J/r <(anrT z Uk/r .
k=1 k
But T ~ (k ~1 as k== , and so (7.1) follows

k+1 nk
from (7.8) and (7.9).

If e has waiting times which satisfy condition (4.3),

then the theorem can be improved thus:

Corollary 7.1. Suppose condition (4.3) is satisfied.

Then
1 B Uk
(7.10) (g tn n) E —g—— =~ 1 with probability one.
k=1 nF/L(n)

Proof. Condition (4.3) is equivalent to EN ~ nB/L(n).
Now tn L(n) = o(4n n), n-e. To see this, we note that

any slowly varying function can be wfitten in the form

n
L(n) = a(n) exp | e(t)/t at,
1

where a(n) = ¢ > 0 and e(n) = 0 as n-», (See Karamata [11]).

From this, the above corollary is immediate. Thus
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in E N ~ Bin n as n-=, and (7.10) follows.
There are several restatements of (5.1) which are
interesting, and we gather these together in the following

corollary.

Corollary 7.2. Let EN = g(n). Then

N
n

(7.11) (tn g(n))™* = g(Wy + ... + W)™ = 1 with probability one,
kel

r
(7.12) tn g(¥y + .0 + W )7H Z By + voe + W) =0

with probability one, and if condition (4.3) is satisfied,

then

N
n
(7.13) (B tn n)~? 2 Wy + e WP Ly + v W) -1

with probability one,

r
(7.18) B tn (W) + oo +W)™H B (Wy+ v+ W) P L(WHHW) -2

k=1

Proof. (T7.11) follows from (7.1) by definition of U,
(7.12) follows from (7.11) by choosing n = Wy eee + W,
(7.13) and (7.14) follow similarly from (7.10).
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8. APPLICATIONS TO SUMS

let SO = 0, and Sn = x1 + ces + xn be the n-th
partial sum of a sequence [Xn} of independent and identically
distributed random variables.

"Definition. A nonnegative integer n is called a

positive (or a strictly positive) ladder point if

S, 2 55

0<i<n, (ors >5, 0<1<n),
respectively. A similar definition holds for negative
and strictly negative ladder points. The fundamental
fact about ladder points is that they are recurrent events.
From now on we shall denote the strictly positive ladder
points by e! and the negative ladder points by e". The
quantities defined in Sec. 2, when referred to these
events, will be denoted by a prime (e.g., NA) and a
double prime (e.g., wﬁ), respectively. Thus, for
example, Nﬁ denotes the number of strictly positive
ladder points by time n, and {wﬁ] the waiting times of
negative ladder points, etc.

In terms of the [w&}, we define a sequence Zn as

follows. If W!

1 < o, then define Z, = Sw" while if W! = »,

1 1 1
leave Z1 undefined. Suppose that Zl, Z2 .o Zn have been

=S

defined. Then define Zn+1

“(Z +...+Z)
wi+...+wr'l_'_l 1 n

if WA+1 < », and leave Zn+l undefined if WA+1 = ® , Then
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(see [14]) the [Zk, W'}l are independent and identically
distributed bivectors. If M, = max(0, S;, S5 ...,8S))
and Lh is the time at which Mn first occurs, then

(8.1) M

(8.2) L,

]
op

A fundamental theorem due to E. S. Anderson [1] 1is the

following.

Theorem 8.1. (Equivalence Principle) If Q, and Q!

are respectively the number of positive and nonpositive

) .
sums amongst Sl’ 82 ""Sn’ then Yn = Ln ancé Qn have the

same distribution, and Y; and QA have the same distribution.

A simple proof of Theorem 8.1 can be found in [14].

From this theorem it follows at once that

n
(8.3) EL = EQ, = kil P(sk > 0),
' " n
(8.4) EY, = EQ! = k>=:1 1>(sk < 0),

and thus the results of Sec. 3 yleld at once the following

theorem.

Theorem 8.2. e'!' is transient if and only if e" is

positive recurrent and
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(8.5) l-¢e'= (EW")'1 = exp(- kgl P(S, > 0)/k .

e' is positive recurrent if and only if e' is transient and

(8.6) EW' = (1-e")-l = exp kgl P(Sk <0)/k .

(In (8.5) the

exp(- = P(S, > 0)/k
k=1

is taken to be zero if the series diverges. In (8.6) both

sldes are finite or infinite together, and finite if and

only if
L]
Z P(S, < 0)/k <= .)
k=1
If
n
(8.7) Im 1/n % P(S, >0)/k=p, 0<p<1l,
n-e k=1

then
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(8.8) (1 -E twi) = (1-t)P exp k;l t*(p - (S, > 0))/k .

Furthermore, since P(Y! = n) = P(Q, = n) =
P(S1 >0, S5 >0, «v0, S, > 0), a monotone function of n,
then conditions (4.3) and (5.4) are equivalent, and

(8.9) P(L, = n) = P(Y} = n) ~nP"L/r(p) L'(n)"t,
where

- 1.k
(8.10) L'(n) = exp k§1 (1 - 'r'i) p - (s, > 0)] .

Remark. If, in particular the sums Sn are attracted

to a stable law with log characteristic f‘unption

(8.11) -C A% (1 + 18 sgn A w(r,a)),
where 0 < a2 <2, -1<B<1l, C>0 and
tan =2 if a ¥ 1,
w(},a) =

then (8.7) holds by virtue of the fact that lim P(S > 0) = p .

n=—e
Moreover, in this case we have
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(8.12)  p=g+m=] e ® sin(- car uw(a,)),
0]

which for a ¥ 1 can be explicitly evaluated* as
(8.13) p =3+ =2 arctan (- B tan X )
. 27 Ta Ze)

To establish (8.12) let f(x) be the density of the stable

law in qQuestion. Then formally we have

-14+2 = J sgn x f(x)dx -'% j f£(x)dx I 51935—5-d§
- -- 0

-2 ﬂl‘-gﬁ—xdg_[ £(x)dx
0

- ce®
- % j .e_r_ sin(- cpg* w(g,a))as
0

- FE‘I e~ C8 sin(- cpg w(g,a))ae,
0

which for @ ¥ 1 is

¥

We are indebted to O. Gross for showing that the formal
evaluation of p could be performed by the formal calculation
given here.
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—g'f e~ 08 T 2 Ta
Ta sin(- CBE tan x~)= —= arctan (- B tan »-).
0

(See table of Laplace transforms on page 125 of [13]). To
make this formal derivation rigorous, we must justify the
interchange in the order of integration used above. This
follows from the standard theorems (see e.g. Hobson's
Treatise of Real Variables, p. 349, Vol. 2-of the Dover
Edition) by observing that

a B
(a) I f | Eiﬂii-i £(x) | d2 dx < = for all finite a, a, B.
O a

(b) Each of the required iterated integrals exist.

L ffeo

a

o] o]

(c)

=0 as a = -~8, b =,

£C/ ~0,b~e,

(d) | [ o) [ aintxae
-- b

where C 18 a positive constant.
For the special case when EX, = O, var X, = C<e (a = 2),
Spitzer in [16] has shown the following important result.

Theorem 8.3. If EX, = 0, var X, = o < ®, then the series
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Z 1/k (1/2 - B(s, > 0))
kml

converges, and if v is its sum, then

(8.14) 1im L'(n) = eY .
T1~®

Furthermore, in this case EZ, < ® and
(8.15) EZ, = o/f2 €Y .
From (8.14) we have that (8.9) improves to
(8.16)  P(L =n) = P(Q =n) ~e Y (nr)” ¥2, nee,

as was found by Spitzer in [16]. Use of the above facts
enables us to translate all of the results of Sem 3-5
into results on the functionals associated with e!. As

examples we have the following.

2<.and

Theorem 8.4. Suppose EX, =0, var X, = o©

0<s <1, Then

(8.17) lim P(Mn/oﬁ'{ <x, L/n <y)
n-e

Y 22y -1 1/2
-1/1rjf xe'x/yy' (1-y)~ dx dy,
00
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2
1-e X/28, (x50,

(8.18) 1im P(Mn/o\frTf_ x|1,h = [sn]) =
§ ' 0, XxX<0.

Proof. The strong law of large numbers asaerts that

with probability one. Thus,

with probability one. In addition, we have
b = nl/a/L'(n) ~nl/2 - 2, as nw ,

and consequently

EZ, b_ ~ o(n/2)Y/? .

Thus, by Corollary 4.2,
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lm P(M /ovn < x, L,/n < ¥)
n--.

M, Mq |
1im EZFn<x’ L/n <y Kl/a(\/"éx, yW2 ,

n-e N2 N -

where K1/2 (x, y) 1s given in formula (4.22). This proves
(8.17), and (8.18) follows similarly from Theorem 5. 3.

| Remark. In the above proofs the only essential use
which was made of the assumptions EX = O, var X = 02 <=

was to guarantee that lE:Z1 < ®», More generally we have that

L
1lim P(EZE-"TSX, —%f_y)
1 .

g

= (X, Y):

n=e 00 *

M xs~P |

lim P(E-Z-I-F;f_ x | Ln = [sn] ) = g hp(x) dx ,

n-e

whenever X, has a distribution for which EZ, < « and (8.7)
holds. 1In particular, this will be the case if EX < 0 or
if (8.7) holds, EX = O, and X, 1s bounded above.

By using Theorem 6.7 and (8.9) we have the following

local form of the generalized arc-sin laws for Qn'

Theorem 8.5.

k1 B(n-x)"P P(Q, = k) = S0TB , (1),
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where o(l) converges to zero uniformly in k, n, as

min(k, n-k) = o ,

For the case when the [xn] are aperiodic* integer-valued
random varilables, a recurrent event which has been much
studied is the event Sn = 0. The results of the preceeding
sections may be translated to give information about the
functionals assoclated with this event, by use of the
following lemma.

Lemma 8.6. If for some slowly varying function h(n)

and some @&, 0 < a < 2, sn/h(n)nl/h converges in distribution
to the stable law with log characteristic function given in
(8.11), then

(8.19) lim h(n)nl/“ g(o) P(S, = 0) =1,
1~

where g(o)'l is the value of the density function at O of

the law given in (8.11).

Moreover, if a ¥ 1 then

r(1/a){(C + 1 B tan l'%)l/“ + (C~-1p tan 1g)l/"‘]

2 tanl %)I/a.

8. -1,
(8.20) g(0) P

]

while 1f a = 1 we have

(8.21) 8(0)-1 = g% J e~ CA cos(% C A X an A)dr .,
o .

19

X
*
I.e., |[Ee 1| = 1 if and only if 6 = 2n7 for integer n.
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For the symmetric case (when B = O) we have

8.22 g(0)~! = Hi/a 0O<a<2.
(6.22) (o) - Hieh <

Proof. Equation (8.19) is an immediate consequence of
the local limit theorem for lattice distributions (see Sec.
50 of [10]). To evaluate g(0)" observe that if a ¥ 1, then

(]
- - C|A]® \ LC PPN
2(0) 1 E% f e clr|®*(1+1 B sgn A tan =
-

= -5% I - % gg8 (c A% B tan FH)dx

o

= ?%E I e~ O cos (C A B tan !%) ‘l/a-l dx.
0

From the tables of Laplace transforms in [13] on p. 125, this

last integral may be evaluated. This results in the right-

hand side of (8.20). A similar calculation gives (8.21).
Remark. From (8.19) it follows at once that if the

S, satisfy Lemma 8.6, then the event, "Sn = 0," 1s transient

if & < 1 and null recurrent 1f a > 1. We may then apply

the results of the previous sections to obtain information

about this particular recurrent event. As a novel application

we have the following.
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Theorem 8.7. Let B,(x) for 1 <1 < r be r functions

on the integers such that for each 1,

(8.23) Z |B(x)| <® and = B, (x) = hy #£ 0.
X .

Then 1f (8.19) is satisfied for 1 < a < 2,

n
(8.24) 1im P<kzo hy (Sk)/B1 Y, S X, 1512 Yn/n < i)

ri—e

n(X,yeeesX.) ¥
_ r 1 1 r 3
= I Kl-l/a(x’ y) dy,
0 0

n
(8.25) iiﬂ P<k§O Bi(sk)/BiYn <x,1<1<r | Y = {ns])

g~ 1+l/a min(x,,ee.,%y)
= hl—l/a(u) du b4

where

v, = 02" Y%m(n) g(0)7! (1-1/a)7?

and Kl-l/a(x’ y) is given in (4.21), hl-l/a(x) is given
in (4.18) and Y is the time of the last return to zero.

Proof. As the proof of (8.24) and (8.25) are almost
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identical, we shall only prove (8.24%). By Corollary 2,
Sec. 15 of [3], 1if N, 1s the number of returns to zero

during the first n steps, then for each 1, 1 <1 <r,
(8.26) 3 (S, )/N
.2 lim 2 B,(S = B
n-e k=1 i‘Tk n i

with probability one. Equation (8.19) implies that

EN, ~ v, = n*"Y%m(n) g(0)"! (1-1/a)7,

n n

and so by Theorem 4.2,

Xy
(8.27) ;if P(Nn/yn < x, Yn/h <y)= g £ Kl-L/a(x’ y) dx dy.

Combining (8.26) and (8.27), we obtain (8.24).

To conclude this section let us note that whenever
the Sy, satisfy the conditions of Lemma 8.6 for 1 < a < 2
we have that condition (6.3) is satisfied. Thus we may
apply Corollary 6.3 to obtain the following result.

If Nn is the number of zeros amongst the first n sums

S, which satisfy the conditions of Lemma 8.6, then

Lm BN, = § | N, < k) = (k+1)71 .
N~e
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APPENDIX

We present here the extensions of the Tauberian and
Abelian theorems which include Iemmas 5.4 and 5.5 as
special cases. The speclal case of theorem A.1 for
L(x) = constant is due to Landau, and may be found on
p. 517 of [5] as Helfsatz 3. The Abelian Theorem A.4
can be found for the special case of L(*) = constant as

Theorem 41 on p. 98 of Hardy's famous treatise on

divergent series.

Theorem A.l. Suppose

.
(a.1) R(t) = [ é(u) au,
0

(A.2) ¢(u) is monotone for u sufficiently large,

(A.3) F(t) ~ AtY L(t), = t-=

’

where v > O and L(x) is a slowly varying function (i.e

*

L(x) > 0 and L(ax) ~ L(x), x-e,for every positive a). Then

(A.4) o(t) ~ yatY"! L(t), t-m
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Proof. We shall assume that o(u) is positive and
monotone increasing if t is sufficliently large. Only
obvious modifications are needed to take care of the
other possibilities. Thus if t > T, o(t) is positive

and monotone. If O<a <1l and t >7T /a,

t
o(at)t(1-a) < [ o(u)au < o(t)t(1-a),
at

and so

dar) < Bl F(at) < o(s),

ofat)/ L(t) =< o' L(2) (1-0) < T L)
Thus

- (at A(1-aY -1
(4.5) T tv?r“L(lt) <Al . it o(6)/8% 1(0)

Now



R ——2let = olat) = ,¥-1 p(¢)
g tY"1 L(t) t-e (at)Y" ' L(at)

Thus

\
LT —ele) . A:(L};a ) < 1m _g,&,gl_ )

t-e tY1 L(t) T £¥-4 L(t)

Taking the limit as a-~1l, we obtain

t-- ¢t

Tim ——%—L—t < Ay < 1lim —Qi—)-—t ,
-1 pn(t) T T E== £ L(t)

which completes the proof.

Fop i

Corollary A.2. If (A.1), (A.2), (A.3) hold except that

Yy = 0, then we may conclude that

o(t) = o(L(t)/t), t-= .

Proof. If y = O, then (5) becomes

A.6) Tim at < 0 < U oLt
(.6) %- -%-,-’,%—y.{—)—

£Y-1ne)



and the remainder of the proof is the same.

Corollary A.3. If the sequence 8y, ak.z 0, is

monotone, and

a;+ ... +a, ~ nY L(n), n-e,

then

(A.7) a, ~ v nY-1 L(n).

Proof. Choose o(t) = a 1f n-1 <t <n. Then

_fn o(t)dt = a; + ... + a = F(n),

0

and (A.7) follows from Theorem A.l.

Theorem A.4. If r > -1, 8 > -1 and a(x), b(x) are

integrable on any finite positive interval, and if

a(x) ~x* L(x), b(x) ~ x> n(x),

for L(x), h(x) slowly varying functions, then
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(h.8) o(x) = [ a(t) blx-t)at

0
'(r+1)T 1
~ TEEe) n(x) 1(x) 87, xee .
Proof. Suppose O < 8 < 1/2, g™+l < (r+1)e, 88+1 < (s+1)e
and
‘  I(r+1)T(s+1
(a.9) v - Hpeiisedl
1 1-6
= I uF(1-u)® au < I uwF(1-u)® du + € .
0 )
Write
8 (1-8)x  x
cx) = +] + | = €y (x) + Co(x) + C5(x) .
0 8x (1-8)x

By the assumptions, there i1s some xo(e) such that if

x > xo(e), we have
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(1-8)x
(1-¢) I u’(x-u)® L(u)h(x-u)du
6x
(1-8)x
< Cplx) < (1e) | u"(x-u)® Lu)h(x-u)du .
6x
Thus,
1-8
(A.10) (1-€) x™°*1 L(x)n(x) { v (1-v)® Ml’%‘,’lﬁ av < C,(x)
1-86 ,
< ()X L (x)n(x) { xRl ex)) vR(1-v)° av -

Now, it is a basic fact of slowly varying functions that

L(ax)/L(x) converges to 1 as x-» uniformly in a, for a bounded

away from zero. (See [11]).

Thus, from (A.1l0) we obtain

1-8

(A.11) Tim Ca(x) < (1+€) J vi(1-v)® av < (+¢)y ,
§

e T

and
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Co(x) 1-8 r 8
- ) - > - -
(A.12) Lin ey T > (1-¢) { uF(1-u)® qu > (1-€) v-e .

Simple computations show that for some K > 0,

Ke L(x)n(x) xF+s+l

A

(a.13) lcy(x)|

(a.28) |cg(x)| < Ke L{x)n(x) xFHe+l

IA

Combining (A.11), (A.12), (A.13) and (A.1l4), we obtain
(A.8). -

Corollary A.5. If {Cgm)] is the mth-fold convolution

of {a,} with itself and

a, ~ n~%/L(n), 0O<ac<1l,
then
(A.15) ¢ ~ L(n)™ n™™¥*™1 r(1.6)"/T(m(1-a)) .

Proof. If we choose a(x) = a,, n<x <ntl,

b(x) = b, n < x <ntl, we obtain
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2
(2) _ r(i-a -2 _-2a41
Cy = L{n)"“ n

and (A.15) follows by induction.

s
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