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FOREWORD

(U) This is an interim final progress report submitted under G.0. 07119 in compliance
with Contract AF04(611)-11407, Part I.D.1 and Line items 6 and 7 of DDL423. The
research reported herein, which covers the first 12 months (1 April 1966 through
31 March 1967) of a 24-month program, was sponsored by the Air Force Rocket Pro-
pulsion Laboratory, Research and Technology Diviaion, Air Force Systems Command,
Edwards, California, with Mr. G. Allen Beale acting as the Air Force Project
Engineer. .

(U) This program was conducted by the Propellant Techmology function of the Rocketdyne
Research Division, with Dr. E. F. C. Cain serving as Program Manager and Mr. M. T.
Constantine ‘serving as the Responsible Project Scientist.

(U) This report has been assigned the Rocketdyne identification number R-7029.
(U) The following technical personnel contributed to the work described in this report:

Phase I: Literature Search
K. J. Youel
Phase II: Experimental Determinatiosne

Dr. A. Axworthy (Specific Heat)

Dr. J. Gerhauser (Specific Heat)

Dr. J. V. Hamilton (Specific Heat)

i J. V. Lecce (Thermal Conductivity, Viscosity)

i ~ R. W. Melvold (Specific Heat)

: J. Quaglino (Phase Properties, Sonic Velocity)

Dr. 8. E. Rodriquez (Viscosity, Inert Gas Solubility)

M. J. Seric (Viscosity, Inert Gas Solubility)

Dr. W. Unterberg (Phaae Properties, Sonic Velocity,
Inert Gas Solubility, Thermal Conductivity
Viscosity) :

Phase III: Evaluation and Compilation of Data

M. M. Williams '
K. J. Youel

This technical report has been reviewed and is approved.

S

W. H. EDELKE, Colonel, USAF
Chief, Propellant Division
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ABSTRACT

The results of the initial 12-month period of the current 24-month program

on the analytical and experimental characterization of the physical properties
of selected liquid propellants are presented in three phases. In Phase I,

a continuous review of the literature was conducted to ensure the acquisition
and documentation of the latest possible propellant properties data for
evaluation and possible inclusion into a propellant properties handbook.
Phase II experimental efforts have resulted in the measurement of chlorine
trifluoride density and vapor pressure; sonic velocity in chlorine tri-
fluoride and chlorine pentafluoride; nitrogen gas solubility in chlorine
pentafluoride; specific heat of UDMH, 50 w/o hydrazine-50 w/o UDMH, and
MHF-3; thermal conductivity of UDMI, MHF-3, and MHF-5; and viacosity of
chlorine pentafluoride. Phase III efforts included the evaluation and
assembly of all data generated in Phasea I and II, preparation of complete
physical property bibliographies for diborane and hydrazine, and aassemhly

of hydrazine physical properties data.
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INTRODUCTION

(U)’ Under Contract AF04{611)-10546, Rocketdyne initiated a 12-month analytical
and experimental program on the rational and systematic physical character-
ization of selected liquid rocket propellants. This progrem was designed

as a primary step in the elimination of the data gaps which have hindered

propellant utilization and development in the past. The overall program
objective was to assemble and experimentally complete the data on essential
physical properties of current and near-term liquid rocket propellants

' over temperature and pressure ranges of practical use to propulsion

engineering.

(U) This initial program, conducted in three interrelated phases, was completed
' on 31 March 1966 (Ref. 1). During the effort, a compilation of physical
properties data was made as a result of an extensive literature survey.
' Experimental efforts resulted in the measurement of: (1) the thermal con-
ductivity of Nzllz‘-(CIg)zNzﬂg(sO—SO) and CHNH.; (2) IRFNA and C1Fg sonic
velocity (and calculation of compressibility); (3) CIFB and CH,N My specific
' heat, and correction of ClFy specific heat data; (u) C1Fy phese properties;
and (4) the design and assembly of apparatus for measurement of inert gas
solubility in liquids and liquid viscosities at extended temperatures and
pressures. Analytical efforts included the assembly and evaluation of
physical property data on MIP-1, MIF-3, MIP-5, ClF,, end ClF5 for future

correlaticn and summary publication.

(U) The present three-phase program, being conductcd under Contract AFO&(G!I)-II&O?,
represents a 2h-month extension and expansion of the objectives ot the
previous effort. Phase I effort consista of a “ontinuous review of the
current literature to document 3.p rted propellant propertics. In Phase II,
effort io directed at the experimental determinuantion of unavailable en-
gineering data for selected oxidizers and. fuels which are required to
document repurted propellant properties. Lffort under Phase III includes

: the coupilation, correlation, and evaluatfon of all data obtained from

e
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(v)

Phases I and II and presentation of the valid data in an annual technical

report.

This report describes each phase of the present program in terms of the
objective and sumnarizes the results and accomplishments achieved during
the first 12 months.
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SUMMARY

.

Analytical and experimental research conducted during the initial 12-month
period of the current 24-month program on the rational and systematic phys-
ical characterization of aelected liquid rocket propellants is described

"1n three phases."

Phase I consisted of a continuous review of the current 1iterature and
efforts of cther investigators in the field to ensure the acquisition and
documentation of the latest posaible prdpellant propertien data for evalua-

" tion and possible fnclusion into'a propellant properties handbook. During
" “this lurvey, a preliminary ‘screening of 3894 reports reaultea in the de~

tailed reviev of 461 reports for potentially portinent data.

The experimental characterization of essential physical properties of
selected propellants was conducted under Phase II. Experimental efforts
were directed at measurements of phase properties, aonic velocity (and
compresaibility), inert gas solubility, specitic heat, thermal conductivity,
and viscosity of selected propellants in an vrder related to their in-
portance to the Air Force. During the initial 12-month period of the
present contract, Phase II experimental efforts have resulted in the
measurcment of chlorine trifluoride density and vapor presaure; sonic
velooity in chlorin; trifluoride and chlorine pentafluoride; nitrogen gas
solubility fn chiorine poﬁtn!ldorlde; npoclflp heat of UDMH, hydrazine-
UDMIE (50-50) and MIIP-3; thermal conductlvlty ol lHMl, HHF-'S and M![F~5.

and viscosity of chlorino pontnfluorldn.

(v)

L S R UL

A Poole~Nyberg denafmeter was used to.fxtvnd the saturated liquid C1P3
density data to the temperature range of -22 to -8 C (=8 to 18 P). These
data were correlated with previous data end curve fit over a temperature
range of -22 to 161 C (-8 to 322 F) with the following equations;

-2

- - ¢ ", 2 - -8 ’
Plamfoc) = 4-928 = 2517 x 1077 Ty 4 7.38429 x 1077 Ty " = 8.215 1 1077 1y
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and

KU) Vapor pressure data for C1F, were obtained over the temperature range of
42.9 to 147.6 C (108 to 298 F), using a constant-volume vapor pressure bomb.
Additional vapor pressure data are being determined in this and the critical

temperature region to extend presently available data.

(U) Measurements of sonic velocity in liquid C1
saturated liquid conditions and under pressures of 500 and 1000 psia.
data for saturated liquids were curve fit with the following equations over

5

the indicated temperature ranges:

-k 2
lFs C('/.ec) = 1755 - 4.074 T(K) +5.936 x 10 T(x): (-77 to 69 C)

and

F. and CIF3 were conducted at

| -1 -4 2 -7. 3
p(lb/w 1t) = 121,360 - 1.226 x 10 t(r) +2,127x 10 t(P) - 8.850 x 10 t(l’)

~h 2
c(ft/ﬁec) = 5758 ~ 7.426 T(R) +6.011 x 10 T(R) (~107 to 156 F)

c1y: ®(a/sec) " 1951.8 -~ 3,7508 T(x) (-59.7 to 74.5 €)

and

0(‘t/.ec) = 6401,.8 - k6.83'48 T(n) (—75,5 to 166.1 F)

(V) Adiabatic compressibilitien calculated from theme data entablished the follow-
ing relationships for saturated liquid C1F, and CIF,:

Cl ‘ﬁ(.tn-l) - 1.156% x 107

—

1.4680 x 107

A AT B b R RN 0

5 3
L]

10 3 13
t(c) :'0* 9.6&55 X le t(c)

AV
L A

L

+1.3942 x 1076 t(c) +1,2708 x 1078 t(c)2 +
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1. 4103 x 10 t(F) +9, 0915 x 10" t(F)3 +

6. 2782 x 10'15 t(F)Il

-3 i
C1F, B(atm-l) = 6.2594 x 1077 + 6.1059 x 1077 ¢4 +

an:1f7%w2+z%wx1f9%w3+

2.1283 x 10711 t(c)*,

and

-1
ﬂ(paia-l) = 3.5921 x 10

+1.8837 x 1070 tg) *

-9
| 5 7058 x 10 t( ) +1. 3’!34 ! 10 t(?)

1.3795 x 10"l tm
(U) As o result of measurements of mitrogen gas solubility in CIF;, a % F
‘solubility point of 2.35 x 107 1b N,/Ib CIF, 5bei vas established at a
total pressure of 350 paia. A set of data nt 120 F contained values from
2.58 x 1077 to 3.26 x 107 1b N,/1b ClF;-pal for total pressures from
400 to 910 psaia.

() Specitic heat measurements were made on UDMI, NH -nnun(so»go), and
MIP-3 using an adisbatic calorimeter. The upecinc heat of UDMI was de-
termined over a temperature range of 1.7 to 70.5 C (35 to 159 P); however,
" somn discrepancies were noted in the data with the use of different upparatus
laéple chambers. ' The ipecif!c bont datn reiulting from weasurcments on
N, -UDMI(%0-30) were curve tit over the tomporature range 2 to 38 ¢
(36 to 100 F) to the following equation:

c_(c.,/h_c) w 0.715 + 0,00047 t(C)

LT e s fra—
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CONFIDENTIAL

Preliminary measurements of MHF-3 specific heat were conducted from
~47.8 to 24.9 T (-54 to 77 P). A determination of NH, specific heat,
used for calibration purposes, agreed with previously established data.’

Thermal conductivity measurements were conducted on UDMH, MHF-3, and
MHP-5 fuels through the use of a steady-state concentric-cylinder con-
ductivity cell. The valid data for UDMH were curve fit from 0.5 to 251 F
with the equation:

| "
X (Btu/hr-gt-p) = 0-101% - 1.368 x 10 © ¢ (5

The thermal conductivity data for MHF-3 over the temperature range 0.4 to
251.3 are represented by the equation:

- - . . -l. - -7 2
k (Btu/br-24-F) 0.1688 - 1.063 x 10 ~ t(p) = 1891 x 1077 ¢y

Preliminary results for the thermal conductivity of MHF-5 indicate values

" from 0.188 to 0.171 Btu/hr-ft-F over the temperature range 0.5 to 201 F.

Final assembly, check-out, and calibration of an all-metal capillary

vis cometer have been completed. Two viscosity data peintas have been ob- AN ;{
tained for saturated liquid cxr5 at 154 P (0.215 ¢p) and 176 P (0.185 c}). ~
Additional measurements are being obtained in the present viscometer to

provide viscoaity data over the complete temperature range.

Phase III involved the assembly of all data generated in Phases I and II,
verification of all the data sources, critical evaluation and comparison
of conflicting data, and tabulation and correlation of the results. As

8 result of these efforts, complete phyaical property bibliographies were
compiled for‘BéHG and Nz"k' In addition, effort was initiated on compila-

. tion of a bibliography of N204 phyaical properties. The N2H~ physical

property bibliography was used to prepare a set of physical property
data sheets on NH, . '

6
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TECHNICAL FROGRAM

PHASE I: LITERATURE SEARCH

OBJECTIVE

(U) The Phase I objective is the maintenance of a coniinuous review of the

current literature and efforts of other investigators in the field to

ensure the acquisition and documentation of the latest possible propellant

properties data for evaluation and possible inclusion into a propellant
properties handbook. This survey is designed to include, but not neces-
sarily be limited to, the properties of the following fuels and oxidizers:

Oxidizers
Liquid Oxygen (L02)
Chlorine Pentafluoride (CIFS)
Chlorine Trifluoride (Cl?s)
Fluorine (22)
Hydrogen Peroxide (5202)
Nitrogen Tetroxide (N20,.)

Mixed Oxidem of Nitrogen
(Nzo,.-rm)

.JNAX Mixtures .(02—13'2)
Oxygen Difluoride (orz)

Tetrafluorohydrazine (Nﬂrh )

Fuels
Liquid Hydrogen (LH2)
N2H‘.-UDMH(50—50)
Hydrazine (Nzﬂ,‘) .
M (CH N, H,) |
UDMH £(cn3)2n2n2]
Nzn:.-mm mixturen
Hybaline B-3

Alumizine
Pentaborane (BSH())
Diborene (32“6)
MHF fuels

MAF fuels

s VTR P U

b St " e A 1N Y 5 A

et o s

i
,‘




P e ey

R A e

© ey RS

RESULTS AND ACCOMPLISHMENTS

(U) A formal survey of current propellant literature, which was initiated under
Contract AF04(611)-10546 (Ref. 1), was continued as Phase I of the present
program. This survey, which includes the location, acquisition, and docu-
mentation of all available propellant properties data of interest to the
Air Force, was originally directed at a comprehensive review of physical
properties data. However, under the present contract, the survey has been
extended to additional engineering properties data.

(U) The literature survey is being accomplished through two different techniques.
One part of the effort is directed at the survey of all reports acquired
by Rocketdyne through normal distribution channels. Each of these reports
are surveyed with respect to subject matter, and reports containing po-
tential propellant properties data are selected for detailed review. All

pertinent data contained in these reports are documented for assembly
under Phase III,

(U) To ensure a complete awareness of all available propellant properties data
and their aubsequent'acquisition and documentation during the current pro-
gram, this report survey effort is supplemented by a continuous survey of
the current releases of Chemical Abstracts, NASA CSTAR Abstracts, Chemical
Propulsion Information Agency (CPIA) Abstracts, the Defense Documentation
Center (DDC) Technical Abatract Bulletin (TAB), the NBS Cryogenic Data
Center's Current Awarcness Service, and propeilant manufacturers' bulletins.
Any pertinent reports located through these abatract sources that have

not been acquired previously by Rocketdyne arc ordered inmediately and
eventually reviewed in detail.

(U) During the first year of the current program, 3894 reports were surveyed;
of this total, 461 reports were reviewed in detail for propellant proper-
ties data. “Pertinent data contained in these reports are being compiled
and evalueted under Phase III.
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PHASE IXI: EXPERIMENTAL DETERMINATIONS

OBJECTIVE

(v)

(v)

(v)

The objective of Phase II is the experimental characterization of essential
physical properties of selected liquid propellants. This phase essentially
constitutes a 24-month continuation of the efforts initiated under Phase II
of Contract AF04(611)-10546 (Ref. 1). Selection of the propellants and
properties to be experimentally characterized is related to the unavail-
ability of required data and relative importance of the data to the Air
Force. Initial efforts have emphasized the completion of those propellant
properties recommended for initial characterization under the previous
program. Additional efforts are continuing in an order related to the
importance of the data to the Air Force as determined by tbe Air Force
Project Engineer. ’

The selected properties are being determined over the liquidums temperature
range and over a pressure range of 14.7 psi to 1000 psi, where practical.
Changes to the selected list can be made at any time during the program
through mutual agreement of Rocketdyne and the Air Force Contracting
Officer. Standard test methods are used if available. Wherever unique

or nev test methods are used, their use has been approved by the Air Force

Contracting Officer.

RESULTS AND ACCCMPLISHMENTS

During the initial 12 months of the current 2i-month program, Ihase IT

efforts were directed at the measurement of phase properties, sonic velocity
(and calculation of compressibility), inert gas solubility, specific heat,
thermal conductivity, and viscosity of selected propellants. The apparatus

and techniques used in these measurements were emsentially those used pre-
viously in similar efforta conducted under Contract AFOA(611)-10546 (Ref. 1);
however, some further modifications and development of the inert gas solubility,

4
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specific heat, and viscosity apparatus were necessary to improve the
quality and accuracy of the measurements. The efforts and results in
each of these areas of study are described in the following paragraphs.

Included in tbe discussions are details of the changes in experimental

'apparatus or methods instituted during the current program.

(v)

(v)

Phase Properties

Phase property measurements have been designed to expand the availadble
experimental data on chlorine trifluoride (Cle) dengity and vapor pres-
sure. Density measurements on saturated liquid CIF3 over a temperature
range of -22 C (-8 F) to -8 C (18 F) extended the low-temperature ex-
tremity of the previously available data (Ref. 1 and 2). Additional CIP}
vapor pressure measurements were conducted over the temperature range of
42.9 ¢ (109 F) to 147.6 ¢ (298 F) to increase the accuracy of previously
available (Ref. 1 and 3) vapor pressure data in the high~temperature and
critical region.

The experimental apparatus used in the dennity mcasurements has been
described previously (Ref. 1). A disgram of the apparatus, which was
constructed from the design of Poole and Nyberg (Ref. 4), is presented
in Fig. 1. This densimeter operates on the principle that a sudden rise

- in pressure (sensed by the pressure transducer) will occur vhen all vepor

()

in the variable volume propellant cell is forced to condense by mechanical
reduction of the cavity volume containing Loth liquid and vapor. The
volume of the cell (and thua the contained liquid) at this point is in-
dicated by the positicn of the micrometer attached to the bellowa and a
prior calibration of the micrometer (defining the micrometer setting-cell
volume relationship) of the apparatus with 1iguid of known density. The
density of the sample at this point is then calculated from the weight of
the propcllant sample and the indicated volume.

The apparatus fe constructed entirely of 300 series stainless steel and
is copable of withatanding premsures up to 1500 pai. The volume range

10




e oy v AT s

1) i .
Y y i\‘pu i

MICROMETER

GA3EDUS
NITROGEN

%
e perosung

PROPELLANT CELL

L
Figure 1.  Poole-Nyberg Densimeter.
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provided by the stainless-steel bellows permits density measurements over
a vide range of temperatures without change of the propellant sample size.
The densimeter is pleced in a constant-temperature bath for temperature
selection and regulation. The temperature of the propellant sample is
indicated ty a chromel-alumel thermocouple taped to the densimeter and

is recorded during the density measurement after the propellant sample

has reached thermal equilibrium with the environmental bath.

The apparatus used in the vapor pressure measurements consisted of a 10-
milliliter, stainless-steel cylinder with immersion thermocouple, pressure
transducer, and sample valve. The thermocouple, a chromel-alumel junction
with stainless-ateel sheath, was sealed into the cylinder with a swedge
fitting, thus permitting direct measurement of the temperatures of the
cylinder contents., The thermocouple was calibrated at the melting and
boiling points of water. The 1000-psia pressure transducer was cali-
brated with a Helse gage over the temperature and pressure ranges of
intended use.

During the measurements, a sufficient amount of CIFB was loaded into the
vapor pressure apparatus to ensure the presence of some liguid at all

times over the range considered, The bombh and contents were allowed to
reach thermal equilibrium at selected temperatures, and the equilibrium
vapor pressures were re:orded. Constant temperatures above ambient were

maintained by placing the entire apparatus in a Fisher Isotemp oven.

Density of Chlorine Trifluoride. With the variable volume capabilitics
of the Poole~Nyberg densimeter, it was possible to conduct measurements
on propellant-grade CIFy over the temperature range of -22 C (-8 F) to
~8 € (18 F) vith one f11ling of the apparatus. The density data reault-
ing from thesc weeamurcments are hrcnontod in Table 1 with the chemical
analysis of the propellant swmple. These density data together with that

obtained from previous experimental measurements (Ref. 1 and 2) were curve

18
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,

fit by a least Squares computer program over a temperature range of ~22 ¢
(-8 P) to161 ¢ (322 F), which resulted in the following equations:

=2 3 63w 2.
Pgu/cc) = :924 - 2.517 x 10 T(x) * 7-3842 x 10 T (k)

8.215 x 1078 Ty (1)

-4, 2
O(1n/g43) = 121.360 ~ 0.1226 t0y + 2.127 x 10 tr) -
8.850 x 10™7 t(F)3 (2)

The standard deviations for these curve fits are 0.005 gm/cc and 0.31
Ib/ttj, respectively. These equations are represented graphically in
Fig. 2 and 3, respectively. ‘

TABLE 1

EXPERTMENTAL DENSITY DATA FOR SATURATED LIQUID CIFj*

Obgerved | Calculated** 3
Temperature, Density, Density, Ap x 10-,
c

gn/ce gm/cc gn/ce
-22.53 1.958 1.9609 2.9
~20.15 1.959 1.9523 3.3
~16.18 1.940 1.9383 -1,7
-8.73 1.913 1.?128 -0.2

#Sample compesition: CIF:’ —99.5+ v/o
HP--0.4% w/o
Noncondensables-~trace

**From Eq. 1

13
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(U) Vapor Pressure of Chlorine Trifluoride. The vapor pressure of propellant
grade ClF’3 was measured over the temperature range of 42.9 C (109 F) to
147.6 C (298 F). The data obtained thus far are presented in Table 2
with the chemical analysis of therpropellant sample. Upon completion of
additional measurements in this temperature region and extension of the
measurements to the critical temperature (355 F), all data, including
that previously determined (Ref. 1 and 3), will be curve fit by a least

squares computer progran.

TABLE 2
Ef EXPERTHINTAL VAPOR PRESSURE DATA FOR C1F *
Temperature, Preasure,
c F psia
42,9 109.2 w5
61.1 142.0 78
¥ N s
3 74.6 166.3 114 -
! 93,1 195.6 182
111.3 232.3 274
131.4 268.5 408
147.6 297.7 560

*Sample composition:

c1r3—-99.5+'w/o
HF-=0.4 w/o

Nencondenmablea-~trace

Sonfc Velocity (and Ad{abatie Compreanibility) Meanurementa

e

16

o e

(U) Sontc velocity meaxurements were conducted #n Hquid chlorine trifluoride
(CIPB) and chlorine pentafluoride (CIFS). These measurements covered a
temperature range of =77 € (~107 ¥) to 69 € (156 F) and pressures of sat-
uration, 500 and 1000 psia,
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(U) The experimental apparatus, which has been described previously in Ref. 1

and is illustrated in Fig. 4, is used to accurately measure the distance
of test fluid through which sound waves of a known frequency travel. The
interferometer, which is capable of withstanding pressures to 1000 psia
and temperatures to 200 F, is constructed of type 347 stainless steel
(which is compatible with most propellants of interest). The dial gage,
which provides precise linear location data also enables the differentia-
tion between the reflected signal (and its harmonics) and reflections

from the metallic interferometer body. Displayed pips, from true reflecti
move on the oscilloscope as the reflector is moved, while spurious signals

remain stationary,

(U) The measurements are conducted by initiation of a 5—mega¢y1e radio fre-

quency signal from the pulsed oscillator, which is fed .imultaneoualy to
the oscilloscope and & quartz plezoelectric crystal {with 5-megacycle
resonant frequency) attached to the bottom of the interferometer. The
sound waves, emanating from the crystal, travel through the bottom of the
interferometer, through a known distance of test liquid to a reflector,
and then back to the crystal. The initial and reflected vaves are dis-
played on the oscilloscope, thus allowing measurement of the time required
for the ultrasonic vaves to traverse the known distance of teat fluid.

(U) During the determinations, the interferometer was ifmmersed in a constant-

temperature bath and allowed to reach thermal equilibrium at a selected
temperature level defore a measurement was conducted. The equilibrium
temporature was then measured using a chromel-alumel thermocouple (vith

,8 type 316 stainlens-steel lhenth)immeraea in the test fluid,

(U) The sonio velocity apparatus vas calibrated over a temperature range of

0C (32 F) to 74 C (165 F) at pressures of 14.7, 500, and 1000 psia, using
distilled water and absolute methanol as test fluids. The data obtaived
frow sonic velocity measurements in theme fluids with this apparatus vere
compared with literature values for these fluids (Ref. 3, 6, and 7) to
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obtain a calibration factor. The agreement between the values obtained
with this apparatus and those of the literature were within 1.5 percent

with a precision of < 1 percent.

Using the resulting sonic velocity data and the liquid density, the adiabatic
compressibility of the liquid was calculated from the relationship:

(3)

lH

B

s 002
where
B, = adiabatic compre...bility of the )iquid
p = density of the liquid
¢ = velocity of mound in the liquid

Soni¢c Velocity of Chlorine Pentafluoride. The velocity of sound was
measured in propellant-grade liquid C1P5 under: (1) saturated liquid
conditions over a temperature range of ~77.1 C (~106.8 F) to 68.7 C
(155.7 F); (2) total pressurization of 500 paia (using gascous nitrogen)
over a temperature range of =73.5 € (100.3 F) to 69.2 € (156.6 F); end
(3) total premsurization of 1000 paia (using gascous nitrogen) over the
temperature range =27 € (~16,6 F) to 16.8 C (62.2 F). The results of

these measureoments are presented in Table 3 with results of chemical

analyais of the propellant mample,

The experimental data for the veloclity of aound fn ClP‘5 under saturated
liquid conditionm were curve fit using a least squares computer program,
The resulting equations, which reprenent the saturated liquid data from
=77 to 69 € (-107 to 156 F) in both metric and Fnglish units are:

la/uos) = 1733 = H.07% Ty ¢ 5.936 x T T(x)2 ()

19
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TABLE 3

EXPERIMENTAL SONIC VELOCITY DATA FOR LIQUIb ClFs*

Temperature Sonic Velocity, m/sec
[ ) 4 Pressure Experimental | Calculated | A, m/sec
-77.1|~106.8 | Saturation 979.0 978.6 0.4
-56.5| -69.7 | Saturation 900.0 899.9 0.1
-31.0}] -23.8 | Saturation 801.0 803.1 -2.1
-19.6 ~3.3 | Saturation 757.0 760.0 -3.0
«6.0 22.2 | Saturation 708.0 708.8 -0.8
-0.8 30.6 | Saturation 692.0 689.3 2.7
0.4 32.7 | Saturation 693.0 684 .8 8.2
3.6 38.% | Saturation 677.0 672.8 4.2
8.3 46.9 | Saturation 648.0 655.2 ~7.2
15.1 59.2 | Saturation 631.0 629.8 1.3
26.2 79.2 | Saturation 586.0 888,13 -2.3
35,4 93.9 | Saturation %35.0 537.8 -2.9
48.9 ] 120.0 | Saturation 504.0 50%.0 0.0
68.7 ] 155.7 | Saturstion 432.0 A30.8 1.2
=73.5 1-100.3 | 500 psta 951.0
; 54,2 | ~65.6 ] 500 paia 883,0
‘ | ~27.9] -18.2 | 500 pets 783.0
-18,2 ~0.8 | 500 paia 754.0
-1.9| 29,6 | 500 pata 673.0
b.8 ] 40.6 | 500 paia 652.0
11,0 51.8 | 300 pwuie 627.0
22.4 72.% | 500 paia %49.0
23.7] 78.3 | 500 paia 577.0 '
33.6 92.5% | 500 paie $32.0
A3.5 ] 110.3 | 500 paia %820.0
36.7 1 130.9 | 500 psis ART,0
9.2 | 1366 | 500 pais A9.0
-27.0 | «16.6 | 1000 paia 760.0 - -
-21.8 =T7.2 | 1000 peta 7%%.0 — -—
«~3.2 ] 26.2 |1000 paia 692.0 - -
16.8 | 62.2 [ 1000 paje 622.0 - -

" ®gample eonpositiont
. cr or nr e,
o Prerun Amlysin Wyl OV 0.6 w/e <0003 v/e
Poatrun Analysin M8 w/o 03w/ 0.6 v/s <05 v/o

NOTE:  Caleula tod sonie velocity vatues are thowe 'r.ohmhhd o the
mesaurenent temperature uaing the appropriats curve-fit squstion,

20
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| and

°(ft/nec) = 5758 - 7."26 T(B) + 6.011 x IO—AT(R)ﬂ (5)

The standard deviations of these curve fits are 2.2 m/sec and 7.2 ft/lec,
. respectively. Graphical representations of these equations are presented
in Fig. 5 and 6, respectively. '

(U) An anomaly was noted in the data resulting from the sonic velocity measure-
ments in the pressurized liquid. Normally, the velocity of sound in a

? liquid at constant temperature has been found to increase with increasing

i pressure. In addition, the change in slope of a sonic velocity-temperature

plot is relatively equivalent for various isobars over the same temperature

range. The data at both 500 and 1000 psia indicate that at the lower tem-

peratures investigated, the velocity of sound in CIPB was decreased as

the saturated liquid was pressurized. However, as the temperature was

increased, the saturated liquid plot and the isobars (wvhich can be plotted

from the date at 500 and 1000 psia) w!1l eventually meet and reverse this

condition.

(U) Consiceration of possible effects resulting from liquid soludility of
the nitrogen gas, which was used for presaurization, offers a reasonahle
expianation of this anomsly. As gas content is increased in thz liquid

(this would accompany an increase in pressurant ges piessure), the

velocity of mound will decrcase, As temperature of the liquid is increased,
the gas content (soludbility) {n the liquid shou)d decresse. The combina-
tion of these two effects together with tho assumed effect of preasure

on sonic velocity in'Cle are prodbahly responaible for the anomalous

trends in the experimental observations,

(U) To eliminate the influence of dissolved pressurant gas in the measurements,
a bellows assenbly could be used inateed of a pressurant ges to spply
provsure to the liquid sample. Hovever, the small magnitude of the obeerved
.pressure effect (typically, a 0.5 percent difference in sonio velooity from

1l
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saturation to 500 psia) within the experimental conditions hnder con-
sideration does rot justify a modification of the apparatus at the present
time. In addition, the effect of inert gas on physical properties should

e B SRS A

be considered because similar conditions are encountered in the design
and development of propulsion systems.

(U) An experiment has been planned to demonstrate the effect on sonic velocity
of a dissolved gas in a propellant. This effect, which will be characterized
. in both ClF3 and CIFB, will be studied by determining the change in conic
velocity in a liquid sample as the sample is subjected over a period of

time to a constant inert gas pressure at a preset temperature level,

(U) Adiabatic Compressibility of Chlorine Pentafluoride. The sonic velocity
and density data (Ref. 8) of saturated liquid C1F; were used to compute
adiabatic compressibilities according to Eq. 3. A least squares curve

£it of the resulting calculations from -80 to 70 C (~112 to 158 F) es-

tablished the following compressibility-temperature relationships for
saturated liquid C1F; (in both metric and English units):

4

- -6
ﬂ(atm.l) = lf1565 x 10 " +1.3942 x 10 t(C) +

1.2708 x 1078 Yc)z +1.4680 x 10020 ¢, 3.

(¢)
9.6855 x 10713 t(c)“ (6)

.-

and

: | -6 -8
L | ﬂ(p.i‘~l) = 64065 x 10 ~ + 4.0065 x 10 t(F) +

B, S %

14103 x 1671 % ()% + 9.0915 x 10713 t(r)3 .

E

6.2782 x 10713 t(p)* | (7)
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The standard deviation of these curve tits, which are graphically pre-
sented in Fig. 7 and:8§respective1y, are 8.85 x 10/ atm » and 6 x 1078 psia'l,
respectively. :

(U) Sonic Velocity of Chlorine Trifluoride. Sonic velocity measurements were

conducted in propellént—grade liquid chlorine trifluoride, CIFB, under
- saturated liquid conditions over a temperature range of -59.7 to 74.5 C

‘ (-75.5 to 166.1 P), &nd undér total pressures (ueing gasmeous mitrogen)
of 500 and 1000 psia over temperature ranges of -51.2 to 74.9 C (-60.2
to 166.8 F) and -49.5 to 34.1 C (~57.8 to 93.4 F), respectively. The
results of these measurements and the chemical analysis of the propellant
sample are presented in Table 4. A cirve fit of the sonic velocity data
obtained from measurements in saturated liquid ClF3 resulted in the follow-

ing equations.
c(m/"c)‘ = 1951.8 - 3,7508 T(K) (8)

and » .
©(1/sec) = 64018 - 6.8348 T(p, (9)

The standard deviations for these curve fits, illustrated in Fig. 9 and
10, respectively, are 2.9 m/lec and 9.4 ft/sec., respectively.

(U) An gnomaly, similar to that obaserved in the sonic velocity measurcments

] in CIF,

vious discussion on CIFB, the velocity of sound in a liquid at constant

, appears in the data presented in Table 4. As noted in the pre-

! temperature normally increazes with increening pressure, and the change

: - in elope of a sonic velocity-temperature plot is spproximately equivalent
? for various isobars over the same {cmperature range, Table A4 indicates

» erratic and conflicting results in some of the data obtained in the
pressurization of the ClP3 to 500 and 1000 psia. As noted previoualy,
the probable cause of thia anomaly is postulated as an effect of pres-
surization gas solubility in the liquid. This effect is currently being

characterized.

T
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Chlorine Pontafluoride
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TABLE 4

SONIC VELOCITY IN C1F_*

3
Temperature, Sonic Velocity, m/src
c F | Pressure |Experimental Calculated A, n/sec
-59.7 -75.5 {Saturation 1157.4 1151.1 -6.3
-27.6 | -17.7 1026.5 1030.7 4.3
-18.1 | -0.6 99v.5 995.1 5.6
-5.2 22.6 946.5 946.7 0.2
0.0 32.0 926.9 . 927.2 0.3
6.3 43.3 900.8 903.6 | . 2.8
14.6 58.3 871.7 872.% 0.7
26.2 79.2 832.4 828.9 ~-3.5
36.2 97.2 794.0 791.% -2.6
&4 .8 112.6 760.1 759.2 . =0.9
55.6 132.1 718.2 7n8.7 0.5
63.% 146.3 68).5 689.,0 -0.5
B BRI 6h7.0 . 6A7.8 0.
-51.2 ~60.21 500 peia 1110.4 - -~
~27.3 ~17.1 1018.7 - —
-22,2 -8.0 1002.1 — i
~1%5.3 k.5 977.8 -~ -
-5.2 22.6 939.% - -
6.5 3.7 - 901.8 -~ -
15,1 59.2 879.6 - -
26.2 79.2 842,93 - -
34,4 9.9 290,97 - -
42.6 108, 7 737.6 - -
51.9 | 124.7 726,08 - C e
59.8 139.6 694 .8 - -—
7h.9 166 .8 i 679.1 o~ e
49,9 | -57.8]1000 pata | 111000 - -
20,2 68 .4 T 8.6 - -
31 93.4 #02.9 - -
*Rample compoaitiony
| on o b 4
Preron Analyais - >Mlw/e O0tws  0.2w/e  0.07v/e
Postrun Analyels > 9.1 wie 0,% w/o 0.% w/a 0.0% v/o

NOTE:  Calealated sontc velocity valuew are thome vafculated st the
weasurement temporature uning the approprinte curve 4L squatiou,
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(U) Adiabatic Compressibility of Chlorine Trifluoride. Adiabatic compres-

sibilities of C1F5 were computed according to Eq. 3 using the sonic

i velocity data frem the saturated liquid measurements and the saturated
; liquid density data noted previously. A least squares curve fit of the
. resulting calculations from -56 to 76 C (~69 F to 169 F) established the

following compressibility-temperature relationships for saturated liquid
C1F, (in both metric and English units):

; ’ . -3 ] -5 7 :
Blatwl) = 6:250% x 107 + 6.1059 x 10~ t(oy + 3.7345 x 1077 t(0)

1

2.6649 x 1072 t(c)3 + 2.1283 x 1071 t(c)“ (10)

4 -6 4 -9 H
B(paia~l) = 3-5921 x 107" + 1.8837 x 107" t(p) + 5.7058 x 107" ¢t (g
13 x 1070 6% 13705 107 -

The standard deviationa of these curve fits, which are graphically pre~

. —— -

) ; sented in Fig. 11 and 12, are 4.5 x 10-6 Mm“l and 3.1 x 10‘7 puin-l,
t respectively.
L Inorf Gas Solubility Measurements

(U) Measurements of nitrogen gas solubility in propellant-grade chlorine
pentafluoride are being conducted durina.thc current program. In these
determinationa, the experimentally derived quantity ia a differential

. molubility (the gas dissolved per unit mans of propellant and per unit
prossure increasce) meaaured at a particular temperature and pressure,

This quantity can readily bo integrated to give total (nbaoluto) solubility,

F ‘ (U) A nimplificd schematic dingram of the apparatua, which has been previoualy
deacribed in dotail (Ref. 1), is preaented in Fig., 13. The inert gaa i

n
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CALCULATED DATA
CURVE FIT FROM =56 T0 76 C WITH EQUATION

A MIT PP Ot A e ZEC Y
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= 6.2594 X 10™ 46,1059 x 1075 ¢ .7345 X 1077 ¢, 2
B(m.,) 594 X 1 59 X 1073 ¢ ) 43.7345 o E
+2.6649 x 1073 t‘%) +2.1283 x 107" c(:) g
13.0

'z'o

10,0}

9.0
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~.o

3.0L

=80

TEMPERATURE, €

Figure 11, Adiabntie Compreasibility of Saturated Liquid Chlorine

Trifluoride

32

T N Pt Mt e i g L C e i

ko s




v

sprIonIFIa] AUTIO[Y) PINbIT

4 ‘3y0LveINIL

o%- o8-

b F3atn RARE Pt R
e ILIiiTilginitiiitd

PSRRI g

e

LTI et e

PSS ARG EPP SRR ERENE S PS

IO IIIIYIIILTIILASIILILNIL e oo
ERESORMht DOSRRANDY SSOR R P
A AR Ebane MRS OMIDL SRS
o w m g rtm ra o - ooy e 8

MOILS SODRS SOrat Jiubut MEREPIESES SRR o
[SORSS0as FRBEROROES JRRFE TS 3

T T T T e
LTI LI T e e

AL
P ST o

PO NS Sl g S .

T i waapreetremaks
SISMIPOI SPSNSSRITE N
ISR HAA SRGEEIOPES P

STTaTRI 4

POESATDES PRS- SRR PRPTTIRTY
IIOTIEIIINIIITIIIISTIAININAN
TTTILITTLITIIIIMITIIITIN S
semereeny T NETITIIITIIITNNN

P
R o

T A S e s

pO ket SR v QAT SRS
SETLIIIT LTI L 4
LTI Ll e

VLGN
PR SR

sy

SPE-8
35S

T IS T -
A St GO
LIRS e

o'z

1]
.
-

o'

[ -]
3
«©

TATT IR et

(4,

vy £l
@),

g0l X gsoL St

-

R €}
oL X SBLE" I+ T3

9

NO1AVARI-MLIA 4 691 OL 69~ WON4 114 3A¥Q3

(Ot X AEE

0L X L£88°L + , Ol X 1T65°€ =

1+

(visd) 4

Yivo QNI

©°01

pareamns Jo Lyrpiquesaadsc) 2139qeIpY  “S1 amig

visd '~0l X ALITIQ185IU4HO0Y Jidveviay

{=

conrir - s g B3 A

i
¥
k4
N

e Y

b2

P

otk

iﬁ»m A v WY ke iy




- )
e T e |

per. Taw-«frwa»wwu Cen o e P

Ar

GAS

GAS
INPUT
VALVE

RESERVOIR CELL

Figure 13,

Simplified Schematic Diagronm

A

PROPELLANT

of Solubility Apparatus

34

L e




introduced from a volume-calibrated gas reservoir into e volume-calibrated
test tank, or propellant cell, which contains a known quantity of propel-
lant. The volure of the gn; absorbed at a known temperature and after
. agitation is calculated from preasure changes that occur in the system.
These pressure changes are monitored by two precision differential pressure
. t;ansducers. The entire apparatus, including both the propellant cell

and the gas reservoir, is mounted within a thermostated enclosure,

which maintains desired temperature during a solubility determination,
The temperature conditioning enclosure is supported upon a rocking plat-
form which is used to agitate the test solution in the propellant cell to
attain equilibrium conditions.

(U) At the beginning of a solubility determination, the propellant cell is
charged with a measured quantity of liquid propellant, large enough to
ensure that the cell will always contain a significant aiount of liquid
at the desired test temperature. The equilibrium cell presasure at the
start of a test is then determined by the combined effects of propellant
vapor pressure, inert gas content (e.g., total mass) in the cell, inert
gas solubility, and relative volumes of ullage and liquid in the cell. .
The gas reservoir pressure is set at an adequately larger value than that

required for supply during the solubility mcasurcement.

(U) The first step in a solubility determination consiats of introducing gas
from the reservoir into the cell ullage by temporarily opening the con-
necting input valve, Tho-roaulting preasure decrease in the reservoir
and pressure incredae in the cell sre recorded by the corresponding
differential pressure transducers which have controlling valves to isolate
the initial pressurcs as reference pressures. The initial pscudo-equilibriun
pressure in the cell (before inert gas can diffuse into the quiescent liquid

. to an appreciable extent) involves only ullage pressurization. A material
balance betwoen the reservoir gas and gaa in the ullage can be written
as follows:
| VoGO ar), ~v, () (v
: G "r,c G “(a">r,u ¢l (12)
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ﬁhere Vb is the reservoir volume which can contribute input gas; (ap/BP)T’G
is the isothermal change of density with pressure for the pure reservoir
gas at the test pressure;,(lSP)G is the pressure drop recorded by the
reservoir transducer; Vﬁ is the ullage volume in the propellant cell;
(apVBP)T,U is the isothermal change in density with pressure for the inert
gas in the vapor-gas ullage mixture at the test pressure, and (A»P)C,1 is

the initial pseudo-stable pressure increase in the cell.

The second step of a solubility determination is to agitate the liquid
until solution equilibrium is established. Solution of inert gas causes
the decline in ccll pressure, and a lower differential pressure (than that
obtained before agitation) is recorded by the cell pressure-transducer.
Another material balance established between inert gas in the ullage and

gas in solution can be written as follows:

VU((%@UEA Py - (AP)g, J= o (aP)y , (13)

where (& P)c 0 is the second (lower), equilibrium pressure increase in
1]

the propellant cell; s is the differential solubility of the inert gas

in the propellant; and M is the mass of liquid propellant.

These material balances are combined to eliminate the ullage volume and

gan compressibility, which are unknown quantitics because the partial

volume of molution and the P-V-T characterintica of the gas-vapor mixture

in the ullage are unknown. (Experience to date verifies that theae prop-
erties depart considerably from the idcals of a conatant volume liquid

and a perfect gns mixture.) To Justify the cancellation of ullage prop-
erties, as well as the ume of point valurs or averagea for the density-
prénnure derivatives, the preasure range of a single test munt be maintained
reanonably low; the differential pressure transducers of the apparatus
operate within a ramge of approximately 20 wai.
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(U) The combination of Eq. (12 and (1) gives the following expression:

y (e [(4n) - (B0 ,]
"f(ig T,6 (Ap)c,fYAp)c,zc _ (14)

Thus, the establishment of the solubility requires a kmowledge of the
gbsolute volume cf the gas reservoir tank, the mass of propellant in the
cell, the density-pressure behavior of the pure inert gas, and the var-

jious transducer pressure readings.

(U) This experimental approach has proved to be generally sound. However,
test experience revealed one experimental drawback; at low total pressures
(Le., large vapor/inert gas ratio in the ullage) the initial pressure
equilibrium is not readily established following introduction of the gas
into the ullage. Rather, the gas input induces some vapor condensation,
and corresponding loss in cell pressure is only restored by a very slow
(e.g., 20 minutes) transient buildup (controlled by either vapor-gas dif-
fusion or heat transfer to the cell) under the necessary quiescent con-
ditions. This slow cquilibration is eaperimentally uﬁncceptable, as it
does not permit a definitive observation of the initial ullage equilibrium,
unaffected by the process of solution. At higher total pressures (relative
to the propellant vapor pressure ), the effect diminishes and reliable ob-
servations are possible.

(U) Nitrogen Gas Solubility in Chlorine Pentafluoride. An initial set of
data on nitrogen-chlorine pentafluoride solubility was obtained at 120 P.
Theee data are presented in Table 5.

Because of the delayed equilibrium effect discussed previously, data
could not be obtained at lc¢iar total pressure (the vapor pressure of ClPs
is approximately 115 psia at 120 F). Because data acceptability is best
judged by the precision of conaccutive solability measurements within

a relatively amall preasure range, the data points given’tn Table 3 are
averngus for several consecutive measurements within 210 percent or less,
The scatter wns largely associated with temporature fluctuationa during a
measurement , '
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TARLE 5

NITROGEN GAS SOLUBILITY IN CHLORINE PENTAFLUORIDE

Total | Solubility x 1072,
Tempe;ature, Pr;:::re, 1b N2/1b ClPB-psi
120 400 2.58
120 610 2.94
120 780 3.26
120 910 3.28
90 350 2.35

(U) Betore attempting further measurcments, the experimental arrangement was
modified to provide the most direct posaible input of gas to the propellant
cell ullege (as permitted by the design of the cell) to minimize condensa-
tion and slow diffusion mixing within restricted line volunes, (The pro-
pellant cell necessarily has line connections for the input gas, differ-
ential pressure transducer, total preswmure transducer, and msafety burst
diaphragm.) Other modifications included relocatfion of the transducer
monitoring recorders to permit closer control of the input rate by the

operater and ihe incorporation of wore stable thermal control.

(U) These modifications resulted in higher precision in the high-pressure
region, but negligible Improvement with regard to the initial equilibration
problem. Attempted measurcments at low pressure and temperature betweon
90 and 180 F yielded no useful results. Tentative experimental proccdures
involving slow and/or pulsed gns fnputs with amall thermal and mechanical
shocka were unsuccessful,

(V) Following these modificationa, a reliable.molubility data poini (three
condecutive measurementa 21 percent) vas obtained at 90 F whore the vapor
pressure of c1r5 is approximately 72 pria, Thia point {w shown as the
last data point in Table 5. This test sequencs win not sxtended further
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(v)

(v)

to experimentally faverable high nitrogen contents because of corrosion
failure of the valve controlling the propellant cell differential-pressure

transducer. Testing will reaume upon replacement of this component.

Specific Heat Measurements

The specific heats of UDMH, N,H, -UDMH (50~%50) and MIF-3 were measured in
the calorimeter developed previously under Contract AF04(611)-9563 (Ref. 8)
and further utilized under Contract AFO4(611)-10546 (Ref. 1). The calor-
imeter consists of an outer copper jacket surrounding a small dewar veasel
wvhich is suspended by nylon cord from a cdpper ring attached to the top
plate of the calorimeter. A sample container i3 positioned in the center
of the dewar vessel and is isolated from it by several small pieces of
foamed polystyrene insulation. A vecuum of 10"5 mm Hg ie maintained in
the calorimeter system to control conduction heat losses, and the silvered
valls of the dewar vessel reduce radiative heat tranafers. The calorimeter |

i

is completely jfmmorsed in & liquid bath medium,

Four cylindrical sample containers with volumes from 12 to 15 cc were used
daring the present contract. They were equipped with a filling tube ex-
tending from one end, and a heater winding of No. 30 B&S gege constantan
wire. The windings wore coated with glyptal and covered with copper
f0il to reduce the heat loss by radiation. A copper-constantan thermo-
couple was used for measuring the temperature., B8ignificant differencee
among the four semple containers are described in Table 6.

A diagram of the electrical circuitry is shown in Pig. 14; tne energy
supplied to the hcaters is accurately dotermined by meana of a K-3 potenti-
ometer in line with a galvonometor. The output from the sample containor
thermoconple is recorded by mesna of arather K-3 potentiomoter in conjunction

with & d-c microvolt amplifier and recorder,
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TABLE 6

DESCRIPTION OF SAMPLE CONTAINERS

Container Equilibration | Thermocouple
No. Material Fins Position
I Copper, Pb-Sn Solder Yes Exterior
It Aluminum : Yes Exterior
II1 Copper, Gold Plated, Pb-Sn Yea Well
Solder
v Copper, Unplated, Ag Solder No Well

When previous measurements with this apparatus indicated discrepancies

in the recorded data (Ref. 1), a company-initiated program was undertaken
to locate and define the measurement errors. This effort was completed
prior to the start of this report period and led to certain modifications
vhich were incorporated into the apparatus. In the original design

(Ret. 1), the calorimeter incluryd an electrically heated copper shield
surrounding the sample container, Because the source of the error in the
thermocouple electromotive force reading (Ref, 1) was located in the heat
shield circuitry, the heat shicld was replaced with a small dewar vesacl
(to reduce temperature drift). The electrical leads attached to the
sample container windinga were wodified to decrcame the IR drop acroas
them: The resistence across the volt box was increascd, reducing that
current loas (Ref, 1) from ~ 1 percent to less than 0.1 percent, A further
wmodification of tho goneral calorjmeter syatem conninted of completely
fmmorsing the calorimeter in the bath, thereby rﬁducinu the time required
for the 14d to reach a thermal ateady mtato, '

Calibration end Temting of Apparatus. Prior to each soriecs of measurements,

the sanple container to be uaed was calibrated empty at tvo or more tem-
peratures so that jtis heat capacity could be mubtracted from the measured
values, Verification teatm aleo were occanionally conducted omploying
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liquids with known specific heats. This ensured that the various modi-
fications did not adversely affect the accuracy of the measurements. The
calibration and testing of the various modifications of the apparatus are
detailed in the following paragraphs.

(v) Sample Container No. I. After the previously mentioned circuitry

modifications had been completed (but with the calorimeter not completely
immersed), measurements were conducted with sample container No. I to de~
termine the specific heat of spectrograde mathanol. The values obtained
agreed within 1 percent of those reported in the literature. In addition,
the effects of variables such as the cooling or warming rates (negligible
with maintenance of reasonable rates), power input rate (best results when
the power input was kept conatant from cezlibration to sample run), and

heating period (no noticeable »ffect) were determined.

(u) Sample Container No, II. An empty calibration run with an aluminum

sample container exhibited good p~ecision; but weasuremcnts of the specific
heat of water yielded high, scattered results. Because the new circuitry
had been checked by the methanol run, the discrepancies in the water results
were thought to be related to the sample container itself,

(U) Sample Container No, III. A copper sample container was fabricated
with all internal parts gold-pfated to make it more adaptable for use
with a wide variety of liquids including the hydrazine-type fuels. A
new feature of this sumple container was its thermocouple well which is &

-centially located cylinder within the container, Thin, copper disks,
spaced along the thermocouple well in contact with the outer wall of the

container, aided thermal equilibration,

(U) Using this sample container, the speeific heat of spectrograde methanol
(dry-box loaded) wam measured over the temperature range from =23 to 60 €,

2
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The empty sample container was calibrated at room temperature and at 51 C.

Analysis of these data resulted in a conaistent linear heat capacity-

temperature calibration curve for the empty calorimeter and established

that the apparatus would 'provide the desired accuracy. Becanae the

. calibration curve is lineai, a satisfactory sample container calidbration
requires only determination of the heat capacity of the empty container

at two sufficiently separated temperatures.

(U) During specific heat measurements on the N, -Und (50-50) fuel blend,

this sample container developed leaks in the crimped section «f the ?ill-

ing tube, which was capped with Pb~Sn solder. Tests iudicated that a pood

(helium-leakproof) cold-weld copper crimp can be made, but additional
studiec demonstrated that hydrazins fuels eventually 1leak through the

crimp and that Pb-Sn solder possesses only a limit:d effectiveness in seal-
ing against hydrazine-type fuel leaks. Thia problem was finally solved with
the use of a silver solder capping on the cri-p} However, the gold-plated
sample container had been fabricated with Pb-Sn solder and during subsequent
testing, leaks also developed in the weld arcund its bottom cap.

(v) * Sample Container No. IV. A new unplated coppec sample container was
fabricated with silver solder welds (sample container No. IV). After
further apparatus modification (complete immersion), it wvns necessary to
reconfirm the accuracy of the equipment and technique employed; a verifi-
catfon run was conducted with hydrazine (98.8 w/o N . 0.5 v/o NIy,

0.7 w/o nzo). Three measurexents of ita specific heat were made at 19 C,
The average of the results agreed exactly with the literature walue
(Ref. 9); the average deviation between the three measured values was

’

spproximately 1 percent,

(v) Compatibilfity. Proasure build-up tests with containers No, T11 and
IV indicated that thoir compatibility with Nznﬁ-typﬁ furls wvan satinfactory

at room temperature for the poriod of time involved in the specitic heat
measurcments. Only 4 x 1073 percent decomposition of N2"~ occurved fn
the unplated sample contalner, No. IV, over a 5-day period.
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(U) Calculation of Results. The amount of electrical emergy input, the re-
‘sultant temperature rise (8 T), and the saturétion specific heat (C.)
are normally calculated using the equations contained in Ref. 1. 1In
some runs, AT was calculated using an alternétive method employing a

' serien of equations derived by Regnault and éfaundler (Ref. 10):

AT = (1, - 1)) + k (A) | (15)
and
v, - V2 !
k-2 | (16)
2 1 -
vhere
V1 and V, = the linear rate of temperature change preceding and

2 following the heating period, respectively.

Tl and T, = the temperatures at which the extrapolated linear™
portion of the heating curve intersects the extrapolated
ante~ and post-period temperature drift curves, reapectively.

=

. =.Nevtonian codling constant

A = arca bencath the extrapolated hvdting period of the
experimental time-temperature curve bounded by the

gero~drift temperature (To)

T = gero drift temperature which is the apparent temperature
o of the heat sink an calculated by:

-V,T ’ '
e Ny =V, :
1 2
The method of Regnault and Plaundlier provides further fnnight foto the
“interpretation of the resnlts of individual experimenta. For example,
a veriehle zero-drift temperature and a consfderable temporature difference

hetween To and Tl'produoe a negative Nevtonten coollg conatant, which ia

sufficient reanon to eliminate a given run. Such a negative cooling conatant

suggeste that the temperature of tie system dr!ltnd‘ﬂuring the measnrement,
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The complete immersion of the calorimeter (a modification suggested by
the results of this method of data treatment) has resulted in conaidersbly

reduced temperature drift rates.

Specific Heat of UDMH., The results of Aston et al, for the specific heat

of UDMH (Ref. 11) from the melting point (~57 to 25 C)(-71 to 77 ?) fit

the linear expression:

‘- y

c, (ea1/-0) 0.640 + 0.00057 t(c) (18)
The aluminum sample container (No. II) was used to extend these measure-
ments to 70.5 C (159 F). The rosults obtained are presented in Table 7.
These values, however, averaged 4 to 5 percent greater than the values
given by Eq. 18, even at the overlupping temperature range in the area -
of 25 C. This and the high values ohtained for the specific heat of water
in this sample container snuggeats that aluminum is not a satisfactory

material for use in these studies,

(U) Additional determinations were conducted on UDMI using the unplated copper

)

sample container (No. IV) as & verification run prior to measurement of

the specific heat of Nzﬁh—ln»ﬂl (50-50). These results with UDMI, also
presented in Table 7, had en average deviation of 1.4 percent and averaged
1.8 percent above the values given by Fq. 18, The dincrepancies in these
varfous sets of data aro presently being analyzed and conclusions will

be presented in future reports under the contract,

Bpeciftio Heat of "g"&' The results of Beott for the mpecific heat of
hydrazine (Rof, 9) from 2 to 67 C (36 to 133 F) £it the folloving linear

expresajon:

c = 0.726 + 0.00049 ¢/, (19)
* (co1/gm-c) (©)

L}
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TABLE 7

EXPERIMENTAL SATURATED SPECIFIC HEAT OF UDMH

Avarage Temperature, Specific Heat,
c F cal/gn-C
1.7 35.1 0.657"
2.8 37.0 0.655°
8.9 48.0 0.650%
10.0 50.0 0.673"
16.0 60.8 0.652%
17.1 62.7 0.672%
22.4 72.3 0.670°
23.4 7%.1 0.689"
244 75.9 0.689°
29.6 85.3 0.701"
30.1 86.2 0.675°
31.1 83.0 0.690"
35.4 95.7 0.693"
36,3 97.3 0.69%6°
uh.2 111.6 0.693°
45.1 113.2 0.705"
50.8 123.4 0.693°
51.9 1254 0.701"
52.8 127.4 0.695"
53.5 126.8 0.61°
59.8 139.6 0.694Y
00.4 140.7 0.70%"
.0 147.2 c.700°
63.0 149 0 0,70,
68.9 156.0 0.716°
69.8 157.6 0.6m,Y
0.5 18,9 | 0.0

Copper sample container (No, IV); analysis of UDMH-.9d,8 w/o LD,
0.8 v/o II20, 0.4t w/o other soluble impurities (with traceas of Nll3
and (UHB)' Ni) , -
Aluninud Sample container (Ne, 11); analysfs of UDMI-.99.4 w/o WML,
0.3 v/o 0, 0.2 v/o ((1113)2 Nﬂ,“(’).li v/o other svluble impurities
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Three verification rins made in the unplated cbpper calorimeter (No. IV)
yielded the following values for the apecific heat of Néﬂg:

Temperature, C‘,
c_(r) cal C
17.7 (64) 0.742
18.8 (66) 0.737
19.8 (68) 0.727

The average of these three resunlts agrees exactly with the value given

by Eq. 19.

Specific Heat of N, -UDMI (50-50). Specific heat measurements were con-
ducted on propellaﬁ?:grade Nzﬂk-lnnﬂl (50-50) over the temperature range
from 2.2 to 49.2 C (36 to 120 F). The results are listed in Table 8 and
shown in Fig. 15. Results obtained in both the piated and unplated copper
calorimeters, (No. IIX and IV) agreed quite well. The experimental specific
heat data were curve tit to the following linear expreasion over the tem-
perature range from 2 to 38 C (36 to 100 F):

C. . . =0.713 + 0.00047 t (20)
* (cal/gn-c) (©)

The average deviation of the data from this curve is 0.8 percent. Based
on two data pointm, the specific hent of this fuel blend appears to in-

crease nonlinearly above 38 C,

Tne meanured wpecific heat for NI, -UDHI (50-50) ia spproximately 5 percent
greater than the previously reported calculated values (ef. 12). The
previona ealeulations wore based on the apecific heata of the individual
components (Fq. 18 and 19) and an ansumption of fdrality between the two
componentn. The deviation of the actual specific hoat of this blend from
that of an ideal solution appears reamonable. This doviation is well en-
tablinhed in the preaent atudy becanse both of the components and the

mixture vere run in the same calorimatey.
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TABLE 8

EXPERIMENTAL SATURATED SPECIFIC HEAT OF 50 w/o NH,~
50 W/0 UDMH FUEL BLEND* -

Average Temperature, Specific Heat,
C ¥ cal/gn-C
2.2 36.0 0.723"
3.1 37.6 0.710%
4.6 40.3 0.715"
5.8 42.4 0.726°

10.7 51.3 0.723°
11.8 53.2 0.718"
16.6 61.9 0.727°
17.7 | 63.7 0.727°
22,8 73.0 0.725"
23.2 73.8 0.739"
24.6 76.3 0.738°
27.8 82.0 0.725*
28.9 B84.0 0.735"
29.7 85.5 0.732"
35.5 . 95.9 - 0.800%°¢
36.5 97.7 0.850%¢
36.9 98.4 0.7°*
37.7 99.9 0.721*
48.3 118.9 0.764"

| 492 1204 0.754"

»

%Sample componftion: 51.3 w/o N,} “, hﬁ 3 w/o !ﬁ“ﬂl. 0.h v/o H 0 and

other aoluble fmpuritiens.

a. Gold-plated copper sample container (No. I11)

b. Copper mample container (No. IV)

¢, Values apprar to be orroncoua; however, ne oxyorimontal resson exinte
for omimaion,
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(U) The only experimental data reported previously by others for this fuel
blend, 0.692 cal/gm-C at 27.3 C and 0.698 cal/gm-C at 38.8 C (Ref. 13),
are also approximately 5 percent lower than the resulta obtained during
the present study (Eq. 20). However, this earlier experimental work was
conducted with a method-of-mixtures calorimeter, which has a normal maxi-
mum accuracy of *5 percent. An error of at least 5 percent in these
earlier data would be expected because a single dewar vessel was used in-
stead of the customary two (for the blank and the sample), identical heat
losses were assumed in all cases, the effects of vaporization during
opening were ignored, and .a constant-temperature container was not used

for the calorimeter dewar veasel,

(C) Specific Heat of MIF-3. Specific heat measurements were initiated on a
sample of MIF-3 (nominal composition: 86 w/o NQH,‘-—M w/o CH}NQHB) over
a temperature range of ~47.8 to 24.9 C (-54 to 77 F). However, the re-

sulting datd.(Table 9) exhibited as much as 5 percent rcatter in the worst

cases. Because apparatus calibration data (obtained Trom subsequent
specific heat measurements on the empty sample container) appear to have
good precision, and excellent reproducible resulta have been obtained
from the calorimeter during recent montha in measurements on similar
materials, the integrity of this set of measurements on MIF-3 is suspect.
The reason for the poor precision and the apparently anomalous results

is under inveatigation, and there is an indication that the problem is

in the electrical equipment in the calorimeter circuit.

Thermal Conductivity

(U) The thermal conductivities of three propellanta, unsymmetrical dimethyl-

hydrazine (i.c., UDMI or (CH))QN,,H,,). MIF-3, and MIF-5, were measured thus
far in this program. The apparatus used for obtaining thermal conductivity

data was a steady-state, concentric cylinder conductivity cell, which was

used during the preceding contractual effort (Ref. 1) to measure the thermal

conductivity of Nguq-(cu YN, (50-50) and menomeshylhydrazine (i.e.,

:) 1) 2
Mol or CHI N,,lH)
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TABLE 9

SATURATED SPECIFIC HFAT OF MH}-3 (PRELIMINARY DATA)

Sample composition:

Temperature Specific Heat,
c F cal/gm-C
-47.8 -54.0 0.726
-46.6 -51.9 0.706
-40.9 | -41.6 0.703
-39.6 -39.3 0.706
~34.5 -30.1 0.705
-33.4 -28.1 0.737
-27.8 -18.0 0.721
-26.6 -15.9 0.717
-22.1 -7.8 0.684
-21.1 -6.0 0.719
-14.9 5.2 0.700
-13.8 7.2 0.735
-8.9 16.0 0.712 ,
-8.0 17.6 0.735
~1.6 29.1 0.737
-0 4 31.3 0.704
4.8 40.6 0.729
5.9 42.6 0.715
11.1 52.0 0.736
12.1 53.8 0.732
17.6 63.7 0.719
18.6 65.5 0.716
23.9 75.0 0.729
24.9 76.8 0.706
CH3NoH3 84.7 w/o
Noily, 14.0 v/o
Ho0 1.0 w/o
Nﬁ} 0.1 w/o

Other soluble impurities 0.22 w/o

{cugNi,

5

; Trace),

B i it




T T o L PR

e RS R T £

,;,“\““?%

(v)

e s s ———ANT W,

(v)

i .
e 5 R SR R

The cell used in this program is shown schematically in Fig. 16. -In this
apparatus, the test fluid is contained in a thin annular passage>between

two aluminum alloy cylinders. The annvlus is approximately 1 inch in
diameter, 0.020 inch thick, and 5-3/4 inches long. The ends of the annulus
are sealed with two Teflon O-rings, which hold the cylinders concentrically
and minimize the heat conduction path between the cylinders. To maintain
end effects at a minimum, two thermal barriers fabricated of Teflon are
fitted over the ends of the cylinders. The cell is held together by two
stainless-steel end plates which fit over the thermal barricers. Six pairs
of copper-constantan thermocouples are embedded at various positions in

both cylinders, close to the surface of the cavity containing the test
fluid. Thermocouple wire diameter is maintained as small as possible

to minimize heat losses. An electrical reaistance heater, located in the
inner cylinder, suppliea the heat energy to eateblish a temperature gradient
across the liquid layer. The temperature of the outer cylinder is regulated

by immersion of the cell in a constant-temperature bath.

The experiment;l procedure is straightforward but rather tedious. A sample
of the test fluid is placed into a stainless-steel loading apparatus attached
to the cell. By proper manipulation of the loading apparatus, the annulus
is firét evacuated, and then the test fluid is drawn into the cell, The
cell is placed in the constant-temperature bath which is adjusted to some
preselected and regulated temperature. Electrical power is applied to

the cell heater through use of a regulated d-c power supply until a tem-
perature gradient of the desired magnitude is obtained across the annulua.
Temperature gradients are maintained at approximately 1 F to minimize con-
vection, After thermal equilibrium is attained, measurements of heater
voltage and current are made through use of a Leeds and Northrup K-3
potentiometer in conjunction with a precision volt box and current shunt.
This instrument is also used to measure the temperature gradient across

the annulus and the bath temperature,
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The thermal conductivity of the test fluid is calculated through use of

the equation:

(21)

=

]
o
2

where

k = thermal conductivity, Btu/hr-ft-F

Q = heat flux, Btu/hr
A = heat transfer area normal to heat flux, sq ft
AX = liquid layer thickness, feet

AT temperature gradient, F

Prior to conducting actual thermal conductivity measurements on teat fluids,
a series of vacuum calibrations of the cell are made. These calibrations
are necessary to account for cell heat losses along thermocouple wires,
along heater lead yires, and through the ends of the cylinders. Calibra-
tions are made at 50 F intervals throughout the temperature range of
interest. Electrical power levels required to maintain given temperature
gradients (~ 1 F) across the annulus are measurcd at each operating tem-
perature. These heat losses are subtracted from the total heat input

measured during actual thermal conductivity runa to obtain a net heut input.

Thermal Conductivity of UDMH. Thermal conductivity measurcments were

made on propellant-grade unsymmetrical dimethylhydrazine (vomir), (an)gNz"z'
over a nominal temperature range of 0.5 to 251.0 F; the reaults of these
measurcments are presented in Table 10.  All UDMI samples were obtained
from a single large quantity of propellant which waa analyzed and found

to be within specifications as presented in MIL-P-25604C. The analysina

is presented in Table 10, The initial serics of measurements were con-~
ducted on Sample A at 50 F intervals from 0 to 150 P. To increane the
reliability of these data, measurements were attempted on another sample

of propellant from the original propellant Satch. dowever, after the

54
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TABLE 10

EXPERIMENTAL THERMAL CONDUCTIVITY DATA

ON (CHy) NoH,
Temperature, Thermal Conductivity,
Sample F Btu/hr-ft-F
A* 0.6 0.101
A 0.6 0.107%»
D* 0.5 0.100
D 0.5 0.100
A 51.1 0.095
A 51.1 0.098
B* 51.0 0.095
B 51.0 . 0.095
A 100,7 0.085
A 100.7 0.085
B 100.7 0.087
B 100,7 0.088
A 150.7 0.081
A 150.6 0.082
B 150.7 0.081
B 150.7 0.085
B 200.8 . 0.076
B 200.9 0.075
c* 200,9 0.073
c 200,9 0.0/2
B 251.0 . 0.068
B 251.0 0.066
c 251.0 0.066
c 251.0 0.066
#Sample Composition: (015)2}42112 99.8 w/u
’ Other Soluble 0.2¢t w/o
Impurities
[1120' Trace)
((CIL,)QN!I Trace]

#*#Discarded data point; explanntion contained in text
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sample was placed in the cell and measurements resumed, abnormal thermo-

couple output voltage signals were obtained.

(U) A search for the cause of the difficulty vas initiated and centered about

()

(v)

W A i s

the electrical components (and electrical connectors) associated with the’
cell. After this search revealed no apparent problem areas, the problem
was traced to incomplete filling of the cell annulus with the liquid pro-
pellant. As a reeult, som¢ thermocouples were reading the temperature
drop across a liquid layer while others were reading the tenperature drop
across a vapor layer. The cause of the difficulty occurred during pro-
pellant loading operations, when a valve, located between the cell annular
gap and vacuum pump, apparently leeked, and a portion of the propellant
sample was drawn out of the cell. The malfunction was corrected, and

measurements were resumed on a new propellant charge (Sample B).

Thermal conductivity measurements were made using Sample B a; tewperatures
of approximately 50, 100, 150, 200, and 250 F. Taec data obtained with
samples A and B compared favorably in the overlapping range, i.e., from

50 to 150 F. A third propellant charge, Sample C, of the original batch
was placed in the cell, and measurements were made at 200 and 250 F. Again,
the data compﬁred favorably with the data obtained with Sample B at 200 and
250 F. Sample D wams placed in the cell and duplicate weamurementa at the

O F temperature level were made, One data point taken at thiw temperature
level was discarded because of its disagreement with the other data and
becauss itw deviation from the average was greater than twice the standard

deviation.

The valid data wore curve fit from 0.5 to 251.0 F, and a graphical presenta-
tion is shown in Fig. 17. The equation which representa the date in:

31y

» L ! -,‘ M
k(Btu/hr«-H—F) 0.1014 - 1,368 x 10 l(l’-,) (D-u)

The stundard deviation of the leant aquarcw curve fit ia 0.0017 Btu/bhe-ft-P,
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Thermal Conductivity of MIHI-3. Following completion of measurements on
UDMH, thermal conductivity determinations were made on the MHF-3 fuel
blend (nominally 86 w/o MMH-14 w/o hydrazine). Measurements were con-

ducted on two different propellant-grade samples (A and B) at approximately
50 P intervals over the temperature range of 0.4 to 251.3 F. The results
of these measurements, presented in Table 11, show that the thermal con-
ductivity of MIF-3 ranges from 0.170 to 0.128 Btu/hr-ft-F over this tempera-

ture range.

The data were curve fit from 0.4 to 251.3 F and a graphical presentation
of the data is shown in Fig. 18. The equation which represents the data is:

K (to/hrogt-p) = 0-1688 = 1.063 x 107" tp) - 1891 x 1077 t(F)2 (23)

The standard deviation of the least squares curve fit is 0.0025 Btu/hr-ft-F.

During the measurements on propellant sample B, unstable thermocouple
voltages werc observed. This was finally traced to a poor electrical con~
nection in the apparatus measurement system. After repair and checkout
tests (in which the apparatus functioned normally), the MIP-3 thermal con-

ductivity measurements were completed.

The two MHF-3 samples used in the measurcments vere obtained from a specific
batch of propellent prepared for this purpose. The MHF-3 fuel blend, which
has & nominal composition of 86 w/o monomethylhydrniine, CH}N2H3, and 14
w/o hydrazine, Nﬂ“h' was blended from propellant grade samples of C“}”Q”}
and NQ"A‘ The blend wam prepared under a nitrigen atmosphere in a dry box
to prevent woisture abaorption and fuel reaction with oxygen and carbon
dioxide in the air. The results from chemical analysis of they homogenenus
blend are listed {n Table 11, |

Thermal Conductivity of MiF-4, Suhuequent to the completion of wcamurcmepta

on MIF-3, thermal conduciivity {etercdnativne were initiated on the MING
fucl blend using the same cell and ruporimental technique. Becawsr a awmsple
of the MIIF-5 fuel, which has a nowminal composition of 59 w/o Cﬂjﬁzﬂ1, oo wlo

oo
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TABLE 11 |

|

EXPERIMENTAL THERMAL CONDUCTIVITY DATA ON Mﬁl"—}
i

I
|
|

*Sample componition:

Temperature, { Thermal Conductivity,
Sample 1 4 Btu/hr-ft-F |

A* 0.4 0.166 |

A 0.4 0.166

B 0.7 0.167

B 0.7 0.170

A 51.0 0.166

A 50.9 - 0.163

B 51.1 0.168

B 51.1 0.166

A 100.7 0.15%

A 100.7 0.156

B 100.6 0.155

B 100.6 0.160 |

A 150.7 0.146

A 150.7 0.148 '

B 150.6 0.148

B 150.6 0.146

A 201.1 0.141

A 201.1 0,142

B 201.2 0.138

B 201.2 0.136

A 251.2 0,134

A 251.2 0.132

B 251.3 0.128

B 251.3 0.130
anLN iy 83.1 v/o
N, 13.9 v/o
n,0 0.8 w/o
Nity 0.1 v/o
Other Boluble Impurities 0.1 v/o
((:ll’Nﬂ.‘ Traoe)
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Nzﬂh’ and 19 v/o Néﬂh-HNo}, was not available, a small sample was prepared
from propellant-grade samples of CH3N2H3 and Nﬁﬂh’ and an analytical grade
semple of xnhnoj. The sample was prepared in an inert atmosphere of dry
nitrogen in a dry box to prevent the propellants from absorbing moisture

and from reacting with oxygen and carbon dioxide in the air. Because

N2ﬂ,"ﬂN03 was not available, N}I,‘NO3 was used to prepare the hydrazine salt.

The NHI‘NO3 was added to the CH3N2H3, rather than to the N2HA’ to minimize
the msalt concentration and hence the impact sensitivity hazard. The tem-
perature of the solution was continuously monitored during the addition
of NH,‘NO3 and a slight temperature rise was noted. Ammonia produced in

the molution was reduced to an acceptable level by vacuum distillation,

_The blending process was completed by adding CH3N2H3 (108t during the dis-

tillation) and N2Hh. The chemical analysis of the resulting fuel blend
is presented in Table 12,

An initial series of measurements was conducted on a sample (designated
as Sample A) of MIHF-5 at approximately 50 F intervals over a temperature
range extending from 0.5 to 201.0 F; the results of <hese measurements
are presented in Table 12. Preliminsry test results indicate that the
thermal conductivity of MIF-5 varies from 0.188 to 0.171 Btu/br-ft-F over
this range. To increase the reliability of these data, another series of
measurements will be made over approximately the same temperature range
on a second sample of propellant from the same batch of the MIF-3 fuel
blend., The thermal conductivity cell was thoroughly flushed and dried in
preparation for this second series of meanurements. Following loading

of the cell with propellant, thermal conductivity measurements will be
continued on MIIF-5,

Yisconity

Under the present program, viscosity measurementa have been planned for

a variety of propellants at extended temperatures and pressurea. To satisfy
all potential viscnrsity requirements, an all-metal capillary viscometer wns

designad for the measmurements, The capillary flov technique was solected

beoause of the relative aimplicity of the viscometer's construction and opo;i!

€1
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TABLE 12

PRELIMINARY EXPERIMENTAL THERMAL CONDUCTIVITY DATA ON MIF-5*

Temperature, Thermal Conductivity,

Sample F Btu/hr-ft-F
A* D 0.187
A .5 0.188
A 50.9 0.185
A 50.8 0.185
A 100.6 0.180
A 100.6 0.180
A 150.5 0.175
A 150.5 0.176
A 200.8 0.172
A 201.0 0.17]

*Sample composition: CH3N2H} 54.9 w/o

NI, 25.h w/o

N, ‘HNO 18.9 w/o

Nl 0.2 w'o

0 0.6 w/o

(U) The design of the apparatus is shown achematically in Fig. 19.
apparatus, the viacosity is obtained by ohuevving the flowrate
capillary tubing and the corresponding driving fluid head, whi
apparctua, in a simple gravity hcad resnlting from a differenc
elevation of the liquid Jevel in the two legs of the U-tube,

in one of thewe legs §a a aecction of 0.75-inch lqhiuu which co

In this
hrough the
ch in thin
e in the
The reservoir

ntajins a

magnetic float at the gan-liquid interface. The ponition of thia float

within a vertical range of approximately 6 inchen {a senncd by a differential

tranaformer unit surrounding the tubing. Por the other leg of

the U-tube,

valven B and € provide a choice between & 1-1/2<inch and 3/8-inch tubing

reservoir.
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Figure 19. Capillary Viscometer Schematic
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(U) The viscometer is constructed entirely of stainless-steel tubing'and
fittings to permit testing corrosive liquids at pressures up to 1000 psi.
The capillary tubing is 0.023~inch ID and approximately‘26—1/é inches long.

This long, large-bore capillary was selected in an atteﬁpt to minimize the

relative importance of entrance and exit friction losses at low kinematic

viscosities, which may approach 0.1 centistoke for propellants of interest.
For the case of flow between the 3/4-inch float reservoir and the 1-1/2-
inch reserveir, this capillary would lead to experimental flow times ranging

from minutes to hours in the viscosity range contemplated. To increase

R e e g

the speed of the test process at the higher viscosities, the option of

the 3/8-inch reservoir has been provided, which\permits setting up a much
larger differential head within the operating range of the transducer and
float. 1In addition, this option permits testing of a given viscosity uader
significantly different driving heads, flow velocitics, and hence, Reynolds

numbers, for the capillary. This feature could permit estimation or cal-

ibration of the end effects at low viscosities. 1t may be possible to ex-
tend the applicability of the viscometer into a range where end effects
are important through a technique of self-calibration, in which a given

viscosity is measured over a sufficiently wide Reynolds number range.

e e A SR

(U) Not shown in the figure are accessory conneciions and valving for loading,
{ venting, nnd/or pressurizing the viscometer with inert gas. The overall
unit, approximately 5 feet tall, is housed in a temperature-controlled
dry box equipped with heater, circulation fans, thermocouples, pressure

transducer, etc.

(U) 1In operation, the viscometer ism filled with liquid propellant to an cleva-

tion within the sensing range of the float and transformer. A differential
head is established between the float reservoir and one of the other reservoirs
by inert gas pressurization or by venting propellant vapora from onc of

the reservoirs. Subsequently, this head is allowed to disaipate by flow
through the capillary tubing. A line and valve (D) connecting the gas

f spacen of the float reacrvoir and the other reservoira scparate thease

spaces while establishing the initial liquid head, and permit equalization

of the pressure over the liquid during the capillary-flov procesa. The
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flow through the capillary may be in either direction; the choice of flow
direction determines the elevation of initial fill, or equilibrium liquid
level position, within the range of the float and transformer.

Calibration of the relative volumetric capacities of the U-tube legas es-
tablishes differential liquid heads as a function of float position with
reference to the equilibrium position. Valve A allows bypassing the capil-
lary tubing to facilitate the processes of eatablishing a differential

head and the equilibrium position. Viscosity is determined from the time
history of head dissipation in flow through the éapillary plua calibration

of its flow resistance.

The flow process leads mominally to an exponential decay of liquid head

with time which may be given as

& (nx)=$ | (24)

where x is float displacement from the equilibrium position, ¢t is time,
V is the kinematic viscosity of the liquid, and C is a nominally constant
factor involving fundamental constants and instrument parameters (capillaqy

length and radius, and areas of the U-tube reservoir arms).

The principal calibration factor, C, was obtained from tests with a iiquid
of known kinematic viscosity. Calihration runs were made with deionized
water at temperatures of approximately 65 F (kinematic viscosity approxi-
mately 1.0 centistoke), 110 F (0.6 centistoke), and 160 F (0.4 centistoke).
Several teats were conducted at each viscosity level using each of the
optinnul secondary reservoirs which complete the U-tube with the float

reservolir.

The performance of the viscomoter was generally satisfactory during these
tests; the exponential decay of float position with time was accurately
realized; no float sinkings were experienced. Values derived for the
principal calibration factors (C corresponding to each optional secondary
arm) vere consistent within 3 percent, and agrece reasonably well with
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estimates based on dimensions of the apparatus. The acatter in experi-
mental values was largely due to uncertainty or variation in the tempera-
ture, and hence the viscosity, for a run. Temperature has negligible
direct effect on the instrument parameters.

Viscosity of Chlorine Pentafluoride. After apparatus calibrations had

been completed, viscosity measurements were initiated on chlorine penta-
fluoride, CIF5' to extend the experimental data above the presently avail-
able temperature range, -130.5 to 68 P (Ref. 1). During initial determinations
with ClF5 the instability of the open-cup float was found to be a serious
experimental problem. It was assumed that the float would sink if sufficient
liquid were allowed to condense inside it, and this condition would be

more likely to occur with relatively high vapor pressures (e.g., at higher
temperatures and with relatively volatile liquids like ClFs). Thus, pre-
cautions were observed in the experimental procedures to prevent this occur-
rence. However, despite these preventative measures, the float consistently
failed to remain afloat during the firast trial runas with ClPs. Upon dis-
assembly of the apparatus it was found that float sinking was actually due

to leakage of liquid through a corrosion pinhole. After replacing the

float, sinkings have only been experienced during operations involving
thermal fluctuations, as in heating the spparatus and sctting up the initial
1iquid head. More efficient experimental procedures are being developed

to overcome these difficulties.

In the initial viscosity determinations on ClFs, it wan obaerved that the
viscometer can apparently operate near 0.1 centiatoke without introeducing
siguiticant end-effect problemm., During toate near this level, a sub-
ntantial portion ef the float travel follows the exponential decay law
expected with simple atreamline flow reaintance, An a result of thene
determinations, two viscosity points have heen ohtained for propellant-
grade CIP5 at 154 and 176 F under saturated liquid conditions. Theae
data are presented in Table 13.

Each data point in Table 13 represrnts three meamurementa within 21 §.
and better than 1| percent precision. Density data uacd for the reduction
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of kinematic viscosity to absolute viscosity was taken from Ref. 8. The
correlation of these initial data with the previously reported data (Ref. 1)
appears reasonable; however, additional measurements must be obtained in
the present viscometer to provide a reliable extension of the Cii’5 viscosity

data over the completé temperature range.

TABLE i3

EXPERIMENTAL CHLORINE PENTAFLUORIDE VISCOSITY DATA

- Kinematic Absolute
Temperature, Viacosity, Viscosity,
centistokes centipoiges
154 0.134 0.215
176 0.121 6.185
67/68
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PHASE III: EVALUATION AND COMPIIATION OF DATA

(0BJECTIVE

(U) During the entire period of the contractual program, efforts under Phase III
have been directed toward the assembly of all data generated during Phases I
and II, verification of all the data sources, critical evaluation and com-
parison of conflicting data, and tabulation and correlation of the results.
Where final selection of the.best values has been completed, they are pre-

sented in this report, as discussed in the following paragraphs.

RESULTS AND ACCGMPLISHMENTS

(U) Concurrently with the data evaluation of Phase III, comprehensive bibli-.
ographies of physical properties data are being compiled from references
obtcined through the Phase I literature survey. Each selected propellant
is being described with a list of references for each of ita individual
physical properties, These compilations are not only useful to those who

use the data, but also provide guides for the final assembly of data.

(U) As theme bibliographies are compiled, all of the original smources of ref-
erenced data are ordered, if they are not already on file, and checked
for accuracy and originality of data, Secondary sources are used only
where primary sources are not available and are referenced as such. As
far as can bhe determined from a preliminary evaluation of the data, com-
pletely unreliable data are not used,

(U) Using these bibliographies as gnidea, the physicel properties are then com-
piled into data sheets., All of the available data are critically evaluated
and presented in both metric and English units. When agreement among vari-
ous sets of data is good, these data are combined and curve fit with a
least-squares curve fit computer program, The resulting equations are
inoluded with the graphical representations of the data,
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During the initial term of this contract, physical properties bibliographies
were prepared for B,H, (Appendix A) and NoH, (Appendix B), and data sheets
were compiled for N, (Appendix C). In addition, preparation of a bibli-
ography on N204 phyzical properties has been initiated.

Diborane

Except for the references cited under "General Reviews, Bibliographies,
and Physical Property Compendia," and some of the references appearing
under "General Chemistry, Reactions and Theory," the referenced data in the
anf bibliography (Appendix A) are original. All secondary sources are

noted as such.

It should be noted that references to B286 heat of formation are limited to
two primaiy sources and a compendium, The JANAF Thermochemical Data tables,

vhich are accepted as the recommended source for thermochemical data,
inclade a weighted value froi the references presented in the bibliography
and other primary sources., The two primary sources selected for inclusion

in the bibliography represent the experimental values of direct determinations.

Hydrazine

In the N2H§ bibliography (Appendix B), the work of Audrieth and Ogg has
been referenced several times as a secondary source of data. In these
icstaucesz, extensive data are presented along with curve-~fit equations for
the purticdlar prop~rty. It should also be noted that there is n'disngreu«
ment emong ti.e values for the heat of fusion of N2H‘. Scott and co-workera
obteined a value of 3025 cal/mole for the heat of fusion of Nzuh at the
melting point. DPreviously, values of 1000 and 1020 cal/mole had been
reported by Giguere, and Hieber and Wocrner, respectively,

Using tha bibliography as a guide, a compilation of N2"k physical properties

data woms prepared. These data sheeta (Appcndix C) presented in both metric
and English units, are Rocketdyne's recommendations for the best-vnlue datan
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for the physical'properties of hydrazine. All available properties data
for hydrazine were critically évaluated, and the most representative values
are included in the data sheets. ’

Nitrogen Tetroxide

Compilatiocn of a pliysical properties bibliograpty for nitrogen tetroxide
(N204) has been initiated. All of the references obtained through the
literature survey are being placed on indexed punch cards.
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’ Chlorine and Bromine on B,R, and B, H,, . The Valence of Boron,"
Chemische Berichte, 47. 3115-49 (1914) (Ger.).
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>

Denafty, Liquid

v Laubengayer, A, W., R. P, Ferguson, and A, E. Nevkirk, *The Dennitien,
Burfece Tenaions, and Parachors of Diborane, Roron Triethyl, and

Beron Tribromide, The Atomie Farachor of NOfon,' Jo Amey, Chem. Soc.,

63, 559-61 (l')'o 1 ) .
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Density, Vapor

Smith, 8. H., Jr., and R. R. Miller, "Some Physical Properties of
Diborane, Pentaborane,and Aluminum Borohydride," J, Amer, Chem. Soc., ‘
72, 1453-4 (1950).

Stock, A;, E. Wiberg, and W. Mathing, "Boron Hydrides. XXV. The
Parachor of Diborane, B2B6r Chemische Berichte, 69B, 281i-15 (1936)
(Ger.).

Carr, E, M,, J. T. Clarke, and H. L. Johnaton, "Vapor Density of ;
Diborane," J. Amer. Chem, Soc., 71, 740-1 (1949). n

Rifkin, E. B., and G. W, Thomson, "Vapor Density of Diborane,"
J. Amer, Chem. Soc., 72, 4825-6 (1950).

Smith, S. H., Jr., and R. R. Miller, "Some Physical Properties of
Diborane, Pentaborane and Aluminum Borohydride,"” J, Amer. Chem. Soc.,
72, 14534 (1950),

8tock, A., E. Wiberg, and W. Mathing, "Boron Hydrides. XXV. The
Parachor of Diborane, an6,” Chominche Berichte, 69B, 2811-15

(1936) (Ger.) (can be calculated from the data given).

Yapor Pressure

Clarke, John T., E. B, Rifkin, and H. L. Johnaton, "Condensecd Gas
Calorimetry. IIT. Heat Capacity, Heat of Fusior, Heat of Vaporiza-
tion, Vapor Pressures, and Entropy of Diborane between 13°K and the

Boiling Point (180.32°K)," J. Amer, Chem, Boe., 23, 781-5 (1953).

Ditter, J. F., J. C. Perrine, and I. Shapiro, "Vapor Pressure of
Deuterodiborane,” J, Chem. Fng. Data, 6, 271 (1961).

Poridon, leo J., and George E, MacWood, *Vapor Pressure of Diborane,"

J. Phys, Chem., 63, 1997 (19%9).
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Rifkin, E. B., E. C. Kerr, and H. L. Johnston, "Condensed Gas

Celorimetry. IV. The Heat Capacity and Vapor Pressure of Saturated
Liquid Diborane above the Boiling Point," J. Amer. Chem. Soc., 753,
785-8 (1953).

Smith,_S. H., Jr., and R. R. Miller, "Some Physical Properties of
Diborane, Pentaborane and Aluminum Borohydride,” J. Amer., Chem. Soc.,
72, 1453-4 (1950).

Stock, A., E. Wiberg, and W. Mathing, "Boron Hydrides. XXV. The
Parachor of Diborane, B,H," Chemische Berichte, 69B, 2811-15 (1936)
(Ger.).

Wirth, H. F., and E. D. Palmer, "Vapor Pressure and Dielectric
Constant of Diborane," J, Phys. Chem., 60, 911-13 (1956).

+

Surface Tension

Laubengayer, A. W., R. P. Perguson, and A. E. Newkirk, "The Densities,
Surface Tensions, and Parachors of Diborane, Boron Triethyl, and
Boron Tribromide. The Atomic Parachor of Boron," J. Amer. Chem. Soc.,

63, 559-61 (1941).
Smith, 8. H., Jr., and R. R. Miller, "Some Physical Properties of

Diborane, Pentaborane and Aluminum Borohydride,” J. Amer, Chem. Soc.,
72, 1453-4 (2950).

Stock, A., E. Wiberg, and W. Mathing, "Boron Hydrides. XXV. The
Parschor of Diborane, B2“6'" Chemigche Berfchte, 693, 2811-15%

(1936) (Ger.).

larachor

Laubengayer, A, W., R. P. Ferguson, and A, F. Newkirk, “The Densitiens,
Surface Tensions, and Parachors of Diborane, Boron Triethyl, and Boron
Tribromide, The Atomic Parachor of Horon," J, Amer, Chem, Soc., 63,
559-61 (1941).
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Stock, A., E. Wiberg, and W. Mathing, "Boron Hydrides. XXV. The
Parachor of Diborane," Chemische Berichte, 69B, 2811-15 (1936) (Ger.).

Compressibility

Galbraith, H. J., and J. F. Masi, "A Generalized Data-Fitting Routine
for the LGP-30 Computer; Application to Real-Gas Properties of

Diborane," Thermodynamic and Transport Properties Gases, Liquids and

8olids Papers, presented at the Symposium on Thermal Properties,
Lafayette, Indiana (1959) pp. 251-74.

Smith, S. H., Jr., and R. R. Miller, "Some Physical Properties of
Diborane, Pentaborane and Aluminum Borohydride,” J. Amer. Chem. Soc.,
72, 1453-4 (1950).

THERMODYNAMIC PROPERTIES

General Thermodynamic Properties and Functions

Galbraith, H. J., and J. F. Masi, "A Generalized Data~Fitting Routine
for the LGP-30 Computer; Application to Real-Gas Properties of
Diborane,” Thermodynamic _and Transport Properties Gasea, Lignids

and Solids. Papers presented al, the Symposium on Thermal Properties,
lafayette, Indiana (19539) pp. 251-7h.

JANAF Thermochemical Data (32“0)' The Dow Chemical Company, Thermal
Research laboratory, Midland, Michigan, Decembor 1964,

Bundaram, 8., “Thermodynamic Functions of 8ome Propellants,” J, Phys.
Chem., 36 (5/6), 376-77 (1963).
Webb, Allen N,, Johon T, Neu, and Kenneth 8. Pitzer, "The Infrared

and Raman 8pectra and the Thermodynamie Properties of Diborane,®
J. Chem. Phys., 12, 1007-1011 (1949). '
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Heat of Formation !Gas!

Gunn, Stuart R., and LeRoy G. Green, "Heats of Formation of Deuterated
Diborane,” J. Chem. Phys., 36, 1118 (1962).

JANAF Thermochemical Data (B2H6), The Dow Chemical Company, Thermal ,
Research lLaboratory, Midland, Mizhigan, December 1964. ‘

Prosen, Edward J., Walter H. Johnson, and Florence V. Pergiel, "Heats

of Formation of Diborane and Pentaborane,"” J. Res., National Bureau,
61, 247-50 (1958) (Recommended value).

Heat of Fuaion

Clarke, John T., E. B. Rifkin, and H. L. Johnston, "Condensed Gas
Calorimetry. III. Heat Capacity, Heat of Fhsion; Heat of Vaporiza-
tion, Vapor Pressures, and FEntropy of Diborane between 13°K and the
Boiling Point (180.32°K)," J. Amer. Chem. Soc., 73, 781-5 {1953),

Heat of Vaporization

—

Clarke, John T., E. B. Rifkin, and H. L. Johnston, "Condensed Gas
Calorimetry, III. Heat Capacity, Heat of Pision, Heat of Vaporiza-
tion, Vapor Preasures, and Fntropy of Diborane between 13°K and the
Boiling Point (180.32°K)," J. Amer. Chem, Soc., 75, 781-5 (1953).

Poridon, lao J., George E. MacWood, and Jih-Reng Bu,'The Heat of
Vaporization of Diborane,” J, Phys, Chem., 63, 1998-99 (1959).

Wirth, H. F., and E, D, Paimer, "Vapor Pressure agd Dielnctric
Constant of Diborane,” J, Phya, Chem., 69, 911-13 (1956).
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Clarke, John T., E. B. Rifkin, and H. L. Johnston, "Condensed Gas

Calorimetry. III. Heat Capacity, Heat of Fusion, Heat of Vaporiza-
tion, Vapor Pressures, and Entropy of Diborane between 13°K and the
Boiling Point (180.32°K)," J. Amer. Chem. Soc., 75, 781-5 (1933). .

Rifkin, Ellis B., E. C. Kerr, and H. L. Johnston, "Condensed Gas -
Calorimetry. IV. Heat Capacity end Vapor Preasure of Saturated Liquid
Diborane above the Boiling Point," J. Amer. Chem. Soc., 75, 785-88 (1953).

Capacity, Vapor

JANAF Thermochemical Data (32H6), The Dow Chemical Company, Thermal -

Research Leaboratory, Midland, Michigan, December 1964.

Stitt, F., "The Gascous Heat Capacity and Restricted Internal Rotation
of Diborane," J. Chem. Phys., 8, 981-86 (1940).

Enthalpy

Clarke, John T., E. B. Rifkin, and H. L. Johnston, "Condensed Gas
Calorimetry. III. Heat Capacity, Heat of Fusion, Heat of Vaporiza-
tion, Vapor Pressures, and kEntropy of Diborane between 13°K and the
Boiling Point (180.32°K)," J. Amer. Chem. Soc., 73, 781-5 (1953).

Rifkin, Ellis B., E. C. Kerr, and H. L, Johnston, "Condcnsecd Gasa
Calorimetry. IV. Heat Capacity and Vapor Pressure of Saturated Liquid
Diborane abcve the Boiling Point," J. Amer, Chem. Soc., 75, 785~88 (1953).

Webb, Allen N,, John T. Neu, and Kenneth 8, Pitzer, "The Infrared and
Raman Spectra and the Thormodynamic Properties of Dihorane," J. Chem.
Phys., 17, 1007-1011 (1949) (calculated).

JANAF Thermochemical Data (B
Remearch Laboratory, Midland, Michjgan, December 1964,

Hﬁ) The Dow Chemical Company Thermal
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Entropy

. Clarke, John T., E. B. Rifkin, and;gz L. Johnston, "Condensed Gas
Calorimetry. II{. Heat Capacity, ﬁeat of Fusion, Heat of Vaporiza-

. tion, Yapor Pressures, and Entropy of Diborane between 13°K and the
Boiling Point (180.32°K)" J. Amer. Chem. Soc., 75, 781-5 {1953).

: JANAF Thermochemical Data (BQHG)’ The Dow Chemical Company, Thermal
Research Laboratory, Midland, Michigan, December 196%.

Poridon, Leo J., George E. MacWood, and Jih-Heng Hu, "The Heat of
Vaporization of Diborane," J. Phys. Chem., 63, 1998-9 (1959).

Pitzer, K. S., "Electron Deficient Moleculea. III. The Entropy of
Diborane," J. Amer. Chem. Soc., 69, 184 (1947) (calculated).

Rifkin, Ellis B., E. C. Kerr, and H. L. Johnaston, "Condensed Gas
Calorimetry. IV. Heat Capacity and Vapor Pressure of Saturated
Liquid Diborane above the Boiling Point," J. Amer. Chem Soc., 75,
785-88 (1953).

Webb, Allen N., Jolm T. Neu, and Kenneth 8. Pitzer, "The Infrared
and Raman Spectra and the Thermodynamic Properties of Diborane,"
J. Chem. Phys., 17, 1007-1011 (1949) (calculated).

TRANSPORT PROPERTIES

Viscosity, Liquid

Smith, 8. H., Jr., end R, R. Miller, "Some Physical Properties of
Diborane, Pentaborena and Aluminum Borohydride," J, Amer, Chem. Soc.,

' 72, 14534 (1950).

Viscosity, Vapor

Svehla, Roger A., "Ertimated Viscosities end Thermal Conductivities
, of Gases at High Temperature,"” NASA Tech. Rept. R132, 140 pp. (1962)
: (calculated).
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Thermal Conductivity

’

Svehla, Roger A., "Eatimated Viscosities and Thermai Conductivities
of Gases at High Temperstures,” NASA Tech. Rept. R132, 140 pp., (1962)
(calculated).

ELECTROMAGNETIC PROPERTIES

Dipole Moment

Ramasvamy, K. L., "Dielectrie Coefficients of Volutile Compounds of
Fluorine and Boron, "Proc. Indian Aced. Sei., 2A, 364-377 {1935).

L3
s

Dielectric Constant, Liqnid

) Wirth, H, F., and E. D. Pelmer, "Vapor Preasure and Dielectric
Constant of Diborane,” J. Phys. Chem., 60 911-13 (1956).

Dielectric Constant, Vapor

- o mem v em =

t Ramaswamy, K, L., "Dielectric Coefficients of Volatile Compounds of
Fluorine and Boron," Proc. Indian Acad. Seci., 24, 264-377 (1935).

Magnetic Susceptibility e

g Barter, C., R. G. Meisenhoimer, and D, P. Stevenson, "Diamagretic
: Busceptibilities of ?implo Hydrocarbons and Volatile Hydridos,”

J. Phys. Chem., 64, 1312-16 (1960),
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Poramagnetism and Diamagnetism

Muliiken, R. S., "Elecironic Structure of Polyatomic Molecules and
Valence. Megnetism of %2H6’. Phys. Rev., 43, 765 (1933),

Sachease-Gottingen, H. H., "The Application of the Paramagnetic
Para-Rydrogen Transformation to the Determination of Magnetic
Moments and of Reaction Cross Sections,” Z, Elektrochem., 40, 531-5

(1934).

OPTICAL AND SPECTROSCOPIC PROPERTIES

Ultraviolet Spectra

Price, W. C., "The Absorption Spectrum of Diborane," J, Chem. Phys,,
16, 894-902 (194R).

Infrared Spectra

Beachell, Buxrold C., and Fugene J. levy, "Near Infrared Spectrum of
Diborans,” J, Chem. Phys,, 23, 2168-70 (1955).

Price, W, C., "The Abgorption Spectrum of Dihorane,” J, Chem, Phys,,
16, 894-902 (19&8),

Price, W. C., "The Structure of Diborane,” J, Chem. Phys,., 13,

614 (1947).

VWebb, Allen N., John T. Neu, and Kenneth 8, Pitzer, "The Infrared
and Raman Bpectra end the Thersodynamic Properties of Diboreie,”

J. Chen, Phys,, 17, 1007-1011 (1949),
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Raman Spectira

Webb, Allen N., John T. Neu, and Kenneth 8. Pitzer, "The Infrared
and Raman Spectra and the Thermodynamic Properties of Diborane,”

J. Chem. Phys., 17, 1007-1011 (1949).

Vibrational Spectra

Index

Lehmann, Walter J., "The Average Rule Compared With the Complete
Isotopic Rule for Vibrational Frequencies,” J. Mol, Spectroscopy,
2, 1-13 (1961).

Svedlov, L. M., and I. N. Zaitsevs, "Vibrational Spectrsn and the
Diborane Structure,” Zhur, Fiz, Khim., 29, 1240-7 (1955) and
Xzvest. Aked. Nauk. U.S.S.R. Ser. Fiz., 18, 672 (19%4).

Nuclear Magnetic Resonance

Gaines, Donald F., "Nuclear Magnetic Resonance Studies of Diborane

~ and Sodium Diborohydride,” Inorg. Chem., 2, 523-6 (1963).

Gaines, Donald P., Riley Schaeffer, and Fred Tebbe, "Bridge Proton-
Terminal Proton Coupling in Diborane,” J, Phys. Chem., 67 (9),

- 1937-8 (1963).

0gk, Richard A., Jr., "Nuclear Magnetic Resonance Spectra and
Etructure of Borohydride Ion and Diborane,” J. Chem, Phys., 22,
1933-5 (1954).

of Refraction

Ramanvamy, K.“L,, "Refractive Indices of Volatile Compounds of
Fluorine and Boren,* Proc, Indisn Acad. 8ci., 24, 630-6 (1935).
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General Chemistry, Reactions and Theory
L] ) i
!
CCC-0168-Fr, Final Report, Research and Development of Advanced
* 821id Propellant Systema, Callery Chemical Cémpany, Callery,

Pennsylvania (10 December 1962) Contract No. NOw 60-0168c,
CONFIDENYIAL.

Hurd, D. T., "The Hydrides of the Group III Element-; Boron," An
Introduction the Chemistry of the Hydrides, John Wiley & Sons, Inc.,
New York (1952),(secordary source). '

Kaufman, Joyce J,, “Theoretical and Quantum Chemistry of Boron )
Compounds and Related Molecules,” U.8. Department of Commerce,
Office of Technical Service, AD 418393, 21 pp, (1963).

Kerrigan, Jomes V., "Interaction of Bl with B ," Inorg. Chem.,
3 (6), 908-10 (1964). | .
Diborane—Space Stérable Fuel, Callery Chemical Company, Callery,

Pennsylvania, January 1962,

Mikhaflov, B, M., "The Chemistry of Diborane,” Russian Chemical
Beviews, 31, 417-51 (1962) (knglish translation) (secondary source).

8chenker, Erhard, "Use of Complex Porohydrides and Diborane in

Organic Chemistry," Angew, Chem., 23, 81-107 (1961) (Ger.) (secondary
source). »

Btock, A., K. Friederici, and 0. Priesa, “Boron Hydridea. III.

8olid Boron Hydrides; Additional Properties of B ﬂ6,” Cheminche

; Berichte, 46, 3353-65 (1913) (Ger.).

Btock, A., and E. Kuss, "Boron Rydrides. VI. The Simpleat Borohydrides,"
Chemische Berichte, 56B, 789-808 (1923). '

8tack, A., E. Kuss, and 0. Priess, "Boron Hydrides., V. Action of
Chlorine and Bromine on nanb and “10“15 The Valence of Doron,”
Chemiache Rerichte, 47, 3115-49 (1914) (Ger.). I
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Bauer, S. H., "Boron Hydrides,” Encyclopedia of Chemical Techrology,
The Interscience Encyclopedia, Vol. 2, 593-600 (1948), (secondary

source).

Schlesinger, H. I., and H, C, Brown, "New Developments in the Chemistry
of Diborane and Borohydrides., I. Gienexal Summary," J, Amer. Chem.

Soc., 75, 186-90 (1953).

Solubility

Boldebuck, E. M., J. R, Elliott, G. P. Roedel, and W. L. Roth,
"Solubility of Diborane in Ethyl Ether and in Tetrahydrofuran,®
General Electric Company, Schenectady, New York, Project Hermes
R-port No. 55288, (19 November 1948) p. 1.

Devyatykh, G. G., A. E. Exheleva, A, D. Zorin, and M. V. Zueva,
"Solubility of Volatile Hydrides of Elements of Groups III-VI in
Some Solvents,” Russ, J. Inorg. Chem., 8 (6), 678-82 (1963) (Eng.)

Elliott, J. R., W. L. Roth, G. F. Roedel, and E. M. Boldebuck,
*50lubility of Diborane and Boron-Containing Lithium Saltw,”
J. Amer, Chem, Soc., 74, 5211-12 (1952),

Ru, Jih-Heng, and George E. MacWood, "The Solubility of Hydrogen
in Diborane," J. Phys, Chem., 60, 1483-86 (1956).

McCarty, L. V., and John Guyon, "The Approximate Soludbility of
Diborane in Pentane,” J. Phys, Chem., 58, 28%5-6 (1934).

Bchlesinger, H., Final Report, Navy Contract N 173 8-9058 and 9820
(1944~5), University of Chicago, as given by W. H. Bchecter,

R. M. Adams, and C. B. Jackson, "Boron Hydrides and Related Con-
pounds,” Callery Chemical Company, Callery, Pennaylvania, Contract
No. NOa(s) 11992 (March 1951) p. 10, as reported by the Battelle
Memorial Institute, Liquid Propellants Handhook, Vol, 2, "Boron
Compounds , (1954 ) CONFIDENTIAL.
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(v) " APPEDIX B

NZHk PUYSICAL PROPERTY BIBLIOGRAPHY

. GENERAL IDENTIFICATION

Molecular Weight

International Atomic Weights, 1959,

Molecular Structure

Awdrieth, L. F,, W. Nespital, and H. Ulich, "Electric Moments of
Hydrazine and its Derivatives,” J. Am. Chem. Soc,, %3, 673-78 (1933).

Fresenius, W., and J, Karweil, "Normal Vibrations and Configuration
of Hydrazioe. 1I. Infrared Spectrum of Hydrazine,” Z. Phys. Chem.,
Bik, 1-13 (1939) (Ger.).

Giguere, P.A,, and V, Schomaker, "An Electron Diffraction Study of
Hydrogen Peroxide and RHydraczine,"” J, Am, Chem, Soc., 63, 2025-29
(1943).

Penny, W, G., and G, B, B, M. Sutherland, "A Note on the Structure
of u,‘,oz and N2"ﬁ with Particular Reference to Electric Moments and
Free Rotation,” Jians, Fer, Soc,, 30, 898-902 (1934),

Ulich, H., H. Peiskor, and L, F, Audrieth, "Dipole Moments of lydra-
sine and its Derivatives. II," Cheminche Perichte, 68D, 1677-82
(1935) (Ger.). '
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General Revievs, Bibliographies, and Physical

Property Compendia

AGC LRP;178, Physical Properties of Liquid Propellants, Aerojet-

General Corp., Sacramento, Calif, (13 July 1960).
% '
Audrieth,éL. F., and B. A, Ogg, The Chemistry of Hydrazine, John

|
Wiley and Sons, Inc., New York (1951).

The Battelle Memorial Inntitute, Columhus, Ohio, Liquid Propellants
Handbool, "Hydrazine,” Vol. 1 (1938) CONFIDENTIAL.

Liquid Propellant Information Agency, Ligquid Propellant Manual,
"Hydrazine” (1938).

"Military Specification: Propellant, Hydrazine," MIL-P-206536B
(3 March 1964),

RR59—&8, Propellant Properties Manual, Rocketdyne, a Division of
North American Aviation, Inc., Canoga Park, California (February 1960),

R—}l}ﬂh Mechanical System Demign - éritpria Manual for Hydrazine,
Rorketdyne. a Division of North American Aviation, Inc,, Canoga
Park, California (September 1961) Contract AF33(616)-6939,

R-313%, lydrazine Handling Manunl, Rocketdyne, a Divisjon of North
American Aviation, Inc,, Conega Park, Californie (Septenber 1961)
Contract AF33(616)~G9Y,

Washburn, Fdward, ed,, International Critical Tablea of Numerical

Data; Physics, Chemintry and Technology, Mctrav-Hill Book Co., Inc.,
New Yort, (1928),
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PHASE PROPERTIES

Melting (Freeszing) Point

de Bruyn, C. A. Lobry, "Free Hydrazine," Chemische Berichte, 28,
. 3085-6 (1895) (Ger.).

de Bruyn, C. A, Lobry, "Free Hydrazine," Rec., Trav. Chim., 15,

174-84 {1896) (Fr.).

Friedrichs, P., "Ammoriates as Binary Systems, Il1. Hydrazine-Armonia,"
2,anorg, allgem. Chem., 127, 221-7 (1923) (Ger.).

Giguere, P. A., "Spectroscopic Evidence of Hydrogen Bonde in Hydrogen
Peroxide and Bydrazine,® Trans. Roy. Soc. Can, (III), 33, 1-8 (194l1).

Mohr, P, H., and L. F. Audrieth, "The Hydrazine-Water System,"
J. Phys, and Colloid Chem,, 53, 901-6 (1949).

Scott, D. W., G, D, Oliver, M. E, Gross, W, N, Hubbard, and H. M,
Huffman, "Hydrazine: Heat Capacity, Heats of Fusion and Vaporiszation,
Vapor Prossure, Entropy and Thermodynamic Functions,” J. Am. Chem,
Boc., 71, 2293-97 (1949).

Semishin, V. 1., "Internal Friction and Viscosity of the Systeam
Hydragine-Water," J. Gen, Chem, (USSR), 8, 654-61 (1938) (Russ.).

Boiling Point

de Bruym, C. A, Lobry, "Free Hydrazine,” Chemische Berichte, 28,
3085-6 (1895) (Ger.). |

de Bruyym, C. A. lobry, "Free Rydraszine,” Roc, Trav, Chim , 13,
. 174-84 (1896) (Fr.).

Giguere, P, A., "Spactroacopic Evidence of Hydgogen Donds in Hydrogen
Peroxide and Hydrazine," Irana, Roy, Soc, Can. (1I1), 33, 1-8 (1941),
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Hieber, V. W., and A, Woerner, "Thermochemical Measurements on
Complex-Forming Amines and Alcohols," Z. Elektrochem., 40, 252-6

(1934) (Ger.).

Semishin, V. 1., "Internal Friction and Viscosity of the Sysicwm
Bydrazine-Water,” J, Gen, Chem. (USSR), 8, 654-61 (1938) (Russ.).

Critfical Constants

Critical Pressure -

Bertram, M., and B, Boltwood, as quoted by C. A, Lobry de Bruyn,
"Free Bydrazine," Rec. Trav. Chim., 15, 174-84 (1896) (Fr.).

Critical Temperature -

de Bruyn, C. A. Lobry, "Free Hydrazine," Rec. Trav, Chim,, 15,
174-84 (1896) (Fr.).

Density, Solid

Beck, G., Wiensr Chemiker-Zeitung, 46, 18-22 (1943), as given by
Audrieth and Ogg, The Chemistry of liydrazine, John Wiley and Sons,
ine. (1951).

Denafty, Liquid

Ahlert, R, C., G. L, Bauerle, and J, V. Locce, "Density and Visconity
of Anhydrous Rydrazine at Elevated Temperatures,” J, Chem, kng. Data,
7, 158-60 (1962), '

Barrick, L, D,, G, W, Drake, and H, L, Iochte, "The Parachor and
Molecular Refraction of Hydrazine and Bome Aliphatic Derivatives,®
J, M, Chem, Soc., 38, 160-2 (1936).
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ﬁrnhl. J. W., "Spectrocbexixiltry of Nitrogen, V,” 2. phys. Chem., 2_2_,
376-409 (1897) (Ger.).

Bruhl, J, W., "Spectrometric Determinations," Chemische Berichte,
30, 158-72 (1897) (Ger.).

de Bruyn, C. A. Lobry, "Free Hydrazine," Rec. Trav, Chim., 15,
174-84 (1896) (Fr.).

Dito, J. W., "The Densities of Mixtures of Hydrazine and Water,"
J. Chem. Soc., 82, Aii, 499 (1902).

Hough, E. W., D. M, Mason, and B, H. Sage, "Heat Capacity of the
Hydrazine-Water System," J. Am. Chem. Soc,, 72, 5774~5 (1950).

Semishin, V. I., "Internal Friction and Viscosity of the System
Bydrazine-Water," J, Gen. Chem., (USSR), 8, 654-61 (1938) (Russ.).

Walden, P., and H, Hilgert, "Water-Free Hydrazine as an Ionizing
Medium for Electrolytes and Non-Electrolytes," Z, phys, Chem.,
1654, 241-71 (1933) (Ger.).

Denaity, Vapor

Giguere, P, A., and R. E. Rundle, "The Vapor Density of Rydruine,
J. Am, Chem. Soc., 63, 1135-57 (1941).

Vapor Pressure

Briegleb, G,, H. Bcholze, and W, Strohmeier, "]Is Hydraxzine Associated
in the Gas Phaso? (Vapor Density and Absorption Measurements),®
Z. phys. Chem,, 199, 15-21 (1952) (Ger.),

Burtle, J. G., "Vapor-Pressure-Compoaition Measurements on Aqueous
Bydrazine Solutjons,” Ind, Fng, Chem,, M, 1675-6 (1952).
(N H, -10 mixtures)
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de Bruyn, C. A. Lobry, "Free Hydrazine," Rec, Trav. Chim., 15,
174-84 (1896) (Fr.).

Hieber, V. W., and A, Woerner, "Thermochemical Measurements on .
Complex-Forming Amines and Alcohols," Z, Elektrochem., 40, 252-6
(1934) (Ger. ). - .

Scott, D, W., G. D. Oliver, M. E. Gross, W. N. Hubbard, and H. M,

Huffman, "Hydrazine: Heat Capacity, Heats of Fusion and Vaporization,
Vapor Pressure, Entrepy and Thernbdynanic Functions," J, Am, Chem. Soc., .
71, 2293-97 (1949). . ’

Surface Tension

Baker, N, B., and E, C. Gilbert, "Surface Tension in the System
N H, -Water at 25 C," J,_Am, Chem. Soc., 62, 2479-80 (1940). (N2H,‘—
0 mixtures)

Barrick, L. D., G. W, Drake, and H, L. Lochte, "The Parachor and
Molecular Refraction of Hydrasine and Some Aliphatic Derivatives," \
J. Am. Chem. Soc.., 58, 160-2 (1936).

Coefficient of Thermal Expansion

Kretachmar, George G., ".“"rhe Thermal Expinuion of Some Liquids of
Interest as Rocket Fuels " Jet Propulsion, 24, 379-81 (1954).
{100 percent N,H, not given)

Parachor

Barrick, L. D., G. W, Drake, sand H. L. Lochte, "The Parachor and
Molecular Refraction of Hydrasine and Some Aliphatic Derivatives,"
J. Am, Chem, Boc., 38, 160-2 (1936),
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Solvent Properties

/

Audrieth, L. F., and B. A. Ogzg, The Chemistry of Hydrazine, John
Wiley and Sons, Inc., New York (1951). (secondary source)

Welsh, T. W. B., and H. J. Broderson, "Anhydrous Hydrazine. III.
Anhydrons Hydrazine as a Solvent," J. Am. Chem. Soc., 37, 816-24 (1915

THFRMODYNAMIC PROPERTIES

3

Thermodynamic Properties and Functions, General References

Heat

Kobe, Kenneth A;, and R. H. Harrison, "Thermo Data for Petrochemicals.
XXI. Ammonia, Hydrazine and the Methylamines," Petroleum Refiner,
33 (11), 161-4 (1954). (secondary source)

of Formation

Aulvieth, L. F., and B. A. Ogg, The Chemistry of Hydrazine, John
Wiley and Sons, Inc., New York (1951). (based on the data of Hughes)

Hughes, Albert M., R. J. Corrucini, and E. C. Gilbert, "Hydrazine.
The Heat of Formation of Hydrazine and of Hydrazine Hydrate," J. Am.

Chem. Soc., 61, 2639-42 (1939). (liquid and vapor)

JANAF Thermochemical Data (NQII,‘), The Dow Chemical Company, Thermal

Research Laboratory, Midland, Michigan (December 1965) (liquid and
gas).

Roth, W. A., "Contribution to the Chemistry of Hydrazine," Z.
Electrochem., 50, 111 (1944) (liquic) (Ger.).

B-7

FPTI SAgnT NY

P R

).

.



s eme

- v e -y

& Ao

Scott, D. W., G, D, Oliver, M, E, Gross, W, N. Hubbard, and H, M.
Huffman, "Hydrazine: Heat Capacity, Heats of Fusion and Vaporiza-
tion, Vapor Pressure, Fntropy and Thermodynamic Functions," J. Am.
Chem. Soc., 71, 2293-97 (1949). (calculated)

vﬂent of Fusion*

Audrieth, L. F., and B, A, 0gg, The Chemistry of Hydrazine, John
Wiley and Sons, Inc,, New York (1951). (secondary source) '

Giguere, P. A., "Spectroscopic Evidence of Hydrogen Donds in Hydro-
gen Peroxide and Hydrazine," Trans. Roy. Soc. Can. (III), 35, 1-8
(1941).
Hieber, V, V., and A. Woerner, "Thermochemical Measurements on
Complex Forming Amines and Alcohols," 2. Elektrochem., 40, 252-6
(1934) (Ger.).

~ Scott, D. W., G. D. Oliver, M. E. Gross, W. W, Hubbard, and H. M,
Huffwan, "Bydrazine:; Heat Capacity, Heats of Fusion and Vaporiza-
tion, Vapor Pressure, Entropy and Thermodyammic Functions," J, Am.
Chem, Soc,; 71, 2293-97 (1949).

Heat of Vaporization

Audrieth, L. P., and B. A, Ogg, The Chemiatry of Rydrazine, John
Wiley and Sons, Imc., Maw York (1951), (secondary source)

Fresenius, W,, and J, Karweil, "Normal Vidbrations and Configuration
of Hydrazine, 11, Infrared Spectrum of lydrazine,” 2. phys. Chenm, ,
BA4, 1-13 (1939) (Ger.).

#There is dissgreement among the values for the heat of fusion of Noli,.
Becott and coworkers olLtained 3025 cal per wmole for the heat of fusion
st the melting point, Proviously the valuea 1000 and 1020 cal per
wole had been reported by Giguere and Hieber and Woerner, respectively,
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Giguere, P. A., "Spectroscopic Evidence of Hydrogen Bonds in Hydro~
gen Peroxide and Hydrazine,” Trans. Roy. Soc. Can. (III), 35, 1-8
(1941).

Hieber, V. W., and A. Woerner, "Thermochemical Measurements ou Complex-

Forming Amines and Alcohols,” Z. Elektrochem., 40, 252-6 (1934) (Ger.).

Scott, D. W., G. D. Oliver, M. E. Gross, W. N. Hubbard, and H. M.
Huffman, "Hydrazine: Heat Capacity, Heats of Fusion and Vaporiza-
tion, Vapor Pressure, Eniropy and Thermodynamic Functions," J. Am.
Chem. Soc., 71, 220397 (1949). (calculated)

JANAF Thermochemfcal Data (Nznh), The Dow Chemical Company, Thermal
Rescarch Laboratory, Midiand, Michigan (December 1965).

of Combustion

Hughes, A. M., R. J. Corrucini, and E. C. Gilbert, "Hydrazive. The
Heat of Formation of Hydrazine exd of Hydrazine Hydrate," J. Anm.
Chem. 8oc., 61, 263542 (1639).

Heat Capacity, Solid

o

Scott, D. ¥., G. D. Oliver, M. ¥. Gross, W. N. Hubbard, and H. M.
Huffoan, "Hydrazine: fleat Capacity, Heats of Fusion and Vaporiza-
tion, Vapor Pressure, Eutropy and Thermodynamic Punctions,” J. Am.

Chem. Boc.; 21, 2293-97 (1949).

‘apacit fqul

Hough, B. W., D. M. Mason, and B. U. SHage, "leat Capacity of the
Eydrazine-Water System,” J. Am. Chem. Hoc., 72, 3774-3 (1950).

8cott. D. W., G. D. Oliver, M. E. Gross, W. N. Hubbard, and H. N.
Ruffmen, "Hydrazino: Heat Capacity, Heats of Pusion and Vaporiza-
tion, Vapor Preasure, Futropy and Thermodynamic Punctions,” J, Am,

Chem, So0., 71, 229397 (1949).
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Heat Capacity, Gas

Eucken, A., and H. Krome, "Development of the Thermal Conductivity
Method for Measurement of the Molar Heat of Very Dilute Gases through
Determination of the Accommedation Coefficient,"™ Z. phys. Chem., 45B
(3), 175-92 (1940) (Ger.). (cv only)

JANAF Thermochemical Data (Nznz;)' The Dow Chemical Company, Thermal
Research Laboratory, Midland, Michigan (December 1965).

Scott, D. W., G. D, Oliver, M, E. Gross, W. N, Hubbard, and H. M.
Huffman, "Hydrazine: Heat Capacity, Heats of Fusion and Vaporiza-
tion, Vapor Pressure, Entropy and Thermodynamic Functions,” J. Am.

Chem. Soc., 71, 2293-97 (1949).

I,

Ratio of Specific Heats

Kretschmar, George G,, "The Isothermtl Compressibilities of Some
Rocket Propellent Liquida and the Ratios of the Two Specific Heats,"
Jet Propulsion, 24, 175-9 (1954).

Enthalpy

Audrieth, L. F., and B. A. Ogg, The Chemistry of Hydrazine, John
Wiley and Sons, Inc., New York (1951). (bascd on the data of Scott,
et ai.)

JANAF Thermochemical Data (Ngnh), The D;v Chemical Company, Thermal
Research Laboratory, Midland, Michigan (December 1965).

Beott, D. W., G. D. Oliver, M. E. Gross, W. N. Hubbard, and H. M.
Huffwan, "Hydrazine: Heat Capacity, Heats of Pusion and Vaporiza-
tion, Vapor Premmure, Entropy and Thermodynamic Functions,” J. Am.
Chem. Soc., 71, 2293-97 (1949). (calculated)
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Entropy

Audrieth, L. F., and B. A. Ogg, The Chemistry of Hydrazine, John

. Wiley and Sons, Inc., New York (1951). (based on the data of Scott,
et al.)
. JANAF Thermochemical Data (N2Hh), The Dow Chemical Company Thermal

Research Laboratory, Midland, Michigan (December 1965).

Scott, D. W., G. D. Oliver, M. E. Gross, W. N. Hubbard, and H. M.
Huffman, "Hydrazine: Heat Capacity, Heats of Fusion and Vaporiza-
tion, Vapor Pressure, Entropy and Thermodynamic Functions,™ J. Am.
Chem. Soc., 71, 2293-97 (1949). (calculated)

TRANSPORT PROPERTIES

Yiscosity
Ahlert, R. C., G. L. Bauerle, and J. V. Lecce, "Density and Viucoﬁty
of Anhydrous Hydrazine at Elevated Temperatures," J. Chem. Eng. Data,
2, 158-60 (1962). (vest source)

Mason, D. M., 0. W, Wilcox, and B. H. Sage, "Viscosities of Several
Liquids,” J. Phys, Chem., 56, 1008-10 (1952). (Data given at elevated

pressures.)

Semiahin, V. I., "Internal Friction and Viscosity of the Syastem
Hydrazine-Water,” J. Gen. Chem. (USSR), 8, 654~61 (1938)(Russ.).

Walden, P., and H. Hilgert, "Water-Pree Hydrazine as an JYonizing
Medium for Electrolytes and Non-Electrolytes,” Z. phys. Chem,,16%A,
241-71 (1933) (Ger.).

P Thermal Conductivity

Gray, P., and P, G, Wright, "The Therwal Conductivity of Hydrazine
Vapor,® Combustiun and Flame, 4, 95-6 (1960). (vapor)
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Lecce, J. V., "Weighted Least Bquares Analysis of Thermal Conductivity
Data,” Research Memorandum 854-351B, Rocketdyne, a Division of North

American Aviation, Inc., Canoga Park, California (1 October 1962).
(1iquiad)

Sonic Velocity

Kretschmar, George G., "The Isothermal Compressibilities of Some
Rocket Propellant Liquids, and the Ratios of the Two Specific Heats,”
Jet Propulsion, 24, 175-9 (1954).

Kretachmar, George G., "Determination of the Velocity of Sound in
_Hydrazine-Water Miztures by Means of the Debye-Sears Ultrasonic

Light Diffraction Hhenomenon,” J, Chem. Phys., 23, 2102-4 (1955).

(Nzn,. - 8,0 mixtures)

ELECTROMAGNETIC PROPERTIES

Dielectric Constant

.

Audrieth, L, F., W. Nespital, and H. Ulich, "Electric Moments of
Hydrasine and its Derivatives,” J, Am, Chem, Soc., 33, 673-78 (1933).

Ulich, H., and W, Nespital, "Dielectric Constants of Bome Liquids,"”
Z, phys. Chem,, 168, 221-33 (1932) (Ger.).

Dipole Moment

Audrieth, L, F,, W, Nespitai, and H, Ulich, "Electric Moments of
Bydrazine and its Doevivatives,® J, Am, Chem, Soc,, 33, 673-78 (1933).

Penny, W, G,, and G, B. B, M, Buthorh:;d.k *A Note on the Structure
of !12052 and Nzn,. with Particular Reference to Electric Nowents and
Free Rotation,* Jrans, Par, Soc,, 30, 898-902 (1934), (caloulated)
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Ulich, H., H. Peisker, and L. F, Audrieth, "Dipole Moments of Hydra-
sine and its Derivatives, II," Chemische Berichte, 68B, 1677-82

(1935) (Ger.).

Electrical Conductivity

Bredig, G., "The Affinities of Bases,” Z, phys, Chem., 13, 289-326
(1894) (Ger.).

Vieland, Leon J., and Ralph Sewsid, "The Electrical Conductance of

: Weak Acids in Aohydrous Hydrasine," J. Phys. Chem., 59, 466-9 (1955).
i (N,‘,B,‘ - B,0 mixtures)

Walden, P., and H. Hilgert, "Water-Free Hydrazine as an Ionizing
Medium for Electrolytes and Non-Electrolytes,” 2. phys. Chem., 165A,
241-71 (1933) (Ger.).

3V ANT

OPTICAL AND SPECTROSCOPIC PROPERTIES

Infrared Spectrum

Fresenius, W., and J, Karveil, "Normal Vidrations and Configuration -
T- of Hydrasine, II. Infrared Spectrua of Hydiasine," Z, phys. Chem,,
BiA, 1-13 (1939) (Ger.).

Giguere, P. A., "Spectroscopic Evidence of Hydrogen Bonde in Hydrogen
Peroxide and Rydrazine,” Trans, Roy, Soc, Can, (I1I), 35, 1-8,
(1941).

Ultraviolet Spectrm

Imanishi, 8., "Note on the Ultraviolet Absorption Spectrum of Hydra-

sine Vapor," Boi, Pop, Inet, Tokyo, 13, 166-7 (1931) (ing.).
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Imanishi, S,, "Ultraviolet Absorption and Raman Effect for Rydrazine,"”
Nature, 127, 782 (1931).

Raman Spectrum

Durig, J. BR., 8. F. Bush, and E. E. Mercer, "Vibration Spectrum of
Eydrazine-d4 and a Raman Study of Hydrogen Bonding in Bydrazine,"
J. Chem. Phys., 44, 4238-47 (1966).

Fresenius, W., and J. Karweil, "Normal Vibrations and Configuration
of Rydrazine. II. The Infrared Spectrum of Hydrazine,” J. Phys,
Chem., B4k, 1-13 (1939) (Ger.).

Imanishi, 8., "Raman Effect of Liquid Hydrazipe,” Sci. Pop. Inat,
Xokyo, 15, 1~7 (1931).

Imanishi, 8., "Ultraviolet Absorption and Raman Effect for Hydrazine,"
Neture, 127, 782 (1931). _

Sutherland, G, B. B. M,, “Raman Lines of Simple Polyatomic Molecules,”
Nature, 126, 916-7 (1930).

Index of Refraction

1]

Barrick, L. D., G. V. Drake, and H. L. Lochts, “The Parachor snd
Molecular Refraction of Rydrazine sand Some Aliphatic Derivatives,”
} J: Am, Chem, Soc,, 58, 160-2 (1936).

Bruhl, J, W., "Hydrasine, Hydrogen Peroxide, Water,” Chemiache
Berichte, 30, 162-72 (1897) (Ger.).

Foss, John G,, and Joim A, Schellmun, "Measurement of Ultraviolet
Indices of Refraction with a Differential Refractometer,” J, Chem,

Fngr, Data, 9, 351-3 (1964),
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APPENDIX C

PHYSICAL PROPERTIES OF HYDRAZINE

(U) The physical properties of hydrazine are presented in Table C-1. Figures
C~-1 through C-8a are graphical illustrations of properties listed in

Table C-1.
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THERMAL CONDUCTIVITY x 103 cal/sec-em=C
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