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(U} Tins report presents the werk accomplished during

the fourth report period of the Acvospilie Advanced Develop-
ment Propram uncer Air Force Contract AFOA(0611)- 11399,

The report covers the period | December 1900 through 28

: February 1907. A purtion af the design and teoling effort
i in Task 1] represents a joint effort with the Advuanced
Engincering Program, Systems and Dynamics Investigation
(nerospike) Contract NAS 8-1Y9, This repoert has been as-
signed Nocketdyne report No. R-0537-4,

(U) Publication of thig report does not constitute Air

Force approval of the reports' findings or conciusions.

it is published only for the exchange and stimulation of
nevw ideas,

Vernon L. Mehugh
1/14, USAY
Project IEngiuneer

ABSTRACT

{(U) YProgram status aml technical results obiained at
the end ol the report period are described for the Ad-
vanced Development Program, Aerospile., This program in-
cludes analysis and prelimipary design of an advanced
rocket engine using an Aerospilie nvzzle and experimental
evaluation of critical technology related to the Acro-
spihe coiicept.  Component and system festures, physical
arrangerenis, and design peromcters and details lLiave
been established for an optimum demonstrator engine,
Studies of application of a flight engine to certain
vehicles are completed, Experimental injector perform-
ance investigations on a segment chamber and experimental
cooling invesiigations on segment chambers and material
studies ave completed., Fabrication of full-scale, cooled
thrust chambers for performance demonstratioms is under
way. Fobrication of segments for structural and cooling
evsiumiivs 18 alsv in progress,
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. I. INTRODUCTION

(c) The Advanced Developmeni Frogram {ADP), Acrcepike Nozzle Concept
started 1 March 1966 with a 17-monih duration. The objectives are teo
evaluate critical technology associated with the Aerospike concept and
produce thie preliminary design of an advanced hydrogen-oxygen engiie of
the following characterietics:

1. 250,000-pound thrust (neminal rated) with throitling to 20 per-
cenl of rated thrust

2. 6:1 mixture ratio (nominal) with a range of 5 to 7:1

3. 96 percent (minimm:) of theoretical shifting specific impulse
at rated thrust; 95 percent (minimum) during throttling

4. 100-~inch maximum overall diameter
5. 10-hours life between overhauls with 100 reuses
6. Restartable at altitude
The total effort is comprised of two major tasks:
Task 1, Analysis and Design
A. Module Design
B. Application Study
Task 2, Fabrication and Test
A. Injector Performunce Investigations
B, Thrust Chamber Nozzle Iuvestigations
€. Thrusi Chamber Cooling Investigations
D. Segmeni Structural Evaluvation

(C) The previcus three quarterly reports covered the following major
areas of work:

1. Design, fabricetion, and testing of 2,5K eolid-wall segments and
an array of injector concepts and patterns

2. Design, fabrication, and initiation of testing of tube-wall
segments for thrust chamwber cooling investigations of nickel
and copper tubes

3. Materials analysis and testing for determinaticn of fatigue
characteristice as a function of processing

CONFIDENTIAL




. Design and fabrication of 250K full-scale solid-wall and tube-
wall thrusi chambers and injectors for performance demonstrations

9. Design of a 20K structural evaluation segment

0. Design tradeoff siudies, functional analyses, and preliminary
design of a complete deimonstirator engine and its components

7. Studics of installation arrangemenits and weights for a 250K
flight wodule and the vehicle relative performance resulting

(U) This fourth quarterly report prescents the program status, technical
progress, and problem arcas and solutions at the end of the fourth guarter
ef the Aerospike ADP, and a bricef summary of planned effort.

R pe
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1L, SUMMARY

{(U) The module desigu subtask of Task I wae very nearly completed in
this quarter, The engine sysiem layotutl was refined including the valve
selectiory made in the previous quarter, revised turbopurp configuration,
the sele. ed thrust mount, and other subaystiem design study results, De-
sign siudies of the turbine hot-gas discharge and base closure were con-
ducted and one arrangement was tentatively selected, Start transient
and throttling dynamic computer model studies were concluded with satis-
factory tank-head start defined.

(U) A1l turbopump design features were selected including rear bearing
support, preinducer drive, pump seal details, and turbine disc size and
shape. The final layout of both pumwps (prior to detailing) was nearly
compleied, The design of the hot-gas throttling valve and main propel-
Jant valves was completed., ¥Final design reviews were conducted on these
valves and on the iwo turbopumps. Demonstrator module ihrust chamber
design was concluded after study of an alternative, lightweight injector
attachmeni, selection of tapoff manifold design, refinement of baffle
seat, manifold, structural deteils for fabrication ease, and detailed
tube design. The final thrust chawber layout was brought up to date.

(U) In the Applicaiion Study subtask, parametric installation weight
data for the 350K thrust levels was completed and performence index values
were calculated for all vehicles. The 250K data, previously completed,
were modified for a new thrust cone angle limit, An individual optimum
configuration wae established for each of the 12 vehicle~thrust level
cagses, and various common optima were studied., Preparation of the appli-
cations study special report was initiated,

(C) In Tesk 2, there was nc activity on the Injector Performance Inves-
tigatione, this subtask having been completed in the previous quarter,

In the Thrust Chamber Couling Tnvestigation subtask, the copper-tube-wall
2.5K segment was tested from 300 to 1500 psi and up to a mixture ratio of
5, demonstrating regenerative cooling. Overall heat flux and performance
agreed with results obtained on the solid-wall 2.5K segments. Two addi-
tional mickel tuke gpecimens wore teated on the fatigue-life tube teste:
at the design wall temperature, indicating a capability of 300 stop-start
cycles for nickel 200. The Thrust Chamber Cuoling Investigation was
completed excepti for analysis of results fror reiated pregrams.

(U) Uuder the Thrust Chamber Nozzle Demonstretion subtask, the first
250K injector and all components of the solid-wall chamber assembly were
completed. Tte solid-wall experimental assembly was completed and mounted
on tie vest sianG, ard prete t blowdowns were initiated. The tube-wall
thrust chambeo febrication proceeded on schedule with the first outer
body com;leting both furnace braze cycles and the inuer ready for its
second and final cycle. Inner and outer bodies for the second chamber
were brought to the preparation for braze stage. The second injector
completed welding and pressure test and entered electrical discharge
machining of the face slots,
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(U) In the 20K Segment Structural Evaluation subitask, fabrication of the
first segment and injector was brought to the subassembly stage. JFurnace
brazing of tube-wall mubassemhlien was started and the injector welding

and machining for braze completed, injector strips were drilled and flow
tested, Detlails for the second chamber were complcted,

(V) 0Of the pregram wilestones (Fiy. 1) scheduled for this quarter period,
all excep' three were met in this period. VFinal Design Review Comwpleted
wiy deferred until the completion of Thase 1. Vehicle Layouis Complete
wus rescheduled to 30 March 1967. The 250K Solid=Wall Tests Completed
was rescheduled to 30 April 1967, It is expected that this reschedule
will not affect the completing of cether program objectives.
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L 111, PROGBAM STATUS

A, TASK ), DESIGN AND ANALYSIS

1. MUODULE DESIGN

a. Status

(C) & final engive balance consimtent with the latest component designs
vas completed which defined the engine and component parameters over the
complete range of thrust and mixture ratio requirements, The start se-
quence waes esiablished after resolution ¢f the iguitor temperature problem
by & return to a twc-step main oxidizer valve, The mathematical medel
predicts e start transient frow hot-gas ignitor ignition to full thrust

of 3.5 seconds., The shutdown sequeuce and transienis were also established
indicating a eatisfactory cutuvf{f in 400 milliseconds.

(C) Th second iteration of the module system desigu was completed, and
subsystem design was cowpleted on the pump mountis and base closure config-
urations. The turbipe drive syatiem hot-gas ducte were resized and rerouted
to accommodale the series hot-gas valve arrangement,

{C) Preliminary turbopump layouts were made with the resolution of several
design tradeoff studies. Curvic couplings and integral turbine blades were
selected for the turbine wheels, and a pinned etrut support was selected
for the outlboard turbine bearings. A rotaling diffuser at the pump dis-
charge haz been incorporated into the 10X pump design replacing the hydrau-
lic turbine and high-speed inducer, resulting in a decrease in balance
drum diameter and seal speed.

e -

(U) The thrust chamber liyout was completed after defining the injector
and baffle structural design ard completion of the tube splice study. An
oblate sphercid base closure design was selected, and the overall thrust
chamber assembly sequence established.

(U) The comtrol valve layouts were completed for the main propellant i
vaives and the impofi{ thrvitle valve. IHeat trausfer aud poppcl conbeur :
analyses “‘ere conducted or the tapoff wvalve. i

é
b. Progrese During Reporti Period :

(1) Syster Analysias
(a) Eogine Balance
(C) During this report period, engine balance analysis was performed at
the intermediate thrust levels between 20~ and 100-percent thrust and over

the mixture ratio (MR) range from 5 to 7. The data are useful in deter- :
mining the component performance requirements in the throttled sarea. Some
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sclected turbomachinery parameters are presented in Fig. 2 through 7 as

a fwiction of thrust and mixture ratio. The latest systew nominal

(MR = €, Pe = 1500 paia) presiure distribution for both the liquid and
hot-gue systems ie presented in Tables 1 and 2. This dule is bascd upon
nominal propellant pump inlet conditions of 32 peim and 4l.7 R temperature
for the hydrogen and 37.95 psia and 175.5 R for ithe oxygen. The complete
range of inlet conditions ever which the pumps and system musti vperate

is shown in Fig. 8.

(b) Start Dynamice

(C) A simple and vapid tank head start was achicved on the mathemastical
start model with the thrust chember at the wurst anlicipated environ-
mental condition of (20 R prior to initiation of siart. The latest se-
quence utilizes the thrust and mixture ratio control system, thereby
eliminating the need for an additional start control system, and will
achieve 100-percent thrust from the hot-gas ignitor ignition 1n approxi-
mately 3.5 seconds.

(C) To start the engine, only a mainstage thrust command signal, a main-
slage mixture ratio command signal, and a start signal are required. The
time sequencing of the propellant and hot-gas valves will then follow as
shown in Fig. 9. The varicus siages of start (time zero, start initiation,
ignition, and maninstage) are shown in the schematics of Fig. 10.

(C) The main fuel valve and hol-gas ignitor fuel valve open first and
fuel flow is established, The thrusti controel system senses no thrust and
drives the tapoff throttle valve to the full-open stop. Similarly, the
mixture ratio conirol system senses zero mixture ratio {nc 10X flow and
positive fuel flow) and drives the oxidizer turbine throttle valve to the
full-open stop; thus when power becomes available, maximum energy is pro-
vided to the turbopumps for breakaway torque,

(C) After an appropriate length of fuel lead {no fuel lead is indicated
on the transients presented; but realistically 0.5 to 1.0 seconds will
rrobably be required), stert is initiated by opening the hei-gas ignitor
oxidizer valve, and combustion is cstablished in the ignitor, Hot gas

is supplied to the turbines and w0 the main chamber (Fig. 10). The tur-
bines begin to spin, and the pump discharge pressures begin to rise. The
mixture ratie in the het-gas ignitor is controlled by the IOX pressure
regulator, thus maintaining the desired combustion temperature.

\C) Approximately 0.8 seconds following hotl-gas igniter ignition, the
main oxidizer valve will be opened to the first step position., (A return
1o & two-slep main oxidizer valve was made to improve the hot-gas ignitor
temperature start transicnoi. This subject is treated further in the
Problem Areas and Solutions section.,) Main propellant ignition will be
achieved with oxygen in the gaseous state being injccted shertly after
the main oxidizer valve leaves the fully closed position (Fig. 10¢). The
high-temperature oxygen will exist for only a very short period and only
at low chamber pressures, and therfore will not present an injecior face
cooling problem.
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TABLE 1
TROPELIANT FEED PRESSURE BUDGET
|
Nominal Budget Differcniial | Downstream Weight
(F=250K, MR=0: 1) Pressure, Pressure, Flowrate,

pai psia 1b/sec
Fuel Pump Discharge Pressure - 2735 79.7
Main Fuel Valve 15 2720 79.7
Fuel High-Pressure Duct 91 2629 79.7
Fuel Flowmeter 5 2624 79.7
Regenerative Coolant Cireuit 700 1924 79.7
Injector 394 1530 79.7
Chamber Pressure (Injector End) - 1530 79.7

Liquid Oxidizer Side
Oxidizer Pump Discharge Pressure - 2056 478.3
Oxidizer High-Pressure Duct 23 2033 478.3
Oxidizer Flowmeter 5 2028 . 478.3
Main Oxidizer Valve 10 2018 478.3
Propellant Distribution Ducts 34 1984 239.1
Oxidizer Thrust Chamber Manifold 60 1924 478.3
Injector 394 1530 478.3
Chamber Pressure (Injector Eud) - 1530 478.3
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TABLE 2
TUWBINE DRIVE SYSTEM PRESSUHE BUDGET
Differential | Downstream Weight
Nominal Budget Pressure, Pressure, | Flowrate,

(F=250K, MR=6:1) puia psia 1b/sec
Injector End Pressure - 1530 14.39
Tapoff Poris and Manifeld 67 1463 14.39
Tapofi Ducts 13 1450 14,39
Tapoff Throttle Valve 258 1192 14,39
Distribution Manifold 8 1184 14,39
Fuel Turbine Drive Duct 14 1170 10,48
Fuel Turbine Calibration Orifice 170 1000 10,148
Fuel Turbine Inlet Pressure - 1000 10.48
Fuel Turbine Exit Pressure 923 67 10.48
Oxidizer Turbine Drive Duct 8 1176 3.91
Oxidizer Turbine Throttle Valve 256 920 .01

Oxidizer Turbine Calibration
Orifice 170 750 3.91
Oxidizer Turbine Inlet Preassure - 750 3.91
Oxidizer Turbine Exit FPressure 713 37 3.01
Base Closure Internal Pressure - 30 14.39
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TABLE 2
(Concluded)
Differential | Downstream Weight —?
Nominal Budget Pregsure, Pressure, | Flowrate,
(P=150K, MR=6:1) psia psia 1b/sec
———t

Injector End Pressure - 324 1.27
Tapeff Ports and Manifold 2 322 1.27
Tapoff Ducts 0.9 321.1 1.27
Tapoff Throttle Valve 211.0 110.1 1.27
Distribution Manifold 0.8 109.3 1.27
Fuel Turbine Drive Duct 1.1 108.2 0.96
Fuel Turbine Calibration Orifice 16.9 91.% 0.90
Fuel Turbine Inlet Pressure - 9.3 0.96
Fuel Turbine Exit Pressure 84.6 6.7 0.96
Oxidizer Turbine Drive Duct 0.6 109.5 0.31
Oxidizer Turbine Throttle Valve 27.9 81.6 0.31
Oxidizer Turbine Calibration
Orifice 14.7 66.9 0.31
Oxidizer Turbine Inlet Fressure - 66.9 0.31
Oxidizer Turbine Exit Pressure 63.2 3.7 0.31
Base Closure Internal Freassure - 3 1.27

I
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Figure 8. Propellant Pump Inlet Conditions
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(c) After approximately 0.% seconds, full LOX prime will be achieved, the
main oxidizer valve is ramped to full open, chamber pressure begins to
rise steeply, the hot-gas ignitor valves are closed, and tke engine com-
mences mainsiage operation with the turbines driven by main chamber tapoff
flow (Fig.10d). The remainder of the transient to command thrusi level

is governed by the thrusi control eystem,

(€) The transient pump flowrates and pressures, and main chamber pressure
are shown in Fig. 11 and 12, Studying these curves together with the valve
sequence (Fig. 9) will explain the action of the hot-gas threttle valves.
During the interval when the 10X manifold is being primed (G.8 to 1.2 sec-
ond), oxidizer flewrate through the liquid feed system will rise rapidly,
The active wixture ratio coniroller will sense a high engire mixture ratio
and begin to control the oxidizer turbopump speed by closing the oxidizer
turbine throtile vaive. Thie effect causes the LOX pump diccharge pres-
sure to decay momentarily but the fue)l puwp is unaffected, and the mixture
ratic will elightly undershoot. The oxidizer turbine throttle valve then
returne to the full-open positior until the main oxidizer valve moves to
the full-copen pesitiom. At thal time, the oxidizer flowrate again rises
rapidly and the mixture ratio controller reacts by closing the oxidizer
turbine throttle valve. Meanwhile, main chamber ignition has occurred and
chamber pressure rises steeply. This causes the ihrust controller to
react to prevent a thrust overshoot, and hence the tapoff throtile valve
area is decreased. From this point, the two valves react to bring the
system to the command thrust level,

(¢) Shutdown Dynamics

(C) Engine shutdown is achieved in a manner insuring fuel-rich thrust
chambey mixture ratio by closing first the tapoff valve, then the main
oxidizer valve, and finally the main fuel valve. The tapoff throttle
valve is signaled to clcse by a zero thrust command at the same time as
the main valves are signaled to close. The tapoff ihrottle valve has the
fastest closing time (approximately 35 millisecond), while the main valves
are considerably delayed (150 millisecond for the oxidizer valve and 400
millisecond for the fuel valve). In this shutdown sequence, turbine power
is cut off just prior to main vilve closure thus reducing cutoff surges in
the propellant feed systems, The cutoff pressurc and speed decays are
shown in Fig. 15 and 14, and mixtiure ratic vs time in rig. 15, Almost

95 percent of chamber pressure is lost in the first 150 milliseconds.

An oxidizer feed system pressure surge is exhibited between 100 and 150
milliseconds, after which the chamber pressure decay rate is more gradual,
Complete shutdown is achieved after 400 milliseconds.

(d) Contrels

(C) Figure 16 illustrates the throttling and mixture ratio contrel sys-
tems for the ADP demonstrator module. All components of the control sys-
tems with the exception of the two hot-gas valves are test stand facility
items,
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THRUST CHAMBER MIXTURE RATIO

0 0.05 0.1 0.15 0.2
TIME FROM CUTOFF, SECONDS

Figure 15. Thrust Chamber Mixture Ratio vs Time From Cutoff
(150 milliseconds MOV Closing Time)
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{C) The chaaber preseure control loop senses chamber pressure and com-
pares this signal with a reference value supplied by the programmer. The
difference sigual which is proportional te the error is integrated by the
chamber pressure controller to produce a position reference for the tap-
off hLol-gas valve position control loop. Thie pesition control loop
operates by sensing the position of the valve, comparing the sensed posi-
tion with the reference, and amplifying the resultant s.gnal to operate

8 hydraulic servovalve which supplies 0il to the valve actuator. The
logic of the position leop is such that the valve is positioned accord-
ing to the pesition reference input.

{€) To illustrate normal chamber pressure coutrol operation, an increase
in the pressure reference will cause the tapoff hot-gas valve to start
opening. This will result in & chamber pressure increase which will con-
tinue until chamber pressure equals the new reference level,

(C) The mixture ratio control loop operates by comparing measured Jxidizcer
flow with a generated reference value., If oxidizer flow is lower than

the reference value, then the error is integrated to cause c¢pening of

the oxidizer turbine valve until oxidizer flow has increased to the de-
sired value. This control lecop has a valve position loop which operates

in a manner identical to that of the pressure control loop.

(C) The oxidizer flow reference is generated by multiplying the measured
fuel flow by a factor which is a function of the desired mixture ratio.

(2) System Preliminary Design
(a) Demoustrator Module Design

(U) During this report period, the second iteration of the module lay-
out was completed. The general arrangement shown in Fig. 17 incorperates
the new thrust structure design, series arrpuged hetl-gas control valves,
propellant flow meters, resized liquid and gas ducts, and & new base
closure configuration, The details evaluetion of this layout is not com~
pleted. A schematic of the demonstrator medule system and breakout of
the system into subsystems is shown in Fig. 18. A discussion of the
effort accomplished on each of the major scbsystems is presented below.
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(b) Thrust Subsystem

(U) The thrust subsy
thrust chamber, the thrust structure, and the base clgsure, The thrust
chember is discussed in subsequent paragrapha of this report and there-

fore will not be covered at length in this section.

(U) The thrust structure configuration reported in the previous quarterly
progress report (AFRPL-TR-66-348) has been integrated into the design.

The intermediate ring of the thrust structure has been reduced 2 inches

in diemeier ts clear the thrust chamber nozzle bands, end adjustment has
been made in the ring elevation to maintain the radial beam profile
geometry.

(U) A conceptual design for trunion-type turbopump mounts was prepared
as ahown on the thrust subsystem drawing (Fig. 19). It was studied for
the eystem as & second candidate design in addition te the previously
reported adjustable mpunt because of weight, thrust structure and pump
structural considerations, and mechanical simplicity.

(U) 1In this design, the fuel turbopump is provided structural support
from the thrust structure at the fuel dirsharge flange (Section C-C,
Fig. 19) and by a structural pad and fitting iSection D-D) on the fuel
volute opposite the discharge flange, In the manner shown in Fig. 19
fittings with spherical surfaces permitting angular misaligmment are
incorporated on the centerlines of the radial beams adjacent to the pump.
The fitting at the flange provides a fixed point of support, and the
opposite fitting is fixed in two directions allowing motion in a radial
direction from the pump centerline through the fitting., A third support
point fixed in one direction is provided between the thrust chamber base
closure and the pump shell as shown in Fig. 20 to prevent motion of the
pump about the axis formed by the two fittings on the thrust structure.

(0) The trunion design for the oxidizer pump provides stiructural support
at two structural pads and fittings 180 degrees apart on the volute in
the manner shown in Fig. 19. The other aspects o® the oxidizer pump
mounts are identical to those of the fuel pump. In addition to the
turbopump loade, the turbopump mounts transmit the base closure thrust
loads to the thrust siructure.

(U) A structural and interface concept for the base closure design has
been selected based upon carrying the base closure thrust loades in the
turbine duncts and turhopump shells to the thrust striicture. A gas-tight
flexure provides the seal between the base closure snd the thrust chamber,
and is & minimum thrust-load carrying member., The fiexure, besides pro-
viding & seal, deflects to relieve thermal loads and accoumodate assembly
tolerance stackup. The base closure is an oblate spheroid composed of

two thin Inconel 718 shells joined by welding at their edges. The forward
surface ia provided with flanges to mate with the turbine discharge ducts,,
and the outer periphery has mechanical fasteners to permit closure removal
for inspection and maintenance. The interior volume serves as a plenum
for the turbine discharge gazes, and tke att surfece is psrforated to

33/34%
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Propellant TFecd
Subsystem layout

Figure 2C.
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inject these gases into the base region of the truncated spike nozzle.
The thrust loads imposed on the pump shells during engine operation are
comparahle to the loade they would experience from bellows reactions in
the flexible tuvrbiue exhausti duct configuration.

(U) The turbopump mounts and base closure design presented require more
complete structural sizing and dynamic and thermal analysis before detail-
ing can be initiamted.

(¢) Propellant Feed Subs) .tems

(U) The propellant feed subsystem, Fig. 18 and 20 is comprised of the
fuel and oxidizer turbopumps, the main fuel and oxidizer valvee, flovw
meters, the igniter LOX pressure reguletor, the igniter propellant valves,
and the propellant ducting. The turbopump and main propellant valve
designs reported in AFRPL~TR-66-348 have been integrated into the design.
Deletion of the fuel bypass was also accomplizhed, and {low meters are
included in the main propellant ducta. As previously reported, it is a
design objective to elininate the need for all line bellows. The locaticn
of the turbopump centerlines and the main oxidizer vvlve position remain
unchanged. The main oxidizer duct is split downstream of the main oxidizer
" valve to the two inlets of the oxidizer injector wmanifold 180 degrees
apart. (See Demonstrator Module Thrust Chamber Design section for further
discussion of oxidizer manifold design.) Tbe main oxidizer duct upstream
of the valve is increased in length te accommodate a turbine-type flow
meter in the duct.

(U) The main fuel valve has been relocated and a straight length of fuel
duct added to accommedate a turbine-type flow meter et the fuel pump dis-
charge. A clearance hele is provided in the web of the thrust structure
radial beam 1o permit the routing which also accommodates the new fuel
pump discharge configuration. A honeycomb flow #traightener is included
in the fiow meter assemblies which provides nonswirl, uniform, straight
flow characteristics at the retor.

(U) The sizing of the main propellant ducts for flow and pressure drop
hae heen sccomnlished, DPreliminary structural sizing of the ducts has
been accomplished and the ducting and component interfaces identified

dimensionally.

(d) 'urbine Drive Subsystem

(U) The turbine drive subsystem, Fig. 17 and 18 is comprised of the tap-
off throtile valve, the oxidizer turbine throttle valve, the fuel and
oxidizer turbine orificee, and ducting. The tapoff and turbine drive
ducts have been rerouted to accomplish the series velve arrangement. The
tapcff throttle valve ie located in the “Y" joining the two tapoff ducts
and its diecharge flange intcrfaces with the tapeff/igniter distribution
manifold, The concept of locating the vulve in mn existing sysiem Y- joint




CONFIDENTIAL

rermiiied the selection ¢f & poppet-type valve which has a considerably
lower open flov pressure loss than conventional 90-degree peppet valves,
thus permitiing the sysiem to realize the advaniages of low weight and
lov cost inherent in ihe poppet design.

(U) Byual length tapoff ducts extend from the two tapoff manifold inter-
face flanges to the valve and are routed to provide adequate length and
shape to permit defleciion with thermal growibh. The oxidiser turkine con-
trol velve upstream interface is attached to the dirtribution manifeld,
aad the oxidizer turbine drive duct is attached to the downstream face,
The duct is routed to permit deflection with thermal growth. The syrtem
calibration orifices are located in the flenge joint interface between
ithe distribution manifold and the fuel turbine inlet and at the interface
between the oxidizer turbine throttle valve and the duct. Sizing of {he
ducte for flow and pressurc drop has been accomplished, Preliminiry
structural sizing of the ducts is complete, and the ducting and compoment
interfaces have been identified dimensionally,

(e) TIgniter Subsystem

(U) The igniter subsystem, Fig. 17and 18, is comprined of the igniter
combustor assembly, the igniter imelation veslve, and the igniier/turbine
drive hot-gas distribution manifold, The igniter combustor and distribu.
tion menifold have bean reloceted to conform to duct routing of the

series hot-gae valve system configuration. The distribution manifold bns
been chenged to a three-port configuration as shown in Fig. 21. The fuel
turbine port interfaces directly with the fuel turbine inlet, the oxidizer
turbine port with the oxidizer turbine control valve, and a single port
with the tapeff throttle valve. The igniter isslation valve iz a poppet
type located in the base of the distribution manifold. The poppet pusition
iz normally open tc offer low resistance tu gas flow from the igniter for
turbine spin at tank head start condition, and beléd closed by conilrol prea-
sure during mainctage after igniter shutdown. 7The manifold passsges and
porl from the igniter are sized for low resietance for turbine spin ard
ignition under start conditions. Structural sizing is based on Hastelloy-C
cart material. A limited design analysis of the isolation valve has bewn
ac. omplisghed.

(3) Turbomachinery Deeign

(2) Fuel Turbopump

Design Layout

(c) During the current quarter, a design review wss held and review
board recomiendations have been incorporaved in the completed preliwinary
layout of the fuel turlLopump shown in Fig. %2, The turbepunp covnicts of
o three-row het-ges turbine etreddlc wounted on yoliiug vostact bewrings
and directly counected te & two-siage centrifugnl piig snd 6 high-apead
inducer running &t a nominal speed of 35,G00 rpm.  Yha high-specd inducer,

&
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Mark 30 Fuel Turbopump
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driven by the ':ot-gas turbine, pruvides the head to drive the low spced
hydraulic turk ne which in turn is connected te the low speed inducer
which provides the capability of meetin, the NPSH requiremente of GO feet.
The low speed irducer and hydraulic iurbine drive iz mounied on iis own
propellant-lubriceted rolling contact bearings and cperates at a nominal
apeed of 14,500 rpm. The pump impellers are mounted back-to-back and
fantened together by a ring of through boelts and driven by the turbinpe
through & splined coupiing. FPropellani enters ihe pump axiaily, passes
through the lew-speed preinducer, high-speed inducer, hydraulic turbine,
end into the first-stage impeller. A series of five crogsover ducts

carry the flow from the discharge of the first-stage impeller to the inlet
of the seconi-atage impeller. After passing through the second-stage

impeller, five crossover ducts dire<t the flow into a single discharge
duct. Axial thrust of the turbopump is balanced by means of a balance
piston arrangement located between the back-to-back impellers. The out-
board turbine bearing is supported by a series of pinned supports which
provide a high spring rate and sllows for the thermal distortions ex-
pected in the turbine discharge area. Around each support is a stream-
lined vane to insulate the support and previde for miniwmum flow disturbance
in the discharge area. 'hree additional vanes cre provided (total of nine)
through which the bearing coolant flow is circulated iwic and out of the
turbire bearing.

Impeller Attachn 'nt Study

(U} A design study was made to determine the best method of fastening
the twe bhack-to-back impellers together, Two methods were considered: a

bolt ring at the maximum diemeter allowed by the hydrodyramic passages,
and a central hole. Both methods were found to be feasihie from a siress

standpoint. However, the central hole arrangement resulted in a emaller
shaft diameter (less rigid rotating asscmbly) and a piloting problem;
therefore, the bolt ring configuration was selected,

Turbine Wheel and Blade Attachment Siudy

(U} An additional study wace made to arrive at the besti method of atteech-

ing the blades to the turbine wheels and the turbine wheels to each other
to achieve an optimum design to meet the requirements of winimum weight,
long life, and waintainability. Two methods of attaching the turbine

disce were studied: (1) electron besm welding of wheels and shaft into a
gingle structure and, (2) attaching shafi and individual wheels by bolting
and transmitting the torque througl curvic couplings. Fir tree attachments
and nachining the blades integral with the discs were the two types of blede
attachmentes studied,

(C) Fir tree blades with the discs fastened together with curvic couplings
results in the heaviest design but it allows doth individual blade and wheel
replacement. The lightesi design would be the integrally machined blades
coubined with a welded wheel assembly; however, it complicates the mainten-
ance problem and alse requires segmented stator assemblies, increasing the
wealing problem between wheels., The integrally machined blade with the
curvic coupling design was selected because it offers the edvantages of
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being able to disassemble and replace turbine wheels with a weight penalty
of approximately 9 pouvnds compared to the welded discs and no increase
in length (in a comparison of the welded aud the integrally macnined blades

3 3 3 v * L C A4 h + A3 - h 3~
and curvic designs the turbine stator axigl width, not the disc thickness,

sets the length of the unit). Fir trees on rows, 1 and 2 were not selected
as this increases the length of the unit at least 1 inch. Figure 23 shows
a comparison of the disc profilesfor the curvic coupling attached turbine

wvheoels with fir tree hlaodes and with inteorslly machinad hlades for all
heels with fir tree and

hlades with integrally machined blades for all
three blade rows.

{(C) The third row disc was sized with integral blades only, because blade
fir trees would cause excessive rim load, increasing the required disc
thickness to greater than 2 inches. DBlade stresses of the third rew wheel
are marginal with a shroud. If & shroud becomes necessary to control blade
frequencies, the disc thickness will have to be increased from 1.4 to
approximately 1.6 iaches.

Qutboard Bearing Support Design

(U) A study oi the desigu of the cutboard turbime beariug support for
both turbopumps was completed. The support must be capable of maintaining
bearing alignmment while subjected tu the turbine discharge environmental
conditions, Of the designs considered, twc basic coenfigurations were
selected for detailed analysis. These were a fixed strut support, and a
pin-ended strut support,

The designs of fixed strut supports were subdivided into: radial struts
fixed at both the housing and the bearing carrier, angled struts fixed at
both the housing and the bearing carrier, and radial struts fixed at the
bearing carrier and aliowed tu move radially at the housing. Two sizes

of strute were analyzed: a minimum size with a thickness of 0.135 1uch

and on axial length of 1,00 inch, and a maximum strut size dictated by

the size of the allowable airfoil scction in the turbine exhaust passage.
A summary of the spring rates and stress analysis for the fixed strut sup-
pert is shown in Fig. 24,

(U) The designs of the pin—ended strut supporis were subdivided into:
rediel etruts pinned at both the housing and the bearing carricer, angled
struts pinned at both the housing and the Lbearing carrier, and radial
struts fixed at the bearing housing and pinned end allowed to Loth move
radially and votate at the housing. The same two strut sizes picked for
the fired struts were analyzed for the pin-ended struts, and a sumnary of
the spring rates and stress anelysis for the pir-ended strut supports is
shown in Fig. 25.

(U) FPigure 26 is & cowpilation of the spring rates for both the fixed
strut and pinued strut supports for configurations of three, six, and
nine struts. Also shown are the spring rates and thickoness of fixed
struts made of Hastelloy-C and lnconel-X.

(C) Although either design (fixed struts or piuned) is adequate, the fixed
end struts are subjected to cousiderable bending stress at the ends, and
for this reason the piu ended supports were selected for both turbopumps.
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DESIGN CRITERIA : MAXIMUM ALL OWABLE OPERATING
MATERIAL - INCO 718 SPEED=75-PERCENT BURST SPEED
RM TEMP F,, 180 KS!
ELONGATION 15 PERCENT
RAX RPM 38,900 ® |JNSHROUDED DESIGN
FIR-TREE BLADES INTEGRAL BLADES
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STAGE STAGE STAGE STAGE STAGE STAGE
Tneck 0.36 0.37 —_ 0.2¢ 0.% 0.37
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GAS TEMRF| 1320 1100 -- 1320 1100 945

Figure 23, Mark 30 lurbine Disc Profiles
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Fixed or Pin Ended
1 b 3 Siruts ¢ Struts 9 Struts
6 e
0.15 1.00 1.71 x 10° 342 x 10° 5.13 x 10°
i . 6 6 6
0. 40 2,25 10.23 x 10 20,56 x 10 30.09 x 10
0.07 2,95 1,80 x 10° 3.60 x 10" 5.40 x 10°
o O 6 6
.10 2,35 2.97 x 10 5.14% x 10 7.71 x 10
k; 1b/in,
NOTE: For the coufiguration, the springrates are appreximately
properticnal to the arvea, where
A = x-sectional area of strut
=1L X b
bmnx maximun allowable width of strut = 2.25 inches
tmat Maximup allowable thickness of strut

0.07 inch

for Hastelloy-C

0.10 2nch for Inconel-X

Fixed End Only

Determined by Theirmal Stress 'J

Figure 26, Radial Springratics
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A final design will be incorporated into the layout during the uext re-
port period, Materianle for the pins and struts will be selected * 1-

sura dthameal comnatihili 3 i
sure thermal computibility and prevent galling and selzing.

Fuel Pugp Thermal Contraction Effects

(U) The location of the fuel pump bearin -ch relation to ihe balance
piston imposed a2 problem of ertablisling proper balance piaten clsarances
aiter chijlldown, because of the “,rferential rontraction between the alum-
inum pump housing and the ti+ .jum pump impeller and main shatti. Solutions
studied were: (1) the nse¢ of an invar spacer between the aluminum kousing
and the titanium bes-ing support structure, (2) relocetion of the bearing
under or closer tu the balance piston, and (3) allow the bearings to fleat
exislly.

(U) Relocetion of the bearing under or closer t¢ the balance proved im-~
practical because it resulted in an irncrease in diemeter of the inner
balance piston orifice such aa to meke the baleuce piston ineffective.

(C) DBoth the invar spacer and the free floating bearing designe were

found tc be satisfactory, and the free floating bearing was selected because
it was less complex and thus a more reliable method. The balance piston

is capable of handing threttling and operating transients, and ring materials
will be selecled to allow for pessible rubbing during the start transient,

(b} Oxidizer Turbopump
(U} A prelininary diawiug of the snidizer turbopump wes precented ip the

third quarterly report. This layout was modified but not completed in
this period.

I e S

Axial Thrust Balance

(C) Axial thrust analyeis oo the through flow inducer on the LOX pump W
resulted in the reguiremwent for either a baiance pision or a large diameter é
balance drum. Because a balance piston would complicate the design, and s
the large diameter balance drum rotating at pump impeller rpm resulis in :
a high labycrinth rubtking velecity, a rotating diffuser (iwpeller tip tur-

bine) drive was investigcied as a replacement for the through flow turbine i
drive. The rotating diffreer design resulted in a slight savings in over- :
all turbopump length, one less high-pressure seal, and reduced the balance :
drum rubbing velocity from 700 to GO0 ft/sec. Because of these improve-

ments, the rotating diffuser design was selected uver the through flow

design. Although the balance drum rubbing velocity was reduced by 100

ft/sec, it is still considerably higher than current practice and ceuld

be considered a state-of-the-art technology advance. Provisione will be

made for fut:re empirical evaluation of possible seal materials,
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(&) Thrust Chumber Design

(U) Thrust chamber design effort during the current report period termin-

nind width dooion 1 Al simol: Voo o
LHRA 4 i

with desigh resolution of problem arcas which have been uuder siudy
during the last quarier. Included are resolulion of desigu approaches to
combustor and structural configurations and selection of meterials of
fabricatien, The completed thruct chamber design leyout for the demonstrator
wodile i shown in Vig. 27. The layout incuiporaten the design decisions
listed below,

Selected Items for Demonstrator Modulc Thrust Chember

Ni 200 Tube Walls (Inncr and Outer)

Segwented Titanium (6 Al 4V) structure, Mechanically Jointed

Removable Baffles (h0)

Structural Tie Bolts (2 per Baffle - 20C KS1, 1,12-inch Diameter)

Membrune~Type Centerbody

fxially Bolted Injector

Adhesively Donded Tube YWall to Structure

Hot-Gas Ignition Through Baffles

Two-t0~0One Inner Nozzle Splice (Brazed) .

360-degrees Brazed Inner and Outer Bodies

Tapof{ Configuration and Location

{a) Thrust Chamber
Tubes

{C) The tube bundle for the demonsirator module thrust chamber has been
designed with a nwmber of factors in mind. These include operaticn over
ihke operating envelope of 300- to 1500-psia chamber pressure and mixture
ratics of 5 to 7, tube-wall temperatures held to meet the life require-~
ments of 300 cyclea and 10 hours of operation, and minimization of coolant

52 '
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pressure drup and module veight. Heat transfer data obtained from the 2.5X
solid~wall and tube-wall chambers have heen utilized. Hydrogen cooling
reéjuirements are based on extensive data taken at Rocketdyne at high
pressures and high heat fluxes. Recent curvature enhancement data (re-
ported elsewhere in this report), teken with an experimental chamber

inner and outer tube, heave also been used to the fulleat extent.

(C) 'The selected design utilizes a eingle up pass on the inner body
followed by a single down pass on the outer body. Nickel 200, which was
previously selected as the basic tube material, wae likewise selected aa
the tube material for the tube below the splice on the inmer body. Imco
625 was selected as a loag-range aubstitute, pending the mccrual of

brazing snd formability data for this material. Subatantial weight savings
are available by use of the latter material,

{(C) The tube splice was studled in a heat transfer/presssure drop/hydraulic
stress tradeoff anclysis. Ii{ wae determined that a 2:1 splice shewn in
Fig. 27 approximately ! inch below the shroud tip was the wmost feasible.
The chamber is designed with upproximately 2120 tubes in the nozzle and
4240 tubes above the splice in the combustor region. Currently both tubes
conaist of 0.012~inch nickel 200 tubing operating at a maximum temperature
of 1450 F. The tube upstream of the splice is designed to a mixture ratio
of 6 at 1500-psia chember pressure which will produce slightly reduced

wall temperatures at MR = 7. The tube below the splice is designed to
operate at 300-psia chamber pressure and a mixture ratio of 7 at sea level
ccnditione, this being the most stringent comdition for this part of the
inner bedy. This results from the recompression which occurs at sea level
in conjunction with the lew coolant flowrates. Elimination of the tube
splice by tapering the tube wall thickness ie feasible but was not selected

because of the penalty in fuel pressure drop.

(C) The outer body coneists of approximetely 4400 tubes of 0,Cl0-inch
nickel 200 material. To achieve wall temperatures under 1500 F (life
requirement), the inner body wes displaced 3/16-inch downstream starting
at the beginning of the chamber convergence. This effectively moves the
sonic peint on the outer body 3/16-inch downstream. This change permits
utilization of the maximum ohtaimable coclani curvature enhancement at
the high heat flux region of the throat {58 Btu/in.2-sec for 1450 F

wall temperature).

(c) Hydrogen injection temperatures at nominal operating conditioms will
be epproximately 630 R based on theoretical predictions. Coolant pressure
dreops are currently being optimized. Additional coolant circuits are be-
ing examin~d to determine what advantage, if any, these circuits may have.
However, since this is to some extent a function of the hydrogen cecolant
temperature rise, the circuit optimization will not be made until data
from the 250K tube-wall chambcrs heve been analyzed to obtain hydrogen

temperature rises below the throat.
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(b) Structural and Seat Assembly

(v) During the current report period, resolution of tapoff, baffle seat,
and structural tie relationship was made firm. The seiecied configuration
utilizes a 360-degrec inoer and outer brazed tube bundle through which
baffle seats are installed through EDM holes. With this technique, the
number and vrientation of tubes during the braze cycle is not critical.
The techuique for installation of the seat through the iube walls enables
in-process pressure check and repair, and precludes entry of braze alley
into the tubes. A pictorial definition of the process is shown in

Fig. 28.

(U) Tapof{ gases are extracted and hot gas for "ignition is introduced
through the baffle and directed through insulated ducts ip the inner wall
in ap area not VYonded by the adhesive., Orientation of this system with
respect to the injector stripes is identical t¢ thatr tested on the 2.5K
segment and is awaiting final tesiing demonstration om the 250K experi-
wental thrust chamber

(¢) Injector

%U) The injector configuration was fixed as an axially bolted design
Fig.29 ) with removable baffles. The injector body is held in place by
tvo titanium retainer rings which are axially bolted to the comhustor
body. The concept is shown ip Fig.30a in comparison to an alternate
method of attaching the injector as shown in Fig. 30b. In the latter
design, the axial bolts are placed through a steel flange extension of the
injector. The retainer ring design was selected in preference to the
steel body flange desigu because of lower weight and cost cstimates.

(U) The decision to use the axially bolied concept was made after com-
parison with an integral baffle-injector design which utilized the upper
structural tie bolt as a shear connection. The integral concept pro-
vided restraint agairst hydraulic and ppneumatic separating loads and
offered a potential large weight reduction. The concept, shown in Fig. 31
vill be analyzed for growth from the bolted concept for application on

ihe flight configuration. Alignment, the necessily for injector preload
and line drilling for irpsiallation, and questionable component inter-
changeability are problems which must be solved before this light-weight
configuration can be adepled.

(d) Asseumbly

(U) An assembly concept using 360-degree continuous titanium structure
for inner and outer bodies and segmented tube sections was compared to

the chosen 360-degree brazed tube bundle and sepmented titanium structure.
The former combination made mandatory braze and weld operations after the
adhesive application and magnified segmeni tolerance and fit-up problems.
Until technology in these areas is advanced, the adoption of the poten-
tially lower-cost vegmented-tube bundle concept will be deferred.
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(U) Mechanical joiring of segments has been substituted for the electron
beam welding which had been selected earlier. This was dome in spite of
a potential weight increane, because of manufacturing and processing prob-

lems defined in & more detailed investigation. Amoung these are dimensional

control of the segment fit to assure a salisfactory jeint penetration con-
trol of the electron beam tc preclude adhesive and tube damage, and control
of the weldlng atmnsphere in the presence of adhesive tp amsure a sound
joint. Technological advances during Thase II efforis will enable applica-
tion of the electron beam welding technique to flight configurations for a
weight saving. But for the demonstrator module, the mechanical joints will
be used. The mechanical joint contemplated employs tensile bolts between
the titanium segment flanges and line drilled shear pins for alignment and
shear carrying capability. -

(e) 10X Manifold

(U) The design requirements for the 250K demonstrator module LOX manifold
have been developed based or the following generalized oxidizer manifold
design criteria.

Jtem Criterion

Oxygen Quality for Ignition Gas

Differential Priming Time Belanced ignition

Design No pockets for gas or
dead endsz

Static Pressure Distribution 14 percent

Torque No additional system
weight

Roil Impulse (volume), ft-1b sec 1000

riteris are hasad on experi |mnn+n1 anldflaw lTNn‘ and watar flovw

results of a full-scale four tangential inlet manifold, and l/k—ucale
transparent models of the four tangential, the two tangent1a1 and the two
radial inlet types tested under the NASA System and Dynamics Investigaticn
AEP. Based on these criteria, the following especific design requirements
for the 250K demonstrator module LOX manifceld have been developed:

1. The menifold torus should be a constant cross-aection manifold,
2. Theve should be no dead ends in any section. With a constant
cross-section manifold this would imply complete circulation

from one sector to the other.

3. The inlets should be of the tangential type.
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4. The number of inlets to the torus depends on the desired velume
of the manilold, the maximum velocity, and the allowable differ-
ential prime time.

5. The inlets muay be located on either the top or the inside of the
manifold, and the inlet should intersect the manifold torus in a
tangential manner.

6. The inlet should have the same diameter as the manifold torus, and
the transition zone between the inlet and the torus should occur
in a mininum of 25 degrees of arc.

7. Central location for the origin of the inlet ducts or a uniform
length of all lines will not be required. Acceptability of a
given design will be evalualion on the individual merits of the
design, However, as a general ground rule, all inlet line con-
figurations should have one-half engine symmetry and the differ-
ential line length hetween the shortest and longest pair should
not differ by more than 30 percent.

8. To maintain a 4 percent static pressure distribution, the maxi-
mum manifold velocity should be 60 ft/sec.

9. The number of downcomers will be controlled by the injector re-
quirements, For the current injector design, three downcomers
per baffled compartment should ke employed.

10. The downcomers should be located in the outside section of the
manifold.

1}, The mass of the manifold with respect to the vapor forming poten-
tial must be considered and maintained at a minimum.

(C) The specific design requirements were based on criteria developed
from INg cold flow testing of the LOX manifold. It is possible thai het-
firing engine data could modify these criteria which in turn could lead

to modification of the specific design requiredents. One of the more
atringent requirements, from the standpoint of engine system design, is

the number of inlets. 1In general, more inlets produce smaller manifold
volumes and/or lower manifold velocities. In addition, the greater number
of inlets produces the smaller differential prime times. (The differential
prime time is defined as the time between ignitable quantities of oxidimr
discharged through all orifices.) While there is strong experimental
evidence to indicate that the minimum number of inlets (from an operational
standpoint) should be no less than four (and possibly more), final evalua-
tion of both the minimum number of inlets and the minimum msnifold volume
will depend on the hot-firing test results.
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(f) Base Closure Design

(C) The two basic concepts studied for the module base closure design are
shown in Fig. 32 and 33. The first was & conventional flat plate base
closure (similar to that used in the ecxperimental chamber) attached rigidly
to the Lo thrust chamber manifold et the nozzle exit (Fig. 32 ). Approxi-
mately 9000-pound-thrust load would be transmitted through the closure to

the thrust chamber. The necessity of tiexible conneciione beiween the
closure and the pump turbines required the apsumption that a modification

of the oxidizer turbine flange was feasible. Even with the assumed diminish~
ing of the oxidizer turbine flange diameter, available space precluded the
effective utilization of a bellows section. A slip joint was less desir-
able but could be made to fit in the space limitation. The 7-inch depth

of the base closure was determined by the available geometry. The config-
uration itself contained a flat predrilled bottom plate and an upper dish-
shaped plate of Inconel 718, The internal reinforcing structure consisted
of eight radial ribs and 16 partial radial ribs. The ribs were connected

by three circumterential rings at the bottom and three circumferential Tibs
at the top. All radial ribs contained large orifices to allow the distri- .
bution of the internal gases. Plate stress considerations determined the . .
rib and ring spacing. Estimated weight of this configuration significantly '
exceeded its budget. Furthermére, there was difficulty in dispersing

turbine gases because of the restrictive internal structure.

R——

(U) The second design considered was an oblate spheroidal, membrane struc-—

ture base closure mounted directly to the pump turbine flanges {Fig. 33). .
The closure thrust would thus be transuitted directly through the pumps '
intec the thrust structure and no load would be transmitted through the

chamber itself. A flexible omege joint seals the connection between the

bottom eof the chamber and the base closure,

(U) A membraine-type closure using an ohlate spheroid configuraticn was
employed using a minor-to-major axis ratio consistant with the space avail- N
able. After conducting a trade study analyzing pressure vessel head shape .
ve- weight, & minor axis dimensiom of 6 inches was chosep as the minimum

probable head dimension capable of achieving the weight budget.

(G) The oblate sphercid was drewn ‘im 1te posiiion ai Vhe boitom o
thrust chamber inmdicating tke bottom of the closure to extent epproximately
S inchee past the chamber exit plane. This additiomal height doee mnot in-
crease the gimbal excursion, and the light weight and unimpeded internal
fiow advantages exceed the disadvantage of increased engine height.

,\(C) The corfiguration shown aesumes curved turbine adapter sections to

-~ % gllow an interface cowpatible with removal of the base closure from the

| T bottos. Internal tlamzes on the top head allow removal of the turbine

| ) bolts internally. Uone-shaped orifice plates are utilized to create

‘ sidewards propogation of the gas flow within the closure as well as re-

| ducing the 70~ aid 40-psi turbine pressures to the 30-psi closure internal

: pressure. The bottom hesd iz perforated with orificee that comprise approxi-
mately 125 in.2 of orifice area. A representative orifice size and spacing
would consist of 0.257-inch-diameter orifices 0.875 inches apaxt.

| CONFIDENTAL
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Ovidizer Turbine Fuel Turbine

Exh;\—lf_!i Flange : . Exhaust Flange
- Interface . Interface

Structural
+— Gonnectlon

\————- Internal Partial
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Figure 32. Flat Plate Base Closure

4

Oxidizer Turbine : : Fuel Turbine
Exhaust Flange Exheust Flange
Interface Interface

Plates

Flexi‘ole_ Boot

]

— Perforeted lower head )
" with access plates for
flangoe bolt accessibility

Figure 33. Oblate Sphercidal Membraune Base Closure
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(C) The bottom and top heads can either be welded together or bolted. If
welded, access plates would be required in the bottom head te allow removal
¢f the turbine flange bolts. A wetallic flexure or bect will prevent gas
intrusion into the pump and component area. The boot will also accommodate
both punp and base closure movements,

(U) The oblate spheroid configuration was therefore tentatively selected
for the demonstrator module, because of its advantages in weight, per-
formance, and operability.

(5) Controis Component Design
(a) Main Propellant Valve Design

(U) During the lasi guarter, a design review was held to review the main
propellant valve configuration, materials, and the capability of meeting
the system requirements. Design requirement specifications were written
for both of the main valves, and the conceptual layouts were completed
based on a 4-inch-diameter line.

(U) The layouts for the two valves are shown in Fig. 34 and 35 with no
detail presented for the facility provided actuator. A hollow ball is
used to minimize the flow forces acting on the ball, and the bearings are
designed to run wet to locate them as close to the ball as possible and
minimize the shaft overhang and bending loads. Dual Naflex seale are pro-
vided for the exterior seals, and machined plastic pressure-actuated seals
are planned for the shaft. The ball seal is a pressurc-loaded bellows
seal, with low-pressure sealing provided by the bellows-installed spring
load. The flow direction of the fuel valve is opposite from that of the
oxjdizer valve to provide moisture protection for the primary seal bellows.

(U) Each valve is oriented g0 as to place the bellows area downstream

of the gate from ithe moisture source to prevent moisture from collecting
in the area of the bellows and subsequent seal leakage problems. From
studies of the valve locations and feed system plumbing coanfigurations,

it was determined that the most probable source of moisture for the exidi-
zer valve was downsircam of the valve through the thrust chamber injector.
On the fuel side, because the location of the fuel valve is below the
pump, the majer source of moisture was considered upstream of the fuei
valve. Furthermore, the fuel valve is protected from downstieam ambient
moisture sources by the thrust chamber tube bundle. By reversing the flow
direction of the fuel valve, the bellows area of each valve is thereby
protected from moisture by the primary gate seal. However, for the gate
seal to function satisfactorily with the new flow direction, a wminor modi-
fication in the bellows seal design to change the relationship of the
bellows neutral axis and the seal area on the ball was necessary. No other
design modifications are required to previde for the reversed flow, and

no significant change in valve performance or Bealing cheracteristics is
anticipated.
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(b) Tapoff Throttle Valve
P

A design review was held to cvaluaste the tepoff throttle valve demign con-
figuration, materials, and system requirements. The review board recom-
mendations were utudicd and refinements were made in the valve design. A
design requireitent specification was aleo written for the tapoff throttle

Vaave,

(U) A deeign layout was initiated during this report period and the maximum
and minimum valve flow areas were established {o meet the engine operating
limits. The poppet nose was contoured to reduce turbulence as the hot gas
flows around the poppet. 1In addition, a slight taper was incorporated to
reduce the rate of chunge ol area with stroke as the poppet approaches

the closed position. The valve configurstion, poppet contour, and rela-
tionship of flow area to atroke are sbown in Fig. 36,

(U) The design layout was completed thkrough the selection of materiais

for the parts in the hoi-gas flow stream. Because of the 1500F nominai
coperating t-mperature, only materials with gosd mechanical properties and
corrosion resistance at elevaited temperature are used. Stellile 21 was
selected for ithe poppet because of its high-temperature s’ vengih and resis-
tance to erosion. The housing is Hastelloy-C because of its high-tempera-
ture strength, ductility, and good casting properties.

(U) A preliminary heat transfer analysis wes made to evalusie the trans-
ient heat iransfer from the poppet into the actuator.

(C) Assuming a heat transfer path through steel, the temperature &t the
approximate location of the actustor O-rings (essumed to be G inches avay
from a 1500 F heat asurce) is 81 F after 300 seconds of engine operation
with an initial temperature of 70 ¥. After engine cutoff, this tempera-
ture will continue to rise for some time as the component tends toward
temperature equilibrium. The heat trausier analysis did not include the
transient effect after shutdown; hewever, the calculations made through
cutoff appeer to indicate that the maximum tolerable temperature of 350 ¥
will not be approached, and therefore the service life of 10 hours should
not present a design preblem relative fo the actuator O-ringa. A more
complete heat transfer ananlysis will e made during Phase 11.

(U) Several areas related to the high temperature of the hot gas which
should be studied further during Phase 1Y became apparent during the deaign.
The materials required bacause of the high operating temperature are dif-
ficult to machine by rouventional riethods which precludes the use of
threads. Therefore, the joint belween the piston red and poppet cannot
utilize a threaded fastener. Bra:ing appears to be satisfactory; however,
some additional analyeis is required to ensure that sufficient braze area

. is providea,

(U) Because the valve will operate with a high degree of throttiling with

- high-temperature gas, erosicen of the housing may be critical, This area
will be analyzed thoroughly and if necessary, a maierial such as Stellite
21 which is more resistant to erosion will be welded into the critical
area.
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(U) Heat transfer from the valve housing and poppet into the actuator may

also be higher ihan desirable. Hydraulic fluid circulation can be provided
in the facility actuator, insulation can be used wherever poseible, and

the configuration of the parts in the heat transfer path can be studied to

optimize the heat transier and heat capacity relationship.

C. Problem Areas and Seluticns

(C) 1In the last quarterly report, it was stated that the single-step main
oxidizer valve created a main chamber ignition problem by virtue of a tem-
porery drop in the hot-gas ignitor temperature. When the 10X valve was
opened, the 10X pump discharge presaure dropped below the fuel pump dis-
charge pressure, and this caused the mixture ratio of the hot-gas ignitor
to fall off. The problem was resolved by returning to a two-step main
oxidizer valve. This reduces the effect of the opening of the LOX main
valve, and the 10X discharge pressure remains above the fuel discharge
pressure until after main chamber igmitiocn (Fig. 11). Figure 37 shows

the ignitor temperature as a function of time for both the one-step and
two-step vaives. The transient still exhibits a temperature drop (from
1600 F to 1530 F); however, the minimum temperature is now above the level
required for main chamber ignition.

(C) Further analysis of the main chamber ignition conditions was mide to
assure that the thrust chamber propellant mixture ratio was high enough

to obtain satisfactory ignition. Figare 38 indicates the main chamber
mixture ratio during the start transient. This curve indicates that the
mixture ratio rises rapidly to a value of 1.5 after the oxidizer valve is
moved to the first position. (Current test results indicate that a value
of 1.0 or higher is desired for ignition.) Ignition is obtained at this
point with gaseous oxygen because the oxidizer system is not fully primed.
The back pressure of combustion then causes a reduction in the flow of
gaseous oxygen, and the main chamber mixture ratio drops umntil full oxidi-
zer prime is reached. At this point, the main oxidizer valve is moved to
the second position and the system procceds into mainstage. It should be :
noted that the drop in main chamber mixture ratio does not occur until {
after ignition is attained, thereby assuring & high ignition mixture ratio, :

(v} During the next quarter, design effort will be directed towards the

d. Plauned Effort
completion of the final turbopuwp and thrust chamber layouts.
|
i
]
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2. APPLICATION STUDY
a. Status

(C) The generation of all parametric installation weights and vehicle
fairing and/or interstage surface areas has been completed for thrust
levels of 250,000 and 350,000 pouuds. Parameiric installation data covers
the range ol diameters from 68.9 inches to 130 inches for the 250K vehicles
(vehicles utilizing 250E-pound-thrust modules) and from B0 inches to 160
inches for the 350K vehicles.

(U) The calculation of performance index values has been accomplished by
employment of the above engine/vehicle integration infermation which was
based on "minimum envelope" thrust structure design rather than the
previocus 15-degree cone limit design.

(C) An individual optimum for each of the 12 vehicle cases has been estab-
lished. In general, the optimum diameters for the 250K capes are smaller
than the optimum diameters for the 350K cases. The 350K modules, however,
optimized at approximately the same chamber pressures. Of significance is
the fact that &ll optimum chamber pressures are equal to or less than 2000
psia and the two reusable upper-stage vehicles (No, 5 and No. 6) for both
thrust levels optimized at chamber pressures of 1100 psia or less.

(U) Preparation of the Application Study Special Report was initiated.
This report will discuse in detail the pertinent information generated
during the Applications Study. It is for this reason, only highlights
of the progress made in the fourth quarter will be presented here.

b. Progress During Report Period
(1) Installation

(c) During this report period, parametric installation data for both

the 250K and 350K cases has beern redefined removing prevalves from all
vehicles and employing & minimum envelope installation thrust structure

in place uf ihe previcusly mssumed i5-degree mavimmm truncated outer ccne
angle thrust structure for Cases 1, 3, and 4 (250K and 350K). 1In these
instellations, there is a minimum clearance between modules (2 inches) and
the mount height is as short as poeeible consistent with the maintenance
of propellant feed syatem and tank hottom clearance. Layouts of each
vehicle case were generated to determine the minimum mount height for each
candidate moduvle diameter. Figures 39 and 40 are typical layouts which
depict minimum mount height for each clearauce criterion (i.e., propellant
feed system clearance and thrust structure/tank bottom clearance) for an
80-inch module installation, Case 3, 250K. It is s.en that the propellant
feed system clearance determines the minimuwm mount height for this config-
uration. At the minimum mount height of 100 inches, the fairing area,
maximum skirt diameter, and installation weight are all minimum, thus
defining the optimum mount height.
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F 255
e OIAMETER
DIAMETER
164
' \‘ DIAMETER
\’ |
- v
r |
CASE 3, 250X
80 INCH MODULE
<— §

Figure 39, Minimm Mount lleight, Propellant Feed Syastem Limit
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(U) The revised thrust dtructure parametric weights were determined wi h
thrust structure anglees varied am necessary to provide a minimun diameter
mount ring. The configurations are similar to the previous design. Cases
1, 3, and 4 have inner conce and radial beams to vrovide lateral support
for the truncated cone during gimbaling. Figure 41 shows a typical thrust
structure for vehicle Cases 1 and 3, 250k. The thrust structure in Case
L, 250K, is similar except for the number of radial beams. Vehicle Cases
2, %5, and 6 did not employ a truncated cone thrust structure and therefore
are not affected by the foregoing revision. Radial loads induced by the
angle of the thrusti structure cone at the vehicle main attach {rame are
carried by a heoop ring integrated with the thrust atructure, thus pre-
cludirg transfering of radial and torsional loads into the vehicle. The
vehicle is subjected to axial loads only.

(U) The revision to the truncated cone thrust structure reflects upon the
following:

1. Propellant feed system
2. Heat protection system
3. Fairing area

(U) The change in propeilant feed system weights for the revised thrust
structure heights is directly proporticnal to the change in line lengths
resuliing from ihe lower mount heights.

(U) Heat protection system basic weight analysis is unchanged by the re-
vised thrust structure design. Only the area of the base heat shield is
affected, The area of the heat shield is a function of the joining diam-
eter at the plane of the heat shield. Thus, reduction in fairing diameter
achieved through the revised thrust structure installation lowers heat
shield weight.

(U) Neductions in fairing and/or interstage areas occur in the lower mount
height regions in those vehicle cases which employ the revised minimum
envelope thrust structure, In additien to delermining the minimum envelope
defined by the revised thrust structure, all vehicle cases, both 250K and
350K, were investigated to more clearly define the minimum envelope attein-
able considering the effects of propellant feed system installations.
Tigures 42 through 53 illustrate the effect of mount height and module
diameter on installation weight and fairing area for the 350K vehicle cases,
Limits of installation effects are depicted on each curve. As noted, the
propellant feed system installation effects occur only with the smaller
module diameters,

(U) A limited study of secondary injectien thrust vector control (SITVC)
systems and their effect on performance index was initiated during this
report period.

(U) A screening of candidate SITVC systems resulted in the selection of

a configuration utilizing propellants tapped off the turbopump outlets
and combusted at low mixture ratio as being most representative of an
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advaneed lighi-weight, high-performance system. This system uses four
low-temperature multiple thrust uncooled combugtors located uvne in each
of four quadrants in the inner body at the plane of TVC injection.

Combustor nominal design parameterse are:

Chamber Pressure, psie 1200
| VIR ORI |, PR O -/ 1.1
FLAVULYT JWMAVLIV, V/I. Lid
Characteristic Velocity, ft/asec 6840
Total Flowrate, 1b/sec 31.6
Total Throat Area, sq in. 5.60
L¥*, inches 25

(€) Comparison of this mselected design in the Case 2 installation (poten-
tinlly the vehicle most complementary to an amerospike module utilizing
SITVC) with a mechanically gimbaled instullation resulted in an engine
weipght incrcese, an interstage ares reduction, a vehicle thrust structure
wveight decrease and a resulting performance index loss with the SITVC
design., Listed below are the differences in module weight, installation
weight, and interstage area brought about by using a SITVC system in lieu
of mechanical gimbaling for Case 2, 250K.

Engine Module Weight, pounds +19
TVC System, pounds ~173
Injectant and Tank Weight, pounds +1468
Vehicle Thrust Structure, pounds =114
Propellant Feed Systiem, pounds =210

Net Weight Differential, nounds +990
Interstage Area, sq ft -68

(2) Performance Index Analysis

@C) The performance index has been used as the resultant figure of merit
in evaluating cngine modules for use in the advanced vehicles. The diver-
sity of stage concepts necessitates individual parametric optimization be-
fore selection of a common module. The optimization of the individual
cases wus performed inr accordance with the ground rules and procedures
@etailed in the Application Packages. One of the inputs, the engine/vehicle
installation weight data, was refined during this report period, Based on
these data, performance index values for the 250K cases were recalculated.
In the deteruination of the individual optima, only the nominal mixture
ratio (6:1) was used. Previous study has indicated that operating mixture
ratio does not significantly alfect the optimum operating parameters,
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(C) The normslized performance of the six 350K vehicle cases are presented
parametrically in Fig. 5% thiough 65. In general, the lower-stage vehicles
tend to optimize at higher chamber pressure and lower module diameter than
the upper-stage cages. 11 is noted that the optimum chamber pressures, as
was the case for the 250K vehicles previously reported in AFRPL-TR-66-348,
are = 2000 psia., It is also noted that the reusable vehicles optimize at

" lower chamber pressures than the expendable,

(C) The effects of mixture ratio on the performance index of the six 350K
cares are shewn in Fig. 5k through 65. The data presented here are for
1500-psia chamber pressure, but the general trends are represented for the
total range of chamber pressure of interest, Of particular importance is
the fact that the peak performing mixture ratio for all vehicles occurs
neav a mixture ratio of 6:1.

(U) The new parametric performance data for the 250K vehicle cases (with
installation changes discussed in preceeding section) indicete the same
basic trends regarding the optimum chamber preseure and module diameter

as that previously reported. The significant difference is an increase in
performance index over that previously reported. The percent performance
index increase obtained for each of the 250K vehicles is:

Vehicle Performance Index Increase, Percent
1 1.7h
2 .23
3 10.27
4 5.95
5 2.72
6 5.58

(U) The versatility of an engine concepi can be measured by iis adapia-
bility to widely different stage designs without suffering significant
performance loss as compared to the case where each stage employs its
individual optimum engine. The aerospike engine with its inherent alti-
tude compensation can be designed to power all six vehicle cases with
minimun lesves and no differences in hardware (one engine for the six
250K vehicle cases end another for the six 350K vehicle cases), In the
selection, an average relative performance index was defined as follows:

N
1 ' .
v, - = z W , i=1,2,--N
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'
where W, = the normalized or relative performance index, or the percent
of optimum performance index value obtainable within the ranges
of parameters studied

N = number of relative perforwance indices

(c) To determine the common wodule for the six vehicle cases, a graphical
maximization of Wy was performed. The resulting besi common module for
the 250K vehicle cases was determined to be a configuration which has an
operating chamber preesure of 1500 psia and a module diameter of B0 inches.
The opecrating chamber pressure of the resulling common medule for the 350K
is 1500 psia and its diameter is 100 inches. Th_ average relative perform-
ance index of these common modules was found to be approximately the same,
97.7 percent. Considering the wide differences in design concepts among
the six stages for each of the twe thrust levels, this is an indication

of the versatility of the aerospike engine concept.

(C) Perturbation manalysis has been initiated based on the recommended
ceumen module design for the 250K vehicle cases only. The purpose of the
analysis is to evaluate the advantages, if any, of several operational and
design alternatives, by comparing their effect on the performance index
values with the basic plan. 1In this repert, only c¢ne of several investi-
gations, the comparison of the constant chamber pressure design and con-
stant vacuum thrust design 1is included. The constant chamber pressure
design reguircs thal the module chamber pressure b held constant when

the mixture ratio is varied from its nominel value of 6, The constant
thrust design, on the other hand, dictates a constant vacuum thrust during
the mixture ratio excursion, Figures 66 and 67 depict the effect of mixture
ratio on performance index for modules designed with constant chamber pres-
sure and constant vacuum thrust. The results indicate that when the con-
stant thrust design is used (1) optimum mixture ratio shifts slightly to
the lower mixture ratio end of the scale, (2) there is no noticeable change
in the values ¢f the maximum performance index, and (3) the optimum operat-
ing parameters remain essentially unaffected., The conclusion drawn is that
the constant chamber pressure contrcl capability results in a mixture ratio
optimization more complementary to vehicle size.

c. Problem Areas and Solutions

(U) No significant preblems were encoantered in the application study
during this period.

d. Sumnary of Planned Effort

(U) The application atudy will be completed early iu the next quarter
and a special repori prepared presenting the resulis.
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D. TASK 2, FABRICATION AND TEST

g g e s Awem o w ooy —w - Aar

i. INJECTOR PERFORMANCE INVESTIGATION, 2.5 SOLID-
WALL SEGMENTS

(C) The 2.5K segment injector investigation effort wus designed to uti-
lize the segmentation potential of the Aerospike thrusi chamber ior the
development of candidate injector patterns for ihe 250K injector with the
experimental ebjectives of: (1) selecting a1 injector design that
delivers characteristic velocity efficiency in excess of 0.96 aver the
operating renge, (2) detercining thrust chambzr heat transfer character-
istics, (3) developing a g s tapoff system that yields gases suitable

for use as a turbine working fluid, (4) evaluating injector durability,
and (5) determining injector atability. '

a. Status

(U) This subtask had been successfully completed in the lasi guarter
except for analysis of certain tapeff data. A fimal tubulation of per-
formance results has been prepared for this report, completing all ecpects
of the effoxrt. .

b. Progress During the Report Period

(U) The cbjectives of the test effort were quitc varied aad several dii-
ferent techniques were regquired to complete the data analysis. The hard-
ware had heat transfer limitations which imposed definite restrictions on
the manner of testing. For example, these tests were conducted with water-
cooled copger hardware which had a theoietical burncut heat flux ol

55 Btu/in.“-sec. Engineering judgment required that the experimentel peak
heat flux should pe minimized to a value substantially less than the theo-
retical maximum. Consequently, testing at chamber pressures greater thau
900 psia was accomplished by the use of gascous hydrogen as film coolant
in the converging portion of the nozzle. Injector performance in this
thrust chamber was evaluated for tesis with watlcr-cosled hardware, film-
covled hardwere, and gas-tapoff hardware. In each of the aforementioned
cases, the data technique was developed such that ithe physics of each
situation were properly described. The data reduction techniques for the
water—cooled iests arc based upon conventicnal metheds and have been prey-.
iously reported in Ref, 1 and 2.

(U) Those tesis wherein gaseous hydrogen was used as a film coclant were
analyzed by upplication of an emergy balance technique, reported in Ref. 3,
and checked by several tests which operated both with and without film
coolant. Gas-tapofi test dela reduction was accomplished by use of a
mess-energy balance technique as given in Ref, 2.

(L) The manner of presentation of the results logically fullows the
experimenial techniques in use for the varicus teste and objectives,
Therefore, complete summary perfermmance tables were prepared with the teat
objectives and techniques aerviay &s guicelines,
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¢. Problem Areas aid Solutions

(U) There were no problem arcas encountered Guring this quarter.

d. Testing

(U) Testing was completed in the lasi guarter. A listing of all tesis
performed and associated with this task aleong with injector line design
descripiion is given ir Appendix B. This lisling provides a complete
compilation of the testing effort with basic thrus! chamber operational
parameiers. A tabulution of pevformance results for water-cooled chamber
ltests, film-cnoled tesis, and gns-tapofi * ots is presented in this section.
These resulls were initiclly presented and analyzed in earlier quarterly
reports. A sumary of performance during high chamber pressure operation
ig shown in Pig. 68

(U) Table 3 provides a listing wherein only water cooling was utilized,
Performance anda heat transfer resulis are given,

(U) Table 4 is a lieting of test resnlis for those tests where gaseous
hydrogen film ccolant wes employed. Also indicated are several key tests
performed to check the analytical iechniques, wherein the film coolont
wag shut off during the teats to provide characteristic velucity c¥ data
with apd witheut film cooling. As scen, the analytical technique was
yuite accurate. Also of winterest is ihe fuet thui the ADP combusier con-
figuration always incurred & substaniial perfermunce reduction with the
injectiion of file cooling. : )

(C) fTable 5 auamerizes the resnlis from the gan—itapoff testing. As
reported in Ref, 2 ihe ying! 2% efficiumcies shown hkave bren delermined

by fully accovuiing jur guas-tapolf flowra'es and resultant combuetion
mixture rotio sbifts. 14 is seen thac thrust chowber operation covered

the rauge of chombelr prassures from 274 to 1581 psie ond mixiure ratics

from 3.3% io 9.71 with the YIX of (he tesis al mixtace ratios vangiug

from 5.0 to 7 0, Eight injeclors with a total of 20 medificalicuws were
tested in the ADP efford. Thes: wodifications were made te optimize injector

deviou nps nravide fusl hiac far mooc famadd Sl
L bedroa any, nravide fuel b tapefl,

LHo AU mas

e, Swaary of Plained Mifort

) There ir no further plawned <Ifort on this Qubtask,

? -

1u2
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2. THRUST CHAMBER CCOLING INJESTIGATIONS,
2.5K TUBE-WALL SEGMENTS

(U) The thrust chamber cooling invesiigatione were deamigned to provide
daia on the regemerative cooling limits of the Aerospike chamber, fatigue
life capability, and operating point for cyclic life of 100 reuses and
10 hours betiween overhauls, and a selection of tube material to meet the
operating requiremenis. The 2.58 itubec-wall segments were designed to
provide cooling data, and other pertinent data were provided through com-
bined snalytical and laboratory techniques,

a. Status

(C) The ADP test effort on the copper tube-wall segment encompassed scven
successful hot firing tests over the pressure range of 540 to 1500 psia,
terminating with a regeneratively cooled 1500-psia demonstration.

(U) Laboratory metallurgical work has been fully completed and reported
in the earlier progress reports., Pertinent tube tester effort was con-
tinued and is reported herein. The subtask is now completed, except for
continued analysis of related d ta.

b. Progress During the Report Pexriod

(C) During this report period, all experimental testing and data analysis
on this subtask was completed. The copper turbular segment test series
was successfully accomplished witn mainstage operation over the nominal
chamber pressure range of 540 to 1500 psia. All the heat transfer data
vere reduced snd found to compare favorably with previously obtained 2.5K
coppes solid-wall hardware, Additional tube tester data and analysis
strongly supported the selection of nickel 200 as the candidate wmater.al
for design requirements of 300 restarts,

c. Testing
(1) 2.5 Tube-Wall Segments

(C) Seven het tests were conducted on the 2.5K copper tube-wall segment

on the ADP test effort, The test series consisted of six mainstage tests
between 540- und 1500-psig chamber pressure, plus an ignition checkout test.
Inspection of the hardware after the test series revealed the copper tubes
were in good conditien, The performance was typical of that obtained on
the solid-wall segment performance evaluation and is shown in Table 6 and 7.

(U) A summary of the tesi results is presented in Table 8 . These data
were reviewed to define the heat transfer distribution of the tube-wall
scgment, The overall heat transfer characteristics (end point data) were
well-behaved und showed that the heal tranafer was of en expected turbu-
lent nature (Fig. 69) throughout the chamber pressuve range. Unfortu-
nately, the local coolant bulk temperature measurements were not within
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2.5K COPYER TUBE-WALL SEGMENT PERFOGRMANCE DATA

Chamber Mixture Coolant

T;:t I‘resgure, Ratio, w'im ‘.'GH - Mix?u.:e Tu!_ael

. psig o/f 2 2 c Ratio Condition
030 |[Ignition only Excellent
031 540 4.70 1.87 [0.398 ] 0.953 | 3.00 Excellent
032 880 5.06 3.02 ]0.596 | 0.987 3.25 Excellent
033 600 4.80 1.95 | 0.408 } 1.025 | 2.00 Excellent
035 985 5.20 3.50 [0.673 ] 0.960 | 3.G7 Excellent
035 1300 5.00 4.47 10.895 | 0.974 5.03 Excellent
036 1500 5.10 5.20 {1.062 | 0.970 ] 5.04 Ixcellent

—_———— N S ————d

*Contoured tube Mt = W

Lo /CJGH coolant per tube bundle
3 2] 0 .

£ N
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the requitod wccuracy tov mpsess the heot transfer distribution. There-
fore, the rolid-wall water-cooled datu (@ ) employing ithe same injector
were reviewed. The Z!Ql ., of solid-wal “gégmcut tests (Ref. ') are com-
pured with tube-wall @ uonuii“ Fig. 6Y . As noted in Fig. 69, a difference
of approximately 11 percent between svlid-wall and tube-wull data exists
which 18 attributable to the difference in local gas-side wall cperating
temperaturcs. Using the entablished heut transfer distribution of the

80l id-wrll segment, the local heat transfer distribution of the copp:r
tube-wall chamber was determined and is shown in Fig., 7. The associated
gas—side tube-wull temperasture profije, utilizing u maximum coelant curva-
ture enhaucement of 1.5, is alsv presented in Fig. 70 The data show that
regenerative cooling capability wes definitely detiemmincd.

(2) Tube Tester

(C) The electrically heated, hydrogen-cooled, thermal fatigue iube tesler
has heen used to evuluvaie iour 0,.012-inch wall tubular specimens, The
first two samples wese cyclied at a planned 1409 F wall temperature witih
penetrating crack failures occurring ou both samples at 142 cycles, The
Tallure mode was of multiaxial intergranulur geparations, resulting in
coclant leaks where these separations peneirated the wall., Both of these
specimens were of large grained material (1850 ¥ braze temperature).

(C) Subwegnent. metallographic examinutiion revealed no grain boundary con-
tomination of the tube material. The overall failure wode wus not of pure
transverse crack nature; however, it is apparently still of a general
fatigue nature which may be typical of high-temperature, low-cycle fatigue,
where temperatures arc well into the creep range of the material, The
posttest metallurgical examination showed the presence of remelted Lraze
alloy on the crown. These observations led to a suspicion that the actual
pecak tube~wall temperaturcs during the test were about 1700 to 1800 F.
Fast~response nicrominieture thermocouples were obteined and instulled

on the next tesi series adjacent to the standard size thermocouples, lying
parallel to the tube crown. 1n this manner, meie survface contact area
between the thermocouple and heated crown was obtained und the tube crown
toemperature vae more accurately controlled,

(C) During the current report period, two specimens were tested: These
specimens were designed to evaluate the effecis of processing (i.e.,
enlaiged grain :i-:%ncn ‘he fatigue life. One sample was purposely process
anncaled at 1800 F while the other was taken in the "as received" small
grain condition. Both samples were hand brazed in the test fixture at &
noninal 1200 to 1400 ¥ temperature.

(C) At the start of the test, large differences in the recorded tempera-
tures from the micrvominiature and standard size lhermocouples were noted.
The peak cyclic wall temperatures for ithe iests were thereflore estahlished
using the ind.cated higher values (200 to 400 ¥ higher) by the microminia-
tures. The cyclic wall temperatures were then programmed for 100 to 1400 F.
Tesiing continued to 270 cycles for both specimens, with no tube failure,.
The test specimens were removed for inspection, which revealed that multi-
axial wmicrocracks were initiated, but nonc had penetrated the hot wall of
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vhe tube (Fig. 71 ), 1he bigher temperature-processed specimen, however,
had developed two microcracks in a colder purtion of the tube adjacent to
some large braze fillety. These crache scem tv he asgociated with the
lavge braze fillets in some way. Metallographic examination revealed that
these crachs are both of the trapsgranular and intergranpulax type.

(¢) Subsequently, the small-grained specimen which had expervienced 270
thermmal cyeles was reinstalled in ihe test apparatus and cycled Lo cou-—
pleie rupture. A iolul of 315 cyeles wae accumulated oun this specimen,
The larvge-—grained specimen hus had the cracked tube crowvn remeved and
pittehes intalled. A totul of 320 cycles was accumulaied en this specimen
when failure vccurred in the pateh arca.

(U) Metaliographic exuminaiion of the removed tube crowns, and also of
the small ~praiucd specimen,is in progress, The resulls of the tests to
date sre summarized in Table 9, These resulis give astrong suppori to
the choice of nickel 200 to meet the ADP cyclic-life regquiremenis. The
uncexpecled meltiaxial failure mode is under investigauticn.

TABLLE &

SPLCIMEN 1LST SUMMARY

Coolant Cycles
Specimen Cyclic Wall Heat Flux to Type of
Descriptiion | Temperature, I Btu/inz::gcc Failure Failure
arge Grained 1/UU 10 1030 3G 142 Intergrauular
(estimated) separation
Large CGrained 1700 to 1800 30 142 Intergranular
(cstimated) aeparation
Small Grained 1400 T 30 315 Under
investigation
Large Grained 1400 I 30 320 Under
investigalion

(U) Al Uougit e« line 18 cowpiete oz this progrem; 1uture rlans for
related programs in Hocketdyne call for the testing of four additional
specimens with higher wull-temperature gradients. Two of 1hese tests will
explore the effects of hydraulic stress on the fatigue life, while the
remaining iwo tesis will be used to obtain an indication of the effects

of steady-state theimal cycling, in an effort to duplicate the H-1 type
failures of pure transverse cracking.
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Large Graiu

Nickel 200 Tube Tester Specimens After
270 Thermal Cycles
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d. Problem Arcus and Solutions

(') There were no problem arcas in this subtask during this reporting
period,

¢, Summary of Planned Effort

() This report eftort concludes this subtiash with Lhe exception of
analysis ol reluted dotu,
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3 THIE ST CHAMHEH NOZZLYE DEMONSTHALLON, 250h

(L) Yull-sesls, 290k thrust chambers coplicating the combustion and nozzsle
eapandion fratures of the demonstrator module thrust chamber are besng used
1o demenstrate the perforwance capability of the Aerospilie thrust chamber.

One selid-wali 25UK chamber is being fabricated for the following purposes:

1. Verify ipjector integrity and compatibility before exposing the
tube-wall chamber

¢, Evaluate hypergolic and hot—gus ignition

3. Rate the injector-combustur stabilitly by pulse gun as well aw
operational  est

4. Provide a preliminary meuans cf evaluoating combustor and nezzle
perfermance

. LEvaluate tapoff guses wnd demonstrate feasibility of tapoff
source of turbime power on the Acrespilke chamber

(U) In addition, the inbhercent ruggedness of this type of hardware wijll
make it o valuable tool during test facility shakedown periods,

(U) Two 250K tube-wall chambers are being fabricateu to provide long-
duration capability for performance measuremenis, These chambers will be
operated with varying degrees of base bleed at site couditious and in a
diffuser for simulating allitude conditions. Injertor and comhbustor
features simulate those presentily Leing designed into the demon trator
wmodule chawber.

a. Status

(U) During the past quarter, the first injector and all compenents for
the solid-wali asscmbly were completed. The 250K solid-wall thrust cham-
ber was assewbled and delivered to the test site. lustallation of the
hardware to the test stand was completed and prepurations for pretest
blowdownus and the test series are currently under way,

(U) The tube-wall asscmblies, including the tubular inner and outer
bodies, the base closurc, and supporting ducting, are all progressing
satisfactorily. The ioner and outer combustors for the first tube-wall
assembly have voth succegsfully completed their firsi biaze cycle. The
sccond set of combustor bodies has completed p.ebraze machining operations
and is currently being prepared for the first braze cycle. The second
injector unit is approximately 60 percent complete and is in its final
fabrication steps prior to the braze cycle.
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b. Frogress During Leport Period
(1) solid-Wall Thrus! Chamber

(U) The solid-wall ihrusi chamber utilizes a water film-cooled inner and
viter body. This chambier assembly which is designed primarily for cieck-
out, and stabilily ratiug of the injector is capabvle of shori-duration fir-
ings. During this report period, the fabricaiion of all ithe components
for the selid-wnll assembly was cowpleted. The chomber wus assembled
(rig. 72) and shipped to the tesu site.

(C) The solid-wall test planniug has been compleied. The goals of the
s0lid-wnll chamber phase of the 250K Aervsypike pregram are:

1. Operation from 20 to 100 percent f vated chamber pressure
2. Mixture ratio operation iIrom 5.0 to 7.0 (o/t)

3. Hot-gas tapoff demonstratiion

4, Combustion stability evaluation with pulse gun technique

5. Hot-gas igunition

It is anticipated that these objectives can be attained w'th 1] satisfac-
tory mainstage tesis. Prior to these tests, a series of Llowdowns wili
be conducted to verify operation of all prepellant systems.

(U) The fit between all mating components during the anscmbly of {he solid-
vall thrusi chamber was excellent. O0f particular interest was the matching
of the shear lips on ihe inner and outer budies to the injector umit. The
matching of thesc components demonstrated the ability to waintain critical
fabrication tolerances at large diameters. Potential leakage of the four
injector~to-thrast—chamber scals was checked. In each casc, the seals
performed considerably better than nominally required. The leakage rates
for the two rubber O-rings {(these are replaced by Naflex seals on the wube
wall assembly) was found to be 0 and 1.2 scim, and no detectable pressure
loss in a l-minute period was observed for the two metal O-ring scals.

(U) The assembly of the solid-wall chamber was conducied on a cowbustion
assembly-shipping fixture placed on the back of a transport trailer, This
fixture was designed to permit chamber disassembly and assembly at the site.
Traasportation oi the chamber to the site was accomplished, and a mobile
crane was used o iransfer the thrust chamber from the shipping pallet to
the test stand (Fig.73).

(2) 1Injectors
(U) 1Injector unit No. 1 nas been completed and installed into the solid-

wall thrust chamber. During this quarter, the injector progressed through
the brazing operation; the unit was then leak checked with the aid of an
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Figure 72. Solid-Wall Thrust Chamber Preparation for
Shipment to Reno Test Site
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Figure

73. Solid-Wwall Thrusit Chamber Mounted on Reno Tesl Stand D.-2
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epoxy-resin compound, final machining was completed, and calibration and
cleaning operations were accomplished,

(U) Subsequent te the initial braze cycle, the appearance of the braze

wus vacellent; huwever, lcuhage wus observed in several locations, The
injector wus realloyed and brazed for a secoud cycle {Fig. 74), Subse-
quent to this braze operation, the unit was leak checked. The leak check
is accomplished by using an epoxy-resin compound which plugs the injector
vrifices. Use of ihis simple techmigue has aliowed poieniial sources of
leakage to be accurately located. Subsequent to the final bLraze operaiions,
& 40-psig helium lesk check of the oxidizer, fuel, and baffle hraze joints
indicated zero leukage. The oxidizer strips were alse hydrostatically
tested at 050 psig. No leaks were noted.

(U) Final machining of the injector shear lips was accomplished by match
machining the shear lip to dimensions taken from the imner and cuter solid-
wall combusters., Subsequent stacking of these units revealed an excellent
fit,

(V) The injector fuel and oxidizer flow circuits were each calibrated
with the injector in a face-down pesition. The oxidizer system was water
calibrated over a flowrate range of 1000 to 1900 gpm. The fuel system
was calibrated over a flowrate range of 1100 to 2400 gpm., These flow
calibrations showed excellent siream impingement and good correlation with
analytically predicted pressure drop values.

(U) 1Injector unit No. 2 (Fig. 75 ) has completed all rough machining and
welding operations. Weld cracks iu the propellant closeout manifolds have
been detected and are currently being repaired. Subsequent to this repair
and the completion of proof-pressure tests, the broaching of baffle and
strip grooves: and EDM wachining of the fuel and oxidizer passages will
coumence. All haffles and all injector strip ftabrication for this unit
are currently coiplete; flow calibration and plating of 50 percent of the
sirips are the only remaining operations.

(3) Tube Wall Chambers

1Y Tawa OS50K tuha.wmil chamhors ava hoing fahrs
i) Thwo 250K tube-wall chamber aing fab

tos
Ca_moe’s 4re o & ve

ricated B =
duration capability for performance measurements. The major components
for the tube-wall thrust chamber are the inner and outer bodies. For the
first chamber, the inner and outer bodies have coupleted the first braze
cycle with good resulis and are now being prepared for the second hraze
eycle (Fig. 76 and 77 ). The second inner (Fig. 78 ) and outer bodies
have been machined, nickel plated, and are being alloyed preparatory to
tube stacking and furnace bracing. All tubes for the sccond combustor

chanber have been completed and are ready for stacking.

(U) All supporting components for the tube-wall assembly are progressing
satisfactorily. Welding of the perforated base plate is complete, and
final machining of the assembly is currently 85 perceni complete (closure
instead of plate). Welding of the fuel inlet dact was completed and the
component is presently being X-rayed. Fabrication of the fuel ducts for
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Injector Unit No. 001

Figure (4.
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the tube—wull chamber is in progress. The gas generator is in final
pachining and 90 percent complete,  Olher components, such as the uncooled
nozzle extensions, arc complete (Fig. 79).

(%) Hydrogen Heat Trunsfesr Coolant Enhancement BEvaluation

(V') A total of 12 clectrically heated tests were run on one inner and
ene outer Lody tube i{o develop compleie curvature enhancement data. Both
tubes were of 347 stlainless sleel and beth had becen final fermed and con-
toured to the 250K experimental tulbe dimensions. The tubes were instri-
mented with therrocouples on both the gas side and the opposite side of
the tube. Vollag~ taps were placed al appropriate locations to determine
the power generation within different sectious of the tube, The hydrogen
was heated to about 150 R and flowed through the tubes in the same dirce-
tion as in the 250K tube-wall chumbers., IHydrogen inlet pressures ranged
tetween 1500 and 2000 psia. This corresponded to flowrates of 0.015 to
0.U21 1b/scc for the outer tube and,0.018 to 0.02% 1b/sec for ihe imner
tube. Heat fluxes up to 31 Btu/in.“-sec were generated in each tube with
peiak heat fluxes Leing near actual engine operating throat locatious,
Resultls of the tesis are shown in Fig.80 and 81 for the imner aand outer
tube, respectively. The measurcment reference stations are shoun in Fig.
82and¥3 . The reference equation is the McCarthy-Wol{ corrclation.

(U) Becausc of a number of effects including roughness, entrance, and

contraction (acceleration) cffects, the experimental film coefficients

are higher than that predicted by the McCarthy-Wolf equaiion. Station 8

(Fig. 80j has a very high enkancement, probably due, in part, to the

low driving potential beiween the wall and coolant temperature (60 0 90 F

for this region) compared to a driving potential of 300 to 800 ¥ in the .
throat and upstiream portions of this tube,

(U) Results of the tests show that a considerable entrance effect exists
in boih tubes. Also an appreciable increase in heat transfer coefficient
occurs in the curved sections of the tube (curvature enhancement), in par—
ticular in the throat and at the start of the chamber convergeni section.
In conclusion, the tesis indicate that the curvature enhancements used to
date on ADP experimental tube desigus are conservative (1.5 on the inmer
and 1.2 (1.5 with slight - stream shift ol countour) on the outer). The
data arce also usctful tor .ptimal design of the demonstrator woedule inuer
and outer body throat curvature locatiouns.

(5) Oxidizer Manifold Starting Ciiteria

(U) ELxperimental investigations of the thermul and hydraulic character-
isties of the experimental cxidizer manifold configuration have shown

that flow above a minimal value are necessary during manifold priming

for satisfactory operational characteristics. It should be nuted, however,
this minimum flowrate is a function of the manifold temperature, as well

as its mass, For the 250X experimental eungine, the minimum flowrate during
the priming of & warm (ambient) manifold is approximately 115 lb/sec of
cxidizer. These investigations have also shown that for flowrat:s greater
than this value, flow overslinois (of the order of 50 percent above the

: steady-state valuc) are possible on a pressure-fed test stand. The
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operational test plans for the experimental testing of the 250K chumber
therefore include the use of cavitating veniurii e restrict the possi-
bility of mixture retio and chamber pressure cvershoots. Because these
devices provide an extremely rapid acceleration of the fiow up to the
sicady-state value, the average velocity during the mapifold priming phase
will be essentially the sume as the steady-state value,

(6) 250K Solid-Wall Performance Analysis

(U) The 250K solid-wall thrust chamber is water film cooled. Although
performance data are not a requirement of this test series, such data

nay be useful and an annlytical procedure is being formulated to evaluaie
the effect of film coolant on thiust chamber performunce parameters.

(U) Two theorctical models which represent upper and lower limits to
thrust chamber performance with film coolant were selected for study. In
one model, the water film coolant wes assumed to remain in the liquid
phase throughout the nozzle flow process., The film coolant was assumed

to be heated to a lemperature that is intermediate between the boiling
temperaiure ai & pressure cqual to chamber pressure and a pressure equal
to nozzle throat pressure, Also, kinetic equilibrium was assumed to exist
everywhere in the flow field. In the cther model, the water film coolant
achieves instantaneous thermal and kinetic equilibrium with the combustion
products.

(U) cCalculations of the effect on performance of frictional drag, nozzle
discharge coefficient, and nozzle divergence are in process. These calcu-
lations will yield the values of the influence coefficients, for the afore-~
mentioned physical effects, that are appropriate to the 250K hardware
configuration.

(7) Base Bleed for 250K Testing

(C) During the experimental evaluations of the 250K tube-wall thrust cham-
ber, gaseous hydrogen will be utilized as the base bleed gas for some of
the secondary flow tests, The principie of gas substitulion is based on
the ability to predict the gasecus hydrogen flowrate rcjuired to obtain
the same base pressure as that which would be obtained with turbine gas
bleed, The dependence of realized values of base pressure on both the
secondary and primary gas properties has been well established in experi-
mental investigations (Ref.4 and 5). Analytical techniques have been
developed which permit comparisen of isocnergetic (like primary and
secondary gases) and nonisoenergetic (unlike primary and secondary gases)
beze pressure measurements, These techniques are based on the theoretical
aad experim ntal observations that choking of the secondary gases is ob-
tained for large bleed rates. (A large bleed rate for the 250K experi-
mental thrust chember will be obtained with secondary flows greater ithan
0.5 percent of the primary flow.)

134

CONFIDENTIAL




(U) Any of the nonreactive-type gasea, such as hydrogen, helium, or nitro-
gen would he satiefactory as a substitute for the turbine gases; however,
hydrogen hus been sclected because the c* of ambient hydrogen closely
approximmies the expected o of turbise exhaust gases. Typical resulis

for the testing of a hydrogen perexide Aerespike (Ref. 5) obtained with
the c* parameter are shown in Fig. 84 and 85, Secondary gae properties
employed in the testing arc given in Tablc 10, Figure 86 shows the meas-
ured base pressure va ihe meowinal secondary flow ratie, and Fig, 84 shows
the baee pressure, The theoretical basis for ges substitution predicta-
bility is given in Appendix A.

¢. Problems and Solutions

(U) The solid-wall thrust chamber utilizes a water-film-cooled inmer and
outer body. The design of these bodies also incoiporated a welded copper
throat section to supplement th~ film cooling in the throat region. The
construction of this welded copper taroat section was completed success-
fully for the outer body. Extremely good conductivity was achieved,
Welding of “he ipner bedy proceeded in a similar fashion and good conduc-
tivity was achieved. However, porosity and weld cracks were prevalent

in the throat regiou. This condition was operationally unsatisfactory.
Atiempts at repairing the weld and replacing the cracked area with a
copper rir~ vere unsuccessful, The throat profile is now achieved by a
nickel weld buildup. The duration of the combuster will still be governed
by the uucooled stainless steel in the combustion chamber; however, the
use of nickel in the throat will not allow operation with the film
coolant off,

(U) Inspection subsequent to the ihrust mount posi-weld stress relief
and heat treat revealed cracks in the parent material of three 4340
forgings used to connect the mount to the inner body. Aiditional cracks
were also evident in the area of the calibration lugs on the center
forging attaching to the gimbal block. Repair was made by removing the
craciked end forgings and fabricating identical filtinge of 4130 plate
stock heat treated to the required stress level,

{U) To verify the ctural

operations, a procf load test was conducted using 430,000 pounds applied
axially and cycled five times. Inspection between cycles and after test-
ing revealed n« propagation of the few remaining surface cracks and ade-
quacy of the siructure under the applied load.

at+amiaty
SVIMACE

integrity of the thrust mount after these

d, Testing

(U) Buildup of the Nevada Field Laboratory test facility {described in
Ref. 3) in preparation for installation of the 250K Aerospike thrust
chamber was completed during this report period. The solid-wall thrust
chamber has been installed in the test stand, and a2ll propellant lines
connected. The test facility is in a state of readiness to initiate pro-
pellant blowdowns. Instrumentation and wiring hookup in preparation for
water and fuel blowdowns has been completed. Instrumentation for oxidizer
and hot-gas igniter blowdowns is in work.
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(U) Daia acquisition at the Nevada test gite will utilize the Astrodata
system. This data acquisition sysicm includes an on-line computer systicm
which may be used for test contrel, The Astrodata system has been checked
out, and the computer programs that contrel the system and unpacking
routines have been verified.

e. Planned Effort

(U) During the next quarter, fabrication of all 250K hardware and testing
of the solid-wall thrust chamber will be completed. The assembly of the
firs{ tube-wall thrust chamber and the dclivery of the hardware to the
test facility will be accomplished.

Smhlver. .

P ———




4. 20K SEGMENT STRUCTURAL EVALUATION

(U) The 20K segment chamber is being designed, manpufactured, and Ltested

to evalunte structure, cocling, fabrication, and performance over the
throttling and mixtwre ratic range for the demonstrator module chamber

deisgn. To satiafy these conditions, a ihrec-compartment rectangular seg-
ment is being constructed. The segment includes two subsonic struts but

does not include the solid inmer body spike or ihe cxtended outer body shroud.

{U) The ihree-compartment acgmeni approach, without ihe spike-or inner
budy extended shroud, allows use of a symmeirical chawber, with one tube
design for the inner and outer bodies, and will provide close simumlutlon
of the maximum tube-wall thermal stiress which occurs in lhe throat region,
maximm coolant bulk temperature rise in the high heatl fiux arca of the
threat and combustion chamver, and a close approximaticen of pressure loads
that will occur in ihe 250K module.

(U) Three compartments with iwo subsonic struts represcut the shortest
segment length required for continuous beam simulation. The rectangular
cembustor leugths are the cquivalent arc length of the module at the
throat diamcter. The ability of the structure to maintain throal dimen-
sivns throughout the chawber pressure range and with repeated firings will
ke simulated very closely. Also, construction of all structural parts
will be closcly simulated. The effects of differences between the 20K
segunent and demoustrator mc 'ule will bhe analytically detlermined and used
to interpret the test results.

a. Status

(U) All drawings arc complete. Figure 87 is a pergpectlive view of the
components in their relation to each other. The fabrication of all
components is in process.

b. Progress During Repori Period

(U) During this period, all detail and assembly drawings were complected
and loose hardware (bolts, nuts, etc.) and purchased items were placed
on order.

(U) Fabrication of all components was initiated. All the tubes for the
first unit and 75 percent of the tubes for the second unit are complete.
Flow calilration and wetallographic examination of the finished tubes
were conducted, Flows and pressures were uniform and tube quality was
excellent.

(U) vork is progressing satisfactorily on the initial braze subassemblies.
Four baffle scat subassemblies (Fig. 88) are required for cach of the two
20K segments being fabricated; two for each of the contour walls. Fabri-
cation of the first four units is complete. Two of the four units required
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for the second segment are in machining prior te flow calibration. One
additional unit has completed its first furnace braze cycle and awaits
leak checking; the last unit has been assembled in preparation for its
initial cycle., Two tube-wall brazc asseublies (Fig. 87, each including
twe baffle scat subaasemblics and sufficient tubes to faww a contoured
segment, wall) are being prepared for ithe first 20K assembly, The {irst
iube-wall braze assembly has completed its first furnace braze cycle
(Fig. 89 and has been leak checked. It is presently being prepared for
its sccend braze cycle., The second asscm3ly is currenily beinyg prepared
for ils initial braze cycle,

(U) Dased upon heat transfer data obtaincd in the solid-wall firing effort
and electrically heated tubes, the demonstration module tube design has
been improved over the earlier 20K tube design. For comparison purposes,
Table 11 has been prepared to indicate the design differences and resultant
wall temperature differences for the tvo designs. It is observed that a
symmetrical throat design on the 20K, simulating the outer body, with a
series up-pass and down-pass cooling arrangement results in the up-pass
side running above design Tw of 1430 to 1520 F, whereas the down-pass

side operates at & tenperatuge commensurate with the 250K demonstrator
modude desig:.

(Ug Two combustion baffles are utilized in the 20K chamber segment (Fig.
87). 1In addition to previding a stebilizing influence to the coembustion
process, the balfles are designed to protect the structural tie-bolts from
the combustion environment snd to transfer the chamber coolant from the
ioner body to the outer body., Tue baffles are regeneratively cooled by
diverting 25 percert of the coolant from the crossover circuit through
passages withiu the copper shell which surrounds the baffle body. A
parsnetric heat transfer study for the baffle geometry at the anticipated
hot fiving conditions was conducted. The temperature distiribution on the
hot-gas side of the 20K baffle being fabr.cated is shown in Fig. 90.

(U) Fabrication of component details {Fig. 91) for the first two baffles
is complete, and these units are being assembled for furnace braze. The
details for the remaining units are in vork.

{U) Fabrication is underway cn all other components. The first injecter
and brazing. The injector strips for this initial test unit are couplete
and ready for installatlion into the body. Unit No. 2 is being rough
machined prior to welding of manifolds, closeouts, etc. Machining of the
strips is in process, The two regeneratively cooled, drilled copper end
plates for the first chamber segment are being furnace brazed. The com-
ponent details prior to assembly for brazing are shown in Fig. %2. Proof
of the pumerical control tape for mil ing the titenium structural supports
has becn made on an aluminum trial block. Machining of the titaniuum
structural supports for the initial assembly is in process,

c. Problem Areas and Solutions

(U) The nickel tube-wall braze backup sheet evidenced distortion during
prebraze operation. Functionally, the sheet serves to provide a uniform

154




CONFIGENTIAL 5

Figure 39. Tube-Wall Brazed Assembly
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Figure 91 ., Baffle Assemblies
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Figure 92, End-plate Assembly Details
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edhesive thickness and, therefore, upniform strength of bond. However,
analysis and adhesive sample tests have indicated that the adhesive
thickness variations attendant to bonding directly to the irregular tube
bundle surface would not adversely affect the bond strength. Therefore,
this sheetl was eliminated.

d. Plans for Next Period

(U) During the next peried, fabrication of the initial 20K segment will
be completed and preparation for testing completed, test procedures will
be ¢stablished, and teeting will be initliated.




Tyr————
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(c)

(v)

(V)
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C. CONCLUSIONS AND RECOMMENDATIONS

Stabilized operation of & copper tube-wall segment wiih a high-
performance injector from 300~ to 1500-psi chember pressure and
a mixture ratio of J has demonttratcd regenerative cocling of
the Aercspike chamber at these leveis.

Successful completion of furnace braze of twe outer body and
two inner body 250K tube-wall assemblies (one each on NASA SDI
program) demonstrates the workability of this tooling and fab-
rication procedure, As the demonsiratur module tube bundle is
designed to use this same tooling, modified for detailed differ-
ences, it is believed that a similar one-for-one success can be
achieved for that chamber.

Even though a substantirl weight reduction can be realized by
making the combusiion chamber baffles integral with the injector
in the Demonstrator Module, it is concluded that the assembly
and inspection ease afforded by separate baffles wakes these a
better selection for t! : develepment lovel engine, The lighler
configuration will be reconsidered fur flight engines,

Turbine wheels assembled through curvic couplings and therefore

eaBily replaceable are supirior to the all-welded turbines for
the Demonstrator Module.
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m pc ol w] @ 4.0 ) gy ) o4 = A DIVISION OF NQ4tTH AMERICAN AVIATION, INC.

NOMENCIATURE
r | Thrust,, 1bf
P Pressure, psia
1s Specific impulse, ll_l)%;_ls_e_c
CF Thrust. coefficient
c¥ Characteristic velocity, fi/sec
W Mass flowrale, lbm/scc
A Area, sq in.
€ Expansion area ratio
Subscripts
B Base
s Secondary
I Primary
i Throat (primary nozzle)
c Chanber
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APPENDIX A

THEORETICAL BASE BLFED PRESSURE
CORRELATION TECENIQUES

With a choking criteria to explain the sccondary gae bebavior, the change
in base thrust with the addition «f secondary flew can be described with
an equivalent sonic nozxzle performance

gonic
C c¥* 8

a sonic . F
A}B APBAﬂ 1 Ov = — .

D% (a-1)

Dividing Eq. A~1 by tbe nozzle stagnation chamber pressure (P ) and
rearranging terms leads to ¢

sonic .
C c¥ 8w

P F P w

B 8 A 8
= = -— A-2
Pc g Pc AB (jwb j) ( )

substituting

A w

Lt S A_B

py for z P and EB for ry
P c t

the following form is obtained
sonic
B CFs .<c* s>ACa>
= S = (A"j)
c s o/ \p

Recognizing that the base pressure at a given w_/w_ratio is equal to the
. 8

zero bleed base pressure plus the change in base pgeﬂsure caused by the

secendary flow, the following is obiained:

c synic
; * o
.I:_= . .I.J =P . _rﬁ___f_.s.\(h (4-4)
7 € = AW -
c c . c cl. B p P
w =0 w =0

From Eq. A-% it can be seen that the base pressure ratio P_/P depends
on both the primary nozzle aerothermodynamics/ P_/P ¢
B c v w0 and the ratio
8

of the secondary and primary gas properties ang flowrates,

"Ui“d

=]
oIy

=
|

With the aid of ihe above equation, the details of the gas substitution
principle can be shown for a generalized case where the first condition
utilizes primary gas as a source of base bleed and the second condition
utilizes an auxiliary gas source as the base bleed, This auxiliary gas




o o

could be either & turbine exhaust or a cold gas of the nonactive type.
From this equation, it can be seen that to obtain the samc base pressures
for hoth iypes of bleed it is necessary to satisfy the following
relationship:

. senic .
Cp o RN W Cp / ¥\
€ e A w /’ € v .
B P p ‘aux bleed B p /primary bleed
i sonic . . .
As C is a weak function ¢f the gas properties, the blved rate with

the auxiliary bleed gases required to give the same base pressure as that
obtained with the primary bleed is given as

-,

3 £ A-6
g *
wb primary bleed “p auxiliary bleed ¢ P

The above equation shows, that for fixed primary flow conditions, base
pressure measurements can be ncrmalized by use of the normalized secondary
flow ratio parameter (éé/fp)(c*s/c*p).
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APPENDIX B

TADULAR SUMMARY OF 2.5K WATER-CUOLED COPPER SEG4INT

(U) A complete listing of all tests conducted with 2500~ pouxsd-thrust,
water-cooled copper segment is presented in Talble B-1, The listing of
tests in this table is chromological and as such; represents an experi-~
ence summary with the seguent thrust chamber concept. Table B-l shows
only the pertinent operating parmeters and, whexe appropriate, explana~
tory couments are included. Figuve B-ldepicts the injector orifice pat-
tern designs corresponding to the injector nuwbers in Table B-1.
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TABLE B-1 ,
TOROIDAL SEGMENT THRUST CHAMBER PERFORMANCE
EXPERLIENCE SUMMARY
- Tetzl
Test Throat Chauber Mixtore Welght
Bu: | Date,| Injectrr | Dwxmtien, Ares, | Tuwrnsat, | Presscre, Eatie, | Flewrste,
Nu. | 1966 Ne. secends | sg in. | pounds pois o/t 1b/sae . Comwsonta
06 | 48 1-1a c.3 1.9%0 TR TR T® ™ Injector atrip survey test#
017 | &8 1-1a 0.3 0.95¢ " iy TR TR Injecier Sirip eurvey teais®
018 | A-21 2-1A 0.3 4.990 T®° ™ ™ m Injecter strip swvey iest e
019 | &-21 2-1a 0.3 0.9%0 TR TR Td k3 Injector sirip curvey test®
020 | =2l 2-14 0. 0.9%¢ TR ™ TR TR Injeotor strip suxyuy test®
021 | 427 2-14 ¢.3 0.99 1R TR TR 1 Injector otrip survey test«
022 | A-27 2-14 0.3 0.9%¢ TH ™ ™ ™ Injector strip survey test®
023 | A28 =14 0.3 0.9% TR TR ™ TR Injector strip sarvey test®
o | 1 @-14 0.3 0.990 TR ¢} TR T Injector sirip swrvay teat®
025 | 5-i3 3-14 | 0.3 0.990 T TR TR TB Injerter strip survey teats
026 | 5-13 3-1a 6.3 0.9%0 TR ™ ™ ™ Injector strip survey tests
027 i 521 2-}4 3.7 0.950 937 641 5.81 2,638 Relaced progran
028 | 3-21 2-14 3.9 £.990 1413 971 6.50 A.038 Helated progren
29 | 521 2-14 3.7 0.930 A2 306 5.04 1.223 Helated program
03 | %21 2-1A 4.1 B 1900 1239 7.01 95.740 Fosxle throat ereded, related program
0N | 527 A-lA 0.4 0.990 1850 1364 9.7 8.123 Injector erosion i
032 | 53 124 0.4 6.990 1850 1614 7.78 6.8%9 Bomb test {
033 | 66 2-18 5.3 0.980 896 630 5.91 2.3%5 !
0 | 6-6 2-18 [ 151 0.930 1377 974 6,43 3.947 ’
035 | 66 2-13 5.0 0.980 430 325 5.69 1.0 :
036 | 66 4-1A A3 0.960 1710 1189 6.38 L] Coslaat loak into cembustion chomber 1
037 | 67 A-1A A.2 m 9230 613 6.10 2.796 | ~
038 | 6.7 k14 A.l R 500 n3y 3.3 9,854 !
039 | 6-7 -l A2 ® 1240 764 6.15 3.537
03 | 610 i 2-1¢ A2 m 1080 643 2.19 1.252
os1 I 60 I 24 3.9 >4} 500 303 w g |
oh2 lo--w ‘ 2-1¢ [N m 1300 93 o d r i
w3l 61| 2 ke | om w633 id w
ow 63! 2w | 37 | m 510 14 6.03 1.A02
045 | 5-13 { 2-10 4.3 ® 1023 633 o w
oM | 616 2-1D L) 0.930 “wo 33 5.79 13%
047 ‘ 6-16 \ 2-12 Ak 0.930 955 680 §.07 2.7%3
l LN 6-16 2-1D L3 0.9 953 655 5.9% 2.8
09 | 6-16 2-10 [ 1] 0.550 920 658 5.60 2.653
&_16_-21 ' 2 1E A2 0.955 A5 326 5.38 1.304
* Reiated Program
NOTE:
Tit = trarstent data, no ateady state
B! - worale tbveat eroded, th-cat arex varied during test
Ll e t-utsl froviate unknown because of cooled valsr leak inte chamber
It o ynariument tion farlure, {JX flowrate unkunwn .
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l Total
Test Throat Chasbor Miatore Vol ght
Bus | Date,| Xnjecter | Daratien, Area, | Thrust, | Prwssuve, Hatie, | Tlavrate,
Ha. | 1966 Ne, sacondc eq in. | peunds pris o/t 1b/aec Comments
051 | 621 2-1F 4.3 0.96% 909 653 5.62 2.799
052 | 6-R1 2-1E (¥ 0.565 911 654 5.63 2,631
037 | 6-22 2-1E A2 0.96% LU 5.31 1.2%
0% | 6-22 2-1F A3 0.965 672 495 5.79 1.970
035 | 642 2-1F A 0.95% 8% 654 5.90 2.666
056 | 6-23 ‘ 2.1F 4.2 0.965 : 420 338 5.96 1.A12
037 | 623 2-1F a3 0.965 | 860 Gk 5.56 2.565
038 6-23 2-1¥ 4.3 0.365 620 4BA 5.99 2.070
039 ' 6-24 2-1¢ 8.2 0.965 880 659 .80 2.671
060 | 6-24 216 [ ©.903 620 484 3.4 2,176
061 | 6-2% A-1B k.2 0.965 620 483 3.41 2.192
062 | 6-24 I A-18 & : 0.963 403 3o 3.46 1.562 Injecter strip-to-land separation,
003 | 630 4-18 41 10,965 620 483 5-57 2.000 bussing induced by strip-to-land
06y | 630 4-18 5.0 0.965 740 568 6.9 2.368 neparation
065 | 6-30 A-1B Al 0.565 635 %% 5.89 2,076
066 | 6-30 A-1B L2 0.965 685 515 6,39 2,214
007 | 7-1 A-1B A2 0.965 670 513 4.27 2.130
068 ' 7-1 2-10 3.7 0.965 650 510 3.87 1.95%
069 | 7-1 2-1¢ 3.7 0.965 625 503 3.8 1985
070 | 7-1 2-16 3.8 0.965 650 51k 3.92 1.932
o7t | 71 2-16 3.8 | 0.965 675 Shi 476 2.156 | J
072 = 75 1-34 4.0 | 0.950 745 549 6.3 2.270
073 | 15 134 (%} I 0.950 1062 ™ 5.70 3.096
o 75 1 1 [ 0.950 1057 bas] 5.15 2.942
073 \ 76 | 1 ™ ] N " 0 X% Noszle throst sroded
low! 728 | i we |o9m | s 3 5.64 2.522
L o077, 7-8 Iom [RY 0.950 886 647 5.88 2.622
078 | 78 | i-38 hoh 0.9%0 846 621 5.59 2.488
ol 72l 1m w2 0.%0 | 107 ™ 6.11 3,094
080 | 7-1z | 1-38 .3 0.940 | 1061 766 6.21 3.055
081 ‘ 713 | 324 n.a uP 1900 151% 7.63 6.614 Unceoled bardvars
el 715 | 3o 12.7 540 11 g0 €.52 3172
w3 l 7-18 | 138 1.2 0.940 360 274 4.61 1.120% | Ges tapoftf
o8y | 7-18 1-38 0.8 0.940 369 283 5.96 1.419° | Gas tapoff
o8y | 7-13 1-38 1.4 0.940 400 304 6.16 1.437% | Gas tapoff
NOTE:
N = 2o data
O = orifice plate nozsle croded
a e flowrate includes gus tapaff flow
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.
TABLE B-1
T
(Continued)
Ttatal |

Test Threat Chanbss Nixture Welght
Bus | Pute,| Iajecter | Duratise, Area, | Thiwot, | Pressure, Batis, | FlevTate,
. | 1966 . seoeuds #q in, | pormde paia /1 _I/mes | Coumanin
os6 | 7-18 138 1.4 0.040 yn (%3] 5.1 Laty®
7! 7-i8 1-38 1.2 0.940 (%) 500 5.67 2.513" 1
o8 | 7-a1 %] 1.3 0.940 al0 ny .87 Lyt
0a9 | 7-a1 1-38 1.3 .9%0 830 3] 5.32 2.089*
090 | 7-22 1-38 1.5 0.900 a7 a2 5.43 1.683%
091 | 722 1-38 1.7 0.940 505 347 5.20 1.574%
092 | 7-32 1-3 1.8 0.9% 679 w6 5.3 2104 Gan tapof?
093 | 7-27 - 1.3 0.9%0 964 6u5 5.72 7"
o | 727 351 1. 0.0 929 678 4,96 PR
095 | 797 1-3 13 0.950 957 688 6.92 2.926%
036 | 7-27 1-38 1.4 ©.050 9yt 68 | 3T 2.818"
097 | 729 1-3 1.8 0.880 866 705 5,10 2.597* |
030 | 79 1-38 1.8 ©0.860 836 698 [T 2.965"
999 | 7-29 |, 138 1.9 0.880 92 709 6.26 2,765 | J
100 | 32 ‘ 1-38 0y ® oW o o w
101 | 82 1-3B | bR Y 0.9%0 942 720 5.2&‘ »U Coslant lesk inte sembustien chﬂuw
102 82 I e 3.5 0.950 1385 1008 e wO Conlant loak into combustion :hasdes
103 ; 52 f 1-38 3.5 0.950 1617 | 1169 | 5-16: ¥U Cesicat lesk int> combustion chasber
(103 | &3 | 1-m 3.6 -3 1902 1o .81 §.684 Neztle throst ercded
105 | as 1-38 3.3 0.9% | a0 | e 69! | 6.00t®
100 | 8-3 3-24 3.2 0.95% | 1R 1503 7.0 | 652t
107 | 89 A1 3.3 o950 | aim 1504 nost | 6an®
108 | 89 Pt 31 | oo | 102 w1 o619’ 1 ovoed
109 | 8-9 214 4 0.93% 527 398 LAY 169" Filecoeled tests -
119 | 89 3-14 0.8 6.950 276 | 9l 6.87" I 6.1}5‘ Belsted progras p-
111§ 812 324 A8 0.970 e Lo At Lased A
112 | 9-12 3-24 a8 0.970 06 1 5.5¢ l 1236 &
113 | 8-12 324 3 0,970 1376 l 969 6.00% | 3.502° -
[T WP 3-24 3.4 0.970 10 | 96 61 | 3768
nz| sz 324 L XY ®m 230 1562 8107 | 6.762% | Wexsis throst srodas
16 | B-17 224 w » w w o o Tgoiior seltusction
N7 eas | 324 ! 39 o | ose 659° st | 2
ns | 19 3-24 3.9 0.923 o | 6w 6.9 | zsn'
119 | 8-19 324 A 0.923 an | 324 3.0 | 1263
120 | pag 121 [ 0.q0% bl 117 a.av! 1y J
ROTE:

s = flowats in-ludes gas apeff flov

b = flowrsts includes filw<oslaat flow

¢ = fpiicoted instrumustution errer

d = mizture ruire based oo fujector flowrates

ND = oo data

WU - totel flowrare uakaove beceuss of cooled vater leAk 1uto chamber

R < nowusle throat eroded, throst area varied during test
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TAMLE B-1
(Continued)
i *1 R I '“\ T T Totar ]
Teat Throat Chaaber Mixture weight
Run | Date, Injector Duratjion, Aren, | Thrust, Pressure, Ratio, Flowrate,
No. | 1966 No. seconds wg in. | pounds paia o/t /sac | Comments
121 | 823 | 3- 1.5 0.92¢ 87 666 sod | 2.5e® 3
122 | 823 5B 2.9 0.923 | 1012 1049 5.720 [ 3973
W3] B4 h2A 3.9 | 0925 830 633 5.x2: 2.329:
126 | wa L-24 1.8 | 0.925 81 614 u. G 2.21%
15 | as | sma 22 | o5 13 1003 59" | 36" -
26 | 8-2 424 20y 0.925 | I L 5.16: ‘ 5.537: = cooled
127 8-24 424 - 2.6 | 0.525 2032 ! 1492 6.357 ;1 5.071 Seguence malfunction
181 B2 ! 421 NU 1 €.925 N ! L] NU { ND
29 | 82 Doamo L7 e | 93z 5.39% | 326 -
16| 826 . 3B 0 L7 0.935 100 762 5.88 2.999 J :
133 0831, aeza D 220 0.9 w0l ) 36 453 130y | 3
u 831 A D25 0935 0 All | 330 | b.60 | 1.3% {
135 ' 8311 a2A L LA 0935 J w0 | 333 6.41 1.379 &
136 | 831« 424 24 0 0.935 | 1261 1 959 4,97 3.579 i i
17 a3 A w6 0,95 | 126% 9398 6.59 3.731 ;
138 | 9-1 b8 LT 0925 [ ‘\ 300 5.43 1.37%0 : ;
13991 | w2 L6 I ©.925 1239 | 996 5.2% 3.635 : :
e L9 0. wo |3 5.52 1.382 i
141 | 9-6 D 2.0 | 0925 372 | 319 L.82 .au8 :
14 | 9-6 E . L6 0.9 73 1 315 445 1.145 ;
wiles | e | W 0o ND1 W B N i
b ' 95 et |18 | oouss Wwa | 5u6 5,69 V37 i
g tbwa oaexm Lonr g eees | om0 v LY. f 126 - ;
170§ et | b L Ly wy oo s | Lo §
17 9= e . .3, w1 Fis o i 5
172 5 g A S B3 0 ens !
R I nee 1 wn !
PTIE T S T T 5. Cowar L 397
17y eaaw | k-5 [ ! T
170 | w2 2.3 [ o 3t
|| sy AN -
L L ‘ w00 321
5 17 P ) 0925 0 3Ry 315
180 P2 l 0.913 2095 : 1581
N ‘ !
t = (lowrate includss (il colane tlow A ‘
d = mixture ratio hamed on wnjecter flowiates ~ . A E
N+ me Qate ) .‘ . N ~ “ 5
h i
' . |
'
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TABLE B-1
(Concluded) .
Total
Tent Threat Chamber Mixture Weight
Bun | Date, | Injector | Duration, Area, | Thrust, | Preasure, Batfo, | Flovratas,
No. 1966 No. seconde 8q in. | pounds peia o/t 1b/sec Comments
182 | 9-30 &-2G 1.0 9.925 1657 1308 6.60 4.037
183 : 3-30 406 1.0 0.925 1802 1416 4.40 4.693 }G“ tapot?
184 1 10-3 4-2G 1.5 6.925 402 338 7.29 1.018
185 | 10-3 &-26 2,2 0.925 390 339 6.36 0.949
192 | 10-16 6-1A ND N N Ny D ND
193 | 10-18 6-14 ND . 1] ND ND ] ND } Facility malfunction
19t | 10-18 : 6-1A g 1 ND ND ND ND N
195 | 10-20 | G-1a 3.6 I 0.970 Anh b2Yi A7h 1.350
196 ; 1020 $-1A 3.8 ‘ 0.970 WAL 344 4.58 1.318
197 | 06! 6o 3.9 ! 0.970 | 1m6 930 wse! | 3em
198 | 16-24 ] 6-A b2 | 6.970 2208 1544 et 6.151b }Fil- sooled
199 10-21.! 6-14 L2 0,970 1341 959 5.64% 3.650°
240 | 10-26 | 6-1B 1.4 : 0.9630 371 292 4.05 1.200
01 13026, 6-IC 1.6 0.980 337 299 4.28 1.243
202 10-26| 61D 1.5 ' 0.93u 366 238 413 1,212 Gas tapoff
303 | 10-06| 6D 1.6 | o980 | 1235 868 5.94 3.849 .
pat) 1 1626 6-1D 1.6 I 0.980 1576 1285 7.00 %5.063
MAE: [N

t = ftlovrate inclules film—coolant flow
d « mixture ratio basad on injestor flowrates
KD = a dain
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INJECTOR NOS. 1-3A TO 1-3B

/---— FUEL BIAS 60
L\ o¥/|- —J_.
o sl o loeTvR2pL 150
Ly - ¥
aﬂ,—c/ 15° TYP, 2 PL .090R 025
- P gA ~-0BR
o1 L
o / 30° TYP. 6 PL
 lof SECTION A-A
/’a/ % g
X e LOX 8 ELLEMENTS PER SYRIP
" .
A ] L~ N STRIPS PER SEGMENT
Pl — FUEL
] .001
.000
DASH NUMBER MODIFICATION
.38 ADDED 8 EACH 0.031-INCH-DIAMETER FUE..
BIAS ORIFICES AT STRIP ENDS

Figure B-1. (Continued)
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iNJECTOR NOS, 2-1A 10 2-1G

~—~MOD. .18 ADDED FlLM

-IE, ADDED SIDE COOLANT ORIF. AT 5°
BIiAS ORIFICE CANT TOWARD WALL —60°
END OF EACH FUEL \ 7/
\;Iy (’ 51 RIP
L_‘ 1
= 0° TYP, 2 FL
- e. - 3-
|-
1. 15eTYP.2PL
-—e"‘}‘}‘v /0/ A 1
el . n’
g o | 30° Tvp. epL
r
1% SECTION A-A
/ LT ~
A\V,/“ 42 \fii;\k\\*—-LOX.O33TYP.
A e h\\\__
U FUEL
Pd
XEOR 925067 STRiP
DASH NUMBER MODIFICATION
18 ENLARGED FUEL ORIFICE YO 0.066-INCH DIAMETER,
ADDED 0.031-INCH DIAMETER FUEL BIAS
-1C ENLARGED FUEL BiAS TO 0.042 DIAMETER
-1D ENLARGED FUEL ORIFICES TO 0.070 DIAMETER
-1E PLUGGED FUEL BIAS AT FUEL STRiP ENDS, ADDED $IDE
BiAS ORIFICES
-IF PLUGGED SIDE BIAS ORIFICES
16 DRILLED FUEL STRIP END ORIFICE FROM 0.070-INCH
DIAMETER TO .0995-INCH DIAMETER

Figure B-1. (Coutivued)
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INJECTOR NO 2-2A 60°
P - f SN ;T/Y”PL 150
_ .040 R ?
Bl BERA 1T L025 R
-1 T
- gl
|1
el X
ya | o” |30° TYP 4 PL
|1 .
__ SECTION A-A
//Q;\
A A )\ 450
SN e
P-4 ] y. g
o \\\—-FUEL \\\\\ ENDS OF i
1 LOX STRIPS
& ‘:ib , BEVELED

8 ELEMENTS PER STRIP l
4 STRIPS PER SEGMENT

NO MODIFICATIONS

D el bk, 18 P

Figure B-1 (Continued)
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INJECTOR NOS. 3-2A TO 3/2B
$TRIP - RLO00NO

ASSY - RLDOOOZ?—X-ON
! ] 0.035 DIA (24 PER STRIP)

o

" S
) B a
B [ //
#L{/ N, 0.031 DIA (6 PER STR!'P)

A
A /'J[\\/
7
AT 4 ‘:/ v
)
NN

{( Y
D-QK q
~
V4 Y
v b .
AY A8
LIPS 0.110
it it
B
w.L/
- A ]
./ | BREAK EDGES
LOX FAN 6 ELEMENTS PER STRIP
4 STRIPS PER SEGMENT
DASH NUMBER MODIFICATION
.28 ENLARGED OUTER TWO FUEL ORIFICES ON EACH STRIP

TO 0.0465-INCH DIAMETER; ENLARGED CORE FUEL
ORIFICES TO 0.040-iNCH DIAMETER

Figure B-1, (Centinued)
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m BACPC K KT Y N IR . A DIVISION OF NORTH AMERICAN AVIATION, INC.

FUEL BIAS 605
.031 DIA, 2 PL

0°2pPL .150

15° 2 PL L080R —

—T¥ £ 02R

B w

30° 4 PL

SECTION A-A

— ———.

T~ Lox

N

FUEL

[ Y g ]
MULIFICA HunN

PLUGGED THREE LOX ORIFICES AT TAPOFF LOCATION
ADDED TWO 0.070-INCH-DIAMETER TAPOFF BiAS ORIFICES
ENLARGED TAPOFF B!AS TO 0.0935iNCH-DIAME TER

Figure B-1. {Concluded)
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