UNCLASSIFIED

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD377971</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASSIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO: UNCLASSIFIED</td>
</tr>
<tr>
<td>FROM: CONFIDENTIAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIMITATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO: Approved for public release; distribution is unlimited. Document partially illegible.</td>
</tr>
<tr>
<td>FROM: Distribution: Further dissemination only as directed by Federal Aviation Administration, Supersonic Transport Development, Washington, DC 20553, JAN 1964, or higher DoD authority. This document contains export-controlled technical data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA ltr dtd 23 Feb 1972; FAA ltr dtd 23 Feb 1972</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
CLASSIFICATION CHANGED TO UNCLASSIFIED FROM CONFIDENTIAL PER AUTHORITY LISTED IN TAB NO. 72-B FAA Itr, 23 Feb 72 DATE 15 April 1972
Best Available Copy
A-VI

PROPULSION

COMMERCIAL SUPEZONIC TRANSPORT PROPOSAL JANUARY 15, 1964

THE BOEING COMPANY

D6-2400-12

PROPRIETARY INFORMATION

This document contains information proprietary to The Boeing Company and shall be used only by the United States Government and its contractors and subcontractors in the performance of the United States Government contract or subcontract. The information contained herein should not be revealed to other than the United States Government or to non-government personnel without the written permission of The Boeing Company.

UNCLASSIFIED
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

All distribution of this document is controlled. In addition to security requirements which apply to this document and must be met, it may be further distributed by the holder only with specific prior approval of:

Director of Supersonic Transport Development
Federal Aviation Agency
Washington, D.C. 20553

The distribution of this report is limited because it contains technology identifiable with items excluded from export by the Department of State (22, Export Control Act of 1949, as amended).
<table>
<thead>
<tr>
<th>1.0</th>
<th>SUMMARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>ENGINE INSTALLATION</td>
</tr>
<tr>
<td>3.0</td>
<td>ENGINE INLET SYSTEM</td>
</tr>
<tr>
<td>4.0</td>
<td>EXHAUST SYSTEM</td>
</tr>
<tr>
<td>5.0</td>
<td>CONTROLS</td>
</tr>
<tr>
<td>6.0</td>
<td>STARTING SYSTEM</td>
</tr>
<tr>
<td>7.0</td>
<td>FUEL SYSTEM</td>
</tr>
<tr>
<td>8.0</td>
<td>TESTING AND DEVELOPMENT PROGRAM</td>
</tr>
<tr>
<td>9.0</td>
<td>RELIABILITY, MAINTAINABILITY, SERVICEABILITY</td>
</tr>
<tr>
<td>10.0</td>
<td>NOISE SUPPRESSION</td>
</tr>
<tr>
<td>11.0</td>
<td>ENGINE SELECTION AND DEVELOPMENT</td>
</tr>
<tr>
<td>12.0</td>
<td>PROPULSION SYSTEM PERFORMANCE</td>
</tr>
<tr>
<td>13.0</td>
<td>REFERENCES</td>
</tr>
</tbody>
</table>

VOLUME A-VI

PROPULSION

TABLE OF CONTENTS
<table>
<thead>
<tr>
<th>Page No.</th>
<th>Now Reads</th>
<th>Should Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>4.2.3 The gross thrust coefficient should read:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{fg} Gross thrust minus drag (including ram drag of secondary air)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ideal gross thrust of primary air</td>
<td></td>
</tr>
<tr>
<td>11/8</td>
<td>4.2.3 Gross thrust minus drag (C_{fg}) is defined ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gross thrust minus drag (including ram drag of secondary air and nozzle boattail drag) divided by the ideal thrust of the nozzle primary airflow.</td>
<td></td>
</tr>
</tbody>
</table>
VOLUME A-VI
PROPULSION

1.0 SUMMARY .. 1/3
1.1 Engine Selection .. 1/3
1.2 Propulsion Pods .. 1/4
1.3 Engine Inlet .. 1/4
1.4 Exhaust System .. 1/7
1.5 Fuel System ... 1/7
1.6 Other Design Considerations 1/9

UNCLASSIFIED
UNCLASSIFIED
1.0 SUMMARY (RFP 3.2.9)

The Boeing propulsion pod concept selected for the proposed airplane is shown in Fig. 1-1. Significant features incorporated in the pod for maximum performance, safety, reliability, maintainability, and serviceability include:

- A separable, self-contained, self-controlling, high performance, supersonic inlet with a differential, pressure-actuated, secondary air door system to maintain a safe and stable operating condition in the event of an inlet upset.
- A separable exhaust system assembly which supplies its own ventilating and cooling air and which requires no inputs other than thrust lever angle to control its variable area functions for maximum performance.
- A thrust reverser integrated into the exhaust system which includes a partial reverse position for increased feasibility in airplane speed control during descent, landing, and taxi.
- A flight idle provision to allow the rotor RPM to be reduced as a function of airplane speed during normal descent to provide drag for deceleration and to save airplane fuel.
- A windmill brake to reduce engine rotor RPM in the event of in-flight engine shutdown.
- An accessory compartment containing all engine and airplane accessories in a low temperature environment.
- Non-pressurized conventional cooling which opens as two halves, exposing the complete engine case and accessories for ease of service and maintenance.
- Inherent fire safety due to the non-ventilated, non-pressurized burn-through cooling and the remote engine location provided by strut mounting.
- Freedom and flexibility in adapting the airplane configuration to any selected engine.

1.1 Engine Selection

At this time, a strong argument is not being made for any one of the specific engines offered, submitted in preliminary form on November 15, 1963. The propulsion pod for the proposed airplane is designed around the General Electric C14.4-4C engine. Although this engine appears to be the correct choice, based on the current RFP mission and available engine data, the Boeing configuration, using the propulsion pod concept, lends itself to use of any of the offered engines.

Boeing experience with the Model 707 has had a useful influence on engine selection. That program has shown that the aircraft manufacturer must consider the long-term utilization and growth of the aircraft and not make a point-design evaluation based solely on conditions existing at the outset of any program.

Early efforts to combine the lessons learned in the Model 707 program with detailed SST trade studies in support of airline forecasts led Boeing to the augmented compressible fan as the desired cycle. This choice came about due to the desire for reasonable subsonic specific fuel consumption and low airport noise.

These early judgments have been altered recently, in part by unexpected improvements in turbine technology and by an increased understanding of sonic boom. The requirement for a limiting overpressure of 2.0 psf during transonic acceleration strongly influences engine cycle choice.

Improvements in turbine technology, both in materials and cooling techniques, have led to a reliable forecast that turbine flame temperatures 200° to 300°F higher than was believed practical three years ago could be used when the SST becomes operational. This consideration raises the flight speed at which the turboprop is still superior to the fan. At a fixed, supersonic speed the fuel advantage of the turboprop is increased.

The importance of simplicity for maintenance, reliability and early availability make the turboprop cycle
more attractive.

The Boeing Company, in selecting the engines to use in the proposal, worked with the engine manufacturers to ensure that the turbos in the proposal could be converted either to zero-staged turbos or to turbines at some later date. The change would occur if subsequent FAA-sponsored studies or airline needs should necessitate program redirection.

A complete discussion of the proposed engines and the selection of the basic engine for the proposal is contained in Section II.

1.2 Propulsion Pods

There are four independent propulsion pods (Fig. 1-3). Each pod is hung by a strut to the underside of the inboard wing torque box. The engine is attached to the strut at three points with cone-type fittings. These fittings are self-aligning to simplify installation. An inlet assembly is bolted to the engine compressor case and an exhaust and reverser assembly is bolted to the engine turbine frame. The inlet and the exhaust sections may be readily removed from the propulsion pod for separate maintenance (Fig. 1-3). Cowling over the engine and strut fairings complete the propulsion pod. The inlet, the engine, and the exhaust section comprise a unit that may be assembled in its entirety for installation on the strut.

Because the united exhaust section provides its own cooling, the engine installation is not compromised with large ducts. Conventional two-piece cowling can be used. Airplane and engine accessories are arranged on the

![Diagram of Propulsion Pod](image-url)
engine in the usual manner. This permits the same ease of servicing as is typical of existing airplanes. Opening or removal of the cowl panels exposes the entire engine buildup, including the portion under the strut.

1.3 Engine Inlet
A new concept of a variable-diameter translating centerbody inlet is submitted in the proposal (Fig. 1-4). Noteworthy advances in safety and efficiency are realized by this new design.

Control of the inlet is accomplished by an automatic control system which governs the position of the variable diameter centerbody and the controlled bypass doors.

Natural forces act on secondary air inlet doors for takeoff and on secondary bypass doors to arrest shock explosions. The system, except for the fuel supply pump, is self-contained within the inlet and requires no signal from the flight deck.

The inlet provides a cruise pressure recovery of 80 percent at a bleed penalty of only 5 percent. Performance is also high during off-design conditions.

1.4 Exhaust System
The complete exhaust nozzle and recoveries, including integral cooling provisions, actuation, and cascade covers, is supplied by the engine manufacturer as a unit (Fig. 1-4).
Engine inlet
Clear definition of responsibility for development and operation is thus ensured. Development of this hot section as an independent item, completely free of any airframe considerations such as cooling air, is assigned to the engine manufacturer.

For maintenance and serviceability the exhaust nozzle-reverse section is readily detachable from the engine. The engine exhaust system consists of:
- The aft section of the engine augmentor case
- The variable area convergent-divergent nozzle
- The integrated thrust reverser
- The variable area secondary inlets for nozzle ventilation and cooling air
- Actuators, controls, and associated plumbing
- The exterior cowling from the aft end of the engine cowl panels to the nozzle exit.

The design of the system will be closely coordinated by Boeing and the engine manufacturer. Boeing will control the external lines of the exhaust system and integrate the exhaust and reverse systems into the propulsion pod. Noise suppressors are not required. The takeoff, landing, and ground noise requirements are satisfied without special hardware. Nevertheless, The Boeing Company is applying its experience in testing, analyzing, and reducing noise throughout the design.

1.5 Fuel System
Simplicity is a feature of the SST fuel system, giving it the desired maintainability and reliability. Only four main and two auxiliary tanks are used (Fig. 1-1). Center of gravity control is maintained by a balanced arrangement of tanks and by feeding fuel directly from the tanks to the engines without monitoring or switching by the flight engineer or by the use of computing devices. The auxiliary tanks use an override pumping system to deliver fuel to the crossover manifold and selected engines.
CHTCLW

SMUT Of F V»LVt-tLECTRIC»LLY OPtRATtO

Ol DUMP PRIORITY VALVE - PRESSURE OPERATED

FtELHC f

ULI

LEVEL SMUT Off VALVE

ijj PRESSURE FUELING ADAPTER AND CAP

0

OEFUCLINC INTERCONNECT VALVE -

386x402

MEAT EXCHANGER

FUEL FLOWTTER

MAIN TANK PUMP

OVER RIDE PUMP

DUMP NOZZLE

BYPASS VALVE

NOTE:

S'tFlC.W

FOR TANK

LOCATION IN THE AIRPLANE

256 Fuel System Schematic

CD-2400-12
A combination of thermal insulation, scheduled fuel usage, and natural oxygen depletion through an open-vent system eliminates coking and the formation of tank deposits. The need for inerting and purging is avoided by locating tanks in cooler portions of the airplane and by placing vent exits to avoid full stagnation temperatures. Transient overboosts to Mach 2.5 will not be hazardous.

Pressure fueling and defueling is done from two stations containing nozzle adapters, tank quantity gages, controls, and illumination.

The dump system uses portions of the pressure fueling plumbing and the additional capacity in the engine feed system boost pumps to jettison fuel out of a fixed tube in the body tail cone.

1.6 Other Design Considerations

A pneumatic starter, mounted on the gear box of each engine, is used for engine starting. Air from either a ground source or an operating engine is used to drive the starter. The time required to start is approximately 37 seconds.

The engine oil system is an integral part of the engine and is furnished by the engine manufacturer. The system capacity is sufficient for all flight requirements.

Engines fuel is used for cooling the accessories. The compartment housing the accessories, plumbing, electrical systems, and controls is an annular chamber insulated from the engine case. The outer wall of this compartment is formed by the insulating cowl panels. The aft end of the compartment is a conventional firewall barrier to the aft portion of the engine. The forward wall is a
portion of the inlet. Convection cooling to the many fuel-cooled items and lines establishes the temperature environment of the compartment. The environment will be less severe than that in the usual unshielded engine case accessory sections typical of today's jet transports (Figs. 1-7 and 1-8).

The engine compartment design minimizes the probability of fire or of serious damage if one does occur; the engine cowling consists of two hinged titanium alloy assemblies with aluminum burn-out panels; combustibles are separated from ignition sources; fluid drains are provided; air flow through the compartment is minimized. Fire protection is provided by a continuous-element fire detector and a high-rate-discharge extinguishing system.
2.0 ENGINE INSTALLATION (RJP 3.2.9.8)

2.1 General Description

The major components of the propulsion pod are shown in Fig 2-1. The pod consists of: (1) the supersonic inlet, (2) the engine section, (3) the exhaust section, and (4) the strut.

Several changes from the General Electric GEA-4C November 15, 1963, proposal engine were necessary to make the engine compatible with the propulsion system installation. The changes listed below have been agreed upon by General Electric:

• The engine support system designed to permit a three-point-attachment method.
• The forward flange of the engine designed to support the supersonic inlet through use of a bolted flange arrangement.
• The engine accessory gear box enlarged to include provisions for direct mounting of a starter, two hydraulic pumps, and a generator with its constant speed drive.
• The compressor outlet guide vanes designed to be rotated to an overlapping position by moving the engine-start lever to the cut-off position. This provides a windmilling brake.
• The engine accessory compartment insulated from the engine-case temperatures by an engine-mounted, Boeing supplied annular shell. Boundary layer bleed air from the first stage of the compressor flows at a very low rate between the shell and the engine case. The shell is fitted with thermal insulating blankets.
• The engine fuel control designed to include: (a) an unlocked rotor regime for flight-idle as a standard operating procedure; (b) a partial-reverse-thrust operation band; and (c) a special bias to open the stator angles during reverse-thrust operation.
• The engine exhaust system designed to include variable-area boundary layer air scoops to provide ventilating and cooling air to the exhaust nozzle.
• The exhaust gas exit path for reverse-thrust operation tailored to match the propulsion pod positions on the airplane.

The supersonic inlet is bolted to the forward face of the engine. The aft, or exhaust, section is furnished by the engine manufacturer.

The engine section is the center portion of the propulsion pod. Contained within the engine section are the engine and its mounts, the engine accessories, the engine-driven airframe accessories, and the engine-instrumentation transmitters, together with associated plumbing, wiring and controls. To provide rapid and unhindered access to all areas requiring frequent servicing and maintenance, hinged cowling with quick-release latches enclose the engine section.

This propulsion pod provides the same easy and simple access to engine components characteristic of subsonic jets. Complete propulsion pods can be built up in their entirety before installation. By this method, complete pods can be placed at strategic locations throughout the world for use as pod stock.

2.2 Mounting

Each propulsion pod is attached to the underside of the inboard wing torque box. The center section or structural portion of the strut contains two structural bulkheads made of heat-treated AISI 17-4PH corrosion-resistant steel. These bulkheads accept the engine-mount loads and transmit them to the wing front and rear spar. Short fittings are used at the wing-to-strut attach points to provide rapid removal and installation of the strut. Forward and aft of the structural portion of the strut are non-structural fairings. These are attached to the lower surface of the wing with quick-release fasteners.

The engine is attached to the strut by a conventional three point attach system, similar to that used on the Model 707 commercial jet. Details of the system are shown
in Fig. 2-2. Two attach points are on the engine forward mount ring and one attach point is on the engine rear mount ring. The engine is installed by securing a cone bolt at each of the three attach points and torquing a nut on each bolt. Within the cone bolt, engine vertical loads are taken in bolt tension; thrust and side loads are taken in bearing on the cone socket. The cone bolts are self-aligning and simplify engine installation by eliminating the need for precise alignment of matching holes before a bolt can be inserted. Two cone bolts are attached to the engine by links which transmit the engine loads tangentially from the engine case. Two forgings attach the cone bolts to the strut structure. The forging for the forward attach point is fixed and is part of the strut. The forging for the aft attach point, also part of the strut, is hinged to allow for engine expansion. The cone bolts and the links are made of heat-treated AISI 316L corrosion resistant steel as are the strut forgings.

The load diagram for the three point mounting system is shown in Fig. 2-3. Engine thrust is taken totally at Point 1. Engine side and vertical loads are taken at Points 1, 2, and 3. Engine seizure loads are taken at Points 1 and 3.

2.3 Engine Oil System (Ref 2.10; 2.23.3)
The engine oil system (Fig. 2-4) provides for engine lubrication and is an integral part of the engine. It is furnished...
by the engine manufacturer. The system is comprised of the following items: an oil tank of nine gallons total oil capacity, which also contains a reservoir; a fuel oil heat exchanger, which cools the oil; pumps which provide for scavenging and pressurizing the lubrication system; and an oil filter, which is bypassed should the filter become clogged.

The instrumentation required to monitor the oil system (Fig. 2-7) is furnished and installed on the engine by Boeing. Components of this instrumentation are:

- Oil quantity probe
- Oil pressure transmitter
- Oil low pressure warning switch
- Oil temperature probe
- Oil filter pressure transmitter
- Oil breather pressure transmitter

The oil flow circuit for engine lubrication begins with the oil being scavenged from the engine bearings and pumped into the fuel oil heat exchanger where it is cooled. From the heat exchanger, the oil flows through a filter and check valve to a tank where it is decreased. From the oil tank, the oil passes in series through a pressure pump, a filter, a check valve, and on to the various bearings requiring lubrication. The system operates at a normal pressure of 40 to 70 psig with pressure relief occurring at 100 psig. The oil-in temperature limits are —40° F. to 425° F. For engine starts at lower temperatures, some external heating will be required.

The type of oil used is per General Electric specification, GEA A07 20A. An experimental oil, Esso WSX-5435, is being qualified to the General Electric specification. The nine gallon tank is more than enough for the maximum use of the airplane at the guaranteed maximum oil consumption of 0.50 gallons per hour.

2.4 Accessories

To provide maximum reliability and the best possible location for maintenance and serviceability, the main hydraulic pumps and the constant speed drive electrical generator are mounted directly on the engine. These airframe accessories are adjacent to the engine starter and also to the engine accessories. Fig. 2-5 shows the location of the major accessories mounted directly on the engine and readily accessible through the open cow panels.

The hydraulic pumps are cooled by the fluid that is passing through them. The constant speed drive and the generator are both cooled by the constant speed drive oil. The oil is in turn, cooled by a fuel-to-oil heat exchanger. A schematic diagram of this cooling system is shown in Fig. 2-8.

2.8 Instrumentation and Engine Analyzer

2.8.1 INSTRUMENTATION (IFP 2.3.11.5)

Complete and accurate indications of all important engine functions are provided at the flight deck by signals from electrical transmitters mounted on the engine. The instrument panel arrangement is shown in Volume A-VII (Fig. 2-7) lists for each function the type of indication, monitor location, and the type of pickup used.

With the exception of thrust indication, all of the indicators and transmitters are production items used on present-day aircraft. A schematic diagram of the thrust indication system is shown in Fig. 2-8. The system proposed for the SST will react electrically to changes in the nozzle area as well as changes in the ratio of the total exhaust gas pressure to the inlet total pressure. This system is very similar to present engine pressure ratio systems. The only difference is that the nozzle area variable does not exist on present fixed area exhaust systems for subsonic jet engines. Another method of thrust indication, which has been used for flight test purposes, is under consideration for the SST. This method will give a direct reading of pod net thrust by electrically reading the force exerted by the pod on the thrust link. The Boeing SST engine mount-
REAR VIEW

- HEAT EXCHANGER, ENGINE OIL
- ENGINE OIL TANK AND HYDRAULIC OIL TANK
- AFTERBURNER FUEL CONTROL
- AFTERBURNER FUEL PUMP
- HYDRAULIC PUMP
- MAIN FUEL PUMP AND MAIN FUEL CONTROL
- HYDRAULIC PUMP NOZZLE CONTROL
- HYDRAULIC PUMP KNOB
- HEAT EXCHANGER, CONSTANT SPEED DRIVE AND GENERATOR
- TACHOMETER GENERATOR
- ENGINE GEAR BOX
- ENGINE OIL SCAVENGE PUMP
- STARTER, CONSTANT SPEED DRIVE AND GENERATOR

Major Accessories Location

CH-2400-12
A - GENERATOR
B - CONSTANT SPEED DRIVE
C - FUEL-OIL HEAT EXCHANGER
D - TEMPERATURE AND REGULATING VALVE
E - OIL FILTER
F - OIL SUMP PUMP
G - INTEGRAL OIL TANK
H - FILL CAP
I - OVERBOARD VENT
J - PRESSURE RELIEF VALVE
K - AIR FILTER AND RESTRICTOR
L - PRESSURIZING AIR SOURCE
M - PRESSURE PUMP
N - OIL PRESSURE WARNING TRANSMITTER
P - C.S.D. BLOCK
Q - ENGINE GEAR BOX

Pressure Oil
Scavenging Oil
Engine Fuel
Vent and Pressurizing
<table>
<thead>
<tr>
<th>Function</th>
<th>Location</th>
<th>PILOT FL FL ENGINE</th>
<th>Type of Indicator</th>
<th>Type of Pickup</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>X</td>
<td>DIAL</td>
<td>TACHOMETER GENERATOR</td>
<td></td>
</tr>
<tr>
<td>Exhaust gas temperature (EST)</td>
<td>X</td>
<td>DIAL</td>
<td>THERMOCOUPLE</td>
<td></td>
</tr>
<tr>
<td>Thrust (PARA)</td>
<td>A</td>
<td>DIAL</td>
<td>THERMOCOUPLE</td>
<td></td>
</tr>
<tr>
<td>Tank fuel temperature - main</td>
<td>X</td>
<td>DIAL</td>
<td>THERMOCOUPLE</td>
<td></td>
</tr>
<tr>
<td>Tank fuel temperature - auxiliary</td>
<td>X</td>
<td>DIAL</td>
<td>THERMOCOUPLE</td>
<td></td>
</tr>
<tr>
<td>Fuel flow</td>
<td>X</td>
<td>DIAL</td>
<td>TRANSMITTER</td>
<td></td>
</tr>
<tr>
<td>Inlet fuel temperature</td>
<td>X</td>
<td>DIAL</td>
<td>RESISTANCE BULB</td>
<td></td>
</tr>
<tr>
<td>Oil pressure</td>
<td>X</td>
<td>DIAL</td>
<td>TRANSMITTER</td>
<td></td>
</tr>
<tr>
<td>Oil temperature</td>
<td>X</td>
<td>DIAL</td>
<td>THERMOCOUPLE</td>
<td></td>
</tr>
<tr>
<td>Oil quantity</td>
<td>X</td>
<td>DIAL</td>
<td>CAPACITANCE TYPE PROBE</td>
<td></td>
</tr>
<tr>
<td>Low oil pressure</td>
<td>X</td>
<td>LIGHT</td>
<td>PRESSURE SWITCH</td>
<td></td>
</tr>
<tr>
<td>Oil filter condition</td>
<td>X</td>
<td>LIGHT</td>
<td>PRESSURE SWITCH</td>
<td></td>
</tr>
<tr>
<td>Vibration</td>
<td>X</td>
<td>DIAL</td>
<td>WASTE ACCELERATION</td>
<td></td>
</tr>
<tr>
<td>Anti-icing</td>
<td>X</td>
<td>LIGHT</td>
<td>VALVE POSITION SWITCH</td>
<td></td>
</tr>
<tr>
<td>Inlet total pressure</td>
<td>X</td>
<td>DIAL</td>
<td>TRANSMITTER</td>
<td></td>
</tr>
<tr>
<td>Inlet position</td>
<td>X</td>
<td>DIAL</td>
<td>TRANSMITTER</td>
<td></td>
</tr>
<tr>
<td>Auto. inlet control</td>
<td>X</td>
<td>LIGHT</td>
<td>POSITION SWITCH</td>
<td></td>
</tr>
<tr>
<td>Nozzle position</td>
<td>X</td>
<td>DIAL</td>
<td>TRANSMITTER</td>
<td></td>
</tr>
<tr>
<td>Fire detector</td>
<td>X</td>
<td>BELL AND LIGHT</td>
<td>CONTINUOUS ELEMENT</td>
<td></td>
</tr>
<tr>
<td>Thrust reverser position</td>
<td>X</td>
<td>LIGHT</td>
<td>POSITION SWITCH</td>
<td></td>
</tr>
<tr>
<td>CSO oil inlet temperature</td>
<td>X</td>
<td>DIAL</td>
<td>THERMOCOUPLE</td>
<td></td>
</tr>
<tr>
<td>Fuel quantity each tank</td>
<td>X</td>
<td>DIAL</td>
<td>CAPACITANCE TYPE PROBE</td>
<td></td>
</tr>
<tr>
<td>Total fuel remaining</td>
<td>X</td>
<td>DIAL</td>
<td>TRANSMITTER</td>
<td></td>
</tr>
<tr>
<td>Fuel pump low pressure</td>
<td>X</td>
<td>LIGHT</td>
<td>PRESSURE SWITCH</td>
<td></td>
</tr>
<tr>
<td>Fuel valve in transit</td>
<td>X</td>
<td>LIGHT</td>
<td>POSITION SWITCH</td>
<td></td>
</tr>
<tr>
<td>Starter manifold pressure</td>
<td>X</td>
<td>DIAL</td>
<td>TRANSMITTER</td>
<td></td>
</tr>
<tr>
<td>Fuel consumed flowmeter</td>
<td>X</td>
<td>DIAL</td>
<td>TRANSMITTER</td>
<td></td>
</tr>
</tbody>
</table>

272 Engine Instrumentation
The system provides information in two forms. First, the on-board display affords a quick look at the data being accumulated and indicates any significant out-of-tolerance conditions to the flight crew. Second, the data are recorded on magnetic tape for later detailed analysis at ground facilities by general purpose computers, such as those generally available at airline installations.

2.6 Build-Up

Engine build-up is the installation on the engine of plumbing, wiring, and components by the airplane manufacturer. Only plumbing and wiring will be discussed here; components are discussed in other parts of Section 2.

The plumbing is conventional, uncomplicated, and readily installed or removed by standard wrenches. Wherever possible, tubing bends are used to control thermal expansion, eliminating the need for hoses. Fuel and oil lines on Boeing subsonic jet engines are in areas where engine case temperatures reach 750°F, well above the autoignition temperature of aircraft fluids. Yet, with more than 16 million hours of engine time, autoignition resulting from fluid leakage is not a problem. The SST environment forward of the firewall is not different from that of the subsonic jet. Since the leakage potential is no greater, the use of end fittings for tubing on the SST does not increase fire hazard. The gains associated with welded fittings in engine build-up do not appear to warrant the added cost of stocking spare welded tube assemblies where the use of raw stock tubing will suffice. Standard end fittings are therefore used in the SST engine build-up.
To facilitate engine changes, hydraulic tubing runs are terminated in self-sealing couplings (quick-disconnect fittings) at a common disconnect bracket. All tubing and end fittings are made of corrosion-resistant steel. Tubing runs are supported by clamps made of corrosion-resistant steel containing a cushion of asbestos-impregnated teflon reinforced with wire.

Tubing less than 1.0 inch in diameter uses flareless-end fittings with conventional "B" nuts. Tubing assemblies from 1.0 to 2.0 inches in diameter have flare-end fittings with "B" nuts.

Tubing greater than 2.0 inches in diameter, such as the main fuel line and the engine bleed duc, terminates at disconnect points which are flexible to allow for misalignment and thermal growth. These tube runs use bellow-flange end fittings.

High temperature wire and connectors suitable for the environment are used in the engine electrical installation. The wiring is routed in bundles from equipment on the engine to flame-resistant connectors at the strut-firewall disconnect points. Large bundles of wires which would otherwise be exposed to chafing or damage by maintenance personnel are protected by channel raceways. Conventional high temperature loop clamps are used to attach the wiring to the engine. In systems such as the oil system, where more than one instrument reading is taken, the wiring from each transmitter is run in different bundles to provide complete loss of instrumentation of that system should a wire bundle be damaged. Ground buses are installed from the basic engine structure to the aircraft to maintain electrical continuity without depending on the engine support fittings.

2.7 Accessory Compartment Environment

The engine compartment, which contains both airframe accessories and engine accessories, is maintained at a relatively cool temperature and a minimum rate of ventilation. This provides an environment that ensures reliability and long life of the accessories. It also gives the maximum protection from fire and permits a simple, lightweight, and effective extinguishing system.

A suitable environment, with acceptable temperature limits for accessories, is provided by use of fuel cooling of components within the compartment and by insulating the compartment from the engine case. The compartment is insulated by two features. First, the engine case proper is enclosed within an engine-mounted annular shell. Boundary layer bleed air from the first stage of the compressor slowly flows between the engine case and the annular shell. This air maintains the temperature inside the shell below 500 °F. Second, the outer surface of this shell is insulated by a thermal blanket which maintains the compartment temperature at an acceptable level (Fig. 2-9).

Airflow to the accessory zone is held to the minimum amount required for ventilation to compensate for altitude changes. This is done for three reasons: there is no appreciable gain in zone cooling with airflow; fire extinguishing system effectiveness deteriorates as airflow increases; and, fire temperatures are limited when fires are oxygen-starved.

The essential features of the compartment are shown in Fig. 2-10.

2.6 Drain System

Drainage in the pod falls into three categories: cowl drainage, engine pod and equipment drainage, and large-volume fuel drainage. Danger from flammable fluids and contamination of the engine compartment is minimized by these drains. A list of the items drained is shown in Fig. 2-11. A diagram of the drain system is shown in Fig. 2-12.

2.6.1 COWL DRAINAGE

Leakage of rain, fuel, oil, and hydraulic fluid within the engine compartment is drained overhead at the cowl low point. To provide a good flow path for fluid, each circumferential frame of the cowl is an integral part of the firewall.
between the cowl skin and the frame offset to the low point. The fluid drains overboard through a 0.5-inch diameter hole in the cowl at that point.

2.8.2 ENGINE PAD AND EQUIPMENT DRAINAGE

The engine drain system removes from the engine compartment the fluids resulting from leakage or overflow of the engine components. Individual drain tubes are run from each engine component and accessory requiring drainage. The discharge points of the drains are clustered, providing a convenient point to check accessories for excessive leakage. The drain tube outlets are located at the aft end of the cowling pressure relief panel. The cowl exit is shaped to direct drainage overboard and prevent its re-entry. The same method of drainage is used on the Model 707 airplanes.

2.8.3 FUEL DRAINAGE

Fuel drainage from the main fuel manifold, the augmentor manifold, and miscellaneous is collected in a drain can. This drainage would be objectionable if discharged directly on the ground. Pressurization of the can by ram air forces the fuel overboard through the drain exit in the engine cowling.
2.0 Engine Cowling

The engine cowling (Fig. 2.13) extends from the aft end of the outer surface of the engine inlet to the forward end of the engine exhaust nozzle. Opening the cowling provides access to the engine mounting, plumbing, wiring, and accessories. There are two aluminum alloy (7075-T651) double-annealed panels for each engine. Each panel is readily removable by unlatching and rotating the panel to the removal position. Ordinary hand tools suffice for panel removal. Either panel may be removed without removing or adjusting the other. Either one of the panels can be rotated to the open position and secured there by tubular braces. This gives easy access to the accessory area without removing the panel completely.

Quick access for oil servicing is provided by a separate small access door in the cowling panel. Access for ground fire extinguishing is provided by push-in panels. Two large, permanently installed, aluminum alloy subpanels are provided to allow fire blight through relief should an engine compartment fire occur. The very light gauge of the non-structural panel combined with the low melting point of aluminum results in very early failure of the panel when it is subjected to a fire environment. A small hinged access door is also provided for adjusting the fuel control unit during an engine ground run.

2.10 Engine Compartment Fire Protection

2.10.1 COMPARTMENT DESIGN

The engine compartment is designed to reduce the minimum probability of fire by: (1) separating combustibles from ignition sources, (2) providing drains to prevent accumulation of combustible fluids and, (3) providing an appropriate pressure differential across zones to prevent the movement of combustible gases from one zone to another. Fire protection is provided by a continuous element fire detector system and a single nozzle, high-relai-
Engine Drain System

1. C.S.D. INPUT AND OUTPUT SHAFT SEAL
2. C.S.D. VENT
3. FUEL PUMP PAD
4. HYDRAULIC PUMP DRIVE PAD
5. FUEL CONTROL PAD
6. STRUT STUMP
7. FUEL COLLECTION CAN
8. ENGINE OIL TANK SCUPPER
9. AUGMENTOR COMBUSTION CHAMBER AND MANIFOLD
10. ENGINE COMBUSTION CHAMBER
11. MANIFOLD PRESSURIZING AND DUMP VALVE
discharge, fire extinguishing system. All components located in fire zones are fire resistant according to CAR 4b.

The engine is supported from the wing by a strut which provides a physical separation of an engine fire or explosion from the wing primary structure and fuel tanks. The forward vertical bulkhead and the lower spar of this strut are constructed of stainless steel to isolate the engine compartment from the strut. All compartments within the strut containing fluid-carrying lines are draught sealed, vented, and drained. Draft seals are provided between the strut and the wing structure.

Two large engine-fire burn-through panels provide pressure relief of the engine compartment and allow passage of fluid and flame out of the compartment should an engine fire occur. All fluid carrying lines and electrical leads enter the engine compartment through steel fittings and are flameproof in accordance with CAR 4b. All components located in a designated fire area are flameproof. Compartment ventilation is essentially zero and limited to that necessary to provide adequate ventilation for altitude changes. A small, positive pressure differential is provided between the accessory section and the free air space to prevent flow of gas into the accessory section.

The components in the engine combustor section, such as afterburner fuel lines, fuel drain can, and thermocouple harness, are designed to withstand puddle fires.

2.10.3 FIRE DETECTION

A continuous element fire detector system is installed in each engine compartment. The element is engine mounted and attached with quick opening, hinged clips. The element run covers the bottom of the engine and other critical areas which require fire detection coverage. The detail routing of the element run provides maximum protection from damage by maintenance personnel or adjacent engine components. Chafing or breaking the element will set false fire warnings. Indication of either a fire within the engine compartment or an abnormal temperature condition is provided to the flight deck. An abnormal temperature condition such as the rupture or leakage of a high pressure, high temperature air duct, is indicated by a flashing red light. A fire condition is indicated by a continuous glow of the red light and an alarm bell.

2.10.4 FIRE EXTINGUISHING

The engine compartment fire extinguishing system is a single nozzle, high-rate-discharge system. Two supply bottles containing an extinguishing agent (trifluorobromomethane) are installed on each side of the airplane with provisions for discharging the agent into the engine compartment. On each side of the airplane, either bottle or both bottles may be discharged into either accessory compartment. A fire extinguisher switch for each accessory compartment and two transfer switches, one for the two extinguisher bottles on the left hand side and one for the two extinguisher bottles on the right hand side, are provided on the flight deck.

2.10.5 FIRE SWITCH

A fire switch is provided for each engine. Actuation of the switch accomplishes the following:

- Closes fuel shut-off valves
- Closes hydraulic suction shut-off valves
- Disconnects generator and disconnects generator from electrical system
- Cuts out hydraulic pressure warning lights
- Arms the engine fire extinguishing system
- Closes air bleed shut-off valves
- Closes engine anti-ice valves

All functions can be returned to normal in flight.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>ENGINE INLET SYSTEM</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1</td>
<td>Inlet Considerations</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Inlet Selection</td>
<td>3-3</td>
</tr>
<tr>
<td>3.2</td>
<td>System Description</td>
<td>3-7</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Inlet Oral Assembly</td>
<td>3-9</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Centerbody Assembly</td>
<td>3-11</td>
</tr>
<tr>
<td>3.3</td>
<td>Operation</td>
<td>3-14</td>
</tr>
<tr>
<td>3.4</td>
<td>Performance</td>
<td>3-16</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Environment</td>
<td>3-18</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>Flow Field Determination</td>
<td>3-19</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>Spacing of Adjacent Inlets</td>
<td>3-21</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Inlet Recovery</td>
<td>3-23</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>Inlet Design</td>
<td>3-25</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>Mach 2.5 Free-Stream Recovery Data</td>
<td>3-27</td>
</tr>
<tr>
<td>3.4.2.3</td>
<td>Flow Field Recovery</td>
<td>3-29</td>
</tr>
<tr>
<td>3.4.2.4</td>
<td>Inlet Under the Wing</td>
<td>3-31</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Distortion</td>
<td>3-33</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Excess Air Drag</td>
<td>3-35</td>
</tr>
</tbody>
</table>
3.0 ENGINE INLET SYSTEM (RFP 3.2.9.6)

3.1 Inlet Considerations

The supersonic inlet presents one of the major design problems confronting the supersonic transport, both from performance and safety standpoint.Dwelling submits in this proposal an inlet concept that is new to supersonic aircraft. In its essence, the design embodies the well known axisymmetric inlet design techniques. A variable diameter, non-translating centerbody is provided to control throat area independent of capture area. Safety of flight is guaranteed by the use of simple, pressure-actuated auxiliary doors. These doors prevent an unstable condition from enduring in the event of inlet upset.

Test programs show that it is definitely possible to build an operating inlet and associated control system capable of adapting itself to its airplane environment. Such an inlet will provide the desired performance during takeoff, climb, acceleration, and subsonic cruise regimes. The inlet will also adapt itself to stall, engine-out interference, upset, and gust effects. It is recognized that the inlet stability and shock system characteristics are such that airplane safety cannot be totally dependent on the automatic controls. Automatic controls are present to maintain the trim schedules essential to efficient and economic flight.

Should the automatic control system fail to maintain stable inlet operation, auxiliary doors will be opened by the air pressures acting directly upon them. These doors are redundant in quantity to ensure adequate air flow capacity and reliability. Although efficiency in this case is reduced, the inlet operates in a stable region. Airplane safety is in no way impaired.

3.1.1 INLET SELECTION

The supersonic inlet chosen for the proposed airplane is an axisymmetric external-internal compression inlet.

The proposed engines for the SST have high transonic airflow requirements relative to cruise requirements because of the need for high transonic thrust on the airplane. The capture area requirements at supersonic cruise are the real tip. The high ratio of transonic to cruise airflow requires a large variation in inlet throat area for efficient operation. Fig. 3.1 shows the airflow demand of three offered engines as a ratio of capture area required at each Mach number to the capture area at free stream Mach 2.7 cruise. The corresponding throat areas are also shown. The required area ratios are readily obtained with the chosen inlet which has a variable diameter centerbody. Fig. 3.2 shows how the airflow demand of the three engines, shown in Fig. 3.1, compares with the capture area (air supply) of the inlet. A variable diameter centerbody design was chosen as the configuration best fitted to the airflow schedule of the proposed engines.

The choice of the axisymmetric inlet over the two dimensional type was based on the following inherent advantages:

- Higher pressure recovery with lower boundary layer bleed
- Lighter weight
- Lower circumferential distortion on engine face
- Compatible with the podded engine concept
- Separable component, more easily maintained as a unit

In addition to the ease of airflow matching to any engine airflow demand, other advantages of having the variable diameter centerbody in the inlet are:

- The physical location of the throat remains in a narrow region fore and aft. This greatly simplifies throat Mach number and normal shock position sensing.
- The fixed fore and aft position of the centerbody permits fixed lengths of inlet Mach sensing lines and boundary layer bleed ducting.
- The sliding leaf feature of the centerbody design...
provide an automatic reduction in bleed at lower Mach numbers consistent with the demands of the inlet for optimum recovery.

3.2 System Description
The inlet incorporates a variable diameter centerbody for controlling the throat area and variable bypass doors for matching inlet to engine airflow. The inlet is shown in Figs. 3-3 and 3-4.

3.2.1 INLET COWL ASSEMBLY
The inlet cowl assembly is supported by the engine forward flange. All loads pass from the inlet into the engine and through the engine mounting system to the strut and wing. The aft bay of the inlet assembly contains the actuators for the controlled bypass doors and other elements of the inlet control system. Loads on the actuators are reduced and equalized by mechanical interconnects between the doors. The controlled bypass doors are located immediately forward of the actuator bay. Also in this area are fair doors located 90° apart which provide overboard passage for the centerbody boundary layer bleed. These doors are mechanically connected to the variable centerbody for closure in relation to airplane speed.

In addition to the controlled bypass doors discussed above, the inlet assembly contains a set of door in takeoff doors and secondary bypass doors (Fig. 3-4).

These doors are closed in normal cruise operation. The leading and trailing edges of the closed doors form tailored slots to pass the cool inner surface boundary layer bleed efficiently overboard.
VARIABLE DIAMETER ACTUATOR

BLEED HOLES

SUPPORT LINKS AND TUBE

VARIABLE DIAMETER SEGMENTS

MESH INNER SKIN UNDER BYPASS DUCTS

180.4" LONG

SELF-DAMP
The takeoff doors are similar to those on Boeing 707 jets. They are spring-loaded to the closed position and open inward in response to low pressure within the inlet during static and low-speed operation.

The secondary bypass doors are spring-loaded in the closed position for all normal operation of the inlet. These doors open outward to relieve the pressure in the forward part of the inlet caused by any shock system expansion at Mach numbers above 2.0.

The inlet cowl assembly is constructed of titanium alloy Ti-6Al-4V duplex annealed material. The assembly can be removed as a unit by disconnecting the mounting bolts at the engine face flange, the cabin air supply line, the plumbing to the pump on the engine gear box, and the instrumentation lines.

Air for the cabin supply and the cabin heat exchanger...
is collected in a short manifold at the top of the inlet just forward of the mount flange.

2.2.2 CENTERBODY ASSEMBLY

The centerbody is a high strength steel and titanium assembly supported from four streamlined struts that connect to the inlet and the nose of the strut assembly. These struts position the centerbody, pass off structural loads to the strut, provide passage for instrumentation and control lines, and close passage for the centerbody boundary layer bleed air to the four exit doors referred to previously.

The centerbody assembly consists of:

- A nose cone, in which is housed the variable diameter control unit and the Mach sense probe. (The cover for this area is easily removable for servicing.)
- Fourteen variable diameter segments with 14 radially spaced leaves.
- Two sets of links and collars which connect the actuator and the variable diameter segments.
- The main support tube and the necessary frames and stiffeners.

The actuator is powered by engine fuel at 1500 psi through a separate pump located on the engine. The pump also powers the controlled bypass doors. The variable area centerbody has the capability of increasing the inlet throat area 91 percent from the cruise position.

3.3 Operation

The operation of the supersonic inlet is independent of the engine controls. No controls are required on the flight deck to govern the inlet's variable area functions. The automatic power control for the variable diameter centerbody and the controlled bypass air doors is governed by self-contained pressure sensing units. A complete and detailed description of the inlet operation is given in Section 8.

3.4 Performance (Ref 2.25.1f; 3.25.3)

Fig. 3-5 shows the installed total pressure recovery of the full-scale inlet as a function of flight Mach number. This pressure recovery includes the effects of the local flow fields. The total pressure distortion at the engine face during all normal flight conditions will be within the engine manufacturer's requirements for continuous operation as defined in the engine specification. The change in the local flow angle of incidence at the inlet lip will be about one and one-half degrees for the inward inlet and one and one-half degrees for the outward inlet. Over the Mach number range where the inlet is operating with partial internal compression (M = 1.8 to 2.7) the change in the local flow angle of incidence at the inlet lip will be about one and one-half degrees for the inward inlet and one and one-half degrees for the outward inlet. Even during engine-out conditions, for example, the airplane yaw angle will momentarily be less than 1.5 degrees which produces total pressure distortions of less than 14 percent. Because the distortion is predominantly radial, rather than circumferential, and because it is taken from small scale
model data, it is expected that the actual full-scale distortion levels will be even lower. During a sudden 2.5 "g" pullup maneuver (which will occur very rarely), the change in the outboard inlet angle of incidence to the local flow will be about four degrees. The inboard inlet angle of incidence change will be less than two degrees. This is considered to be the most critical inlet distortion condition. At this condition the outboard inlet pressure recovery will drop off about ten percent, and the distortion level will be about 20 percent. This is tolerable for the short time such a maneuver will last.

The relative locations of the inlets are such that the flow field of one inlet does not affect the operation of the other. Even in the event of an inlet unstart the expelled shock will not disturb the adjacent inlet. This has been verified by wind tunnel tests with two operating inlets. (See Par. 3.4.1.2.)

In the case of an inlet unstart the pressure actuated secondary bypass doors will open and the automatic control will open the controlled bypass doors (see Section 5.0), to stabilize the expelled shock system and prevent inlet unstart. The automatic control system will immediately restart the inlet. The effect on the airplane of the pressure fields created by an expelled shock have been studied in wind tunnel tests. A discussion of these effects on airplane stability is contained in Volume A/V, Aerodynamics.

3.4.1 ENVIRONMENT

Supersonic inlets are sensitive to Mach number and flow direction (incidence) conditions at the inlet face and to transient changes in these conditions. Since the engine performance is dependent upon inlet total pressure recovery, it is necessary to evaluate the installed inlet recovery, in order to determine airplane performance. A major part of this evaluation is the determination of the flow field under the wing at the inlet tip and the inlet performance in this flow field. A further requirement is that the inlets be completely independent of one another so that flow conditions created by one inlet cannot disturb the neighboring inlets.

3.4.1.1 Flow Field Determination

In normal flight the outboard inlet will see no more than a 1.5 degree angle of incidence, based on experimental and analytical flow field data, while the inboard inlet will see almost no angle of incidence.

Flow field surveys in the vicinity of the inlets under the wing were made in the wind tunnels using a complete model of the airplane. A pressure rake was used to measure Mach number and flow direction beneath the wing. Figs. 36 and 37 show the rake and the rake mounted on the model. The flow direction relative to the airplane body centerline is measured in the form of downwash and sidewash components. Figs. 38 and 39 show lines of constant sidewash for the inboard and outboard inlet locations. Outward flow is indicated as negative sidewash on the curves. Fig. 38 also shows the pressure coefficient (Cp) measured on the wing and the local Mach number which corresponds to this Cp.

The flow field under the wing has been calculated using theory for a swept flat plate at the same sweep...
angle as the wing. Fig. 3-10 shows the theoretical Mach number and reduction in stream tube area for the two inlet locations (outboard and inboard), as a function of airplane Mach number for the airplane angle of attack curve shown. Data from the flow field test are also shown in Figs. 3-10 and 3-11.

Fig. 3-11 shows the calculated and measured inlet angle of incidence versus airplane angle of attack for a Mach number of 2.0 to 2.7. From the airplane angle of attack curve in Fig. 3-10, together with Fig. 3-11, it is seen that for Mach numbers above 1.5 (inlet operating with partial internal compression) the inlets will see less than four degrees incidence for airplane angles of attack of less than eight degrees above the cruise angle. As explained in Par. 3.4, this corresponds to a 2.5 "g" pull up maneuver, which is the most critical condition imposed on the inlet. This maneuver should never occur in commercial operations. It is shown that the inlet can safely be operated under this condition.

3.4.1.2 Arranging of Adjacent Inlets

The relative spacing between adjacent inlets must be such that the inlets are completely independent of one another. In the case of an airplane with separate pods, the spacing is set by the requirement that an inlet stall not occur on one pod.
not affect the inlet on the neighboring pod.

Boeing tests have been run with two operating, asymmetric inlet models to establish the relative locations of adjacent inlets required to prevent the expelled shock of one inlet from affecting the other. The test model is shown in Fig. 3-12 as installed in the supersonic wind tunnel. Fig. 3-13 shows an experimentally derived zone representing a boundary of unsatisfactory locations for an adjacent inlet. An inlet will be undisturbed if located ahead of this zone. An inlet can be operated behind this zone and tolerate the upstreaming of the adjacent front inlet only if it has a higher throat Mach number, corresponding to a recovery reduction of 8 to 10 percent. On the proposed airplane the inlets are positioned forward of this zone so that there will be no mutual interference or recovery reduction.

Fig. 3-14 shows a sequence from a high-speed movie of the shock systems of two inlets in a coplanar position. The expelled shock is clearly shown for one inlet, but the adjacent inlet is unaffected because it is located in the satisfactory zone. In this test the bypass door system of the undisturbed top inlet was simulated in closed position. In Fig. 3-15 the top inlet was undisturbed, but with the bypass doors simulated open. In both cases there was no interference between inlets, and in the second case the strength of the expelled shock was much reduced.

3.4.2 Recovery

For over five years The Boeing Company has carried out theoretical analyses and experimental testing of various inlet concepts for the SST. Some of the models used in these test programs are shown in Fig. 3-16. Sizes range from 0.8 inch diameter cowl lip models for inlet aircraft stability, control, drag, and interference studies to 10 inch diameter cowl lip models for boundary layer bleed, stability, and performance tests. Asymmetric models, half asymmetric...
The specific inlet internal aerodynamic design for the GE/J44 engine is described as follows. The scale model tests of this inlet are still in progress, but the asymmetric inlet models which have been tested are very similar to the proposed inlet. The inlet capture area ratio curve is shown in Fig. 3.19 together with the GE/J44 engine capture ratio schedule for standard and non-standard days at maximum dry power and above. The inlet internal contours are shown in Fig. 3.20 for Mach 27, 24, 22, and sub-
Free Stream Inlet Recovery

Figure 1: Total Pressure Recovery vs. Free Stream Mach Number

LEGEND:
- Boeing Axial Inlet Tests
- NASA Axial Inlet Tests
- Boeing Fixed Geometry Models of Variable Diameter Centerbody Inlet (Initial Test Data)

FREE STREAM MACH NO.

TOTAL PRESSURE RECOVERY
ic and transonic speeds. The corresponding internal areas are shown in Fig. 3-7, with the equivalent normal included subsidence diffusion angle and Mach number at the engine face. The diffusion angles are within limits considered acceptable for inlet design. The internal flows were designed by computing the flow characteristics inside the inlet to obtain acceptable shock patterns, wall static pressure gradients, and throat velocity angles throughout the Mach number range. Examples of such numerical studies are included in Figs. 3-22 and 3-23, showing the proposed inlet internal flow at the design and off-design conditions. The average throat Mach number is 1.3 when the inlet is operated in the mixed compression mode (normal shock allowed) above airplane Mach 1.8. This throat Mach number provides high pressure recovery with adequate stability margins to handle upstream airflow disturbances such as post or airplane maneuvers which cause inlet Mach number or flow direction changes. These numerical solutions of the flow equations, using the method of characteristics and shock wave theory, have been confirmed by wind tunnel tests.

At the proposed airplane design Mach number of 2.7, stalled inlets will operate on the airplane in an average real Mach number field of 2.5. The proposed Mach 2.5 inlet design has contours similar to the inlet chosen for the proposed airplane. This model has been tested extensively and will be referred to as the basic inlet model. The model has the same centerbody angle, same length (two cowl lip diameters), generally the same internal contours, and the same design Mach number as the proposed inlet design.

The variable diameter centerbody inlet has good performance for the Mach 2.5 design condition and for the off-design supersonic cruise and acceleration range. In the transonic and subsonic range the variable diameter centerbody inlet always has adequate area at the lip station to provide the proper lip velocity ratio. Excess air is taken as bypassed and bypassed overboard at low angles to the external stream. The variable diameter centerbody inlet is matched to give the optimum trade between pressure recovery and bypass drag.

The situation of engine shut down with windmilling brake applied in the design condition for using total bypass door area (secondary and controlled bypass). For this case essentially 90 percent of inlet air must pass through the bypass doors.

3.4.2.2 Mach 2.5 Free Stream Recovery Data

The free stream performance of the basic inlet test model as shown in Fig. 3-23 as a function of Mach number and angle of incidence. Fig. 3-24 shows pressure recovery versus Mach number. Recovery = 99.2 percent at Mach 2.5. To increase the stability margin against upstream flow dia-
turbines, the inlet operates with a throat Mach number of 1.25. In these tests, the inlet operated with a swallowed shock up to an angle of incidence of 8 degrees. This corresponds to an airplane angle of attack of 20 degrees (Fig. 3-11), well beyond superersonic flight limits. These tests also show that the inlet capture mass flow ratio was constant up to 1.5 degree angle of incidence, as seen by the constant centerbody ray angle. This indicates that no throat area changes were required. As a result, the inlet control need not react over this range.

A larger throat area model was also tested. The performance curve shown with broken lines in Fig. 3-23 is for the larger throat area, corresponding to a 1.35 design throat Mach number. With this contraction ratio, the inlet is capable of accepting well over two degrees change in flow incidence before inlet control action is required.
but this is accompanied by a reduction in recovery.

Boundary layer bleed requirements are shown at the bottom of Fig. 3.75. The amount of bleed is seven percent for this model size (14 inch diameter and lip). Model tests of a much smaller Mach 30 inlet at 10 inch diameter and lip core, where representative design of the bleed system etc. could be accomplished, showed a decrease in bleed requirement to 0.75 percent. It is expected that the 5 percent bleed assumed for the airplane performance calculations will be attained with full scale model tests. Fig. 3.10 shows inlet and exit fed bleed configurations. Fig. 3.15 shows the calculated airplane performance calculations assume that the proposed airplane inlet has the same critical inlet recovery as the Mach 30 tests but with 2 percent less bleed. The trade between pressure recovery, engine performance, and bleed/core bleed taken.
in account in Fig. 3-38.

3.4.2.3 Flow Field Recovery

Tests were conducted to determine the performance of an inlet in a non-uniform flow field. The field behind the wing was simulated in front of the inlet by placing curved surfaces upstream of the inlet. Fig. 3-27 shows the inlet and the plate. The performance, in percent of free stream total pressure as a function of change in flow angle across the inlet face, is shown in Fig. 3-28. Using the data from the free stream inlet and flow field tests, the performance of the proposed inlet located under the wing was calculated (Fig. 3-18).

The design recovery curve for inlets located under
the wing is compared with the free-stream pressure recovery curve in Fig. 3.18. As shown by these curves, the loss due to non-uniform flow is approximately equal to the gain due to the lower Mach number in the wing pressure field.

3.4.2.4 Inlet Under the Wing

As further support of the predicted performance of the proposed inlet, tests were conducted in the blowing supersonic wind tunnel. The test configuration was the basic asymmetric 12.5 degree centrelined inlet with a wing closely simulating the part of the 74-degree swept wing forward of the inlet. The inlet and wing are shown installed on the wind tunnel in Figs. 3.29 through 3.32.

The test was conducted at 1.7 and 2.8 degree angles of attack at tunnel Mach numbers from 0.60 to 2.0. The inlet was first located on the wing centerline and then near the outboard edge of the wing, simulating the two inlet sections. The axis of the inlet was also turned inward relative to the wing axis of symmetry to establish the optimum inlet angle for the outwash of the local air at the wing root. Fig. 3.21 shows inlet pressure recovery versus inlet angle. The optimum angle of the inlet is 40 degrees inward to the body centerline.

A transient test using a large-scale mock-up of the variable-diameter spike jet and a laser velocimeter was performed on the model with a photograph of the model shown in Fig. 3.32. Preliminary data from these tests are shown in Fig. 3.33.

The results of both the transient and supersonic tests of the inlet-mixed angle, the wing are plotted in Fig. 3.36 along with the design inlet pressure recovery. Past test data have shown that testing with larger scale inlets
Subsonic Performance of Variable Diameter Conical Body Inlet

Inlet Total Pressure Recovery

Inlet Under Wing Recovery

Local Distortion and Circumferential Distortion Index
give inlet performance increases of 1 to 2 percent.

With this increment applied to the test data shown, the design performance should be achieved by a sufficient margin to permit operating within the 2 percent stability margin required for control dynamics.

3.4.3 DISTORTION

The total pressure distortion at the compressor face is a function of the angle of incidence of the inlet to the local flow, the amount of flow distortion in the air as it leaves the inlet lip, and the internal geometry of the inlet flow passage. The inlets are installed under the wing, reducing local angle of incidence changes with airplane angle of attack and are mounted with respect to the local flow to be essentially at zero angle of incidence. The flow direction change across the outboard inlet face is very small, about 1.5 degrees, and across the inboard inlet about 0.5 degrees.

Fig. 3.77 shows typical compressor face total pressure distortion test results for the basic inlet model operating at various Mach numbers and angles of incidence (+). Recovery and capture area ratio are noted, together with Mach number and angle of incidence for each data point. For each situation the General Electric distortion index (NDA) is shown as computed per directions in the GE4 J4C installation manual (Ref.3). At the supersonic Mach numbers listed for zero angle of incidence, the distortion index is below 0.10 as required for continuous engine operation at no performance penalty. The distortion is predominately radial which is characteristic of a spike-type asymmetric inlet. Axial flow compressors are usually less affected by radial than circumferential distortion.

Airplane maneuvers or attitude changes during supersonic cruise will be on the order of ±2 degrees to cover all normal operations. The total inlet distortion will be within the 0.15 value allowed for continuous cruise with small performance reductions. The engine-out yaw conditions will be less than ±1 degrees. With full-scale inlet test it is expected that distortion levels will be even lower, due to reduction in scale effects and because at the large-scale model can be done to control the boundary layer. The sideline angles (seen as inlet flow angularity) increase at transonic and subsonic Mach numbers but the distortion levels at transonic and subsonic speeds have been found to be relatively unaffected by inlet flow angles. The inlet distortion will be acceptable.

3.4.4 EXCESS AIR DRAWD

The inlet drops associated with boundary layer bleed, excess air spillover and bypass air are discussed in Section 12.
VOLUME A-VI

PROPULSION

4.0 EXHAUST SYSTEM
4.1 General Description
4.2 Exhaust Nozzle
4.2.1 Description
4.2.2 Operation
4.2.3 Performance
4.2.4 Exhaust Flow Field
4.3 Thrust Reverser
4.3.1 Description
4.3.2 Operation
4.3.3 Performance
4.3.4 Exhaust Flow Field
4.4 Secondary Air System
4.4.1 Description
4.4.2 Operation
4.4.3 Performance
4.0 EXHAUST SYSTEM (RFP 3.2.9.5)

4.1 General Description

The exhaust system is a separate assembly that can be both installed or removed with the engine in place on the airplane.

The exhaust system assembly (Fig. 4-1) consists of the aft section of the engine augmenter case, the variable area convergent-divergent ejector nozzle, the integrated thrust reverser, the variable area secondary guide for nozzle ventilation and cooling air, the actuators, controls, and associated plumbing, and the exterior cooling required to continue the aerodynamic contour of the pod from the aft end of the engine cowling panel to the nozzle exit.

The design of the exhaust system assembly requires a carefully coordinated program on the part of both The Boeing Company and the engine manufacturer. The Boeing Company will establish requirements to make the design compatible with the airplane configuration, such as external cooling profile for maximum aerodynamic performance, the operation and exhaust flow patterns of the thrust reverser, and the exhaust system controls.

To provide maximum propulsion performance through the broad speed range of the supersonic transport, the selected engine, the General Electric GE4 J4C, requires a variable area convergent-divergent-ejector nozzle. Because the proper operation of the variable area feature of the nozzle is vital to engine performance guarantees, the complete exhaust system assembly will be designed and produced as an engine component by the engine manufacturer.

Some of the mechanisms that operate the variable area components of the GE4 J4C turbojet engine nozzle...
4.2 Exhaust Nozzle

4.2.1 DESCRIPTION

The primary convergent section of the nozzle consists of variable position flap and wall segments, a mounting ring, and actuating linkage. This section forms the jet nozzle throat. The secondary, divergent section consists of variable position, flap and wall segments, supporting structure, and actuating linkage. This section forms the ejector walls and the external baffle surface. The ejector throat and exit areas are variable in order to guide and provide maximum control of the exhaust gas expansion. Aspiration and cooling air flows over the aft side of the primary nozzle segments and is taken into the ejector through an annular gap provided at the nozzle throat.

4.2.2 OPERATION

The exhaust nozzle and reverse control is shown in Fig. 4.2. A 3000 psi hydraulic system using the same type of fluid as the engine lubricating oil powers the control system. The system is self-contained on each engine and has its own fluid reservoir, engine-driven pump, and manifold system.

The primary nozzle area is governed by a closed loop positioning control. The control consists of a hydro-mechanical computer and servo valve, synchronized hydraulic actuators, and a mechanical position feedback system. The nozzle is positioned as a function of thrust lever setting and turbine temperature as shown in Fig. 4.3. At low-thrust settings the area is established in accordance with the "fixed" schedule. At high-thrust settings the area varies between the mechanized established limits of the "fixed" and "open" schedules as a function of turbine temperature. In this region a turbine temperature signal amplifier introduces a bias to the control which varies the exit area to hold a constant turbine temperature. The "fixed" and "open" schedules maintain manual control of exit area in the event of a turbine-temperature signal malfunction.

The ejector throat area, which is a function of the primary nozzle position, establishes the annular gap provided at the nozzle throat for efficient pumping of the aspiration and cooling air.

The ejector exit area and baffle angle are governed to provide the proper expansion ratio for nozzle efficiency. Studies are currently underway to position the baffle area by pressure balancing.

Nozzle position indication is provided on the flight engineer's panel.

4.2.3 PERFORMANCE

The function of the nozzle is to achieve maximum thrust minus nozzle drag from the engine exhaust gases. The performance is defined by a gross coefficient, Cr, where:

- Gross Thrust Nozzle Drag (Including Ram
- Cr. Ideal Gross Thrust of Primary Plus
- Secondary Air)

The nozzle geometry is scheduled to a position which gives the maximum gross thrust coefficient at any flight condition.

The nozzle on the GE4 J4C engine has divergent walls, which establish the nozzle expansion ratio, A2/A1, and the external baffle angle. These walls can be placed in one of four positions approaching the ideal expansion ratio for a given Mach number. Fig. 4.4 shows the expansion ratio Mach number relationship provided by the nozzle. Shown in dotted form is the schedule indicated by theory.

Experimental evaluation and analysis of this nozzle have been conducted by General Electric. The internal
performance of the nozzle at each mechanical position is shown in Fig. 4.5. Fig. 4.6 shows the launch drag effect expected at each nozzle position.

The composite performance estimate, C_L, is shown in Fig. 4.7.

Analysis of the influence of the external flow field environment caused by the close proximity of the wing to the missile's thrust propellant has been made. The slight decrease in nozzle pressure ratio caused by the increased pressure field under the wing's aspect ratio is approximately counterbalanced by the more favorable pressure acting...
on the nozzle boattail. Hence in all aircraft performance evaluations the nozzle is assumed to be operating in free stream.

4.2.4 EXHAUST FLOW FIELD

4.2.4.1 Surface Heating Influence of the Exhaust Stream (EIP 3.2.9.3)

The location of the propulsion plane under the wing and forward of the fuselage required an investigation of the heating effect of the jet stream on adjacent surfaces. Three conditions were analyzed:
- Ground check of the augmentor on a hot day at a total jet temperature of approximately 3000°F.
- Maximum augmentation during a hot day on the ground at a jet temperature of approximately 1600°F.
- Maximum augmentation at Mach 0.9, 25,000 feet, on a hot day at a jet temperature of 3000°F.

To investigate the ground conditions, a model test was set up with a jet exhausting alongside of a simulated body (Fig. 10). The jet was run at various temperatures up to the 2500°F limit of the burner. Surface temperature measurements were made at several distances along the simulated body. The body was placed at various distances from the jet centerline and at several angles referenced to the jet centerline. Test data for jet temperatures of 1600°F, 1500°F, and 2500°F were taken as a function of jet diameters downstream and radial distances from the jet centerline. The data were then cross-plotted to arrive at the final two conditions above, as shown in Figs. 4.9 and 4.10.

![Internal Thrust Coefficient vs. Boattail Angle](image)
Jet engine temperatures, rather than surface temperatures, are presented for the third condition (Fig. 411). The above data are used to determine that surface temperatures of adjacent airplane structure do not exceed 200°F. (This determination is described in Section 8 of Volume A IV, "Structures").

4.3 Thrust Reverser (BFP 3.2.9)

4.3.1 DESCRIPTION

The thrust reverser is an integral part of the nozzle structure, using weight and reducing complexity. The reverser end plates are located in the nozzle support structure. The variable-position lip and seal segments forming the primary nozzle area control are also used for thrust reversal package. A schematic of the thrust reverser in the reverse thrust position is shown in Fig. 412.

Thrust reversal is accomplished by moving a section of exterior paneling to uncover cowl flaps assemblies located in the nozzle support structure. The primary nozzle variable-position lip and seal segments are moved aft and deflected inward to block the normal exhaust flow path and to direct the exhaust outward through the cowl flap. The cowl flaps turn and direct the gases into an efficient reverse thrust pattern.

A partial reverse position is incorporated into the thrust reverser design for additional flexibility in engine thrust control. A schematic of the thrust reverser in the partial reverse thrust position is shown in Fig. 413.
thrust reversal is accomplished by opening the cooling to uncover the cascade and moving the variable position segments so that they partially block the normal exhaust flow path. The exhaust flow is divided so that a portion continues all through the vector nozzle and the remainder is directed outward through the reverse cascade.

432 OPERATION
The thrust reverser is governed by a closed-loop, three position control system of the exhaust nozzle and reverse control system. This consists of a signal mechanism and servo valve, synchronized hydraulic actuators, locking device, and a mechanical position feedback and safety interlock system. The reverser is positioned as a function of the thrust lever setting. See Section 5 for a description of thrust reverser control and special features.

433 PERFORMANCE
The efficiency of a thrust reverser installation on an aircraft at a given engine power setting is generally expressed in the ratio of the net thrust with the unit in the reverse position to the net thrust with the unit in the forward position.

\[F_r \text{ (Reverse)} \]

\[F_f \text{ (Forward)} \]

The net thrust with the unit in the reverse position experienced by the airplane differs from the gross thrust of the unit at the reverse position due to non drag and interference effects of the reverse thrust flow field on the drag of the airplane. For example, the normal drag of extended flaps during the landing roll on the runway can be increased by the reverse thrust flow field under the wing.
The allowable reverse thrust of the unit in reverse is influenced by three factors: (1) the reverse speed at which the reverse gases are injected into the engine inlet, (2) the power setting of the engine with the unit in the reverse thrust position, and (3) the angle in relation to the engine centerline through which the reverse gases are turned.

- Injection of the reverse exhaust gases into the engine is caused mainly by the re-stricted area between the wing and the ground plane in which the reverse gas must flow. At the higher reverse speeds, momentum of the free stream forces the reverse gases to turn around and flow behind the airplane. As the reverse speed is reduced, the turning point moves forward with respect to the jet until the engine inlet openings are reached and reverse thrust is lost.

- When operation reveres, the engine power must be reduced to decrease the thrust flow of the reverse gases and allow the turning point to fall behind the inlet openings. Hence, the airplane slows down and engine power is decreased proportionally.
- At the initiation of reverse, thrust at touchdown speeds, the maximum possible reverse thrust force is desired and operation is not a problem. The highest practical engine power is employed.

For augmented engine, use a maximum dry
power. The use of augmented power is not feasible since cooling the reverse components with secondary air is not possible.

A Boeing has established through experience that the maximum angle of attack to the reverse vanes through which the reverse gases are turned can be established by test only. For maximum reverse thrust, the vanes should be turned forward to the extent that ingestion will occur at maximum dry power and low air speeds.

A model of the Boeing supersonic transport used for reverse development is shown in Figs. 4-14 and 4-18. Three of the four pods have vanes at the inlets and strainers at the reverse. Figs. 4-16 and 4-17 show the model installed and in operation.

Experience gained from the Boeing Model 707 and 720 commercial transports and the supersonic transport reverse development program established that an efficiency factor (e) of 45 percent and a critical ingestion

PARTIAL REVERSE THRUST FLOW

![Diagram of Partial Reverse Thrust Flow](image)

Schematic Diagram Exhaust System - Partial Reverse Position

0 01-2400-12
speed of 30 knots can be expected from the reverse configuration. Figs. 4.18 and 4.19 show the reverse thrust power schedule and the resulting reverse thrust available from touchdown speed to full stop. The curves are based on the following:

- Reverse thrust efficiency, $\eta = 0.40$.
- Maximum 25% power is used from touchdown speed to the critical angle-of-attack speed of 30 knots.

- Continuous engine throttling from the maximum dry power setting at 30 knot ingestion speed down to 80 percent RPM (17 percent maximum dry power) at full stop.

The stopping distances noted in Volume A-V, aerodynamics, are based on these data.

4.3.4 EXHAUST FLOW FIELD

The external zone into which the reverse exhaust gases...
can be discharged influenced the reverse configuration.
The underlying radiation installation results in some degree
of surface engagement by the hot reverse gases on the
wing and body and underneath. Careful control of the
reverse exhaust flow field is exercised to limit surface
temperatures of adjacent structures to acceptable levels.
Control of the placement of the exhaust gases is also re-
quired to avoid pressure buildups under the body and
wings that would tend to pitch up the body. Temperature
and pressure measurements are taken during the reverse
development wind tunnel tests.

Fig. 4-20 shows the exhaust flow directions. The ex-
haust flow from the outboard engine is directed outboard
and forward in an unrestricted flow path. The exhaust
flow from the inboard engine is divided. The outboard
portion is directed forward (behind the undercarriage)
and under the outboard pod to mix with the outboard
pod flow. The inboard portion is directed under the body
to mix with the flow from the opposite inboard engine.

4.4 Secondary Air System

4.4.1 DESCRIPTION

The aspiration and cooling requirements of the nozzle are
supplied by variable area, normally flush scoops located
in the exhaust system assembly exterior cowling. A schematic
of the secondary air system is shown in Fig. 4-21.
The system consists of flush-type scoops with mov-
able lips, ducting, actuators, plumbing, and controls. Two
scoop capture areas are established by the system. With the
scoop lip in the flush position, the scoop capture area
satisfies the dry (non-augmented) supersonic cruise sect-
or the exhaust nozzle requirements of the nozzle. With the scoop lip
in the displaced outward position, the capture area is en-
larged to satisfy the augmented, subsonic, and transonic
secondary air requirements of the nozzle.

Air captured by the scoops is ducted inward to the
forward end of the nozzle. From there it is directed over
the aft side of the primary nozzle segments and through the annular gap at the nozzle throat to fill and cool the ejector. A portion of the air flows between the exterior cowl and the cowl wall to enter the ejector nozzle area through slots provided downstream of the nozzle throat.

4.4.2 OPERATIONAL

The secondary air system control is a portion of the exhaust nozzle and reverser control system. This consists of a signal mechanism and valve, hydraulic actuators, and the required plumbing.

The signal mechanism senses the ratio of compressor inlet total pressure to the free-stream static pressure. This provides, in essence, an airplane velocity indication as shown in Fig. 4.22. At pressure ratios indicative of airplane velocities of Mach 2.5 or higher, the signal mechanism will actuate the lip to the flush position, provided that the engine is in the dry power regime.
4.4.3 PERFORMANCE

The secondary air system is designed to provide nozzle ventilation and cooling air flow as indicated in the curves in Fig. 4-23. In the dry power, low pressure ratio range, the rather steep rise in airflow requirements is established as a means of helping to prevent over-expansion of the primary airstream. At these low pressure ratio conditions, the optimum nozzle performance is obtained through the use of a greater amount of secondary air, thereby requiring less exhaust angle.

The pumping characteristics of an ejector determine the required pressure level of the secondary air for a specific flow. These characteristics are mainly a function of primary pressure ratio and gap size between the primary nozzle and ejector throat.

Fig. 4.24 shows an envelope of the pumping characteristics of a series of ejector models taken from NASA data (Ref. 3) matched to an engine over the Mach number range. The models selected in the development of this envelope agree closely in primary and exit geometry to the GE4 J4C nozzle.

Superimposed on the pumping characteristics curves is the curve of maximum secondary flow for the proposed nozzle, which indicates the required secondary pressure level.

Fig. 4.25 shows how the pressure recovered in the open position by the scup meets the nozzle requirements. Calculations show the maximum scup area requirement to be approximately one square foot per engine.

\[P_{eq} = \sqrt{\frac{T_{eq}}{T_{in}}} \]
4.24 Ejector Pumping Characteristics

4.25 Secondary Air Scoop Pressure

16 06-2400-12
VOLUME A-VI
PROPULSION

5.0 CONTROLS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 General Description</td>
<td>5/1</td>
</tr>
<tr>
<td>5.2 Inlet Controls</td>
<td>6/1</td>
</tr>
<tr>
<td>5.2.1 Automatic Control System</td>
<td>6/3</td>
</tr>
<tr>
<td>5.2.2 Secondary Bypass System</td>
<td>6/2</td>
</tr>
<tr>
<td>5.2.3 Takeoff Diver</td>
<td>6/4</td>
</tr>
<tr>
<td>5.2.4 Inlet Control System Operation</td>
<td>5/4</td>
</tr>
<tr>
<td>5.3 Engine Controls</td>
<td>6/7</td>
</tr>
<tr>
<td>5.3.1 Start Controls</td>
<td>6/7</td>
</tr>
<tr>
<td>5.3.2 Thrust Controls</td>
<td>5/12</td>
</tr>
<tr>
<td>5.3.3 Right Idle Throttling</td>
<td>5/18</td>
</tr>
<tr>
<td>5.3.4 Partial Reverse Thrust Control</td>
<td>5/18</td>
</tr>
<tr>
<td>5.3.5 Safety Interlock System</td>
<td>5/14</td>
</tr>
<tr>
<td>5.3.6 Windmill Brake Control</td>
<td>5/16</td>
</tr>
<tr>
<td>6.4 Fuel System Controls</td>
<td>5/16</td>
</tr>
</tbody>
</table>

08-400-12
5.0 CONTROLS (RFP 3.2.9.2 and 2.25.4)

5.1 General Description

The propulsion system controls govern the operation of the engine inlet, starting system, exhaust system, and fuel system throughout all modes of flight.

The supersonic transport, operating over a broader speed range than today's subsonic aircraft, requires a more complex propulsion system; therefore special emphasis is being maintained during the development of the control system to ensure simplicity and reliability. One set of thrust levers, for example, controls all modes of thrust. "Flap-back" reverse thrust levers are not employed.

Maximum advantage has been taken of natural forces to avoid special and complex manual control requirements.

5.2 Inlet Conts (RFP 2.23.4)

Control of the supersonic inlet is accomplished by an automatic control system governing the position of the variable diameter centerbody and the controlled bypass doors.

Natural forces act on secondary air inlet ducts for takeoff and on secondary bypass doors to arrest shock expansion. The system, except for the fuel supply pump, is self-contained within the inlet and requires no signal from the flight deck.

5.3 AUTOMATIC CONTROL SYSTEM

The automatic control is a hydromechanical unit which senses air pressures similarly to engine fuel control units and, in fact, operates with fuel as the fluid medium. An engine fuel control unit senses various pressure inputs, and schedules fuel flow as a function of the position of a three-dimensional cam. Hydromechanical fuel control units have established an excellent record for reliable service. Airline maintenance of fuel control units is a routine operation. Technical coordination with various control unit vendors such as Hamilton Standard Division, United Aircraft Corporation; Garrett Corporation is in progress. The schematic of the automatic control system proposed for the Boeing supersonic inlet by Hamilton Standard is shown in Fig. 5.1.

Inlet Mach number, angle of incidence, and other pressure signals through the inlet are fed to the automatic controller to position the variable inlet geometry for optimum performance during all modes of flight. The automatic controller consists of a thrust control loop to govern the position of the variable diameter centerbody and its attached exhaust ducts, and a normal shock control loop to govern the controlled bypass doors. The overall loop gains and effective time constants of the throat and normal shock control loops are chosen to handle upstream and downstream disturbances.

The automatic control system is designed for safety and reliability. Redundancy of doors and actuators in the bypass system ensures that single failures will not cause loss of normal shock control. Design of the doors and guide rails is such that, with loss of hydraulic power for the control and actuators, the controlled bypass doors will open to a fail-safe position.

5.2.1.1 Throat Control Loop

The throat control is an open loop comprised of a Mach sensor, centerbody position feedback, and an attitude bias. Demand signals generated by the three-dimensional cam (scheduler) as a function of Mach number and attitude inputs are mechanically fed into the servo system, initiating the necessary movement of the centerbody actuator. Completion of the actuator motion is effected by feedback linkage from the actuator to the servo, establishing the required throat area for inlet Mach number and attitude. Centerbody position as a function of inlet Mach number is shown on Fig. 5.2. The angle of incidence bias is shown on the same figure. Inlet Mach number and angle of incidence are measured by total and static pressures at the centerbody tip.
S.1 (Cont.) LEGEND

PA | INLET TOTAL PRESSURE
PB | INLET STATIC PRESSURE
PC | Bypass Static Pressure
PD | Bypass Static Pressure
PE | STATIC STATIC PRESSURE
PF | STATIC TOTAL PRESSURE
PG | Bypass Total Pressure
PH | STATIC STATIC PRESSURE
PJ | STATIC TOTAL PRESSURE
PK | MACH NO. (STATIC)
PL | MACH NO. (TOTAL)
PM | MACH NO. (DIFFUSER)
PN | Bypass Mach Number
PO | DIFFUSER MACH NUMBER
PP | THERMAL PROPERTIES
PQ | THERMAL PROPERTIES
PR | THERMAL PROPERTIES
PS | THERMAL PROPERTIES
PT | THERMAL PROPERTIES
PU | THERMAL PROPERTIES
PV | THERMAL PROPERTIES
PW | THERMAL PROPERTIES
PX | THERMAL PROPERTIES
PY | THERMAL PROPERTIES
PZ | THERMAL PROPERTIES

5.2.1.2 Normal Shock Control Loop

The normal shock control is a closed-loop system and consists of a reference signal scheduler, a normal shock position sensor, a servo, a start-unstart control, and a bypass door actuator. The closing loop is made by the aerodynamic feedback from the bypass door station to the diffuser Mach sensor. Operation of this system is divided into two distinct modes: one for the subsonic condition and external compression condition (up to Mach 1.8) and the other for the mixed compression condition at higher speeds (Mach 1.8 to 2.7). Switching of the operation is done by the inlet starting or unstarting initiated by the signal scheduler and the start-unstart control.

During the subsonic or external compression mode of the inlet, the Mach number sensed by the diffuser Mach sensor is compared with that generated by the reference signal scheduler. If an error exists, it will be fed into the servo, initiating the necessary movement of the bypass door actuator. Termination of bypass door actuation is accomplished by aerodynamic feedback from the bypass door to the diffuser Mach probes when the required inlet flow is established.

Operation of the loop during the mixed compression mode of the inlet is similar except that the reference signal now generated by the scheduler is for positioning the inlet normal shock. This provides the maximum pressure recovery with an adequate stability margin.

The design stability margin is two percent of pressure recovery. Diffuser duct Mach number is the sensed signal.

![Diagram](image_url)

Legend:
- PA: Inlet Total Pressure
- PB: Inlet Static Pressure
- PC: Bypass Static Pressure
- PD: Bypass Total Pressure
- PE: Static Static Pressure
- PF: Static Total Pressure
- PG: Bypass Total Pressure
- PH: Static Static Pressure
- PJ: Static Total Pressure
- PK: MACH NO. (STATIC)
- PL: MACH NO. (TOTAL)
- PM: MACH NO. (DIFFUSER)
- PN: Bypass Mach Number
- PO: DIFFUSER MACH NUMBER
- PP: THERMAL PROPERTIES
- PR: THERMAL PROPERTIES
- PS: THERMAL PROPERTIES
- PT: THERMAL PROPERTIES
- PU: THERMAL PROPERTIES
- PV: THERMAL PROPERTIES
- PW: THERMAL PROPERTIES
- PX: THERMAL PROPERTIES
- PY: THERMAL PROPERTIES
- PZ: THERMAL PROPERTIES
to control shock position. The same probes are used throughout the Mach range. The definer Mach number schedule for bypass door control is shown in Fig. 5-3.

5.2.3 Shock Expansion Sounding System
In the event that the inlet should unstart, a shock expansion sensor activates the servo to open the controlled bypass doors and thrust area. This immediately restarts the inlet. After the shock has re-entered the inlet, the normal shock position sensor will move the thrust area and close the controlled bypass doors. Should the position sensor fail so that the inlet continually unstarts, a sensor on the shock expansion sensing system will energize to lock the controlled bypass doors open.

5.2.2 SECONDARY BYPASS SYSTEM
Secondary bypass doors located near the inlet lip remain closed at all speeds when the inlet is operating normally. At supersonic cruise speeds, if the inlet unstarts, the high pressure created at the front of the inlet immediately forces the secondary doors open. This stabilizes the normal shock at the inlet lip and prevents inlet buzz. The controller immediately restarts the inlet by opening the thrust and the controlled bypass doors. This allows the spring loaded secondary doors to return to their normal closed position.

In the event that the controlled bypass system is inoperative and the inlet does not restart, the secondary bypass doors remain open and position the normal shock near the inlet lip to establish an efficient but stable and safe flight condition.

These doors will open in the event that the engine is shut down and the windshield brakes are applied (Par. 4-3.8).

5.2.4 INLET CONTROL SYSTEM OPERATION
The percent cruise capture area as a function of the airplane Mach number is shown for the engine, the inlet, and the inlet thrust in Fig. 5-4. The difference between engine requirements and the inlet capture area establishes the controlled bypass area requirement. The difference between the inlet capture area and 100 percent represents air to be externally supplied. The area with letters A through F correspond to letters in Fig. 5-5 which shows schematics of the inlet system and inlet flow patterns for various Mach numbers throughout the airplane speed range.

- SCHEMATIC A (TAKOFF DOORS OPEN)
During takeoff and subsonic flight from Mach 0 to 0.3, the capture area demanded by the engine is larger than the supply of the inlet. The takeoff doors will rock in during this flight regime. The controller is fully contracted and the controlled and secondary doors remain closed. Above about Mach 0.3 the inlet supplies adequate air to the engine and the takeoff doors close.

- SCHEMATIC B (M 0.4, SUBSONIC BYPASSING)
At speeds above about Mach 0.5 the inlet supplies more air than the engine demands. Excess air is shown entering the inlet and is bypassed overboard through the controlled bypass doors. The controller is fully contracted.

- SCHEMATIC C (M 1.4, TRANSONIC BYPASSING)
As the airplane speed increases, the controlled bypass doors progressively open. The maximum opening occurs at about Mach 1.1. The oblique and bow shocks influence air splitting. Part of the air is deflected overboard in front of the inlet by the conical control doors, causing external spillage. Excess air entering the inlet is bypassed over-
board through the controlled bypass doors.

SCHEMATIC D
(M. 1.8, DURING INLET STARTING)
At a speed of about Mach 1.8, the inlet will switch from the external compression mode (normal shock in front of the inlet lip and sub-sonic flow inside the inlet), to the external-internal compression mode (normal shock on the internal compression wall and supersonic flow inside the inlet). The bypass doors open wide momentarily to allow the normal shock to enter the inlet. The constrictor diameter is increased slightly, and the bypass doors closed partially, keeping the internal normal shock close to the throat of the inlet.

SCHEMATIC E
(M. 1.8, AFTER STARTING)
After starting, the inlet continues to operate in the external-internal compression mode. Air is being spilled externally through the external normal shock system, excess air captured by the inlet is discharged through the
controlled bypass doors. The internal normal shock is maintained close to the inlet throat by the automatic control system.

SCHEMATIC

(M 2.7, DESIGN CRUISE MACH NUMBER)

As the airplane speed approaches the design Mach number, the automatic control system continues to expand the centerbody and close the controlled bypass doors. At the design point the oblique shock off the centerbody is approximately on the inlet lip with minimum external and bypass spillover.

5.3 Engine Controls (RFP 2.25.1e)

The engine control system provides the means of transmitting the pilot's desired thrust variations to the engine. The pilot moves the thrust levers on the control stand to the desired setting. This signal is mechanically carried to the power control system on the engine. In response to this signal, the main fuel and starter portion of the power control system controls fuel flow to the main combustor and positions the variable stators in the compressor; the augmentation control portion of the power control system controls fuel to the augmentor spools; the nozzle and thrust reverser control portion of the power control system positions the variable area components of the nozzle for proper area control and provides the thrust reverser components for the correct operating regime. The power control system also protects the engine from exceeding RPM and turbine temperature limits during stabilized operation as well as during acceleration and deceleration.

The thrust levers and the start levers are connected to the engine by means of cable control systems and line-up devices to facilitate engine replacement. The cables, pulleys, and linkages for the thrust and start controls are made of corrosion-resistant steel.

The automatic thrust control portion of the automatic flight control system operates servomechanisms on the thrust control cables to vary thrust. Manual thrust control by means of the thrust levers may override at any time.

As a safety precaution, the thrust and start levers are physically separated, as shown in Fig. 5-7. Engine shutdown by using the start lever is accomplished by moving the lever to CUTOFF position, thereby closing the stepover on the engine. Engine shutdown by using the thrust lever is accomplished by moving the lever to the IDLE position and activating the proper switches on the engineer's panel to shut off the fuel supply to the engine. Fig. 5-8 shows, schematically, the main features of the engine control system.

5.3.1 START CONTROLS (RFP 2.25.1d and 3.2.9.31)

Starting and cutoff of each of the four engines is controlled by individual levers located on the control stand. Each start lever may be set at START, IDLE and CUTOFF positions to control the start and cutoff functions. With the thrust lever in IDLE, moving the start lever from CUTOFF to START transmits a mechanical input into the primary fuel and starter control unit on the engine. As a result of this input, the control unit mechanically opens the engine fuel stepover allowing fuel to flow through the main fuel pump to the control unit metering system and then to the fuel nozzles. Lighti ff of the engine is accomplished by an electric signal from the flight deck which energizes the engine ignition system. After the start is accomplished, the start lever is moved into IDLE.

A pneumatic starter is used for starting each engine. A pressure regulating valve, installed in the pneumatic supply duct, controls the air supply to the starter. A schematic diagram of the electrical circuit of the system is shown in Fig. 5-9. A single, guarded toggle switch for each engine controls the armature of the starter.
pneumatic valve. The switch, installed on the control stand, has three positions: GROUND-START, OFF, and FLIGHT-START. The switch is held in GROUND-START (momentary position) to arm the ignition system and to energize the starter valve. The open starter valve directs air to the pneumatic starter to begin rotation of the engine. Ignition is then obtained when the start lever is moved to START. Electrical energy to the starter valve is interrupted by a cutoff switch on the starter which automatically opens the start circuit when the cutoff speed is reached. The starting cycle can also be terminated at any time by releasing the start switch.

Moving the starting switch to FLIGHT-START (maintain-contact position) energizes the engine ignition system regardless of the position of the start lever but does not operate the starter. This position of the start switch is used for starting when the engine is windmilling, or when ignition is desired during takeoff, landing, or flying through severe turbulence.

Engine motor is obtained on the ground without ignition by moving the start switch to GROUND-START with the start lever in CUTOFF.

5.3.2 THRUST CONTROLS (IFF 2.25.1a)
The thrust of each of the four engines is controlled by individual thrust levers located on the control stand immediately forward of the start levers. The thrust lever controls engine thrust from full reverse at the aft end of the lever travel through idle to full augmented forward thrust at the extreme forward lever position. Fig. 5-10 is a diagram of the thrust lever positions.

For starting, the thrust lever remains at the idle stop position, shown as (3) or (4). After the start, moving the thrust lever forward initiates a mechanical signal to the engine primary fuel meter control unit and to the exhaust nozzle and thrust reverser control to increase engine power to forward thrust and to govern nozzle areas accordingly.

Advancing the thrust lever to position (2) establishes maximum dry power at 100 percent rotor RPM. Advancing the thrust lever to position (5) establishes maximum augmented power at 100 percent rotor RPM. Retarding
the thrust lever to position (3) reduces the engine to idle power. At position (3), the idle stop is engaged.

Lifting over the idle stop to position (4) actuates the thrust reverser to the partial reverse thrust position with the engine at idle RPM. Moving the thrust lever to position (5) accelerates the engine to approximately 80 percent RPM, with the thrust reverser remaining in the partial reverse position. At position (5) a high lift stop is encountered by the thrust lever.

Lifting the thrust lever over the high lift stop to position (6) actuates the thrust reverser to the full reverse thrust position, with the engine remaining at approximately 80 percent RPM. Moving the thrust lever to position (7) accelerates the engine to 100 percent RPM dry power, with the thrust reverser in the full reverse thrust position.

In the full reverse thrust position, the engine fuel control governs fuel flow so that engine over-speed will not be a problem. The thrust reverser control is interconnected with the engine fuel and stator control to close the stators slightly from their normal schedule. This increases the compressor stall margins, decreases the engine sensitivity to temperature distortion at the inlet, and allows some ingestion of the exhaust gas without causing surge.

Ingestion is a function of engine power and airplane velocity. At some airplane velocity during full power reverse thrust conditions, a critical ingestion point is reached which will cause surge unless power is reduced. The pilot should move the thrust lever from position (7) toward position (6) to reduce power. It is anticipated that the 80 percent RPM, full reverse thrust position (6), can be maintained down to airplane touchdown velocity. From this point the idle RPM, partial reverse thrust procedure, position (4), may be used.

5.2.3 Flight Idle Throttling
To aid in slowing the airplane during descent, an RPM unlocked rotor fuel schedule regime at flight idle power is incorporated in the engine control. The pilot may retard the throttle fully to the idle position (3). The engine reverser RPM decays, engine fuel flow is reduced, and the stator reposition to reduce airflow. The engine inlet automatically compensates for the reduced airflow condition. The reduction in fuel flow during the descent results in the saving of a substantial amount of fuel. The reduction in airflow establishes a moderate level of negative thrust per engine. In Fig. 5-11, the installed thrust of the engine as a function of Mach number is shown throughout the normal descent schedule for the RPM unlocked rotor idle forward thrust condition and the idle partial reverse thrust condition.

At airplane speeds above Mach number 1.5, the fuel flow rate at idle power does not supply the continuous cooling requirement of the airplane and engine systems combined. The fuel delivered to the engine during this condition will not exceed 125° F. When high airplane speed, idle power conditions are to be held for long periods, the air bled from the engine inlets for the cabin air system is switched from fuel-air heat exchanger cooling to ram air cooling.

5.3.4 Partial Reverse Thrust Control
The partial reverse position provides the pilot with better control of airplane speed during normal descent, landing, and taxiing.

- During normal descent for landing, at airplane velocities below 300 knots indicated air speed, the pilot may place the thrust levers in the idle RPM, partial reverse thrust position (4). This produces a greater level of negative thrust than unlocked rotor at idle power, as shown in Fig. 5-11. During manual glide slope control the pilot may intermittently use the same position for speed control.
- At the beginning of the flare on final landing approach, the pilot may pull the thrust levers through the idle detent and against the high lift stop at position (6). This produces zero to slight reverse thrust, as shown in Fig 5-12. Maintaining higher than idle RPM at touchdown enables the pilot to get later and equalized accelerations to full power reverse thrust on command. Approximately 3 seconds of engine acceleration time are eliminated. The 80 percent RPM on the acceleration schedule at position (a) allows for thrust control margining tolerances by bringing all engines to equalized RPM. This prevents symmetric reverse thrust caused by these tolerances or by variations in the acceleration rate of the engines when accelerating from idle RPM.

- The pilot may use the partial reverse thrust position during taxi conditions. The idle thrust to weight ratio of today's commercial turbofan transports requires high taxi speeds unless brakes are used. On long taxi runs, significant brake heat is generated. The idle thrust to weight ratio on the supersonic transport makes this more severe. Taxiing with one or more engines in idle reverse thrust allows foreign matter on the runways to be ignited by the engines. The use of the partial reverse position for taxiing eliminates the ingestion hazard and reduces the forward thrust of the engines at idle by approximately 50 percent.

5.3.5 SAFETY INTERLOCK SYSTEM

The multi-system incorporates a mechanical safety interlock. This device was conceived and developed by The Boeing Company and installed on all Boeing jet transports. The significant features of the safety interlock are as follows:

- Power cannot be increased in the forward thrust.
TRUE AIRSPEED - KNOTS

NET THRUST PER ENGINE - POUNDS

CLE POWER, 15 PERCENT RPM, FULL HOE THRUST POSITION
15 PERCENT RPM, FULL HOE THRUST POSITION
FULL POWER, 50 PERCENT RPM, FULL HOE REVERSE POSITION
FULL POWER, 50 PERCENT RPM, FULL HOE REVERSE POSITION

NOTE: Takeoff and Takeoff Thrust

05/02/10 5/15
lever regime unless the reverser is in the forward thrust position.

- Power cannot be increased in the partial reverse thrust lever regime unless the reverser is in the partial reverse thrust position.

- Power cannot be increased in the full reverse thrust lever regime unless the reverser is in the full reverse thrust position.

- In the event that, at any power condition, the reverser should depart from the position dictated by the thrust lever position, the engine power will be reduced such that the net effect on the airplane will be equivalent to one-engine-out operating conditions.

The safety interlock between the thrust lever position and the thrust reverser position provides the pilot with an immediate signal in the event of malfunction. The movement or resistance of a thrust lever, coupled with position indicating warning lights on the flight deck, enables the pilot, in the event of a sudden change of thrust associated with the reverser, to determine which engine is affected and what modes of thrust are still available to him. The reverser position indicating light mounted on the pilot's center panel goes on when the reverser has left the forward thrust position.

5.3.6 WINDMILL BRAKE CONTROL

(RFP 235.5)

In the event of inflight shutdown at high speed the engine may rotate at high RPM. Oil starvation, engine component deterioration, and wear of the rotor would be potential hazards. To minimize the problem, a windmill brake is employed. The compressor outlet guide vanes are rotated in the engine to an overlapping position. The engine rotation is reduced to approximately 20 percent RPM. At this RPM engine windmilling is comparable to that on present day aircraft. Control of the windmill brake is accomplished by moving the engine start lever to cutoff.
VOLUME A-VI

PROPELLION

6.0 STARTING SYSTEM
6.1 Description
6.2 System Choice and Trades
6.3 Starter and Associated System
6.4 Compatibility
6.5.1 Compatibility with Selected Engine
6.5.2 Compatibility with Ground Equipment
6.4 Reliability and Safety
6.0 ENGINE STARTING (RFP 2.23.1g, 3.2.4.3)

High reliability was a primary objective throughout the selection of the engine starting system. Simplicity and the ability to use any one of several air sources are features of the chosen system.

The development and test plan to ensure a safe and reliable engine starting system is presented in Part 8.5 of this volume.

6.1 System Description (RFP 2.10)

A pneumatic starter is used for starting each engine. A pressure-regulating and shutoff valve installed in the pneumatic supply duct controls the air supply to the starter.

The installation of the starter and valve is shown in Fig. 6-1. The manner in which the flight deck controls are operated to start the engines is explained in Section 5.

Accessory loads during starting, such as torque required to overcome the mechanical friction and the inertia of the hydraulic pumps, the constant speed drive, and the generator, have been taken into account in calculating starting power requirements and starting time. The engine-driven hydraulic pumps incorporate a bypass system to unload the pumps during the start. The engine-driven generators are also unloaded during the start. To avoid in preventing "hot" starts, the starters are sized to provide rapid acceleration through the engine start range.

Starting can be accomplished with air from conventional airline ground docks having a pressure of approximately 28 psig, or from an operating engine.

The starter is installed on the engine gearbox. A quick-attach-decoupling coupling, supplied as a component of the starter, facilitates removal and installation. To accomplish this, a single clamping bolt, requiring a standard tool, attaches the starter to the engine. The clamping bolt and clamping ring remain on the coupling mating with the engine when the starter is removed so that there are no loose parts.

The starter exhaust is discharged directly into the engine compartment and then overhead through a screen.

The starter and valves are installed in an area in which the temperature is 240°F or less throughout the airplane operating range. They are designed with a 100°F margin above this temperature to ensure long periods between servicing. The method used to control the accessory environment temperature is explained in Section 2. No external cooling of the starter or starter oil is required.

The starter is lubricated with oil of the same specification as that designated for the engine. When the lubricating oil in the engine area is heated to 40°F or above, the engine may be started at an ambient temperature as low as -65°F.

6.2 SYSTEM CHOICE AND TRADES

During the selection of the starting system described in this section, several other starting systems were considered. The system chosen is believed to be the right one for the GE90 engine. However, other systems would be reviewed in detail if a different engine, especially one requiring greater starting energy, were selected. In the paragraphs which follow, a few of the alternate systems are touched upon briefly in order to justify the low-pressure pneumatic system which has been chosen.

Cartridge starters are not believed to be the proper choice for today's commercial aircraft. The present cartridge motor, although stored in a controlled environment such as in the pressurized cabin, the product of combustion, in addition to creating a smoke problem at a terminal, are too loud and expensive. Cartridge starting is more easily than pneumatic starting. Cartridge starter and ease to handle are being developed. Progress in this field will be closely monitored.

Alternating current starter in conjunction with a hydraulic constant speed drive was ruled out because a 40 KVA starter generator cannot be constructed to efficiently develop the 200 horsepower needed for a
A recent endeavor by Boeing and its leading vendors to design an electric starting system for the Model 707 was abandoned after the program had progressed well into development and testing. Electro-mechanical integration problems, cost, and weight trends showed that a reasonable solution could not be achieved. Recognizing the advantages of a self-contained electrical starting system, Boeing will monitor development work in this field for new approaches that may show promise for the SST.

A review of energy requirements comparing an impingement starter with a ground mounted pneumatic starter shows that impingement starting requires two to three times as much energy. General Electric indicated that check valves, weight, and blade problems were also associated with this type of starting.

Starters utilizing combustors to increase the available air energy were also considered. Experience with this type of starting demonstrated that its complexity and reliability left much to be desired. Since it was found that a satisfactory engine start could be obtained with a simple pneumatic starter and an existing ground cart, the use of a combustor was no longer considered. In any case, if an increase in energy is required, the choice would be to add the combustor to the existing ground equipment rather than to the airplane.

Starting systems using stored pneumatic energy were briefly considered. The storage cylinder would be roughly twice the size and weight of the present storage cylinders used on the 707's. The larger storage cylinder volume, combined with the shorter time allowed to recharge the bottle during flight, would greatly increase the inflight pumping requirements. The higher ambient air temperatures to supply the compressor's bleed air pose a further design problem.

A pneumatic starter system using higher pressure was considered. The advantage of lighter aircraft components is offset by the requirement for new and more costly

![Graph](image-url)
ground starting equipment. Cross-starting with the higher pressure system requires greater engine power, with the resulting objectionable increase in airport terminal noise. Should the starting requirements of the ultimate SST engine differ appreciably from those used in the proposal, consideration can be given to the higher pressure system.

Hydraulic, direct-drive mechanical, and pneumatic constant speed drive starters were also considered.

6.3 STARTER AND ASSOCIATED SYSTEM COMPATIBILITY

6.3.1 COMPATIBILITY WITH SELECTED ENGINE

The steady state starting torque characteristics of the GE4 J4C engine at three ambient conditions are shown in Fig. 6-2. The airplane accessory torque loads (Fig. 6-3) reflect the loads due to two unidirectional hydraulic pumps and one constant speed drive with generator carrying no electrical load. The starter torque available is shown in Fig. 6-4 for four ambient conditions: -65°F, +59°F, +130°F at sea level; and on a hot day (standard day temperature +61°F) at 10,000 feet pressure altitude.

Fig. 6-5 shows a typical performance plot for the engine-starter combination and the maximum torque available for accelerating the engine starter and airplane accessories, using either two ground carts or a single ground cart. Performance of typical ground carts supplying the air energy to the starter is shown in Fig. 6-6. The performance figures include temperature and pressure losses in the airplane ducting. Fig. 6-7 shows the starting time as a function of engine RPM for the four ambient conditions under consideration. Fig. 6-8 is a cross-plot of these data and shows directly the effect of ambient temperature on starting time. A point representing starting time at 10,000 feet altitude on a hot day is also shown on the plot.

6.3.2 COMPATIBILITY WITH GROUND EQUIPMENT

Starting may be accomplished by using the output from a single ground cart, from two ground carts, or by cross starting from an operating engine. Airline ground carts of the type now in existence can be used.

The engines may be started by using the output from two ground carts. This will result in an engine start in 36 seconds on a standard day, which is well within the HPP requirement and comparable to present jet aircraft starting time.

Starting engines may each be started in the 36 second time period by continuing to use the ground equipment or by cross-starting from an operating engine. Cross starting is accomplished by setting the engine RPM between 75 and 80 percent depending upon the starting time desired and permissible noise level.

The engines may be started using a single ground cart. In this case starting time will be 70 seconds on a standard day. With one engine started, each succeeding engine can be cross-started in 36 seconds. The resulting total starting time for all four engines will be approximately three minutes.
Pneumatic Starter Output Torque

Steady State Torque at the Engine Motor - LB-FT

Starter Output Torque - 2 Ground Carts
Starter Output Torque - 1 Ground Cart

Idle

Transition Line Flow
Motoring to 1/2 Engine Torque

Starter Cutout

Engine Ignition
Fuel Manifold
Pole System Installed

Polar Moment of Inertia
Engine + Accessories
300 SLOG-472

-5°F Intake Pressure
Regulated to 28 PSIG

10,000 FT
5104 ft (48.37 ft)

-5°F

-45°F
NOTES

1. BASED ON AIRSEARCH STEPS 95 GROUND CART PERFORMANCE
2. STARTER INLET TOTAL PRESSURE - CURVE VALUE = 3 PSIG
3. STARTER INLET TOTAL TEMPERATURE = CURVE VALUE = 100°F

GROUND CART AIRFLOW PERFORMANCE

ENGINE RPM

STARTING TIME - PNEUMATIC STARTER
6.6 RELIABILITY AND SAFETY

The probability of successfully starting all four engines is 99.94 percent, taking into account all components of the system directly related to starting—stators, regulating valves, check valves, and electrical switches. The regulating valve is provided with means to operate the valve mechanically if it should fail to operate electrically; this feature is included in the reliability analysis. A detailed analysis of the starting system reliability is given in Section 9 of this volume.

Boeing has worked closely with manufacturers of starting equipment to improve the level of safety. The starter incorporates a cutout speed (overspeed) switch which will normally cause the starter valve to close in order to complete the starting cycle. However, in case of a malfunction which would allow the starter to overspeed, the RPM will be limited to a value less than that causing blade failure by the aerodynamic design of the starter impeller. If for any reason the blades should separate from the hub, they will be contained within the starter scroll. In addition, a failed hub is contained within the scroll up to the maximum cutout speed. These containment features provide a high level of safety.

Within a five year period, improvement of existing ground equipment will result in a 15 to 20 percent increase in power available from a single ground cart. This increase will further improve the engine starting time.
7.0 FUEL SYSTEM

7.1 Description

7.2 Fuel Management and Center of Gravity Control

7.3 Fuel Tanks

7.3.1 Description

7.3.2 Fuel Cells and Methods of Sealing

7.3.3 Bale Removal

7.4 Engine Feed System

7.5 Refuel, Defuel, and Dump System

7.6 Venting

7.7 Plumbing and Fittings

7.8 Instrumentation

7.8.1 Flight Engineer’s Station

7.8.2 Pilots’ Center Panel

7.8.3 Fueling Station

7.9 Inerting

7.9.1 Explosion Proofing

7.10 Fuel Characteristics

7.10.1 Bale Prevention

7.11 System Thermal Characteristics
7.0 FUEL SYSTEM (REF 3.3.9.4)

7.1 Description
Fig. 7.1 shows the system schematic of the principal components of the fuel system that perform engine fueling, pressure fueling, dump ing, and defueling.

Fuel is stored in four main tanks and two auxiliary tanks, one in each movable wing section. The fuel reserve is equally distributed between the four main tanks. Each main tank feeds directly to its engine; a cross-feed manifold permits fuel to be delivered from any tank to any engine or combination of engines. The auxiliary fuel is fed to the cross-feed manifold at pressure above the "no-flow" value of the main tank pumps. This arrangement provides automatic backup of auxiliary tanks with the main tanks and uninterrupted flow on auxiliary fuel run-out.

A combination of thermal insulation, scheduled fuel usage, and natural oxygen depletion through an open-system eliminates coking and the formation of tank deposits. The need for inerting and purging is avoided by locating tanks in cooler portions of the airplane and by placing vent exits to avoid full stagnation temperatures. Transient overboosts to Mach 2.5 will not be hazardous.

The fuel system and its components are designed to operate satisfactorily under all conditions within the operating envelope of the airplane, considering the effects of aerodynamic heating, insulation, and location in the airplane. The system is designed to operate with commercial kerosene at fuel temperatures from -60°F to 170°F in the tanks and up to 250°F at the engine inlet. However, the fuel temperature must not be less than 10°F above its freeze point.

All fuel system components are explosionproof and designed to limit maximum temperatures to a safe level during normal and failure conditions.

7.2 Fuel Management and Center-of-Gravity Control
The movable wings in conjunction with the system of fuel management and centered gravity control give the Boeing SST configuration the ability to minimize trim drag by maintaining the center of gravity near its aft limit during supersonic flight. The center-of-gravity position is maintained without special fuel management or fuel transfer. Fuel tanks are balanced about the center of gravity and fuel is fed from them in such a way that a minimum amount of attention from the crew is required during normal operation.

7.2.1 Fuel Management (REF 3.3.9.4d)

The simplicity of the system permits the flight engineer to manually control the system without the use of computers or exclusive switching.

The sequence in which fuel is drawn from the tanks is as follows: (1) during takeoff and early climb each main tank feeds fuel directly to its engine, (2) during climb and early cruise the auxiliary tanks feed fuel directly to number 3 and 4 engines, and (3) when the auxiliary tanks are empty, the main tanks feed fuel to engines so that the later cruise, descent, and landing are performed using fuel directly from the main tank to engine.

Because of the higher heating rate in the auxiliary tanks, the fuel is used early in the flight to obtain maximum use of the main fuel supply as a heat sink for cooling airplane systems such as air conditioning, electrical power, and hydraulic systems.
Fuel System Schematic

NOTE: SEE FIG. 74 FOR TANK LOCATION IN THE AIRPLANE.
7.3.2 CENTER OF GRAVITY CONTROL

Center of gravity travel of the aircraft caused by fuel usage during some typical missions is shown on Fig. 7-5 and Fig. 7-3.

In the event of a failure of an engine or an extended period of uneven fuel consumption, the center of gravity can be easily controlled by the flight engineer, using the cross-feed manifold and tank gauges or fuel consumption flowmeters to maintain specified ratios of fuel in the tanks, similar to current Model 707 operations.

During dumping operations the rates from each tank are proportioned to provide automatic control of center of gravity within the design limits.

7.3 Fuel Tanks (BFS 3.2.9.4.4)

7.3.1 DESCRIPTION

Structural cavities within the airplane body, inner wing, movable wing and wing center section are used to hold fuel, as shown on Fig. 7.4. Fuel capacity will be 225,840 pounds (35,200 U.S. gallons) of commercial aviation kerosene. The tank fuel capacities in U.S. gallons are:

- Main No. 1: 8000
- Main No. 2: 8000
- Main No. 3: 4250
- Main No. 4: 4250
- Left Hand Auxiliary: 4600
- Right Hand Auxiliary: 4600

An expansion space of at least 3 percent of the fuel volume is provided in each tank.

Manual sump drain valves, installed at the low point of each tank, allow removal of water and sediment or complete draining of the tank. The auxiliary tanks, which will be emptied in normal operations, drain directly to the pumps to minimize puddles which may hold off.

7.3.3 Center of Gravity Travel 30,000 Lb. Payload
Insulation in the form of air space of 1.25 to 3 inches between the outside skin and the tank surface assists in keeping fuel temperatures within acceptable limits. Estimates of tank temperatures are given in Par. 7.10.

7.3.2 FUEL CELLS AND METHODS OF SEALING

The auxiliary fuel tanks lie between the front and rear wing spars divided by wing ribs. Flow passages and liner holes through the structural ribs allow passage of fuel and air and minimize unusable fuel. A fuel vent surge tank compartment located outboard of the wing fuel compartment avoids external spillage during maneuvers.

The fuel in the inner wing, center section, and body is divided into four main tanks. Each main tank supplies fuel to one engine under all operating temperatures, attitudes, and flow rates.

Primary structural bulkheads are used to compartment the main tanks into cells. This helps to avoid the undesirable effects of fuel sloshing (center of gravity travel and fuel heads) caused by longitudinal accelerations during flight maneuvers. The fuel tanks are designed to withstand survivable crash loads without rupture. The configuration of the airplane is such that wheel up landings will not escape the fuelage surrounding the fuel cells. The contact areas are propulsion pods, main gear pods, and the lower section of the vertical fin or nose. The lower surfaces of the body and inner wing are also designed to avoid rupturing the fuel cells in a water ditching.

The inner wing and center section fuel cells are of semi-bladder integral construction, using lower and upper surface liners sealed to the structure by mechanical seals and internal tank bellows (Fig. 7.5). The liners are high-temperature resistant and auxiliary tanks, the same methods of sealing are used on the lower surface. Spars, ribs, and the upper wing panel form the remainder of the fuel barrier. The
Fuel Tank Arrangement
structure is sealed with high temperature sealants. Fittings in the body bladders are supported by the structure to mount pumps, valves, pods, interconnects, and access doors.

The bladder assemblies will meet the requirements of MIL-T-2734, "Military Specification, Tanks, Fuel, Aircraft and Missile, Non-Self-Sealing, High Temperature." Boeing's design objective, however, is to extend cell life to 30,000 hours minimum. The bladder assemblies are fully supported for positive pressure with backing board and bled in position to withstand negative pressure. The maximum dry cell wall temperature has been determined to be 250°F.

Cavities surrounding the fuel tanks provide compartmentation to enable service personnel to locate the source of leakage and to have maintenance access. Drainage of the cavities is directed to direct linkage to a safe overboard location. All cavities and integral tank structure are suitably protected to avoid corrosion.
Single Engine Fuel Demand During Typical Mission
2.7 Boost Pump Performance

2.8 Main Tank Fuel Flow Performance
7.3.3 COIL REMOVAL

A combination of thermal insulation, scheduled fuel usage, and natural oxygen depletion prevents the formation of ice in the fuel tanks, thereby eliminating the requirement for coil removal. A complete discussion of this subject is presented in Par. 7.10.

7.4 Engine Fuel System

The engine fuel system consists of one main tank per engine, connected directly to the engine it serves. A cross-feed manifold permits any tank to feed any engine or combination of engines.

The two wing auxiliary tanks connect to the cross-feed manifold to deliver fuel to the selected engines. Each tank contains two electrically driven centrifugal pumps, each capable of providing the fuel flow and pressure required by the engine. The auxiliary tank pump characteristics are such that they will override the main tank pumps and supply fuel to the selected engines. The main tank pumps serve as a backup during auxiliary tank usage to provide an uninterrupted supply of fuel when the auxiliary tanks are depleted. Engine fuel requirements and airplane pump characteristics are shown in Fig. 7-6 and 7-7. Overall system characteristics using -35°F kerosene are given in Fig. 7-8. The low temperature causes a maximum pressure drop because of high viscosity.

All boost pumps are readily removable through a boost pump dry bay without draining and entering the tanks (Fig. 7-9).

With all boost pumps inoperative and fuel temperature at 5°F, the pressure at the engine pump inlet will be at least 5 psi above the true vapor pressure at maximum augmented power up to 3000 feet altitude. At maximum dry power flow the inlet pressure will not be less than the true vapor pressure of the fuel throughout the entire operating envelope of the airplane.

Components are arranged with enough redundancy so that a single functional failure will not compromise the fuel system operation.

The fuel system operates on commercial aviation kerosene but is compatible with all commercially available jet fuels.

The fuel feed line for each auxiliary tank also serves as the refuel and dump line. The auxiliary tank fuel line has a high temperature hose running through the center of the wing root. Little deflection is required to accommodate wing sweep (Fig. 7-10).

Except for some losses at the boost pump intake there are no filters between the tank and engine fuel inlet in order to avoid blockage from ice or other contaminants. The primary fuel filtration process is accomplished by a filter in the engine fuel system.

A fuel drain system is not required because the fuel load from air conditioning, hydraulic, and electrical system heat exchangers keeps the fuel at temperatures adequate to prevent icing for all operating conditions.

7.5 Refuel, Defuel, and Dump System

7.5.1 REFUELING

The system delivers a minimum of 1000 gallons per minute with 50 psi at the nozzle. A single manifold, common to the fuel dumping system, is used to service all tanks. A single level control valve, hydraulically operated by a float pilot valve, is located in each tank. Automatic shut-off will occur at 100 percent fuel volume level. Electric fueling selector valves will control flow to each tank for partial or selective fueling. The refuel switch will also open and close the dump selector valve for the auxiliary tanks. Controlled valve closure rate will prevent any damaging surges. Since the fueling rates are within the limits used on present airplanes, hazardous fuel electrification will be avoided.

An illuminated refueling station is located on each side of the body near the inner wing. The control panel
Two refueling adapters with caps are installed at each servicing station. These adapters mate with MS2020 nozzles.

The right hand station includes the following equipment: (1) panel with fuel quantity gauges and push-to-test system, (2) electric switch for start and stop refueling for each tank, and (3) fueling power switch. The refueling station door is designed so that it cannot be closed when any tank selector switch is in the open position.

Special check valves provide line drainage into a main tank to reduce the quantity of unusable fuel.

Protection of tank structure is accomplished by sizing the vents to receive the resultant flow of the refueling system in the event of a level control valve failure. Orifices are installed in the fuel plumbing for each tank to restrict the flow to the design value and to provide balanced rates to each tank for minimum overall fueling time.

7.5.2 Defueling
For defueling, the engine feed boost pumps discharge the fuel through the pressure-fueling adapters. Defueling rate is approximately 200 gallons per minute per tank with boost pumps operating. By opening the electric tank dump valve the tanks may be defueled in the dump reserve level.

A manual valve between the engine cross-feed system and the pressure-fueling manifold permits complete defueling. This valve is accessible from outside the airplane and is designed so that the access door cannot be closed with the valve in the open position. Fuel may be pumped, or removed by ground equipment suction, down to the unusable volume by opening the manual valve and cross-feed valve for the tank or tanks to be served. Fuel may also be transferred between tanks on the ground by use of the defueling and the pressure fueling system.

7.5.3 Fuel Dumping
Engine feed boost pumps are used to dump fuel overboard through a fixed nozzle located in the body tail cone of the airplane. A priority valve in each main tank between the feed system and the dump system ensures the required flow of fuel and pressure to the engines under all operating conditions. A "y"-plug system for the priority valve automatically shuts off the fuel flow from each main tank before the CAR 4b reserve level is reached. The fuel in the auxiliary tanks may be completely dumped. Dumping from selected tanks is controlled by the flight engineer by use of individual control switches. Two parallel line valves electrically operated and located in the manifold near the aft end of the body ensure dumping capability (Fig. 7-11). The control panel, located at the flight engineer's station, has switches and indicator lights for each tank, and each nozzle valve. The panel has an access door which cannot be closed unless all switches are in the closed position (Fig. 7-11).

The complete system dump rate is 650 pounds per minute, which is in excess of the 400 pounds per minute required by CAR 4b.

7.6 Venting (RIP 3.2.9.4d)
The vent system is arranged and uses open tank ports and exits. The body tank system is manifolded and uses a single vent exit in the aft body. Each wing tank is vented separately and has its exit on the underside of the outboard wing. A schematic of a typical body tank vent system is shown in Fig. 7-12.

Since the system requires no inerting, the vent outlets operate at ambient or slightly negative pressure. Evaporation or boil-off is not a problem with commercial kerosene because fuel heating is controlled by insulation and proper sequence of fuel usage. The outlets are also designed to be ice-free. Tank, system are vented and drained overboard. The source pressures for the cavities are tailored to match, or be below, the tank pressure.
The vent system is large enough to prevent pressure in any tank from exceeding the structural design limits under the following conditions of operation: (1) failure of a pressure fueling level control valve, at the maximum refueling rate, (2) maximum emergency descent with tanks empty, and (3) maximum rates of climb under all operating conditions. Failure of a level control valve is the condition which sizes the vent lines.

7.7 Plumbing and Fittings
All plumbing is located as close to the neutral axis as possible. Where this is not feasible, tubing is designed to accommodate length changes through bends and flexible couplings (axial and angular). Teflon-lined clamps are used because of their long life, and to allow tube movement. Where no tube movement is present, rigid couplings, using multi-bolt, squared torque flanges are used. All tube brackets are adjustable to facilitate tube installation. All tube installations are designed to minimize time for replacement. No tubing is welded in place or stored in the airplane. The major portion of the tubing is routed inside of tanks, as is done on all Boeing jets, in order to minimize external leakage and reduce maintenance. Fig. 7-13 illustrates the typical fuel system fittings.

Tubing within the tanks will be fabricated from aluminum alloy. Freeproof tubing will be used in designated areas where moisture or harsh environments require additional protective treatment. Tubing will be used where necessary.

7.8 Instrumentation (FSP 3.3.11.8)
Fuel system instrumentation is located in three places on the airplane: (1) flight engineer's station, (2) pilots' center panel, and (3) fueling station.

7.8.1 Flight Engineer's Station
Four categories of fuel system instrumentation are used

A surge tank is located near each outlet to prevent splashing and to provide for tank movement during maneuvers. The tank is connected to the surge tank drain into an adjacent tank. A minimum of three vent air spaces is provided for each tank.
at the flight engineer's station: (1) engine fuel feed; (2) fuel temperature; (3) fuel consumed; and (4) fuel dumping.

The arrangement of the fuel feed panel simulates the functional arrangement of components being monitored, making it easy to observe and control the system and minimizing the probability of error. Similarly, switch action and layout correspond to fuel flow direction. The panel is a straightforward schematic of the operation of the system rather than its physical layout.

On the engine fuel feed panel (Fig. 7-14) six quantity indicators with a push-to-test system indicate the fuel quantity in pounds remaining for each main and auxiliary fuel tank. A toggle switch for each boost pump turns the pump on and off, and low pressure lights allow each to be monitored for minimum pressure. Four back toggle switches operate the four engine shutoff valves and four rotary switches operate the four cross-feed valves. Each valve switch will have an in-transit light for monitoring valve actuation.

A fuel temperature system of four indicators shows temperature at each engine fuel inlet; a selector switch allows individual fuel tank temperature to be determined.

The panel contains a fuel consumed flow meter for each engine and a total fuel tank quantity gage.

On the fuel dump panel (Fig. 7-11), fuel tank selector toggle switches for each main and auxiliary tank will open valves for dumping from selected tanks. Toggle switches also control the two dump nozzle valves. The panel has in-transit lights for each valve and markings to show line arrangements. The fuel quantity gage and tank selector valve may be used as a backup method of fuel cutoff.

7.8.2 PILOTS' CENTER PANEL

The center panel has four engine fuel flow rate indicators reading mass flow in pounds per hour.

7.8.3 FUELING STATION

The left hand fueling station has two single point receptacles with caps, two ground jacks, and illumination. The right hand station contains two single point receptacles, control, illumination, and fuel quantity gages as shown in Fig. 7-15. There are six quantity gages, one for each tank, six shutoff valve switches, and six in-transit lights. There is a fuel tank quantity gage test switch and a power switch for the gages and the station light. Drop sticks are also installed in each tank to provide a supplementary means of checking fuel quantity.

7.9 Inserting (SIP 2.2.9.4d)

Inserting of fuel tank and valve access is not required. Extensive test data have been accumulated which show that the selected system configuration, cruise speed, and altitude eliminate the need for inserting.
BOLTED FLANGE FITTING

FLEXIBLE FITTING

14-20-93 7/15
Engine Fuel Feed Panel
The relationship of autogenation temperatures of fuel-air mixtures to pressure altitude, motion pressure, and reduced time at these temperatures is shown in Fig. 7-16. This plot is based upon the most conservative data from more than 30,000 separate tests conducted by Boeing. With an ambient vent, increasing altitude decreases the pressure of the fuel-air mixture and hence increases the temperature at which the system will operate with no reaction.

Concentrations of surface and vapor temperatures of tanks and other exhausts, where combustible vapors may exist, show that the temperatures will always be below boundary levels for airplane operation within the proposed envelope, including trim and overshoots to Mach 2.5. Fig. 7-17 shows the computed temperatures for Mach 2.5 cruise and for both normal and emergency descents. The vapor temperature shown is that of the air entering a wing tank vent. Vent air is obtained from the boundary layer adjacent to the skin and thus is close to skin temperatures. The structural temperature shown is of the hottest spot within the vapor region. The hottest surface area during descent will be those near the skin and those in the region of structural members, such as the front spar, in the latter stages of descent.
FIGURE 4.47 Tank surface and Vent Air Temperatures During Decend

FIGURE 4.48 Autoignition Reaction Zones

ALITUDE - 1000 FEET

TEMPERATURE - DEGREES F

TIME REQUIRED FOR REACTION MINUTES

REACTI"ION PRESSURE RISE - PSI

NO REACTION
Testing of venting during descent is currently underway at Boeing. Hot air, compressed at 50°F higher than calculated temperature by conservatism and flow data, is introduced into a heated fuel tank after a simulated mission. For further conservatism, the tank is maintained at cruise temperature during descent. Tank pressures are programmed to simulate an open vent system. No reaction has occurred in these runs.

7.9.1 EXPLOSION PROOFING

Although the ambient temperatures are higher in supersonic flight, present-day explosion-proofing techniques are adequate and venting will not be required for this purpose. The most critical condition occurs in the design of boost pumps where passage connects the motor compartment and tank for cooling and lubrication. Fig. 7-18 shows the results of a Boeing test series to determine the adequacy of flame arrestors at elevated temperatures and sea level pressure. As shown, flame arrestor sizes may be selected which will produce transfer of an explosion, up to the spontaneous ignition temperature of the fuel vapor, approximately 450°F at sea level. As previously shown on Fig. 7-17, vapor and surface temperatures in the fuel equipment area above mission below the spontaneous ignition temperature for all conditions of operation. Thermal protection devices are incorporated on equipment where surface temperatures may exceed spontaneous ignition levels due to a malfunction.

7.10 Fuel Characteristics

The fuel system is compatible with commercial aviation kerosine, jet fuel, and blended improvements in kerosene. The engine proposed for the SST program requires fuel of slightly greater thermal stability than that of some commercial aviation kerosine. Advantage is taken
of this need for the better commercial kerosene to make use of the fuel as a heat sink for the aircraft systems. Certain S.S. reductions are presently delivering the higher stability kerosene at no increase in cost. It is reasonable to expect that this fuel can be generally available before the SST operational period.

Test work has shown that a reduction in the oxygen content of the fuel effectively reduces the amount of deposits collected on screens or plate-fault heat exchanger tubes. Information from The Phillips Petroleum Company and The Texaco Company on the correlation of oxygen content with thermal stability is plotted in Fig. 7-19 and Fig. 7-20. With an open vent system which maintains the vapor space pressure at ambient, the oxygen in the fuel will be removed by the decrease in vent pressure during climb as shown in Fig. 7-21. A comparison of these figures shows that the fuel oxygen content has been sufficiently reduced early in cruise to increase the thermal stability level by approximately 380 F. This factor, in conjunction with improved fuel thermal stability, ensures minimum engine maintenance caused by thermal degradation of fuel.

7-20 Threshold Temperature at Various Oxygen Concentrations

7-18 Effect of Dissolved Oxygen on Fuel Thermal Stability

VOLUME PERCENT O2 IN FUEL
7.10.1 COKE PREVENTION

During tests (Ref. 4) it has been shown that the formation of coke in the fuel tanks can be prevented by a combination of thermal protection, tank coating material, and fuel management. In accordance with these results, double-walled tanks with internal bottom coatings are used wherever required. The fuel management procedure uses the total available wing tank fuel approximately one hour before the end of cruise. The main tanks in the body retain the excess and fuel for descent and end of cruise. With this protection and management, the resulting fuel temperature at the end of a maximum range cruise at Mach 2.7 are as shown in Fig. 7.22 for the wing tanks and in Fig. 7.23 for the main tanks.
7.11 System Thermal Characteristics

(RFP 3.2.9.4a)

Insulation and fuel transport procedures allow the fuel to provide a majority of the heat sink capability required around the airplane within the 250°F cruise limit for fuel delivered to the engine.

Typical underground fuel storage temperature was determined to be approximately 50°F. Fig. 7.24 shows a history of fuel temperature if 95°F fuel were loaded. A small amount of auxiliary cooling is required during this phase.

Fig. 7.25, a history of the fuel temperature during a maximum range supersonic maneuver with 95°F fuel loaded, shows the temperature obtained through the various heat exchangers and the requirement for auxiliary cooling. The 95°F fuel loading temperature is considered the maximum to be expected in conical ad expansions.

If 110°F fuel is loaded and a maximum mission is flown, the resulting fuel temperatures will be as shown on Fig. 7.26.

During descent the fuel temperature into the engine is limited to 135 degrees F. to provide adequate cooling for the engine. This is accomplished by removing all cabin conditioning and into the heat loads from the fuel. This arrangement has the effect of allowing the fuel to be delivered to the engine at tank temperature (see Volume A VI for a description of systems cooling).

![Main Tank Cross-Section](image)
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>General</td>
<td>8/1</td>
</tr>
<tr>
<td>8.2</td>
<td>Engine Installation</td>
<td>8/2</td>
</tr>
<tr>
<td>8.3</td>
<td>Engine Inlet</td>
<td>8/4</td>
</tr>
<tr>
<td>8.4</td>
<td>Exhaust System</td>
<td>8/6</td>
</tr>
<tr>
<td>8.5</td>
<td>Starting System</td>
<td>8/7</td>
</tr>
<tr>
<td>8.6</td>
<td>Fuel System</td>
<td>8/9</td>
</tr>
</tbody>
</table>
8.0 TESTING AND DEVELOPMENT PROGRAM
(Ref. 3.2.18, 3.2.19)

8.1 General
The section summarizes the testing and development of the major propulsion system components through each of the following stages:
- Model tests
- Component tests
- Development tests
- Component qualification
- System development and qualification
- Preflight
- Certification
- Acceptance

Information on test facilities and scheduling is given in Volume A IX, Test and Certification Plan.

8.2 Engine Installation
Development testing will be done to substantiate the design details of the overall engine installation. This test program includes simple laboratory tests of various components, static ground tests of a complete engine installation, tests on the completed airplane, and flight tests, which include with the airplane's certification and customer acceptance testing.

8.2.1 COMPONENT DEVELOPMENT TESTS
The design concept of a large number of both functional and structural components used in the installation will be tested to develop and prove that the design details are sound and practical. These tests will be made at the earliest possible time at Boeing facilities and also at facilities of the vendors and subcontractors participating in the development of the propulsion section of the airplane. An objective of these tests is to ensure complete compatibility between components and the rate, high altitudes, and extremes in temperatures associated with supersonic operation.

8.2.2 ENGINE GROUND TESTS
Initial ground tests of engines will be performed on two Boeing ground rigs at the Seattle area approximately 12 months before first flight. The engines will be of the same type as the flight engines. One engine rig is located at the mechanical engineering laboratory on the Seattle area and the other rig is at the Tulalip remote test site.

The complete propulsion package for the airplane, including intake, engine, engine mount, and nozzle, engine mount, compressor, engine fuel system, cooling, reversing, and start will be tested in these facilities to confirm the propulsion system design prior to first flight and to support the flight test program.

The test rigs will be set to perform developmental testing of components and subsystems and to evaluate engine performance and operation. Items to be tested include the inlet, starter, oil system, fuel system components, engine instrumentation, reverse, nozzle, and controls. Measurements will be made of inlet pressure, reverse, and detection. Overwater, cooling, engine environment of fuel, oil, and oil rate, internal temperatures and pressures, starting, and acceleration times, etc. Engine conditions in both the augmented and de-augmented modes will be evaluated. A portion of the airplane fuel system will be used to supply fuel to the test engine.

The following engine installation tests are planned:
- ENGINE OIL COOLING
 Tests to evaluate engine oil cooling system performance (temperatures, pressures, and flow), both steady state and transient, with hot and normal fuel temperatures
- CONSTANT SPEED DRIVE AND
 GEARBOX SIMULATION
 Tests to evaluate system and engine performance (temperatures, pressures, and flow) both steady state and
anment, with both fuel and normal temperature fuel.
Tests to evaluate drive pneumatics system perform-
ance (engine bleed air).
Tests to obtain generalized heat exchange perform-
ance.
ENGINE AND COMPONENT COOLING
Tests to determine component temperatures in the engine
environment (ignition system, fuel control, fuel pump,
hed valve, nozzle control, bleed valve, etc.), and to
evaluate pod temperature environment.
Tests to determine accuracy limits and drive sys-
tem environmental temperature as well as the ambient
temperature for constant speed drive, generator, starter,
hydraulic pump, transducers, transmitters, etc.
FIRE DETECTION
Tests to establish fire detector locations and tempers.
ENGINE INSTRUMENTS
Tests to establish thrust measurement and response,
to evaluate other engine instrument systems such as
rpm, fuel flow, exhaust gas temperature, oil
temperature, oil pressure and oil quantity, for response
and accuracy, and to establish limits as required.
Tests to evaluate transducer systems for constant
speed drive and generator cooling systems.
ENGINE CONTROL SYSTEM (Ref 225.1)
Tests to evaluate engine control system response to
determine engine performance as a function of throt
level position, to determine engine response to throt
level movement, during both acceleration and decceleration.
ENGINE FUEL SYSTEM
Tests to evaluate engine performance, both with and
without assistance from boost pumps, to determine sys-
tem pressures, temperatures, and flow during steady state
and transient operations, to evaluate surge pressures, and
to develop generalized performance for fuel oil heat ex-
changers.
POD DRAINAGE
Tests to evaluate pump and drain drainage process.
MISCELLANEOUS (Ref 3.2.16, 3.2.4.4d)
Tests to obtain generalized heat exchange perform-
ance.
ENGINE AND COMPONENT COOLING
Tests to determine component temperatures in the engine
environment (ignition system, fuel control, fuel pump,
hed valve, nozzle control, bleed valve, etc.), and to
evaluate pod temperature environment.
Tests to determine accuracy limits and drive sys-
tem environmental temperature as well as the ambient
temperature for constant speed drive, generator, starter,
hydraulic pump, transducers, transmitters, etc.
FIRE DETECTION
Tests to establish fire detector locations and tempers.
ENGINE INSTRUMENTS
Tests to establish thrust measurement and response,
to evaluate other engine instrument systems such as
rpm, fuel flow, exhaust gas temperature, oil
temperature, oil pressure and oil quantity, for response
and accuracy, and to establish limits as required.
Tests to evaluate transducer systems for constant
speed drive and generator cooling systems.
ENGINE CONTROL SYSTEM (Ref 225.1)
Tests to evaluate engine control system response to
determine engine performance as a function of throt
level position, to determine engine response to throt
level movement, during both acceleration and decceleration.
ENGINE FUEL SYSTEM
Tests to evaluate engine performance, both with and
without assistance from boost pumps, to determine sys-
tem pressures, temperatures, and flow during steady state
and transient operations, to evaluate surge pressures, and
to develop generalized performance for fuel oil heat ex-
changers.
POD DRAINAGE
Tests to evaluate pump and drain drainage process.
MISCELLANEOUS (Ref 3.2.16, 3.2.4.4d)
Tests to obtain generalized heat exchange perform-
ance.
ENGINE AND COMPONENT COOLING
Tests to determine component temperatures in the engine
environment (ignition system, fuel control, fuel pump,
hed valve, nozzle control, bleed valve, etc.), and to
evaluate pod temperature environment.
Tests to determine accuracy limits and drive sys-
tem environmental temperature as well as the ambient
temperature for constant speed drive, generator, starter,
hydraulic pump, transducers, transmitters, etc.
FIRE DETECTION
Tests to establish fire detector locations and tempers.
ENGINE INSTRUMENTS
Tests to establish thrust measurement and response,
to evaluate other engine instrument systems such as
rpm, fuel flow, exhaust gas temperature, oil
temperature, oil pressure and oil quantity, for response
and accuracy, and to establish limits as required.
Tests to evaluate transducer systems for constant
speed drive and generator cooling systems.
ENGINE CONTROL SYSTEM (Ref 225.1)
Tests to evaluate engine control system response to
determine engine performance as a function of throt
level position, to determine engine response to throt
level movement, during both acceleration and decceleration.
ENGINE FUEL SYSTEM
Tests to evaluate engine performance, both with and
without assistance from boost pumps, to determine sys-
tem pressures, temperatures, and flow during steady state
and transient operations, to evaluate surge pressures, and
to develop generalized performance for fuel oil heat ex-
changers.
POD DRAINAGE
Tests to evaluate pump and drain drainage process.
MISCELLANEOUS (Ref 3.2.16, 3.2.4.4d)
Tests to obtain generalized heat exchange perform-
ance.
ENGINE AND COMPONENT COOLING
Tests to determine component temperatures in the engine
environment (ignition system, fuel control, fuel pump,
hed valve, nozzle control, bleed valve, etc.), and to
evaluate pod temperature environment.
Tests to determine accuracy limits and drive sys-
tem environmental temperature as well as the ambient
temperature for constant speed drive, generator, starter,
hydraulic pump, transducers, transmitters, etc.
FIRE DETECTION
Tests to establish fire detector locations and tempers.
ENGINE INSTRUMENTS
Tests to establish thrust measurement and response,
to evaluate other engine instrument systems such as
rpm, fuel flow, exhaust gas temperature, oil
temperature, oil pressure and oil quantity, for response
and accuracy, and to establish limits as required.
Tests to evaluate transducer systems for constant
speed drive and generator cooling systems.
ENGINE CONTROL SYSTEM (Ref 225.1)
Tests to evaluate engine control system response to
determine engine performance as a function of throt
level position, to determine engine response to throt
level movement, during both acceleration and decceleration.
- Engine performance characteristics
- Engine accelerations and deaccelerations
- Engine thrust lever arrangement
- Augmentation operation
- Propulsion pod and engine cooling
- Engine oil system: breather, scavenging, oil consumption, oil cooling, heat fraction, etc.
- Component surge characteristics
- Vibration surveys
- Accessory operation
- Engine anti-icing
- Engine instruments
- Pod drainage
- Engine fuel system

8.7.5 CERTIFICATION TESTS

The propulsion pod will be tested to obtain data for certification to the maximum capabilities of the engine installation within the flight envelope of the aircraft.

Tests listed below are specified to be performed to ensure compliance with the indicated sections of CAR 4th Edition:
- INFLIGHT ENGINE PERFORMANCE (CAR 4h.741)
- INFLIGHT ENGINE PERFORMANCE (CAR 4h.742)
- INFLIGHT ENGINE PERFORMANCE (CAR 4h.743)

The envelope of speeds and altitudes within which satisfactory engine operations can be obtained will be demonstrated.

- ENGINE ACCESSORY COOLING (CAR 4h.740 THROUGH 4h.742, 4h.746, AND 4h.748)

It will be demonstrated that the engine accessory cooling system provides the required capacity to maintain the components within established limits and that component performance is acceptable throughout the flight envelope. Portable failures will be accommodated.

- ENGINE INSTRUMENTS (CAR 4h.741, 4h.746, 4h.747 THROUGH 4h.749)

The engine instruments will be demonstrated to serve their intended functions throughout the flight envelope and under conditions of duplicated and flight operation. Instrument locations and markings will be in accordance with Part 3a.

- ENGINE OIL SYSTEM (CAR 4h.465 THROUGH 4h.467)

The primary responsibility for the engine oil system lies with the engine manufacturer.

It will be demonstrated that the engine's installation is compatible with the engine oil system, and that secondary systems, such as oil pressure, temperature, and quantity indicating systems, serve their intended function.

- ENGINE ANTI-ICE (CAR 4h.61)

The propulsion system design for the basic engine is under engine manufacturer responsibility.

Flight tests will be conducted to demonstrate that adequate anti-icing is available for both the engine and inlet during subzero operation. These tests will consist primarily of flight tests where surface temperatures are measured during flight conditions appropriate to the stage of flight.

- ENGINE OPERATING CHARACTERISTICS (CAR 4h.610, 4h.614, AND 4h.619)

The engine idle and thrust levels, operation with and without the supercharger, will be demonstrated throughout the flight envelope. These tests will be conducted with no allowance of power restriction and with maximum allowable and power restriction.

Satisfactory engine operation will be demonstrated with the airplane in subsonic, supersonic, and flight conditions during maximum thrust, minimum thrust, and minimum idle speeds.

Engine operation on the ground will be demonstrated to be satisfactory during cranking and test with conditions limited to a maximum takeoff and landing. Key is on and 30 knots minimum.

8/3
a. **FIRE PROTECTION (CAR 46.404, 46.408, and 46.409)**

Fire protection will be demonstrated on a model in the wind tunnel.

Proprietary features for fire warning system will be verified during the engine and accessory cooling tests.

b. **FIRE TEST PLAN (SOP 329)**

Proof of the propulsion system fire integrity is accomplished by separate tests of the applicable major components. Fire testing of a complete propulsion pod is not proposed. Use the propellant, the design knowledge gained from sub-scale pod testing and a fire experience. It would also be impractical to ground test at supersonic speeds. The features for integrity principles used throughout the design are:

- Cooling and freewalls prevent flame engulfment on critical portions of the surfaces. Non-hazardous flame paths are proven by wind tunnel model tests.
- Limiting oxygen availability by controlling vent's area such that fires will be self extinguishing or of low intensity.
- Burnout panels are installed to discourage the flame to flow-out of high induction areas of the wind tunnel.

8.2 PRELIMINARY ACCEPTANCE TESTS

Performance tests will be strengthened to demonstrate that the engine installation meets all required performance characteristics as set forth in the airplane detailed specification (Volume A-11).

8.3 Engine Inlet

Inlet development testing, starting with models and proceeding through full-scale wind tunnel tests, separately with operating engines, and actual airplane tests, is planned to define the design details of the inlet and its control system.

8.3.1 MODEL TESTS

Model tests of the inlet and the inlet propulsion pod

wing combination will be conducted as follows.

8.3.11 Small Scale Model

Small scale inlet tests will be conducted in Blowing wind tunnels to obtain design data to define the inlet internal and external geometry, to define the inlet control parameters and their location, to determine optimum movable position schedule, and to establish the suitability of the inlet location relative to the airplane wing and fuselage. The inlet models will be tested over a Mach number range of 0.2 to 0.3 at various angles of attack and yaw. The inlet internal geometry, bleed requirements, and control requirements will be established, primarily through development tests of the inlet alone. Preliminary tests of the prop- inlet combination to verify satisfactory inlet operation over the entire flight envelope will also be conducted. Inlet drag tests, tunnel, splitters, and bypass will be conducted in the large wind tunnels to establish external losses and bypass flow control schedules. Several small scale models will be built for the development work.

8.3.12 One-Fifth Scale Model

A one-fifth scale model of the inlet will be built and tested over the entire flight envelope to provide additional development data, with particular emphasis on
effects caused by ice and snow, and inlet control development. The Blowing wind tunnel and supersonic wind tunnels, and one of the NASA tunnels will be used for this work. The purpose of this testing will be to prove inlet performance with stability and inlet control data to be used for engineering drawing release. The model will be fully controllable with movable inlet geometry, variable take-off bypass ratio system, and an automatic inlet control. These tests will be run...
in conjunction with the inlet control subcontractor to evaluate control concepts and sensor requirements.

8.3.1 Small-Scale Static and Low-Speed Testing
Small-scale (approximately one-eighth) static inlet models will be used to develop the takeoff door configuration. The takeoff doors provide auxiliary air to the engine during takeoff and during low-speed, high-power operation. These models will be tested in the Boeing mechanical engineering laboratory (low-speed up to Mach 2.1) wind tunnel and will provide the data necessary for detail design of that portion of the inlet system. Measurements will be made of airflow, pressure recovery, and distortion at the engine face over a Mach range of 0 to 0.2. Auxiliary door area shape and location will be one of the variables tested. An engineering laboratory water table will also be used for evaluation of the auxiliary air system.

8.3.2 Full-Scale Tests
8.3.2.1 NASA Lewis Laboratory and Arnold Engineering Development Center
A full-scale inlet will be tested at the NASA Lewis Laboratory or equivalent facility to determine the effect of model scale on the inlet performance and stability. The inlet boundary layer bleed configuration will be tailored during this test phase. The inlet control sensor type and location will be established. A prototype inlet control will be used to demonstrate the operation of the inlet control system. Pressure recovery, stability margins, component flow distortion, bleed flow rates and pressures, flow constants, and response times of the control system will be some of the characteristics measured. Mach range will be from 1.6 to 10 or as limited by the test facility. The full-scale inlet fabricated for the Lewis Laboratory tests will be first bench-tested at the Boeing mechanical engineering laboratory to confirm the variable geometry actuation and control operation.

If incompatibilities between the inlet and the engine become apparent, further full-scale tests are planned at the Arnold Engineering Development Center.

8.3.2 Qualification Testing
Qualification tests of the engine inlet will prove structural and mechanical integrity of the inlet design. The inlet structure will be fatigue tested in the structural dynamics laboratory. In-flight temperatures, pressure loads, and vibrations will be simulated.

Mechanical tests of the takeoff doors, bypass doors, balance panels, internal variable geometry elements, and actuators will be performed in the mechanical engineering laboratory. For these tests the components will be subjected to simulated in-flight temperatures and loads.

8.3.3 GROUND TESTS ENS AND AIRPLANE GROUND TESTS
Further inlet ground tests will continue as part of the engine rig and airplane preflight test program.

8.3.4 AIRPLANE DEVELOPMENTAL FLIGHT TESTS
Engine inlet performance will be evaluated throughout the airplane operating envelope. Total pressure distribution across the engine inlet plane will be determined, and the inlet control system will be evaluated for proper scheduling, adequate response, and adequate flow stability. Operation during an adjacent engine shutdown and during reverse thrust conditions will be demonstrated. The effects of critical, single failures in the inlet control system will be demonstrated.

8.3.5 CERTIFICATION TESTS (CAR 4b, 40b)
The engine inlets will be demonstrated to supply the required quantities of air, within the limits of pressure, temperature, and velocity distribution specified by the
engine manufacturer for proper engine operation during all normal flight conditions.

The effects of failures of the inlet actuating and control systems will be demonstrated. For supersonic flight, it will be demonstrated that normal airflow is maintained to a degree satisfactory for safe flight. It will be further demonstrated that for abnormal conditions where flow disruption occurs, normal airflow can be re-established.

8.2.6 ACCEPTANCE TESTS

Performance and operational tests will demonstrate that the inlet installation meets all requirements as set forth in the airplane detail specification (Volume A.11).

8.4 Exhaust System

Development testing will be performed to establish and substantiate the design details of the exhaust system. Because the nozzle with its integral thrust reverser must satisfy the requirements of the engine manufacturer as well as the airplane manufacturer, the design and development program must be closely coordinated. This test program includes the testing of the nozzle and nozzle structure, the static and dynamic development tests, the static and dynamic development tests, the static and dynamic test programs, the test on the airplane, and the flight test, including the wind tunnel certification and customer acceptance tests.

8.4.1 AIRFRAME MANUFACTURER'S RESPONSIBILITIES

The airplane manufacturer will establish the requirements for and evaluate the effects of reverse operation in all operating regimes of the airplane. The major items for consideration are: (1) effect on airplane performance characteristics; (2) exhaust gas flow characteristics; and (3) exhaust gas structural improvement flow patterns as to temperatures, pressure, and induced vibration frequencies.

The Boeing Company will be responsible for:

- Defining the exhaust system and reverse requirement for the engine manufacturer as well as external and all performance and operational requirements.
- Monitoring the exhaust system development program to ensure that the system is compatible with the airplane.
- Integrating the exhaust system into the airplane.
- Approving the engine manufacturer's exhaust and reverse control system design to ensure its compatibility with the airplane control system.
- Demonstrating the performance of the exhaust system by flight test.
- Coordinating with applicable governmental agencies.

8.4.2 ENGINE MANUFACTURER'S RESPONSIBILITIES

The engine manufacturer will design the exhaust system and determine and evaluate the effects of exhaust nozzle and reverse operation on the engine performance, in accordance with the flight, noise, and noise reduction requirements established by the airplane manufacturer. Additional exhaust system requirements include structural integrity, reliability, maintainability, and economy.

The engine manufacturer will be responsible for:

- Delivering an exhaust system of maximum propulsive efficiency consistent with reliability, maintainability, and engine performance guarantees.
- Establishing the exhaust system performance in all modes. Capability will be demonstrated in small-scale tests in the engine manufacturer's reverse test facilities. Full-scale certification tests will be conducted to demonstrate reverse thrust capability, exhaust gas flow characteristics, and acceptable noise level.
• Developing full-scale hardware. This will consist of full-scale tests to evaluate the structural and mechanical integrity of the exhaust system.
• Designing and fabricating the flight hardware. This includes preparation of detailed designs, drawings, etc., and manufacture of the flight units.
• Conducting type certification tests of the production exhaust system.
• Obtaining Boeing approval of the nozzle and reverser control system.
• Coordinating with the airplane manufacturer.
• Coordinating with applicable governmental agencies.

8.4.2 LABORATORY TESTS
Models of the engine exhaust nozzle will be tested at Boeing to obtain nozzle throat coefficient data with and without external flow. These data will be used to verify the performance of the engine manufacturer’s proposed nozzle.

The test models will duplicate the airside pod configuration, and measurements will be made of the throat area drag of the nozzle including the effects of boundary layer and heat, internal thrust and secondary air momentum, and reverser hardware.

Models of the engine exhaust nozzle will be tested in the Boeing nozzle engineering laboratory to obtain jet noise data. These data will be used to monitor the structural and component noise characteristics of the engine.

8.4.4 FULL SCALE QUALIFICATION TESTS (RFP 2.25.8, 2.25.9, 2.25.10, 3.2.16, 3.3.9)
Full-scale nozzle and reverser development tests will be run by the engine contractor using suitable ground test engines for developing the structural hardware, actuators, mechanisms, and control systems.

A 75 hour, flight test status, prototype qualification test of the nozzle and reverser will be run using a ground test engine. The nozzle and reverser will be subjected to repeated simulated flight cycles to demonstrate structural and mechanical integrity. The specific test cycle to be used will be established at a later date. The test will be conducted by the engine manufacturer at his facility.

A type certification test of the reverser and nozzle will be conducted in conjunction with the 150 hour endurance type certification test of the engine, which will be conducted by the engine manufacturer in accordance with FAR 33 or applicable versions for the SST engine. An altitude test (for simulation) to substantiate the structural capability and performance characteristics of the exhaust system will be a portion of the certification.

Full-scale tests using a ground test engine will be conducted to determine the airplane noise environment and airport noise environment for ground operations of the SST. Simulation of noise-related airplane - natural areas will be required to obtain some of these noise data. The tests will be run at engine operating conditions from 50 percent of maximum dry power to maximum augmented power.

Full-scale tests in addition to those listed in Part 8.2.2, using the ground test engine, will be conducted by Boeing to measure the exhaust environment on the airplane fuselage, wing, and tail sections.

8.4.5 AIRPLANE TESTS
Tests specified in Par. 8.2.3, 8.2.4, and 8.2.5 include the exhaust system.

8.5 STARTING SYSTEM (RFP 3.2.9.3)
Start system testing will be performed to establish and substantiate the design details. This test program includes:
(1) Laboratory testing to develop components, (2) full-scale static test to qualify components and systems, (3) service testing to evaluate components, and (4) airplane flight testing to verify system design.

The starter must satisfy the requirements of the airplane manufacturer as well as the engine manufacturer. Testing and development will therefore be closely co-
ordinated between Boeing, the engine manufacturer, and the starter supplier.

The supplier will conduct the starting system component development tests and the qualification tests. A starting system will be developed and tested by Boeing on two engine ground test rigs. After in-service testing of the starter valve will be conducted. Testing of the complete airplane system will be conducted in conjunction with the airplane development, certification, and acceptance tests.

8.5.1 STARTER COMPONENT DEVELOPMENT TESTS

Component tests will include: (1) verification of starter impeller containment, (2) starter and control valve performance, and (3) output switch performance. Reliability development testing will be with engine qualified oil. The temperature extremes will be -65°F to +400°F.

Starter valve development tests will be primarily those to develop its reliability under the stresses of vibration and temperature environment. Emphasis will be on cycle endurance testing.

8.5.2 QUALIFICATION TESTS

Starter and valves will be subjected to qualification tests. The qualification test requirements will be per Boeing specification and will include: (1) cycle testing with the starter and valve cold-soaked to -65°F and hot-soaked to +100°F, (2) cycle endurance testing for a minimum of 2000 cycles, (3) environmental test at the in-flight temperature conditions, (4) starter containment tests, and (5) vibration. The starter will be coupled to a flywheel representing the inertia of the engine and accessories. Applicable sections of MIL-STD-885 will be included in the Boeing procurement specification.

The starter valve will be subjected to a total of 10,000 cycles of operation throughout a range of ambient temperatures from -65°F to +40°F as a part of the qualification testing.

8.5.3 STARTER GROUNDED RIG TESTS

The starting system including starter, check valve, and regulating and shut-off valve, will be used for starting throughout the Boeing ground test program in further aid in developing a highly reliable starting system.

8.5.4 VALVE IN-SERVICE TESTS

The pneumatic regulating and shut-off valve will be airborne-service tested in order to improve its reliability. Four valves will be tested on operational jets for at least one year prior to first flight of the SST. Although not completely representative of the installation in the supersonic transport, the types of duties to which they will be subjected will uncover any areas of weakness in the valve for which corrective action may be required.

8.5.5 AIRPLANE START SYSTEM TESTS

Engine starting tests will be conducted on the prototype and on the certification airplane. Engine start initiation will be installed to collect data on the actual-actual gas temperatures and pressures and in-flight environmental temperature of the starter to verify the qualification test parameters achieved.

8.6 Fuel System (RFP 3.2.9.4 and 3.1.1)

Fuel system development tests will be run to provide criteria for design of the fuel system, to establish the potential in-service problem areas, and provide solutions to these problems, and to perform the suitability of the system prior to in-flight operation. Flight testing will be conducted to verify and certify the fuel system design.

8.6.1 MODEL TESTS

Vent exit testing will be conducted in the Boeing supersonic tunnel and transonic wind tunnels to determine the location and configuration of the tank and cavity vent openings. The major portion of this testing will be conducted with an acoustics prototype model in conjunction with
other aerodynamic testing. However, additional testing of
large-scale vent openings will also be conducted, including
visual, pressure, and temperature testing.
Thermal environment vent testing will be conducted
with full-scale fuel tanks and structures subjected to
anticipated desert conditions.

8.6.3 COMPONENT TESTS
Evaluation testing of various fuel system components will
be conducted on vendor-designed equipment not previously
evaluated by Boeing. This testing will include the wing
pivot fuel line, fuel pumps, couplings, and other compo-
nents at the highest temperature environment required for
the SST. This will include determination and evaluation
of any thermal stressing techniques that may be
required.

8.6.3 DEVELOPMENTAL TESTS
Thermal testing will be conducted with a full-scale test
rig of representative sections of body and wing tanks. They
will have provisions for simulation of the structural deflec-
tion of the wing, and the pressure and temperature
environment expected in flight and will include all fuel sys-
tem components within the tank. The tests will simulta-
nously determine structural characteristics, testing, main-
tenance techniques, fuel management, and the character-
sitics of fuel flow out of the tank. Flight-defect testing will
be conducted to confirm the results of the full-scale vent
tests. The structural deflection of wing cells and pressures
and temperature environment will be varied through rep-
resentative cycles for long periods of testing.

Initial thermal environmental testing will be conducted
in a small tank to establish test limits and material
characteristics.

8.6.4 COMPONENT QUALIFICATION TESTS
Vendor-designed components will be qualified by the ven-
dor to Boeing specifications.
Nacht, valving, and structural deflection testing will
be conducted on fuel tanks.

8.6.5 SYSTEM DEVELOPMENT TESTS
Testing of the fuel feed system will be conducted with com-
ponents representative of in-tank and fuel lines in con-
junction with the entire fuel system test. Additional fuel
feed system tests will be conducted at elevated temperatures and alti-
itudes will be conducted in conjunction with the full-scale
tank used for the thermal environment testing.
A test setup of the pressure fueling system will be
used to establish under-sizes and to investi-gate surge pres-
ures due to start and stop of fuel flow.

8.6.6 PREFLIGHT TESTS
Fuel system tests conducted on the airplane before first
flight are:
- Fuel tank capacity, gage calibration, ramp volume,
 and trapped fuel.
- Engine fuel system performance and operation.
- Fuel, fuel, and dump system operations.
- Vent system overfill and tank pressure tests.

8.6.7 CERTIFICATION TESTS
8.6.7.1 Fuel Feed System (CAR 4b 410
and 4b 413)
Fuel feed system tests will primarily consist of a series of
ground tests to demonstrate that the system, when oper-
ated in conjunction with the complete fuel system, will
supply the required quantities of fuel at the desired pres-
sure for all conditions of airplane operating conditions.
The effects of multiple fuel tank types, contem-
nants, and contaminants will also be determined when possible by analysis or
ground test.
Flight tests will be conducted as necessary to verify
the results of ground tests and analysis.
8.6.7.3 Fuel Tank and Cavity Venting Systems (CAR 4b 474)

Ground testing of the venting systems will be accomplished in conjunction with the ground tests of the fuel feed system outlined above.

Flight testing of the venting systems will be conducted to supplement the ground test results.

8.6.7.4 Fuel Dumping (CAR 4b 427)

It will be demonstrated that the minimum flow requirements are met, that minimum reserve fuel cannot be dumped, and that fuel does not impinge upon or enter the aircraft during operation in the design operating envelope.

8.6.7.5 Fuel Gaging (CAR 4b 611) and 4b 736

The fuel gaging (quantity) system will be calibrated during ground tests in the level attitude. Trapped fuel quantities and fuel tank expansion space will be determined.

Flight checks will be made during the flight test program on an instrumented aircraft to determine the effects of flight attitudes and accelerations on the quantity indicating system.

8.6.7.6 Fuel Management (CAR 4b 740 and 4b 741)

Aircraft balance will be maintained in flight by the scheduled use of fuel from each tank.

The adequacy of the procedures to be proposed in the Airplane Flight Manual for fuel management will be evaluated during the flight test program.

8.6.8 ACCEPTANCE TESTS

Performance tests will be accomplished to demonstrate that the fuel system meets all required operational characteristics as set forth in the airplane detail specification.
VOLUME A-VI

PROPULSION

9.0 RELIABILITY, MAINTAINABILITY, SERVICEABILITY

9.1 Reliability

9.1.1 Engine Reliability

9.1.2 Engine Starting System Reliability

9.1.3 Fuel System Reliability

9.1.4 Inlet Control Reliability

9.2 Maintainability

9.2.1 Engine

9.2.2 Inlet Section

9.2.3 Exhaust Section

9.2.4 Fuel System

9.2.5 Engine Analyzer—Manual Analysis and Recording

9.3 Line Maintenance and Inspection

9.4 Serviceability
9.0 RELIABILITY, MAINTAINABILITY, SERVICEABILITY

In order to enhance the earning power of the SST, Boeing is following its standard procedure of considering propulsion system reliability, maintainability, and serviceability during the design phase.

9.1 Reliability (Ref. 2.1, 4.101)

Details of programmed reliability activities can be found in Section 5.6 of Volume III.

9.1.1 ENGINE (Ref. 2.7, 4.129)

The substantiation by extended endurance testing of an initial in-service engine time between overhaul of 600 hours, as specified in the BFP, is considered a practically attainable objective. The General Electric Company has, however, indicated on its preliminary data that it plans to achieve a time between overhaul of 600 to 1000 hours at the start of airline service, with eventual 4000 hours between overhauls with no mid-point inspection. Further increase in engine reliability and maintainability objectives is contained in Part II.4.4 of this volume.

Reliability, safety, and maintainability will be carefully considered during Boeing's evaluation of the engine manufacturers' proposals. After FAA selection of the engine supplier, Boeing will take the initiative, in cooperation with the FAA, to ensure development of mutually satisfactory reliability, safety, and maintainability objectives and requirements, with particular emphasis on the ultimate customers' requirements.

9.1.2 ENGINE STARTING SYSTEM (Ref. 3.29.3)

The probability of successfully starting all four engines is estimated to be 99.99% probable, taking into account all components in the system directly related to starting - starters, regulating valves, check valves, and electrical switches. Based on 25 hours per flight, the corresponding maintenance rate is predicted to be once per 1000 flight hours. An analysis of the starting system reliability is shown on Fig. 9.1. The high degree of reliability derives from extensive Boeing experience in the development of

<table>
<thead>
<tr>
<th>FAILURE PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUANTITY</td>
</tr>
<tr>
<td>AIRPLANE</td>
</tr>
<tr>
<td>CHECK VALVE</td>
</tr>
<tr>
<td>STARTER</td>
</tr>
<tr>
<td>REGULATOR</td>
</tr>
<tr>
<td>SWITCH</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

NORMAL START

| SYSTEM FAILURE PER FLIGHT | 0.0017 |
| PROBABILITY OF SUCCESSFUL START OF ENGINES | 0.9993 |

MAINTENANCE ASSISTED STARTS

<table>
<thead>
<tr>
<th>REGULATOR VALVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTENANCE</td>
</tr>
<tr>
<td>PROBABILITY OF SUCCESSFUL START OF ENGINES</td>
</tr>
<tr>
<td>PERCENT OF SUCCESSFUL STARTS</td>
</tr>
</tbody>
</table>

Note: Starting System - Including all engines and all components of the start system.
pneumatic starting systems. The regulator valve has two manual override features. The ball valve (pilot valve), which is normally operated by an electrical solenoid, can be operated directly by pulling a handle. The other override feature is the main butterfly valve, which is normally operated pneumatically but can be operated manually by applying a standard wrench at the end of the butterfly valve shaft.

9.1.3 FUEL SYSTEM (REF 3.29:94)
The following features of the fuel system contribute to its inherent reliability:

- There are two pumps in each tank, neither of which will furnish the engine's fuel requirements.
- Electrical power is supplied to the individual pumps of each tank from separate A.C. power buses.
- The engine pump will suck the fuel from the main tanks in case of total electrical failure.
- The system is designed to prevent inadvertent reversal, mixing, or improper connections of lines and electrical connections.
- Thermal pressure relief is provided where trapped vapor may exist.
- Surge depressurization valves are held below field pressure of the system by control of valve operating ratio.
- Components requiring orientation to provide correct flow direction are designed so that they cannot be installed improperly.
- Whenever possible, fuel lines are routed through fuel tanks to minimize external fuel leakage.
- Ground deicing is controlled by a shutoff valve, manually actuated on the ground only. The ground deicing valve cannot be closed unless the valve is in the closed position.
- Boost pumps, valves, and gauges have checkout capabilities.

9.1.4 FUSE CONTROL (REF 3.29:4)
A numerical reliability analysis has been made by Hamilton Standard Division of United Aircraft Corporation to estimate the reliability of the proposed inlet automatic control system. Data were taken from 33,000 hours of Hamilton Standard experience with jet engine fuel controls which contain similar types of components. This experience has shown the following average performance removal period, 900 hours; average in-flight shutdown period, 300 hours; mean time between total failures (MTTF, performance degradation), 1000 hours. Utilizing the fuel control's experience as a guide, the mean time between failures (MTBF) was established as 110,000 hours. This MTBF was established as a guide for the mean time between failures (MTBF) for total failures may be as much as 10 times as high as for partial failures, or about 300,000 hours.

Due to difficulties experienced in supporting actual failure occurrences from reported occurrences, the estimates are believed to be quite conservative, so that the true MTBF may be much higher than stated. In addition, the reliability program carried out by Hamilton Standard is expected to result in significant reductions in failure rates from these experience of jet engine fuel controls. Hence a design goal for the inlet control of 300,000 hours MTBF (performance degradation) was established in the procurement specification to provide a reasonable assurance of achieving this objective.
EQUIPMENT FAILURE AND HUMAN ERROR MODE AND EFFECTS ANALYSIS

<table>
<thead>
<tr>
<th>EVENT</th>
<th>FAILURE OR ERROR</th>
<th>EFFECT</th>
<th>COMPENSATING MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

EXAMP

Sample Failure Analysis

- [...](#)
9.2 Maintainability (RFP 3.11)

9.2.1 ENGINE (RFP 3.2.9.1)

The propulsion pod is separated into three major components: the inlet, the engine, and the exhaust sections. The inlet and exhaust sections may be removed from the aircraft individually for shop overhaul or other heavy maintenance and replaced with serviceable units. Fig. 9-2 depicts typical ground handling techniques for propulsion pod components.

Structural provisions for attaching the pod handling fittings are provided in the wing lower surface. The entire propulsion pod may be removed or installed, or the exhaust and inlet sections may be removed and installed individually, by use of the proper fittings.

Depending on customer need, spare engine buildup may consist of either or both inlet and exhaust sections in addition to the basic engine. Differences in building installation are held to a minimum to enable neutral engine buildup conversion to any position with a minimum of maintenance effort.

9.2.1.1 Engine Replacement

The power plant assembly is attached to the engine strut with three cone bolts which provide self-alignment during installation. All engine plumbing to the aircraft, except fuel, runs through a disconnect panel. Hydraulic lines use self-sealing, quick-disconnect couplings. Electrical disconnect is accomplished at a common bulkhead by self-locking plugs and receptacles which require no safety wire. Engine controls are connected with the aircraft by a quick-disconnect, self-tensioning coupler eliminating the need for cable rigging during engine change.

Power plant assembly replacement is accomplished in the following sequence:

- Remove engine side cowling.
- Attach hoist lugs to lower surface of wing.
- Disconnect plumbing.
- Disconnect engine mechanical controls.
- Disconnect electrical connectors at firewall.
- Attach hoist and lift engine using lower wing surface fittings to unload cone fittings.
- Position transportation trailer, remove cone bolt nuts, and lower engine.

Installation, in addition to reversing the above procedure, requires torquing of cone bolt nuts.

9.2.2 INLET SECTION

Opening of engine side cowl panels provides access to the inlet assembly attack bolts, hydraulic disconnect points, door position switch wiring connector, and various pneumatic service lines requiring disconnect prior to inlet removal. The position of all inlet doors can be visually verified. The actuators for the power-d by-pass doors are conventionally exposed by opening the engine section cowling. The actuator for expanding the centerbody is in the nose outside the cowl front lip and accessible through the removable nose cone. Elements of the automatic powered subsystem control are also easy to reach by opening the pod cowling. If preflight operational checks of the inlet control system are desirable, a simple on-board test unit will be developed. Ground equipment must be used when complete maintenance checkout and calibration of the inlet system is required.

9.2.3 EXHAUST SECTION

Boeing will monitor maintainability during design and development. The following objectives have been established:

- Time between overhaul of all components on the exhaust section, including controls, will be the same as the engine. Target is 4000 hours.
- All components (e.g. burners, bearings, seals) will have replaceable wear surfaces where this provides a significant advantage over complete component replacement.
Means will be provided for powered ground operation of the actuators without running an engine. Control valves and devices will be replaceable without disrupting cable systems. Reference points or rig pins will be provided for rigging. All rigging measurements will be linear and be taken between flats or index marks on the appropriate components.

Maintenance procedures of the exhaust section will be similar to those for present commercial jet transports. The entire exhaust section is removable from the engine case all free for overhaul or heavy maintenance. Access to the attach bolts is through the engine side cowl and augmentor cowl. All hydraulic and electrical disconnects are also accessible through the engine side and augmentor cowl. Pre-rigging of the exhaust...
assembly components prior to engine installation provides minimum system adjustment at installation. The secondary air inlet door actuators and nozzle area control and reverser actuators are accessible by removal of the augmentor cowl cowl.

Ground operation of the exhaust system secondary air inlets, nozzle area control components, and reverser cover panel is accomplished by a low capacity, external hydraulic supply cart attached to suitable ground service connections at the engine. Such ground operation permits routine line maintenance, security, and rigging checks.

9.2.4 FUEL SYSTEM
SST fuel system maintenance requirements are similar to those of current commercial jet transports. The equipment now in use for fuel tank purging and inspection is directly applicable.

Body fuel tank maintenance techniques are similar to those used on the Model 707 center wing tank. Fuel cells are replaceable individually through access plates in each tank bay, and the interconnect concept is the same as the Model 707 installation.

Wing tank maintenance and inspection is accomplished through conventional access plates in the wing lower surface. Ample fuel dams are installed in wing tank insulating space to permit isolation of any fuel leak to an area between ribs.

Fuel tank boost pumps, drip tanks, and fuel temperature probes can be replaced without entering or defueling any tank. The wiring from the fuel quantity tank sensing unit requires only one connector and cable to carry the total signal from each tank. This permits use of a splice-free wiring system, eliminating a source of system malfunction.

Fuel system plumbing is replaced in a conventional manner. The use of mechanical connections eliminates the need for welding, swaging, or cutting on the aircraft. All motor-operated valves in the fuel system are either totally exposed or semi-submerged, requiring no tank penetration or plumbing disconnect to replace motor and gate valve assembly. Manual override handles are provided on all valves for ground operation without electrical power.

Routine line maintenance requirements for fuel pressure checks may be accomplished with the fuel boost pumps. All plumbing not inside fuel tanks is accessible through access plates to accomplish required leak checks.

Ground fuel transfer for maintenance purposes can be accomplished by use of the fuel system electric boost pumps, by proper selection of dump and refuel valves, or by use of a manual valve in the cross-feed system. De-fueling is accomplished by connecting to the refuel manifold; no special equipment is required.

9.2.5 ENGINE ANALYZER—MAINTENANCE ANALYSIS AND RECORDING

As a means of reducing maintenance costs and improving schedule adherence, the use of a flight maintenance analysis and recording system is under consideration for the engines and engine accessories used on the SST. By monitoring and analyzing engine performance, this system assists in pinpointing possible failures for preventive action. The potential benefits from the system may be considerable. However, present installations in military and commercial aircraft are experimental, and further evaluation of effectiveness and reliability is required.

The system provides information in two ways. First, the on-board display affords a quick look at the data being accumulated and indicates any significant out-of-tol-
ensure conditions to the flight crew. Second, the data are
recorded on magnetic tape for later detailed analysis at
ground facilities by general-purpose computers, such as
those generally available at airline installations.

9.3 Line Maintenance and Inspection

The power plant installation is designed for ease of line
maintenance, inspection, and servicing. The side cowl
panels are equipped with quick-opening latches and tubu-
lar supports. The panels can be removed or secured in
the open position without special tools, thus exposing the
complete engine, including all accessories, for inspection
and maintenance.

With the airplane in the normal parked position,
all engine components are less than 10 feet above the
ground, and all engine driven accessories are less than
seven feet above the ground. Any accessory can be re-
placed without removal or loosening of another accessory.

Filters and sump plugs requiring periodic servicing are
readily accessible. Particular attention was given to elimi-
nating cowl wear points. Where this is not possible, easily
replaceable rub strips are provided on cowl wear surfaces,
and all cowl hinge points are bushed for repair ease.

Positive means of indicating positions of the cowl
latches, of the inlet and exhaust system doors, and of the
removable portion of the inlet centerbody will be provided
for ease of conducting walk-around inspection.

9.4 Serviceability

Rapid, easy access is provided all along the engine, from
inlet actuators to exhaust flanges, by opening the engine
cowl panels. Opening the panels exposes all engine com-
ponents and accessories which require servicing. Access
to engine mounts, wire bundles, plumbing, ducting and
engine instrumentation is also provided. All items within
the engine compartment, such as the oil filter, hydraulic
fluid filter, and the fuel control filter, which require
periodic removal and inspection, are removable without
disengaging any other system or engine accessories.

The fire extinguisher pressure gauges and discharge
indicators can be inspected from the ground through a
sight glass without opening a panel.

Access for oil filling through a separate door elimin-
ates the necessity for opening the main cowl panels.

The design objectives for engine components is a
minimum of 5000 hours between overhaul. The detailed
specifications for purchased equipment on the engine
require qualification testing which will ensure satis-
factory operation to meet this design objective.
10.0 NOISE SUPPRESSION (RFP 7.6.1, 7.6.2, 7.6.3, 3.2.19, and 3.2.18)

10.1 General
Special noise suppressors will not be required to hold the community noise generated by the engine to levels comparable to jet engines in international operation today. As noted in Volume A-V, Aerodynamics, and Volume A-VII, Systems, the tubeless, landing, and ground noise requirements of the IFP are satisfied. Noise characteristics will be closely scrutinized by the engine and airframe manufacturers throughout the design of the engine, the inlet, and the exhaust system.

To determine whether noise may be further reduced, the capability of Boeing's acoustic research group and the acoustics model jet facility are employed in a continuing effort in support of the SST program. Potential approaches for noise suppression are presented in this section.

10.2 Potential Approaches for Noise Suppression

10.2.1 INLET NOISE
Inlet noise consists primarily of discrete frequencies generated in the compressor blading. There are three main approaches to reducing this noise: (1) source reduction by tailoring compressor design; (2) transmission blockage by choking inlet flow, and (3) transmission attenuation by wall absorption along the inlet duct. The first approach is the subject of interior investigation at Boeing, at the engine manufacturers, and at research laboratories. It has been demonstrated that varying the axial spacing between the compressor blade rows and evening the diameter can markedly improve prevailing noise in the speech interference range, although overall sound levels may remain unchanged. Varying the number of blades in one compressor stage in relation to the number in adjacent stages has produced favorable results. The effect of other compressor aerodynamic design variables with respect to noise generation is being studied, although under continuing study, the second approach, transmission blockage, has not been accepted as practical because of distortions induced at the compressor inlet face. The third approach, transmission attenuation, has been successfully applied in a relatively short inlet duct, as shown in Fig. 10-1, and should produce even better results in a duct of longer length. The absorptive lining may be of two types: broadband absorptive material, such as fiber glass, or tuned resonant lining, which is effective over a relatively narrow frequency range but is immune to damage from water-washing and similar operating conditions.
10.3.3 Jet Noise

There are few practical suppression techniques which can be applied to a given high exhaust velocity engine. They are variations of the concept of accelerating induced secondary air and mixing with the primary stream, with the concurrent reduction of the relative velocities between the jet and ambient air. Figs. 10-2 and 10-3 illustrate some of these findings. The two suppressors most successful to date are: (1) the divided-flow nozzle, which contains what may be thought of as internal ejectors, illustrated by Fig. 10-4; and (2) the divided-flow (or corrugated-boundary) nozzle plus external ejector shell. Variable area, convergent-divergent ejector nozzles such as used by two of the engine manufacturers proposing for the supersonic transport can be adapted to the second approach. Large volumes of secondary air can be pumped into the nozzle by the proper tailoring of the ejector. This air is accelerated and mixed with the primary flow at the nozzle throat by special flow-dividing air passages moved into position when suppression is desired (Fig. 10-5). Another approach is to divide alternate segments comprising the ejector exit variable area control radially in order to provide a corrugated exit shape for mixing the exhaust gases with the free-stream flow (Fig. 10-6). These approaches are under study to determine the potential performance in noise reduction and nozzle efficiency. No credit has been taken for any potential noise suppression in the calculations included in this proposal. If other approaches are found to show promise, they will be then fully investigated. Any application must be consistent with airplane requirements, such as small thrust loss, small aerodynamic drag, light weight, and compatibility with thrust reverser and augmentor operation.

![Graphs and Tables]

10-3 Effect of Area Ratio on Noise Attenuation

10-4 Effect of "Break-Up" and Ventilation on Noise Attenuation
DETAIL OF AIR INLET

10.4 Jet type Noise Suppressor

10.6 Panel Noise Suppressor
VOLUME A-VI

PROPULSION

11.0 ENGINE SELECTION AND DEVELOPMENT

11.1 Introduction ... 11-1
11.2 Characteristics of Offered Engines 11-2
11.2.1 Basic Features 11-2
11.2.2 Test Results of Offered Engines 11-9
11.3 Airplane Performance Comparisons 11-10
11.3.1 Engine-Airplane Matching 11-10
11.3.2 Performance of Engine-Engine 11-11
11.3.3 Comparative Airplane Performance 11-14
11.4 Other Considerations 11-21
11.4.1 Comparative Installation Features 11-21
11.4.2 Engine Availability 11-22
11.4.3 Reliability and Maintainability 11-23
11.4.4 Engine Costs ... 11-24
11.5 Overall Evaluation .. 11-26
11.6 Development of Selected Engine 11-27
11.6.1 Engine Development Plan 11-27
11.6.2 Engine Production Schedule 11-28
11.6.3 Growth Potential 11-28
11.6.4 Engine Reliability and Maintainability 11-29
11.0 ENGINE SELECTION AND DEVELOPMENT
(RFP 2.23, 2.2.8.1)

11.1 Introduction (RFP 1.2)

For several years, The Boeing Company has studied the engine selection for the SST, investigating wide variations in engine cycles. The engine companies and NASA have also contributed significantly to the cycle selection effort. In the early Boeing studies, technology similar to that offered by the JS8 and JT9 engines was used. When designing either fixed wing or variable sweep airplanes for cruise speeds between Mach 2.5 and 3.0, and ignoring the transonic boom considerations, the engine choice consistently was a low bypass turbofan. Changes in turbine technology and re-evaluation of sonic boom problems altered this result.

The subsequent NASA SCAT program (Contract NAS 1-2500), in which The Boeing Company participated, resulted in two broad conclusions: (1) high turbine inlet temperatures and low engine specific weight are required, and (2) the turbofan was the optimum cycle for the SST. However, the engines used for the SCAT program were NASA study engines in which the fans had somewhat better cruise performance characteristics and lighter weight than the presently offered engines. Also, the SCAT mission requirements were different from the present Request for Proposal (RFP) requirements.

In determining the engine which The Boeing Company feels best meets the RFP mission, consideration was given to the engine-airplane technology and its technical substantiation, the advanced design features offered in the engine, and an evaluation of each engine manufacturer's capability to carry through a successful commercial engine program.

Based on the preliminary engine performance data supplied by the engine manufacturers on November 15, 1963, and subsequent modifications, the General Electric GE4 J4C turbojet designed for 2300 F. cruise turbine temperature and the Curtiss-Wright TJ70 resulted in the lightest gross weight airplanes by about a 10 to 15 percent margin. However, the Curtiss-Wright nozzle performance, engine weight technology, and turbine cooling techniques have not been substantiated to the same degree as those offered in either the General Electric or Pratt & Whitney engines. Hence the TJ70 appears to be a greater risk than the General Electric engine. The GE4 J4C engine (Ref. 19) was selected as the basic engine for the Boeing proposal.

Although the GE4 J4C engine appears to be the correct choice for the proposed airplane based on the current RFP mission and engine data, the Boeing configuration lends itself to use of any of the offered engines in the event that a different engine is desired by the FAA or the airlines in the final evaluation. The performance of the Boeing SST airplane with the other proposed engines is covered in Volume A IV, Aerodynamics.

The following sections will discuss the specific characteristics of the engines offered, the general matching characteristics of the engine cycles, and the design airplane gross weight which results with each of the engines. A technical review and discussion of component technology is presented. An initial appraisal is made of the relative development status of each of the engines and of the demonstrated capabilities of the engine manufacturers. Comparative installation features are discussed. A more detailed review will be submitted in March, 1964, as required in the RFP.

11.2 Discussion of Offered Engines

11.2.1 BASIC FEATURES

The basic characteristics of the engines proposed for the SST are summarized in Fig. 11.1. Each engine manufacturer's specification page thrust and airflow data are shown. All the engines are scalable except the JT11F-4. The distinctive features and important design param-
CONFIDENTIAL

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>TF10</th>
<th>GEA JAC</th>
<th>GEA F6A</th>
<th>STF-1198B (LTF15A-1)</th>
<th>JTF11F-12</th>
<th>JTF11F-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfoil - Left Side (Sea Level Takeoff)</td>
<td>400</td>
<td>475</td>
<td>500</td>
<td>630</td>
<td>640</td>
<td>640</td>
</tr>
<tr>
<td>Takeoff Thrust - Left</td>
<td>53,200</td>
<td>38,900</td>
<td>37,200</td>
<td>32,600</td>
<td>31,800</td>
<td>31,800</td>
</tr>
<tr>
<td>Maximum Takeoff Thrust - Left</td>
<td>52,700</td>
<td>51,000</td>
<td>45,000</td>
<td>51,200</td>
<td>51,100</td>
<td>50,400</td>
</tr>
<tr>
<td>Bypass Ratio</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
<td>1.3</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>Fan Pressure Ratio</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Primary Pressure Ratio</td>
<td>9.0</td>
<td>9.5</td>
<td>11.0</td>
<td>11.0</td>
<td>9.5</td>
<td>8.2</td>
</tr>
<tr>
<td>Maximum Caused Turbine Inlet Temperature</td>
<td>3000°F</td>
<td>3000°F</td>
<td>3000°F</td>
<td>3000°F</td>
<td>3000°F</td>
<td>3000°F</td>
</tr>
<tr>
<td>Maximum Turbine Inlet Temperature</td>
<td>3200°F</td>
<td>3200°F</td>
<td>3200°F</td>
<td>3200°F</td>
<td>3200°F</td>
<td>3200°F</td>
</tr>
<tr>
<td>Engine Weight (Including Nacelle and Thrust Reverser)</td>
<td>6340</td>
<td>6301</td>
<td>7470</td>
<td>6485</td>
<td>9125</td>
<td>9150</td>
</tr>
</tbody>
</table>

NOTE: These data are based on engine company inputs through 12/24/52.

CODES: Basic Data Offered Engines
etters are discussed below:

T70 Turbine-Wright
- Single speed, two bearing rotor.
- Single stage, highly loaded, transpiration cooled turbine operating at 2100 F maximum continuous.
- Variable geometry turbine discharge and exit nozzle.
- Convergent-divergent plug nozzle with variable flaps.
- Reverser included with engine.

This engine has extremely high aspect ratio compressor blades which are a high risk item because of structural dynamic problems which may arise. In fact, the whole compressor design may have to be changed because the short chords may lead to poor low speed matching characteristics.

The engine has a high thrust weight ratio, but it incorporates a variable turbine nozzle, a variable primary nozzle and a variable divergent nozzle. These are features which usually cost extra weight in engine design. The engine nozzle originally proposed was a simple convergent plug which had poor measured performance in the Boeing test facilities. The nozzle was changed to the present design with no weight increase.

Variable geometry turbine nozzles have not achieved a high degree of development and are not used on any present engines. This feature is mandatory for a dry turbojet on an SST to obtain good low-speed performance.

GE4 F6A General Electric Augmented Turbojet
- Single speed, three bearing rotor.
- Seven stage primary compressor giving overall primary pressure ratio of 11:1.
- 11:1 bypass ratio.
- Convergent-divergent plug nozzle with variable flaps.
- Reverser included with engine.

A salient feature of this engine is the mixed flow augmenter which provides high augmentation during transonic acceleration and takeoff. The flame holders and fuel injection nozzles are located in the hot stream so that combustion can be initiated easily and efficient burning will result.

There are problems associated with a fully mixed after-burning turbojet engine designed to operate over a wide Mach number range. The fan pressure ratio and eff-

GE4 J4C General Electric Augmented Turbojet
- Single speed, three bearing rotor.
- Variable stator compressor (9:1 pressure ratio in 7 stages).
- Two stage turbine, convection plus film-cooled, operating at 2100 F maximum continuous.
- Full augmentation afterburner.
- Convergent-divergent plug nozzle with variable throat and variable exit.
- Reverser included with engine.

The engine is a conventional turbojet patterned after the J79 and J83. The main advancement is the high turbine inlet temperature of 2200 F. This temperature is achieved through combined convection and film cooling techniques. The exit nozzle design is similar to that of the J83.

Turbojet cooling is a continuous flow process during all engine operation.
Another distinguishing feature is the first compression-fan stage which produces low pressure ratio near the hub and very high pressure ratio near the tip, with a shroud in the middle. Whether the combination on a single rotor fan will have development problems remains to be determined.

STF 188B (JT15A-1) Pratt & Whitney Duct-Burning Turbofan
- Two spool, four bearing rotor (two bearing supports).
- Two stage fan (front spool) with 2.5:1 pressure ratio.
- Five stage compressor (rear spool) with overall primary pressure ratio of 1:1.3.
- 13 bypass ratio.
- Two stage turbine operating at 1900°F maximum continuous. (First stage turbine is convection cooled. Second stage drives fan rotor.)
- Fan burning augmentor employing aerodynamic flameholder.
- Convergent-divergent blow-in door ejector nozzle with variable throat area control in the fan stream.
- Reverser included with engine.

This is an advanced duct-burning turbofan engine which employs the latest Pratt & Whitney engine technology. The duct burner is external to the primary engine case, which could present some engine case and turbine cooling problems. The burner employs an aerodynamic flameholder with low pressure drop, which contributes to high performance. The fan exit nozzle is variable and provides a high level of fan efficiency at all flight speeds. The ejector nozzle is the same type that Pratt & Whitney has used for the TFX engine (TFX) and has been evaluated extensively through wind tunnel model tests during the past few years.

A 1900°F continuous turbine flame temperature detracts from the performance of this engine. In part, it is compensated for by the extensive use of lightweight technology which is consistent with the 1970 time period.

JT11F-4 Pratt & Whitney Duct-Burning Turbofan
- Single spool, fixed airflow fan version of the JT11 (J58) engine.
- Two stage fan, 2.5 pressure ratio.
- Five stage compressor behind fan with overall primary pressure ratio of 5.2.
- 1.08 bypass ratio.
- Three stage turbine, first stage convection cooled, operating at 1900°F.
- Duct heater and nozzle same as STF 188B.
- Reverser included with engine.

This engine is a modification of the J58 Mach 3.0 turbojet engine which is currently under development by Pratt & Whitney. It is designed to use the existing compressor, burner, and turbine stages of the J58 with an additional turbine stage added to drive the compressor-fan rotor. The duct burner and nozzle arrangement is the same as that used on the STF 188B. This engine has the advantage of being available for early delivery (two and one-half years after go-ahead) for a prototype airplane. The engine weight will be high since it will not incorporate the latest state-of-the-art development and weight technology. This engine is not offered as a scalable engine.

JT11F-12 Pratt & Whitney Duct-Burning Turbofan
- Advanced lightweight scalable version of the JT11F-4.
- Primary pressure ratio increased to 9.0.

This engine could exist as a follow-on to the JT11F-4 or could be developed as a new engine designed initially for the SST mission. It is slightly heavier than the STF 188B but has comparable performance. The engine has
the same disadvantage in that the lower turbine flame temperatures offered by P&W detract from the performance.

11.2 TECHNOLOGY OF OFFERED ENGINES

Important advances in technology are being offered in each of these engines. The probability of achieving these technology levels has been considered in The Boeing Company evaluation of the engines.

The advancements having the greatest significance are specific weight, turbine temperature, and nozzle performance.

11.2.1 Weight Technology

Fig. 11-2 shows the level of thrust weight ratio of the proposed engines and compares them with past and current supersonic engines in development or operation. The thrust weight levels of the proposed SST engines (except for the C-W T270) appear to be a logical progression in weight technology. The weight technology, represented by the cross-hatched area, considering the higher turbine inlet temperatures proposed, appears to be a reasonable goal for a 1970 operational date. The weight technology indicated for the T270 engine appears to be optimistic for a commercial engine.

This general improvement in weight technology is being achieved through higher compressor stage loading (which results in fewer stages of compression for a given pressure ratio), higher heat release burners (which shorten the combustion section), and improved turbine cooling.

11.2.2 Turbine Temperature Technology

The results of Boeing and government-funded SST studies have shown that turbine flame temperatures well in excess of existing commercial practice will have to be used in order to make the program a success.

One of the fundamental differences between the offered engines is that General Electric and Curtiss- Wright are quoting 2200 F and 2100 F cruise turbine inlet temperature (T21) respectively, while the Pratt & Whitney quoted TIT level is 1900 F. The higher TIT provides greater transonic thrust and lower cruise specific fuel consumption, and has a significant effect on airplane gross weight to perform the mission. It is therefore of prime importance to evaluate the level of TIT which is reasonable for the 1968-1970 time period.

The Boeing Company discussed this problem not only with the three engine companies involved in this proposal but also with specialists at Allison, Rolls-Royce, and Bristol to gain information on available turbine temperatures and turbine cooling techniques. The general conclusions of this survey are listed below:

- Commercial parts life of up to 10,000 hours is required in order to ensure that random failures will permit time between overhauls (TBO) values in excess of 2000 hours.
- When cast blades are employed, together with cost cooling passages, a maximum cruise flame temperature of 1800° to 1900° F can be tolerated today for the SST mission. These convective cooled blades would withstand 3000 hours TBO based on creep life expectancy. Higher temperatures would require either new materials or other cooling methods than pure convection. Metallurgical improvements by 1968-1970 should raise this limit to the 2000 F to 2100 F range.
- Using forged materials with cooling passages, the allowable blade temperature for the same creep life will be lower by approximately 50° to 90° F. Hence, at a given gas temperature when using forged materials, the manufacturer must improve his cooling effectiveness to allow for the method of fabrication.
- Employment of fan cooling or transpiration cool-
CONFIDENTIAL

Fig. 11-3 shows the trend of turbine in-temperature and blade temperature with years, and also the effect of various types of cooling on the allowable temperature based on life cycle.

* In most current commercial engine turbine blade replacements are caused by surface cracks due to thermal shock or by high temperature bending fatigue and not by creep life limitations. There is no analytical way to predict shock life. Only by running 5000 to 10,000 hours of cyclic testing can the thermal shock and bending fatigue characteristics of a particular turbine and cooling configuration be determined.

* When forged materials are used, the resistance to thermal shock is improved by about 75° to 90° F at the same cooling effectiveness.

Based on the findings of this survey, it appears that a 600 hour TBO can be achieved in the 1965-1970 time period using advanced blade materials, film cooling, and forged blades, when operating with cruise turbine flame temperatures of up to 2200° F on the SST mission. A TBO of 300 hours is a reasonable target after some service experience. Provision for visual inspection of the engine turbine between overhauls will probably be necessary.

General Electric turbine blade cooling tests have been run on a J93 up to 2400° F TIT using the film cooling technique. At 2200° F the turbine blade metal temperatures are at or below the metal temperatures in the current commercial subsonic jet engines. General Electric has developed a turbine blade stem drilling process and quality control technique which is unique and has been successfully demonstrated on the J93. Pratt Whitney has also conducted turbine cooling tests...
using convective cooling techniques on a modified J75 test engine. Curtiss-Wright has run turbine cooling tests using a transpiration cooling technique at 2750 F. Although transpiration cooling appears to offer the greatest potential, certain fundamental structural problems appear to make it a riskier approach than either convective or film cooling techniques.

11.2.2.3 Nozzle Technology

Each engine manufacturer has proposed a different nozzle design for his engines. General Electric has proposed a fully variable convergent-divergent (C-D) ejector nozzle; Pratt & Whitney, a fixed shroud blow-in door ejector; and Curtiss-Wright, an annular C-D nozzle. Sketches of these nozzle types are shown in Fig. 11-4.

The estimated nozzle gross thrust minus drag coefficients for the three types of nozzles are shown in Fig. 11-5. Values are shown for conditions of maximum thrust at all Mach numbers and cruise thrust for supersonic cruise and subsonic cruise. Selected test data have been plotted on these curves to indicate the level of development that has already been achieved for the different nozzle types. Gross thrust minus drag (C_T) is defined as nozzle thrust minus nozzle drag (including ram drag of secondary air and nozzle boattail drag) divided by the ideal thrust of the nozzle primary and secondary airflow. The Curtiss-Wright annular C-D nozzle performance is lower at subsonic cruise than the other nozzles, due primarily to higher boattail drag.

The test points shown (Fig. 11-5) were derived from three sources: NASA, Boeing, and the engine manufacturers. In all cases the models tested were not exact duplicates of the proposed nozzles. However, the throat to exit area ratios were closely approximated. It should be noted that the measured performance levels of these models do not necessarily indicate the full potential of the various nozzle concepts. Very little test data are available for the Curtiss-Wright nozzle because of limited...
CONFIDENTIAL

Nozzle Performance Comparison

CONFIDENTIAL

11/9
11.3 Airplane Performance Comparisons

11.3.1 ENGINE-AIRPLANE MATCHING

The relative performance merits of the proposed engines can best be judged in terms of the resulting airplane capabilities. Before comparing the specific engines, the manner in which a propulsion system is matched to the airplane will be discussed.

In the matching process, the installed propulsion system is scaled to represent different sizes of the engine under study. The airplane takeoff gross weight and operating weight are also scaled to represent different sizes of the airplane under study. The wing area is varied to include the effect of wing loading on the aerodynamic performance. The body size and payload are held constant.

The performances of the engine-airplane combinations are then computed for the design mission. The flight profiles are determined by the sonic boom overpressure limits. The matched engine-airplane is that combination which achieves the design range at the minimum gross weight.

In addition to the sonic boom overpressure limit, other restrictions are applied which sometimes make the airplane heavier and the engine larger than would otherwise be the case. Among these are:

- Wing area has a lower limit, dictated by takeoff speed limitations or by other practical considerations.
- The engine must be large enough to provide adequate airplane acceleration under all flight conditions. For example, a minimum thrust margin, $F_T = D$, on a standard day is required during climb and acceleration at the altitude determined by sonic boom limitations. This margin ensures that adequate thrust is available to accelerate to cruise speed on a hot day, and that the time required to accelerate will not be excessively long.

The engine-airplane matching results for the non-augmented turbojet, augmented turbojet, and augmented turbofan engines are generally as follows for a variable sweep airplane:

- **The Non-Augmented Turbojet**
 - The engine size is established as that necessary to provide the thrust margin to accelerate the airplane at the altitude dictated by the sonic boom overpressure limit. Because of its low thrust per pound of airflow, the size is large compared to augmented engines. At supersonic cruise conditions, the engine is operated near its maximum power available. This setting provides sufficient thrust to fly the airplane at maximum lift over drag (L/D) altitude and at minimum specific fuel consumption (SFC). Some excess thrust is available at this condition for maneuver or control.
 - Because of the size required for transonic thrust, the engine is considerably oversized for subsonic cruise and holding operations. The power required is a very small percent of that available, and the resulting SFC is considerably higher than the minimum value. If variable area turbine and exit nozzle geometry are provided, the penalty for this oversizing can be reduced. At takeoff, the maximum available thrust for exceeds the minimum needed to meet the field length and second segment climb requirements. If takeoff is made at part power, the takeoff noise can be lower than either the augmented turbojet or turbofan, and still meet the field length and climb requirements.

- **The Augmented Turbojet**
 - This engine airflow is usually sized at the supersonic cruise condition to achieve maximum range by attain-
ing the best compromise between engine weight, SFC, and airplane L/D. The engine may cruise with or without augmentation, depending on the engine weight technology and the level of SFC.

If the engine is sized to provide sufficient non-afterburning thrust to fly at maximum L/D altitude, the SFC will be near minimum, but the installed engine weight will be high. If a smaller engine is used, the same thrust can be achieved with some minimum afterburning; however, the SFC is high. If the smaller engine is operated with the afterburner not lit, the SFC is near minimum, but the thrust is too low to fly at maximum L/D altitude. The selected engine size is the best compromise of these considerations.

With the engine sized for cruise, the thrust margin for acceleration and climb within prescribed Boone requirements can be adequately provided by additional augmentation from the afterburner. Because the engine has more thrust per pound of airflow at cruise and at transonic acceleration than the non-augmented turbojet, it is not as greatly oversize for subsonic flight as the non-afterburning version. Consequently, the subsonic cruise and holding SFCs are near the minimum values. If some variable geometry is provided, the subsonic SFC versus thrust relationship can be adjusted somewhat to reduce the SFC at the required thrust as in the case of the non-augmented turbojet.

At takeoff, the non-afterburning thrust is usually more than adequate to meet the field length and climbout requirements. There is not as much excess thrust for reducing noise as there is with the non-augmented turbojet, and therefore the takeoff noise levels tend to be somewhat higher. Community noise levels may not necessarily be higher. This is discussed in more detail in Par. 11.3.3.

- The Augmented Turbofan

The subsonic augmented turbofan is usually sized at the supersonic cruise condition to achieve maximum range. Partial augmentation is used during supersonic cruise. The thrust setting is selected to provide the best compromise between installed weight, L/D, and SFC. This condition occurs at a thrust level which permits cruise at an L/D near maximum L/D altitude. At lower thrust levels, the reduction in SFC is not sufficient to compensate for the L/D reduction at the reduced altitude. At Mach 2.7 the augmented cruise SFC is higher than either of the turbojets.

The engine is not as greatly airflow oversize at subsonic conditions as either of the two versions of the turbojet. Consequently, the subsonic operation occurs closer to the minimum SFC. In addition the turbofan has a fundamental propulsive efficiency advantage over the turbojets at subsonic speeds, which results in a lower SFC. At takeoff, a low augmentation power setting is required to meet the engine-out, second segment climb gradient. Nevertheless, the basically lower noise pressure ratio reduces the takeoff noise less than with the augmented turbojet, using dry takeoff thrust.

The short-burning (or unmixed) turbofan may be sized by transonic thrust requirements. The airport noise tends to be higher than the mixed fan because of the high velocity of the primary jet.

11.3.3 PERFORMANCE OF PROPOSED ENGINES

In order to compare the in-flight performance of the engines, the airflow sizes have been adjusted to that required to match the Boeing SST configuration. The matched sea level static airflow sizes of the several proposed engines are shown in Fig. 11.4. The airplane gross weight required for the RFP mission is also shown.

Performance comparisons of the matched engines at cruise, transonic, subsonic, and takeoff conditions follow. The performance of the JT11F-4 is not shown be-
cause it is a heavy engine of a fixed size which does not match the airplane requirements.

11.3.3.1 Cruise Performance Results

The supersonic cruise installed SFC and thrust of the various engines are shown in Fig. 11-7. The matched thrust required on the Boeing configuration during cruise is marked on the curve for each engine.

The lowest SFC at Mach 2.7 is achieved with the TJ70 non-augmented turbojet which operates at slightly less than maximum cruise thrust. This engine has the lowest SFC because it does not have the augmentor pressure losses. The GE4 J4C augmented turbojet operates at about seven percent higher SFC at the cruise power setting. This condition occurs somewhere between maximum dry thrust and minimum augmented thrust. In practice this will require a mixture of augmented and dry power settings on the four engines as a change in cruise altitude with some slight engine penalty.

The offered engines with the next higher SFC's are the PW JT11F-12 and STF RB211 turbofans, which operate at well above minimum augmentation and have SFC's about five percent higher than the J4C. The GE4 F6A operates at a slightly higher SFC. The SFC change with thrust is somewhat flatter with the fans than with the turbojet. The general level of SFC is higher because of the lower thermal efficiency of the fan cycle at Mach 2.7.

The dashed curve shows the performance improvement of the JT11F-12 with 2000 F TIT. However, since Pratt & Whitney has not offered this level of TIT for the SST, this performance has not been used for airplane evaluations.

11.3.2 Transonic Performance

Figs. 11-8 and 11-9 show the transonic thrust and SFC for the proposed engines. All the engines offered have adequate thrust to meet the sonic boom limitations with a minimum of 0.3 thrust margin on a standard day. The TJ70 has the lowest SFC because it is non-augmented, while the GE4 F6A has the highest SFC because it is a fully augmented turbofan. The engine SFC during acceleration is a significant factor in the overall fuel consumed during the mission.

11.3.2.2 Subsonic Performance

Fig. 11-10 indicates performance of the various engines for the cruise to alternate and holding conditions. In all cases the thrust required is much less than that available at minimum SFC. The turbolasts provide the lowest SFC's for two reasons: (1) they tend to match nearer the minimum SFC, and (2) they have a basically lower SFC because of their better propulsion efficiency. The turbolasts, both an afterburning and non-afterburning, have about the same matched SFC. It should be noted that even with the variable turbine nozzle feature, the TJ70 has the highest SFC at these conditions.

11.3.3 Takeoff Performance

Fig. 11-11 shows the takeoff thrust for the engines, both augmented and dry, on a standard day. The minimum thrust required to meet the takeoff field length and second
Mach 2.7 Thust vs Fuel Consumption
CONFIDENTIAL

Graphs showing performance characteristics such as Climb & Acceleration Thrust and Fuel Consumption across different Mach numbers for various conditions.
segment climb gradient, for the airplanes designed to meet the RFP mission, is shown by the arrow. All engines except the GE4 F6A turbospan meet the takeoff thrust requirements at maximum dry power or below. The GE4 F6A turbospan will require partial augmentation. On a hot day, all the turbospanas will require partial augmentation.

The airport noise at 1500 feet from the airplane, parallel to the runway, as a function of thrust of the engines is shown in Fig. 11-12. The comparison of community noise of the offered engines is discussed in Par. 11.3.3.2.

11.3.3.2 Installed Pod Drag
The installed pod drag of the proposed engines, sized to meet the RFP mission, is shown in Fig. 11-13 for the complete range of Mach numbers. At supersonic cruise the GE4 F6A engine has the lowest drag. The C-W T370 has the highest cruise drag.

The transonic drags of the various pods are also shown in the same figure.

11.3.3 COMPARATIVE AIRPLANE PERFORMANCE
The optimum airplane performance which results from the offered engines matched to the Boeing SST configuration is discussed below. The airplane configuration which was used in these performance studies is shown in Fig. 11-14. This configuration was used to obtain relative performance comparisons with all of the offered engines. The changes in pod weight, drag, and installed performance with the various engines were accounted for.

For this study the wing area was limited to a minimum of 454 square feet by configuration considerations. The maximum wing loading was limited to 100 pounds per square foot (psf) to meet the 165-knot takeoff requirement in the RFP.
CONFIDENTIAL

Airport Noise Levels 1500 Ft. From Centerline of Runway

Installed Pod Drag

CONFIDENTIAL
11.3.3.1 Gross Weight Comparisons

The most significant comparison is the airplane gross weight required to perform the 2000 nautical mile range, 30,000 pound payload mission at the selected cruise Mach number of 2.7, with the sonic boom overpressure limit of 2.0 psi. This comparison is shown in Fig. 11-15. At the overpressure limit the lowest gross weight is provided by the TJ70 non-augmented engine at a gross weight of 412,000 pounds. The GE4-24F engine results in an airplane gross weight of 430,000 pounds. The JT11F-4 match is not shown, but the gross weight is well over 500,000 pounds.

Fig. 11-16 summarizes some of the pertinent data from each engine-airplane match for the RFP mission. All matched engine sizes are within the scaling range of the offered engines.

11.3.3.2 Noise Considerations

- Takeoff Noise

The extra thrust available at takeoff with these engines allows a trade between the takeoff ground roll noise and the noise over the community. Fig. 11-17 shows this trade based on Boeing-calculation noise characteristics for the offered engines. Higher takeoff thrust results in higher airport noise but lower community noise because the airplane arrives over the community at a higher altitude. In all cases the community noise is shown for a position three miles from the baseline release point with thrust reduced to that required for 500 feet per minute rate of climb. The airport noise is shown for a distance of 1,500 feet parallel to the runway. If the allowable airport noise is set at 120-122 PNdB, all the engines will yield community noise levels less than 112 PNdB, the limit set in the RFP.
<table>
<thead>
<tr>
<th>ENGINE</th>
<th>T70A-4</th>
<th>GEA/4AC</th>
<th>GEA/6SA</th>
<th>JTTIF-12 (1900*)</th>
<th>JTTIF-12 (2200*)</th>
<th>FPF-188B (1750*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLS Afterburn</td>
<td>540</td>
<td>415</td>
<td>454</td>
<td>555</td>
<td>491</td>
<td>551</td>
</tr>
<tr>
<td>Max. T.O. Thrust (SLS Std. Day)</td>
<td>41,500</td>
<td>47,600</td>
<td>36,500</td>
<td>42,300</td>
<td>36,700</td>
<td>42,100</td>
</tr>
<tr>
<td>Engine Weight (incl. Nozzles & Thrust Reverser)</td>
<td>5,580</td>
<td>7,977</td>
<td>6000</td>
<td>7,750</td>
<td>6,500</td>
<td>7,300</td>
</tr>
<tr>
<td>Pit Weight</td>
<td>8,100</td>
<td>8,172</td>
<td>8480</td>
<td>10,249</td>
<td>9,020</td>
<td>9,991</td>
</tr>
<tr>
<td>Throttle Thrust Weight (Fg – F)</td>
<td>0.3</td>
<td>0.54</td>
<td>0.349</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>T.O. Field Length at Max. T.O. Thrust</td>
<td>3,027</td>
<td>4,750</td>
<td>6,515</td>
<td>5,300</td>
<td>5,325</td>
<td>5,970</td>
</tr>
<tr>
<td>Total Fuel</td>
<td>54,130</td>
<td>59,000</td>
<td>76,684</td>
<td>64,513</td>
<td>67,463</td>
<td>76,110</td>
</tr>
<tr>
<td>Cruise</td>
<td>116,700</td>
<td>131,155</td>
<td>140,837</td>
<td>144,775</td>
<td>133,900</td>
<td>148,400</td>
</tr>
<tr>
<td>Descent & Reserve</td>
<td>34,830</td>
<td>35,345</td>
<td>35,838</td>
<td>36,415</td>
<td>32,140</td>
<td>33,826</td>
</tr>
<tr>
<td>Any one Eng Gross Weight</td>
<td>412,000</td>
<td>430,000</td>
<td>413,000</td>
<td>412,000</td>
<td>410,000</td>
<td>448,000</td>
</tr>
</tbody>
</table>

34.48: Matched Engine Data

CONFIDENTIAL
Landing Noise

Landing noise is a function of the power required to maintain the landing approach glide slope. Fig. 11-18 shows the noise levels for the offered engines, assuming a three degree glide slope with wings fully extended, at various distances from the runway threshold. As shown, the landing noise level for the SST will not be higher than for existing intercontinental jet aircraft.

11.4 Other Considerations

11.4.1 COMPARATIVE INSTALLATION FEATURES

11.4.1.1 Engine Starting

Starting requirements vary considerably among the engines considered for the SST (Fig. 11-19). The STF 1011 and the T700 may be started with the type of starters and carts that are currently in commercial transport usage. Although the T700 engine is a single rotor, high inertia engine, the exceptionally high first torque characteristics quoted by Curtiss-Wright (Fig. 11-20) allow starting with a relatively small starter and cart.

The General Electric J47 and F-4 engines require a larger starter than the above engines. The larger starter requires two of the presently used GTCP-909 carts or two GTCP-100 series carts. The Pratt & Whitney JT11F-12 engine requires a large starter and two of the presently used GTCP-100 series ground carts.

DH-520-12 11/21
11.4.1.1 Nozzle Cooling

Generally the fan engines have a lower engine case temperature and thus present a less severe nozzle cooling problem than do the turboshaft engines. This results from the excellent insulation provided by the relatively cool fan air which surrounds the primary engine. Fan engine case temperature in the diffuser case area will be approximately 40°F cooler than the equivalent area in the jet engine.

The accessory area will be compartmented for all of the engines to reduce the working temperature of the accessories. The compartment will be shielded from the engine case. The jet engines will require more compartment insulation than the fans.

All engines require cooling air for the nozzle and reverse actuators.

11.4.2 ENGINE AVAILABILITY

11.4.2.1 Development Status

None of the engines being offered by the various engine manufacturers for the SST is currently under development.

The Pratt & Whitney JT11F-4 engine is closest to
an actual engine under development since it is basically
a fan version of the JT11 engine, which is currently in
the advanced development stage. The P&W STF 100B,
however, and the JT11F-12 are new engine developements.
Component research for these engines is progressing in
burner development, vane nozzle, and high tempera-
ture turbine technology.

The General Electric turbojet (GE 34C) and tur-
bofan engines (GE 504A) are new engines designed spe-
cifically for the SST, using technology gained from the
JT11 program. The compressor section is a scaled version
of an existing high stage ratio unit which has been
successfully run. General Electric has also been actively
engaged in high temperature turbine work, nozzle and
reverse design, and an afterburner technology.

The C-W TJIP is a new engine designed specifically
for the SST. Curtiss-Wright has been engaged in con-
siderable component development work in transpiration
cooling of turbine blades and high stage leading com-
pressors to provide support to its concept.

Fig. 11-21 shows the results from go-ahead to pre-
flight rating test (PFRT) and certification for the offered
engines. The GE 34C and P&W JT11F-4 engines meet
the airplane development schedule.

11.4.2.2 Production Schedules

With respect to engine certification and delivery of en-
gines for the first production airplanes, the GE 34C and
P&W JT11F-4 come closest to meeting the airplane re-
quirements.

11.4.2.3 Engine Manufacturers’
 Capabilities

Pratt & Whitney

- Previous Record

Pratt & Whitney has an excellent record of producing
high quality engines on schedule. Based on their experience
on the B-52, KC-135, and 707 commercial programs with

CONFIDENTIAL

[Graph showing engine performance data]
Pratt & Whitney has the world's largest privately owned installation for the development testing of air-breathing power plants. At these facilities compressors, burners, turbines, and full-scale engines are run at speeds up to Mach 3.2 and altitudes up to 100,000 feet. Thirteen test cells at the facility are provided with air at the required pressure and temperatures for simulating ram air inlet conditions. Evacuated exhaust conditions are also provided. None of the test cells are altitude chambers capable of testing full-scale engines at high altitudes. Total airflow capacity is over 700 pounds per second. Exhaust capacity varies from 50 pounds per second at two psia to 650 pounds per second at 15 psia. Supplemented the main laboratory in the same area are a compressor laboratory, a fuel system laboratory, and two sea level test cells. The East Hartford plant test complex contains 28 full-scale engine sea level test stands for engine development and qualification testing. The Florida facility also has altitude and Mach number simulation capability for evaluating components of large size.

Previous Record

Pratt & Whitney's J57, TF33, JT12, and JT5 engines has generated a high level of confidence in the capability of Pratt & Whitney to produce engines that are efficient and reliable and to meet their commitments with respect to schedules, performance, and weight.

Engineering and Management

The engineering and management personnel at Pratt & Whitney responsible for the development and production of the SST engine are the same personnel that were responsible for Pratt & Whitney's other successful programs. This continuity of experienced personnel which exists at Pratt & Whitney produces a depth of technical talent for which there is no substitute. The Pratt & Whitney engineering department also has the capability of solving problems quickly and efficiently that may arise in the field.

Test Facilities

Pratt & Whitney has had extensive experience with General Electric engines on the B-47 (J47) engine. This was one of the first jet engines developed in this country and resulted in the development of a bomber-type aircraft with speed capability in excess of the fighter aircraft of that period, a bomber which is still in first-line service. Boeing has had no experience with more recent General Electric engines. The General Electric record on the J39 engine and the J44 from all reports is very good and probably is what can be expected for the J54 JAC. The J54 is installed in the aircraft which holds most of the world's altitude and Mach number records and was the first Mach 2.0 engine developed in this coun-

MONTHS FROM GO AHEAD (MAY 1 1964)

<table>
<thead>
<tr>
<th>Engine Development Program</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL ELECTRIC GEN J47</td>
<td>60</td>
</tr>
<tr>
<td>GEN J54</td>
<td>42</td>
</tr>
<tr>
<td>PRATT AND WHITNEY</td>
<td>60</td>
</tr>
<tr>
<td>JT22-8</td>
<td>60</td>
</tr>
<tr>
<td>JT15-12</td>
<td>70</td>
</tr>
<tr>
<td>JT15-180</td>
<td>70</td>
</tr>
<tr>
<td>CURTIS-WRIGHT 12-70</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>
try. General Electric has been developing the Mach 3.0, J91 for the B-70 program. General Electric has considerably more supervisory operational engine experience than any other company. Reports on the field service record of General Electric with the CJ309-3 engine have been favorable both with respect to the engine and the service personnel.

Engineering and Management

General Electric engineering and management are capable of doing an excellent job of developing the engine for the supersonic transport. It is felt that the overall experience and technical capability of the General Electric engineering staff is very high and more than adequate to perform the development job required for the GE3-4J. The technology involved is an extension of the J79 and J80 experience, which will be applied directly to the development of the engine. Adequate technical personnel are available to concentrate on this program.

Test Facilities

General Electric has several large test cells used for development and qualification of the J79 and J91 engines. This company has a large air supply and exhaust capability and numerous component development rigs. The General Electric ram test facility, currently being used to test the J91 ram test engines at conditions from sea level static to Mach 3.0 at 20,000 ft. The test facility drive unit consists of a 2,500,000 cubic feet per minute compressor, a 32,000 hp synchronous motor, and a 3,200 hp steam turbine. This unit is combined with a 100 million Btu per hour heater to create airflows of the required temperature.

Curtiss-Wright

Prevention Record

Boeing has no actual experience with Curtiss-Wright jet engines. Very limited experience was gained with the Curtiss-Wright turbojet engine on the XB-47B airplane. This airplane was built as a flying test bed and was not flown extensively. The only jet engine produced in quantity by Curtiss-Wright was the J33 which was a development from the British Sapphire engine.

Engineering and Management

The Curtiss-Wright engineering and management staff has not been involved in a jet engine development program in the past five years. However, Curtiss-Wright has an outstanding but limited number of design personnel who do understand the technical problems of the SST.

Test Facilities

Curtiss-Wright has several sea level test cells capable of testing engines up to 50,000 pounds of thrust. Component test rigs include five small-scale test stands for combustion chamber and related component testing. Curtiss-Wright has proposed that a large share of the full-scale component and engine testing be conducted at outside private or government-owned facilities.

11.4.3 RELIABILITY AND MAINTAINABILITY

The requirement for advanced technology to make the supersonic transport a success is well established. The need for high reliability and maintainability is also unquestioned. It is very difficult, early in the design stage of a new engine program, to rate the various design approaches in the area of reliability and maintainability. Simplicity is certainly of major importance. Since high turbine temperatures are required, advanced cooling techniques must be employed, and the hot parts must be readily replaceable. These two requirements, simplicity and ease of maintenance, point in the direction of the turboshaft engine. In attempting to evaluate the potential reliability and maintainability of the offered engines, certain fundamental design features in each engine stand out.

The C-W Ti70 engine is a simple, single-speed,
A simplified scoring system was used to evaluate the offered engines. The factors considered in selecting the optimum engine and the weighted scoring system are shown below:
The evaluation is shown below. The total score shows the GE4 J4C engine to be the primary choice with a score of 75 out of a possible 100. The remaining engines have the same total score, indicating that their suitability as alternate engines is about equal.

Engine Development Plan

11.6.1.1 Ground Test

Sufficient ground testing is required to obtain engine performance equal to or exceeding guaranteed performance. The engine mechanical design and structural integrity will be proven. Endurance as well as cyclic testing will be performed under controlled inlet pressure and temperature conditions (altitude chamber and heated air test) to simulate as much of the flight envelope as possible. Testing with various inlet distortion patterns will be performed to satisfy performance guarantees with respect to allowable inlet distortion. The detailed information on the number of test engines, manpower, and facility requirements, and the test schedule is not available prior to the submission of General Electric’s firm proposal.

It is planned that the engine contractor and the aircraft contractor will conduct integrated propulsion pod tests at the Arnold Engineering Development Center to confirm compatibility of the exhaust nozzle-engine inlet combination.

11.6.1.2 Flight Test

The General Electric Company does not plan to flight test the GE4 J4C engine prior to its installation on the prototype SST. Boeing concurs in this, because no suit-
able aircraft is available on which the engine could be tested through the full flight spectrum in a manner which would be compatible with the SST. Subsonic flight testing does not appear to warrant the expense involved. Supersonic flight testing of the engine on an airplane other than the SST is of questionable value. Flight acceleration and cruise can be simulated on test stands under conditions which may be more realistic than on an airplane where the propulsion pod does not have exactly the same relationship to the airframe as it will on the SST. The engine used for prototype airplane flight testing is planned as a pro-flight rating tested (PFRT) engine. Flight testing of the prototype airplane and the engine will occur simultaneously. The plan for this testing is covered in Section 8.

11.6.1.3 Certification Program

The cumulative engine development test hours leading to type certification are shown in Fig. 11-22. Scheduled dates for preliminary flight rating and type certification are noted. A total of approximately 10,000 test hours will be run to obtain type certification of the engine, including 4,500 hours of heated inlet testing and 250 hours of altitude performance testing.

Further details of the General Electric certification test program are not available prior to the submission of General Electric's firm proposal.

11.6.2 ENGINE PRODUCTION SCHEDULE

Engine delivery schedules during the development and early production period are shown in Fig. 11-23. General Electric has given firm dates for PFRT, engine certification, and delivery of the first four prototype engines and the first four production engines. The remainder of the engine delivery schedule is as required by Boeing to match the airplane production schedule. This schedule is based on four engines per airplane plus 50 percent spares during the prototype flight test phase and 25 percent spares during the certification program. Also included are these engines required to support the Boeing propulsion system ground test program as detailed in Section 8.

11.6.3 GROWTH POTENTIAL

Engine growth is required to allow the payload-range capability of the aircraft to be extended following the initial airplane-engine development program. General Electric has identified a two-phase growth plan for the GE4J4C engine.

Phase 1 yields a four and one-half percent decrease in SFC at minimum augmented power at cruise by means of a 10 percent larger augmentor and nozzle diameter and a 50 F. increase in turbine inlet temperature. The augmentor efficiency is increased about four percent, due to a lower inlet velocity obtainable with the larger augmentor. Takeoff and transonic performance are essentially unchanged.
Phase II gives a six percent increase in takeoff net thrust, a 10 percent increase in transonic net thrust and a 12 percent increase in cruise net thrust, all at approximately the same SFC, by means of component performance improvements. The changes required for Phase II are in addition to the Phase I changes described above. The engine airflow will be increased approximately five to seven percent by readjusting the compressor blade angles and turbine nozzle flow area. Also, another 30°F increase in turbine inlet temperature will be used. If a different growth sequence becomes desirable because of test experience, the engine design can be modified to achieve other performance characteristics.

11.6.4 ENGINE RELIABILITY AND MAINTAINABILITY

The improved technology on reliability and the records of engine experience will significantly reduce reliability problems on the SST engine program. Reliability is a product attribute that can be quantitatively specified, analyzed, predicted, and assured. For the SST engine, a high level of reliability, achieved early in the development phase, is a major objective. This recognizes economic and safety consequences, effects of operating environments, required engine time between overhauls, and reduced development time, due to the lack of military experience on a comparable engine operating in the same flight regime.

Maintainability is closely related to reliability since both influence important cost indices like maintenance hours per airplane flight hour as well as inspection and overhaul. The significance of reliability and maintainability requires that they both be emphasized.

11.6.4.1 Basic Approach

Reliability and maintainability programs at General Electric involve the establishment of goals, the predicting of engine and component capabilities, design of tests, measurement of test and operational results, and introduction of improvements. Reliability design goals for each of the subsystems and components are established by the use of a reliability apportionment system. Maintainability goals are similarly established for the design and development work.

Detailed design reviews on reliability and maintainability will continue for all components and systems of the engine during various phases of the program. The key objective is to uncover and eliminate potential problem areas.

11.6.4.2 Proposed Objectives

A reliability and maintainability program requires meaningful goals. A study has been performed by General Electric to obtain clear and concise product requirements with respect to reliability and maintainability. The critical factors chosen are believed to be optimum for an augmented engine which must operate in the flight environment of a supersonic transport. The analysis revealed that no single assessment factor would provide a true evaluation, so two reliability and three maintainability factors were selected, as shown below.

<table>
<thead>
<tr>
<th>Reliability & Maintainability Objectives</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Time Between In-Flight Shutdowns</td>
<td>3000</td>
</tr>
<tr>
<td>Mean Time Between Premature Engine Removals</td>
<td>750</td>
</tr>
<tr>
<td>Overhaul Manhours</td>
<td>2,500</td>
</tr>
<tr>
<td>Mean Time Between Inability to Obtain or Sustain Augmenting Power</td>
<td>700</td>
</tr>
<tr>
<td>Maintainability Index (Applied Manhours per Flight Hours)</td>
<td>1.1</td>
</tr>
</tbody>
</table>

In addition to the above, a time between overhaul of 600 to 1000 hours is planned at the start of airline service. The eventual goal is 4000 hours, with no mid-life inspection required.
SST Engine Schedule

<table>
<thead>
<tr>
<th>FISCAL YEAR</th>
<th>1964</th>
<th>1965</th>
<th>1966</th>
<th>1967</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALENDAR YEAR MONTH</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>ENGINEERING START</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINEERED SCHEDULE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRFRAME COMPLETED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFIRMATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE DELIVERED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SST Airframe Schedule (Reference Only)

<table>
<thead>
<tr>
<th>FISCAL YEAR</th>
<th>1964</th>
<th>1965</th>
<th>1966</th>
<th>1967</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALENDAR YEAR MONTH</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>ENGINEERING START</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINEERED SCHEDULE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRFRAME COMPLETED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFIRMATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE DELIVERED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Engine delivery beyond the first four in 1964 and first four production in 1965 is subject to further negotiation between Airframe and Engine.

1/30 06-2430-12
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod. 1</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
</tr>
<tr>
<td>Prod. 2</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
</tr>
<tr>
<td>Prod. 3</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
<td>W/2</td>
</tr>
</tbody>
</table>

Legend:
- **Prod. 1:** Prototype flight test engines (36 on deck, total of 12)
- **Prod. 2:** Pre-production flight test engines
- **Prod. 3:** Pre-production flight test engines

Timeline:
- **1968:** Start of flight test
- **1969:** First production flight test engines available
- **1970:** First flight of aircraft
- **1971:** First flight of aircraft with engines on production line
- **1972:** Flight test engines ready for use

Notes:
- Engine certification
- Production flight test engines
- Total check status
- Pre-production
- Production aircraft
VOLUME A-VI

PROPULSION

12.0 PROPULSION SYSTEM PERFORMANCE 11.3
12.1 Inlet Total Pressure Recovery 11.4
12.2 Exhaust Needle Performance 12.8
12.3 Power Extraction and Air Bleed 12.9
12.4 Installed Propulsion Pod Data 12.9
12.5 Engine Performance Data 12.9
13.0 PROPELLUTION SYSTEM PERFORMANCE

The installed performance of the GE4 J4C engine is presented in this section. The engine data include the effects of inlet pressure recovery, horsepower extraction, and air bleed. The total pod drag, except for skin friction, corrected to free stream conditions is also included in this section.

13.1 Inlet Total Pressure Recovery

The inlet match d with the GE4 J4C engine is an axisymmetric inlet. The inlet total pressure recovery versus free stream Mach number used in computing engine performance is shown in Fig. 12-1. Inlet total pressure recovery is an average of the inboard and outboard engine locations. Five percent of the inlet airflow is bled from the centerbody and inner cowl surfaces for boundary layer control to achieve the level of inlet total pressure recovery shown. Substantiation and description of these performance figures is covered in Section 3.

13.2 Exhaust Nozzle Performance

The estimated nozzle internal thrust coefficient supplied by the engine manufacturer is shown in Fig. 12-2 for various flight conditions. The nozzle coefficient shown includes the sum drag of the secondary air but does not include the external boattail drag. The nozzle boattail drag is discussed in Par. 12.4.

13.3 Power Extraction and Air Bleed

Power extraction is required for aircraft hydraulic and constant speed drive systems. A constant 100 horsepower has been extracted per engine to account for these requirements. It is recognized that during cruise conditions this is high, during other phases of flight this figure is, in general, adequate. There are short, high power extraction periods during which the figure is low. In terms of an overall flight, the 100 horsepower is a conservative value.
High pressure compressor bleed air is required for some air conditioning. Fig. 12-3 lists the engine compressor bleed extraction per engine for various flight conditions.

<table>
<thead>
<tr>
<th>AIRPLANE OPERATING CONDITION</th>
<th>AIR BLEED EXTRACTION LB/SEC ENGINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAKEOFF</td>
<td>1.7</td>
</tr>
<tr>
<td>CRUISING</td>
<td>0.3</td>
</tr>
<tr>
<td>HOLDING $\mu_m = 0.1$</td>
<td>0.3</td>
</tr>
<tr>
<td>15,000 FEET</td>
<td></td>
</tr>
<tr>
<td>CRUISE TO ALTERNATE</td>
<td>1.2</td>
</tr>
<tr>
<td>$\mu_m = 0.2, 0.00$ FEET</td>
<td></td>
</tr>
<tr>
<td>CLIMB AND ACCELERATION</td>
<td>1.3</td>
</tr>
</tbody>
</table>

12.4 Installed Propulsion Pod Drag

Cowl wave drag, inlet spillage drag, cowl lip suction force due to spillage, inlet bypass drag, inlet boundary layer bleed drag, nosele boattail drag, and strut drag were computed. Pod and strut friction drag are included in airplane friction drag and are not included in propulsion pod drag. The total installed pod drag coefficient is shown in Fig. 12-4 for the GE-2400-12 engine as a function of free stream Mach number. All drag coefficients are based on the inlet lip frontal area. The various contributing drags are also shown.

12.4.1 Cowl Wave Drag

Cowl wave drag was computed by using a computing program which is an improvement of a Lighthill method for predicting surface pressures of axially symmetric bodies (Ref. 54). Inlet size was fixed for each engine, allowing for inlet boundary layer bleed and for local density in the wing pressure field. The cowl drag was computed for the under-the-wing cowl in a free stream ambient pressure field. This drag was then corrected for under-the-wing pressure field as part of the airplane drag.

12.4.2 Inlet Spillage Drag and Cowl Lip Suction Force

Inlet spillage drag was computed for all engines for a 12.5 degree non-translating centerbody with an independently variable throat, based on free stream spillage areas. Conical flow theory was used to compute spillage drag (Refs. 10 and 11). The cowl lip suction force associated with inlet spillage is included in the spillage drag. A breakdown of the spillage drag and the suction force is shown in Fig. 12-5.

12.4.3 Inlet Bypass System Momentum and External Bypass Door Wave Drag

The inlet supplies air often exceeds the engine demand air. The excess air is expelled through low angle bypass doors ahead of the compressor face. During transonic speeds, when the bypass doors are open, the discharge angle is 7 degrees relative to the cowl external surface. Wave drag for the external bypass doors was included in the bypass drag for an aspect ratio of one (Ref. 14). The drag is consistent with external bypass door drag in Refs. 15 and 16. The air momentum drag was computed for a convergent nozzle at 10 degrees 17 degrees plus 3 degrees cowl angle relative to the axial direction. The maximum exhaust thrust coefficient is 0.95, which occurs at transonic speeds. The total pressure of the bypass air is 95 percent of inlet recovery total pressure (Fig. 12-1) at all Mach numbers.
12.4.4 INLET BOUNDARY LAYER BLEED DRAG

To provide good inlet performance after the inlet is started, boundary layer air is bled from both the centerbody and the cowl. At Mach 2.7 the amount bled and discharged overboard is five percent of the total inlet supply. The centerbody bleed is closed off below Mach 1.3. It is assumed that the cowl bleed is aerodynamically shut off below Mach 1.3 because of the low bleed pressure recovery. All bleed air is discharged overboard through convergent-divergent nozzles at 7 degrees from the axial direction. The nozzle exit-to-thrust expansion ratio is 1.25. The bleed total pressure recovery is 0.1. The nozzle thrust coefficient at Mach 2.7 is 0.965.

12.4.5 EXHAUST NOZZLE BOATTAIL DRAG

Supersonic nozzle boattail drags were computed using the method of Ref. 6. For the GE J-47 engine, the nozzle boattail angle schedule was the optimum which yielded the maximum installed climb thrust and minimum installed supersonic specific fuel consumption (SFC). Subsonic nozzle boattail drags at maximum dry power settings were based on data presented in Ref. 12. Subsonic and transonic nozzle boattail drags for other power settings were based on data in Ref. 13. The nozzle boattail angle schedule used in computing installed performance is shown in Fig. 12.4.

<table>
<thead>
<tr>
<th>POWER SETTING</th>
<th>MACH NO.</th>
<th>BOATTAIL ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM AUGMENTED</td>
<td>0 TO 1.5</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>1.5 TO 1.7</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>1.7 TO 2.2</td>
<td>0</td>
</tr>
<tr>
<td>DRY POWER</td>
<td>0 TO 0.3</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>0.3 TO 0.7</td>
<td>12.2</td>
</tr>
<tr>
<td></td>
<td>0.7 TO 1.2</td>
<td>0</td>
</tr>
</tbody>
</table>

12.4.6 WAVE INTERFERENCE DRAG

The actual cowl wave drag is high as under the wing because of the local wing pressure field on the cowl and because of the wing reflections between the cowl and the under surface of the wing. The pressure field under the wing increases the inlet spillage drag and decreases the inlet form drag. The interference drag between the cowl and the wing, and the associated wing lift, are included in the airplane performance and are more fully covered in Volume A.V., Aerodynamics.
12.4.7 NON-STANDARD DAY DRAG

For flight during hot or cold days, the bypass system handles the difference in engine mass flow requirement. The resulting increase in drag on the bypass airstream was computed using the method described in Ref. 12.27. Fig. 12.27 shows the drag coefficient increment for a plus and minus 20 degrees Rankine (R) day.

12.4.8 ENGINE SHUTDOWN DRAG

During supersonic cruise, if the engine is shut down, the Woodward brake will be applied, reducing the engine mass flow to 10 percent of normal. The controllable and secondary bypass doors will discharge the excess air from the inlet for stable operation. At Mach 2.7, the increase in drag coefficient for the bypass system and the nozzle bled is 0.004. The estimated internal drag coefficient increase is 0.0053 (based on tested 99 percent data).

During subsonic operations also, if the engine is shut down, the Woodward brake will be applied. The increase in drag coefficient for the bypass, external slatage, and bledlail is 0.002. The internal drag coefficient is 0.0004 (based on tested 99 percent data).

12.5 Engine Performance Data

The engine performance data were derived from Refs. 17 and 18. Addenda for these references have resulted from coordination between General Electric and Boeing.

The performance data are based on the 1962 U.S. Standard Atmosphere. Fig. 12.8 shows the design characteristics of the engine.

12.5.1 ENGINE OPERATION

The GEJ-4W engine is capable of continuous cruise operation at Mach 2.7 at maximum dry power. It is also capable of continuous cruise with augmentation.

12.5.2 STANDARD DAY INSTALLED ENGINE PERFORMANCE

- Takeoff: Maximum augmented thrust and maximum dry thrust are shown in Fig. 12.9 at sea level for true airspeeds up to 400 knots. The SFC for the above conditions are shown in Fig. 12.10.

- Climb and Deceleration: Maximum augmented net thrust divided by uncorrected dynamic pressure, (F, q) and SFC versus Mach number for a range of flight speeds up to Mach 2.7 and climb altitudes above 15,000 feet, are presented in Figs. 12.11 and 12.12. Maximum dry F, q and SFC versus Mach number up to M = 0.8 are also included for altitudes from sea level up to 50,000 feet. Partial augmentation F, q versus SFC for a range of Mach numbers at altitudes of 50,000, 25,000, 10,000 and 5,000 feet are shown in Figs. 12.13 through 12.16.

- Supersonic Cruise: The aftshock performance, q versus SFC for a range of dry and augmented power settings are shown in Figs. 12.17 for Ms = 2.5, 2.7, and 2.8 at 50,000 feet. The altitude effect on q, a and SFC, from 50,000 to 75,000 feet, at Ms = 2.7, is shown in Fig. 12.18.
CONFIDENTIAL

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Augmented</td>
<td>45,200 ft</td>
<td></td>
</tr>
<tr>
<td>Maximum Dry</td>
<td>34,000 lbs</td>
<td></td>
</tr>
<tr>
<td>Thrust Weight (sea level static)</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Maximum Augmented</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Thrust Weight (transonic M = 1.5 45,000 FT)</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Design Mach Number</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Supersonic Cruise SFC, M = 2.7 63,000 ft, Ram Recovery = 50</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>Subsonic Cruise SFC, M = 0.5 36,100 ft, Ram Recovery = 366</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>Liner SFC, M = 0.4 15,000 ft, Ram Recovery = 366</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Acceleration Net Thrust, M = 1.2 2,000 ft</td>
<td>31.5 lbs</td>
<td></td>
</tr>
<tr>
<td>65,000 ft</td>
<td>12,300 lbs</td>
<td></td>
</tr>
<tr>
<td>10,000 ft</td>
<td>6,500 lbs</td>
<td></td>
</tr>
<tr>
<td>Reverse Thrust (% Maximum Dry Power)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Turboheat Temperature (Normal)</td>
<td>2720°F</td>
<td></td>
</tr>
<tr>
<td>Takeoff</td>
<td>2720°F</td>
<td></td>
</tr>
<tr>
<td>Supersonic Cruise</td>
<td>2720°F</td>
<td></td>
</tr>
<tr>
<td>Transonic Acceleration</td>
<td>2720°F</td>
<td></td>
</tr>
<tr>
<td>Augeration Temperature (Normal)</td>
<td>3,000 R Max</td>
<td></td>
</tr>
<tr>
<td>Takeoff</td>
<td>3,000 R Max</td>
<td></td>
</tr>
<tr>
<td>Supersonic Cruise</td>
<td>3,000 R Max</td>
<td></td>
</tr>
<tr>
<td>Transonic Acceleration</td>
<td>3,000 R Max</td>
<td></td>
</tr>
<tr>
<td>Compressor Pressure Ratio</td>
<td>9.51</td>
<td></td>
</tr>
<tr>
<td>Initial Time Between Overhaul</td>
<td>600 to 1000 Hrs</td>
<td></td>
</tr>
<tr>
<td>Rate of Climb</td>
<td>502 ft</td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL
12.3.2 Subsonic Cruise

The dry net thrust (F_d) versus SFC are shown in Figs. 12-19 and 12-20 for M = 0.8 and 0.9 at 30,000 feet and for M = 0.4 and 0.5 at 15,000 feet, which are typical cruise to alternate and holding operating conditions, respectively.

12.3.3 Non-Standard Day Installed Engine Performance

- Takeoff: Maximum augmented and maximum dry thrust for 31, 50, 79, and 104°F at sea level up to 400 knots are shown in Figs. 12-21 and 12-22. SFC's for the above conditions are shown in Figs. 12-23 and 12-24.

- Climb and Acceleration: Maximum augmented and maximum dry F, q and SFC's for 15,000, 25,000, and altitudes over 30,000 feet for standard day plus 20° R and m.x. 20° R up to M = 2.7 are shown in Figs. 12-25 and 12-26.

- Supersonic Cruise: The augmented and dry F, q versus SFC for standard day plus 20° R and standard day minus N1 R at M = 2.4 and 2.7, respectively, are shown in Fig. 12-27.
CONFIDENTIAL

12-24 Standard Day - 20° R Climb and Acceleration

CONFIDENTIAL
13.0 REFERENCES

Copies of the following referenced data may be obtained by making a request to either:

The Boeing Company
Suite 126 Commonwealth Building
1825 K Street
Washington, D.C.

or

The Boeing Company, Airplane Division
P.O. Box 707
Rental, Washington

Attn: M. L. Prewitt
Organisation 6000
Mail Stop 73-68

The numbered references below are specifically referred to at appropriate places throughout the text of Volume A.VI.

The additional unnumbered references have provided data and concepts which have been evaluated and applied to the development of the propulsion system proposed in Volume A.VI.

2. General Electric SFT Engine Proposal, Volume E.VI, Component Descriptions and Performance
4. J. Donough: An Investigation of Coke Formation in Lead Tanks on Mach 2.5 to 3.5 Environment, Document D6-8806, January, 1941, The Boeing Company
6. O. Solvang: Pressure on Bodies of Revolution at Supersonic Speed, Document D6-7842 (TX43), 1961; The Boeing Company
9. A. Nagata: Note on the Calculation of Supersonic Inlet Drag, Document D6-2033, 1940, The Boeing Company
13. J. Fillingham: Jet Effects on the Drag of Conical Afterbodies for Mach Numbers of 0.6 to 1.38, NACA RML 8/01, 1967
15. A. R. Yee: An Investigation of Discharge and Thrust Characteristics of Ejected Outlets for Stream Mach Numbers from 0.4 to 1.3, NACA TN 4037, 1967
18. General Electric Performance Card Deck G50/4P377

*Distributed by General Electric.
- First Quarterly Progress Report on Engine Cycle Studies for the Commercial Supersonic Transport (STF-IWA Turboprop Configuration); by G. W. Smith, R. L. Staubach and T. G. Stuba
 Report No. PWA-2095
 Contract AF 33(657)-9203
 Pratt & Whitney Aircraft Division
 June 1 August 31, 1962

 Report No. PWA-2112
 Pratt & Whitney Division
 December 1, 1962

- Second Quarterly Progress Report on Component Development Program for the Commercial Supersonic Transport for the Period 4 September through 4 December 1962
 Report No. PWA-2127
 Contract AF 33(657)-9229 Task No. 9056
 Pratt & Whitney Division
 January 4, 1963
 Volume I — Compressors, Turbines, Combustion, Bearings, Seals, Duct Heaters and Noise
 Volume II — Fuel and Lubricants

 Report No. PWA-2169
 Pratt & Whitney Division
 March 1, 1963

 Report No. PWA-2198 — Volume I
 Contract No. AF 33(657)-9209, Task No. 9056
 Pratt & Whitney Division
 April 4, 1963
 Includes: Compressors, Turbines, Combustors, Bearings, Seals, Noise Control and Duct Heaters

 Report No. PWA-2204
 Pratt & Whitney Division
 April 1, 1963

 Report No. PWA-2205
 Contract No. AF 33(657)-9229
 Pratt & Whitney Aircraft Division
 June 1, 1963

 Report No. PWA-2222
 Contract No. AF 33(657)-9209, Task No. 9056
 Pratt & Whitney Division
 June 1, 1963
- Inlet-Exhaust Thrust Reverser Program for the Commercial Supersonic Transport — Final Quarterly Report
 LAC Report No. 11.1.17293
 Contract No. AF 33(657)-11419
 Lockheed Aircraft Corporation
 October 19, 1963

 Report No. 621-6022-9599
 Hughes Aircraft Company
 October 29, 1962

 Report No. 631-1741-9098
 Hughes Aircraft Company
 January 26, 1963

- Inlet Exhaust Thrust Reverser Program for the Commercial Supersonic Transport — Final Report
 Report No. 160(F)/12256
 Contract AF 33(657)-9571, Project No. 9054
 Flight Propulsion Division
 General Electric Company
 September 30, 1963

- Commercial Supersonic Transport Program Propulsion Component Program (Compressors, Turbines, Exhaust Systems, Nozzles, Thrust Reversers and Fans) Quarterly Reports
 Contact AF 33(657)-9571
 Flight Propulsion Division
 General Electric Company
 July 24, 1963

- Commercial Supersonic Transport Program Engine Cycle Study Program (GE Engine Study)
 Quarterly Technical Reports
 Contract No. AF 33(657)-9577, Project No. 9054
 Flight Propulsion Division
 General Electric Company
 July 24, 1963
INDEX OF PROPOSAL DOCUMENTS TO EVALUATION FACTORS (Continued)

TECHNICAL

- **AIRCRAFT SYSTEM CONCEPT**
 - A-I 1.0, 7.1, 3.1

Configuration
- V-I 2.1
- A-I 2.1, 2.2
- A-II 2.0
- A-III All
- A-V 0.0, 1.1, 2.0
- A-VII 9.0
- A-IX 3.1, 1.1
- A-XI 3.1

Ground System Compatibility
- A-IX 1.2, 3
- M-I 4.0, 6.0

Reliability
- A-I 2.1, 2.3, 3.1, 2.4
- A-VI 0.4, 9.0, 11.4, 3
- A-IX 4.2, 11, 5.1, 11
- M-II 5.2

Safety
- A-IV 9.1
- A-VII 7.0
- A-IX 3.1, 1.2, 3.3, 4, 3.1, 1.10, 4.2.1, 12, 4.2.4, 4.2.6, 4.2.5, 5.1, 13, 5.1, 4.9
- A-XI 1.1

Maintainability
- A-I 2.1, 2.8, 3.1, 2.8
- A-VI 9.2, 11.4, 3
- A-I 3.1, 2.2, 7.3
- M-II 4.8
- M-III 2.0

** Sonic Boom & Noise**
- A-D 3.7, 14.2
- A-NI 3.1.3, 3.7.6.5, C0.3
- A-VI 10.9, 13
- A-VII 9.6
- A-IX 3.1.1.3, 2, 3, 3.1, 11, 4.2.1, 17, 5.1, 1.4, 5.1, 1.9
- M-VI 5.2

AERODYNAMICS
- A-V All

Drag Analysis
- A-V 6.1.2, C6.1.1
- A-IX 3.1.1.1

Stability and Control
- A-N 5.2

Airload Analysis
- A-IV 4.1, 5.0
- A-V 8.2
- A-IX 3.1.1.1

Performance
- V-I 2.2
- A-II 14.0
- A-III 1.6, 2.0
- A-VI 6.0, 3.9, B3.0, 1.2, 4.0, 2.0, A2.0, C0.4.1, 5.0, 8.0
- A-VII 12.0
- A-IX 3.1.1.1, 4.1.1, 4.5.1, 4.2.2, 5.1.1.1, 5.1.2
- A-XI 2.0

AIRCRAFT DESIGN
- A-I 2.2, 2.3, 3.2, 3.3
- A-II 3.0
- A-IV 3.0
- M-I 4.2.4.3

Structures and Materials
- V-I 2.0
- A-II 4.0, 1.5
- A-IV All
- A-IX 3.1.2, 9.3.1
- A-XI 3.8
- M-IV 5.0, App. A, B, C, D, E, F, and G

Weights
- V-I 2.6
- A-II 3.3, 3.4
- A-III 2.3
- A-IV 4.1, 16.0
- A-V 4.1

Flight Controls
- V-I 2.7
- A-II 2.4, 3.8
- A-III 8.0
- A-IV 9.0
- A-VII 3.0, 4.3
- A-IX 3.1, 3.3, 4.1.4, 4.2.6, 5.1.6
- A-XI 3.8, 3.10
- M-I 4.2.4.3

2
INDEX OF PROPOSAL DOCUMENTS TO EVALUATION FACTORS (Continued)

Propulsion
- V-I 2.4
- A-I 2.4, 3.4
- A-II 4.8
- A-III 7.8
- A-IV All
- A-VIII 3.1.4, 3.2.3, 4.1.4, 4.2.4, 5.1.4
- A-XII 3.4
- M-I 4.2.4.3

Engines
- A-II 6.1.1, 2.6
- A-III 7.2
- A-VI 1.1, 2.0, 9.1.1, 9.2.1, 11.0

Inlet
- A-II 6.2.8
- A-III 7.1
- A-V 17.5
- A-VII 1.1, 3.0, 9.1.4, 9.2.2
- A-VIII 3.1.7.1, 3.1.4.5, 4.1.4.1, 4.2.4.1, 5.1.4.1

Installation
- A-II 6.1.5
- A-III 7.2, 7.3
- A-VII 2.0, 3.3
- A-VIII 3.1.10

Controls
- A-II 6.3, 6.4, 8.0
- A-III 7.4, 7.5
- A-V 7.1
- A-VII 5.0
- A-VIII 4.0
- A-XII 3.1.4.8

Fuel System
- A-II 6.11
- A-III 7.4
- A-VII 1.0, 2.8.3, 7.0, 9.1.3, 9.3.4
- A-XII 3.1.4.5, 3.1.4.6, 4.1.4.3, 4.2.4.10, 5.1.4.10
- A-XII 3.5

Starting System
- A-II 6.7
- A-III 6.7
- A-VIII 5.3.1, 6.3.0, 9.1.2, 11.4.1
- A-VIII 3.1.4.5, 4.2.4.1, 5.1.4.2

Thrust Reversal
- A-II 6.3, 2.6
- A-III 6.3
- A-VIII 4.1
- A-XII 3.1.4.5, 4.2.4.8, 5.1.4.8, 3.1.4.3

Systems
- V-I 2.7

Environmental Control
- V-I 2.7
- A-I 2.9, 3.9
- A-II 11.0
- A-II 11.0
- A-VII 5.0
- A-XII 3.1.9, 3.3.7, 4.1.8, 4.2.8, 5.1.9
- A-XII 3.5, 3.8
- M-I 4.2.4.3

Secondary Power
- V-I 2.7
- A-I 2.3, 3.5
- A-II 7.0
- A-III 9.0
- A-VII 2.0
- A-VIII 3.1.5, 3.3.4, 4.1.5, 4.2.5, 5.1.6
- A-XII 3.2
- M-I 4.2.4.3

Navigation & Communications
- V-I 2.7
- A-I 2.7, 3.7
- A-II 9.0
- A-II 10.0
- A-VII 5.0
- A-VIII 3.1.7, 3.3.5, 4.1.7, 4.2.7, 5.1.7.1
- A-VII 3.13, 3.15, 3.14
- M-I 4.2.4.3
OPERATIONS AND ECONOMICS

Direct Operating
V-I 2.3
A-I 2.1.2.1, 3.1.2.1
M-VI All
Sales Price
V-I 3.0
M-VI 7.0
Growth Potential
A-V 1.3, 4.0
A-XI 11.8, 3
M-VI 3.3
Passenger & Cargo Accommodations
A-I 2.8, 3.8
A-II 16.0
A-III 6.5
A-VII 9.0
M-VI 3.0
Flight Operations & Safety
V-I 2.3
A-XI All
Handling Qualities
A-V 7.0
A-VI 2.0
Operation Flexibility
V-I 2.0
A-XI 2.0, 3.0
M-VI 5.0
Cockpit Facilities
V-I 2.7
A-I 2.3, 3.3
A-II 5.4, 19.0
A-III 6.5
A-XII 4.0
A-XIII 2.1.3, 4.2.3
A-XI 3.0

TEST & CERTIFICATION PLAN

A-I 2.1, 4, 2.1.4, 3.1.4, 3.1.8
A-II 10.2.5, 10.2.5, 14.0
A-XVI 8.0
A-VII 4.4, 10.0
A-XI All

Safety
V-I
A-I 2.1, 2.4, 3.1.2.4
A-XVII 7.0
A-XI 3.18

Support Systems Concept
A-VIII 1.0
M-III 1.0

Airport Compatibility
A-XIV 15.5
M-III 4.0
<table>
<thead>
<tr>
<th>Section</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.2</td>
<td>V-1 4.1, A-I 1.2.2, M-I 4.2, M-V 1.1</td>
</tr>
<tr>
<td>1.4.3</td>
<td>V-1 4.1, A-I 1.2.2, A-IX 2.3, 4.9, M-I 4.2, M-V 1.2</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Financial Participation V-1 3.9, M-V 1.1, 1.2</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Research Credit as a Part of Manufacturers’ Participation M-V 1.1</td>
</tr>
<tr>
<td>1.54</td>
<td>Contract Provisions M-I 12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.2</td>
<td>GENERAL V-1 1.0</td>
</tr>
<tr>
<td>1.4.3</td>
<td>RANGE AND PAYLOAD A-II 3.2, 4.4.1, A-III 2.2, A-V 3.9, 10.1.1</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Emergency Range A-V 3.1, A-IV 10.1.1</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Fuel Reserve A-V 7.0</td>
</tr>
<tr>
<td>1.54</td>
<td>Additional Fuel Capacity A-V 5.1, A-VI 7.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.2</td>
<td>FEED V-1 2.2, A-II 3.2.5, A-III 2.4, A-V 8.5</td>
</tr>
<tr>
<td>1.4.3</td>
<td>PAYMENT TERMS M-I 6.0, 9.0</td>
</tr>
<tr>
<td>1.5.1</td>
<td>CONTRACTS M-I 12.0</td>
</tr>
<tr>
<td>1.5.2</td>
<td>AGREEMENT A-I 2.13, 2.15, 2.17, 3.13</td>
</tr>
<tr>
<td>1.54</td>
<td>M-III 6.0, 9.0</td>
</tr>
</tbody>
</table>
INDEX OF PROPOSAL DOCUMENTS TO REQUEST FOR PROPOSAL PARAGRAPHS (Continued)

2.6.1 Takeoff Noise
A-II 14.8
A-V B3.3.7, B3.3.8
A-IX 10.9
A-XI 2.1.3
2.6.2 Landing Noise
A-II 14.2
A-V 3.4.1
A-VI 10.0
A-IX 4.1.1.11
2.6.3 Ground Noise
A-V 3.3.1
A-VI 10.0
A-VII 3.2.2
2.7.1 Flying Qualities
A-V 3.2, 3.2.1, B3.2
A-IX 4.2.1
A-XI 2.0
2.7.2 Compatibility with Air Traffic Control System
A-XI 1.0, 2.3.4, 3.5.1
2.8.1 Normal Approach and Landing Characteristics
A-II 2.8
A-III 2.6
A-V 3.0
A-XI 2.1, 2.5
2.8.2 Instrument Approach Capability
A-VII 3.3.3.5
A-IX 2.1.2.9
2.8.3 Automatic Landing Capability
A-VI 3.3.3
A-XI 2.10.2.3
2.8.4 Wind Loading
A-IV 15.8
2.8.5 Take-off and Landing Speeds
A-II 3.2.7
A-VI 2.5
2.9.1 Go-Around Capability
A-V 3.4.1
A-XI 2.5.3.3
2.10.1 Operational Life
A-II 4.1.1
2.11.1 Maintainability
A-I 2.1.2.3, 3.1.2.6
A-VI 5.2, 11.4.3.1
2.12.1 Reliability
A-I 8.1, 11.4.7
A-VII 2.2.6, 5.2.5.4
A-VIII 6.5
M-III 3.2
2.13.1 Ground Operational Objectives
A-VIII 4.0
<table>
<thead>
<tr>
<th>INDEX OF PROPOSAL DOCUMENTS TO REQUEST FOR PROPOSAL PARAGRAPHS (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.14 TURNTING RADIUS A-V 93.3.3</td>
</tr>
<tr>
<td>A-11 3.5.2</td>
</tr>
<tr>
<td>2.15 PASSSENGER COMPARTMENT WINDOWS A-V 4.4.4</td>
</tr>
<tr>
<td>2.16 COCKPIT VISIBILITY A-VII 4.2</td>
</tr>
<tr>
<td>2.17 FUEL CHARACTERISTICS A-VI 6.11</td>
</tr>
<tr>
<td>A-V 7.10</td>
</tr>
<tr>
<td>2.18 OVER-WATER PROVISIONS A-IX 3.15</td>
</tr>
<tr>
<td>2.19 IN-FLIGHT CABIN NOISE A-II 3.7</td>
</tr>
<tr>
<td>2.20 ENGINE NOISE CONTROL A-VI 7.3</td>
</tr>
<tr>
<td>2.21 IN-FLIGHT CABIN NOISE A-IX 4.0</td>
</tr>
<tr>
<td>2.22 ENGINE NOISE CONTROL A-IX 5.4</td>
</tr>
<tr>
<td>2.23 FLIGHT CREW COMPLEMENT, STATIONS AND FACILITIES A-V 4.2, 5.0</td>
</tr>
<tr>
<td>A-VII 4.0</td>
</tr>
</tbody>
</table>
INDEX OF PROPOSAL DOCUMENTS TO REQUESTED PROPOSAL PARAGRAPHS (Continued)

3.2 Airframe

3.2.1 Work Statement - Airframe

3.2.2 Specifications

3.2.3 Aircraft Description

3.2.3.1 General Arrangement

Drawing

A-II 2.1
A-I 2.2, 3.0
A-V 2.2, 3.0
A-XI 3.1
A-III 3.0

3.2.3.2 Combined Inboard Profile and Fixed Equipment

Drawing

A-II 4.4, 7.2
A-III 3.2

3.2.3.3 Flight Deck Arrangement

V-1 2.7
A-I 2.3, 3.3
A-II 4.4, 2.3, 5.0, 10.0
A-III 5.0
A-V 4.0
A-XI 3.1

3.2.3.4 Landing Gear System

A-II 4.5
A-III 4.4
A-V 19.0
A-XI 3.1, 2.3, 3.0, 4.2.2.4

3.2.3.5 Cargo Compartment

A-II 2.1, 3.8
A-II 4.4, 2.3, 10.0
A-III 6.0, 8.1.5
A-VII 9.0
A-V 3.1.8

3.2.4.1 Structural Data

V-I 2.5
A-II 4.0
A-III 4.0
A-VII 2.0, 2.1, 7.5, 2.6
A-II 10.0, 2.11, 3.0, 6.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0
A-VII 9.0, App. A, D, E
A-IX 3.1.2.3, 3.1.2.4
A-XI 4.2.2.5, 5.1.2.1

3.2.4.2 Flutter, Divergence & Control Characteristics

V-I 2.7, 11.0
A-IX 3.0.1, 4.2.2.8, 5.1.2.8

3.2.4.3 Vehicle Program

A-V 2.3, 12.0
A-IX 3.0.1, 4.2.2.1, 5.1.2.4

3.2.4.4 Dynamic Loads Data

A-V 2.3, 12.0
A-IX 3.0.1, 4.2.2.1

3.2.4.5 Local Fatigue Program

A-IV 2.9, 12.0
A-IX 5.1.1, 5.1.2.6, 4.2.2.6, 5.1.2.2

3.2.4.6 Static and Fatigue Tests

A-IV 2.10, 2.11, 9.0, 14.0
A-IX 3.1.2.3, 3.1.2.4, 3.1.2.7
INDEX OF PROPOSAL DOCUMENTS TO REQUEST FOR PROPOSAL PARAGRAPHS (Continued)

<table>
<thead>
<tr>
<th>3.2.4.7</th>
<th>3.2.7.2</th>
<th>3.2.9.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamic Heating Data</td>
<td>Flight Profile</td>
<td>Controls</td>
</tr>
<tr>
<td>A-IV 2.1, 4.0, App. B</td>
<td>A-V 3.0, 7.0, DF.0</td>
<td>A-D 6.3, 8.4</td>
</tr>
<tr>
<td>A-VI 8.2.2</td>
<td>A-V 5.1.3, 7.0</td>
<td>V-III 7.1, 1.3, 7.4</td>
</tr>
<tr>
<td>3.2.4.8</td>
<td>3.2.7.3</td>
<td>3.2.9.3</td>
</tr>
<tr>
<td>Landing Gear</td>
<td>Variable Geometry</td>
<td>Engine Starting System</td>
</tr>
<tr>
<td>A-II 4.5</td>
<td>A-V 5.1.3, 7.0</td>
<td>A-D 6.3</td>
</tr>
<tr>
<td>A-III 4.4</td>
<td>A-V 4.2.4, 7.0,</td>
<td>A-III 7.1</td>
</tr>
<tr>
<td>A-IV 15.0</td>
<td></td>
<td>A-VI 5.3.1, 6.9, 8.4</td>
</tr>
<tr>
<td>A-IX 3.1.2.3, 4.2.2.4, 3.2.8</td>
<td>Stability and Control</td>
<td>9.1.2</td>
</tr>
<tr>
<td></td>
<td>A-V 1.5, 5.2.4, 7.0,</td>
<td>A-VII 7.4, 7.8</td>
</tr>
<tr>
<td></td>
<td>DF.0</td>
<td>A-VIII 7.4, 7.8</td>
</tr>
<tr>
<td>3.2.5</td>
<td>3.2.9.4</td>
<td>3.2.9.5</td>
</tr>
<tr>
<td>Weight and Balance</td>
<td>Propulsion</td>
<td>Engine Installation</td>
</tr>
<tr>
<td>V-I 2.6</td>
<td>V-I 2.6, 3.4</td>
<td>A-D 6.3</td>
</tr>
<tr>
<td>A-II 7.5, 7.4</td>
<td>A-I 2.4, 3.4</td>
<td>A-III 7.1</td>
</tr>
<tr>
<td>A-III 2.3</td>
<td>A-II 6.0</td>
<td>A-VI 7.0, 7.6</td>
</tr>
<tr>
<td>A-IV 10.0</td>
<td>A-V 5.1.5</td>
<td>A-V 5.1.5, 4.2.4, 6.0, 4.2.4.</td>
</tr>
<tr>
<td>A-V 8.1</td>
<td>A-VI All</td>
<td>5.1.4</td>
</tr>
<tr>
<td>3.2.6</td>
<td>3.2.9.6</td>
<td>3.2.9.6</td>
</tr>
<tr>
<td>Aerodynamic Data</td>
<td>Engine</td>
<td>Engine Inlet Configuration</td>
</tr>
<tr>
<td>A-III 2.0</td>
<td>A-II 2.6, 6.1</td>
<td>A-D 6.3</td>
</tr>
<tr>
<td>A-V 2.0, A2.0, 4.9, C5.1, 8.0</td>
<td>A-III 7.0</td>
<td>A-III 7.1</td>
</tr>
<tr>
<td>A-IX 3.1.1, 3.1.2.3, 3.1.4.1, 3.1.4.3</td>
<td>A-VI 6.7</td>
<td>A-VI 1.2, 2.0, 6.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-VII 6.3, 4.2.4, 6.0, 5.1.4.7</td>
</tr>
<tr>
<td>3.2.7</td>
<td>3.2.9.1</td>
<td>3.2.9.8</td>
</tr>
<tr>
<td>Performance</td>
<td>Engine</td>
<td>A-D 5.2.2</td>
</tr>
<tr>
<td>V-I 2.2</td>
<td>A-II 2.6, 6.1</td>
<td>A-III 7.1</td>
</tr>
<tr>
<td>A-II 14.0</td>
<td>A-V 5.1.2, 5.1.3</td>
<td>A-V 7.5</td>
</tr>
<tr>
<td>A-V 1.2, 3.0, B3.0, 4.0, C5.1</td>
<td>A-VI 1.1, 2.0, 4.3, 9.2.11.11.0</td>
<td>A-VII 1.5, 3.0, 8.9</td>
</tr>
<tr>
<td>A-VI 11.3, 12.0</td>
<td>A-IX 3.1.1, 3.1.4.3, 2.3.1.11.10, 4.2.12. 5.1.4.9</td>
<td>A-VII 6.1, 9.2.12</td>
</tr>
<tr>
<td>A-XI 2.0</td>
<td></td>
<td>A-VII 3.1.4, 4.2.4.1, 5.1.4.1</td>
</tr>
<tr>
<td>INDEX OF PROPOSAL DOCUMENTS TO REQUEST FOR PROPOSAL PARAGRAPHS (Continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3.2.10 Secondary Power</td>
<td>3.2.11 Flight Control System</td>
<td>3.2.11.4 Flight Instruments</td>
</tr>
<tr>
<td>V-I 2.7</td>
<td>A-I 2.8</td>
<td>A-II 5.13, 6.10, 9.3</td>
</tr>
<tr>
<td>A-II 2.5, 3.6</td>
<td>A-II 3.9</td>
<td>A-III 5.3</td>
</tr>
<tr>
<td>A-III 2.0</td>
<td>A-IX 5.1.6, 5.1.6, 4.2.6, 5.1.6</td>
<td></td>
</tr>
<tr>
<td>A-VII 5.0, 10.2</td>
<td>A-XI 3.9</td>
<td>A-IX 5.1.3</td>
</tr>
<tr>
<td>A-IX 5.1.5, 5.3.4, 4.1.5, 4.2.5, 5.1.5</td>
<td>M-I 4.2, 4.3</td>
<td>A-XI 3.12</td>
</tr>
<tr>
<td>M-I 4.2, 4.3</td>
<td>3.2.11.1 Design Data</td>
<td>3.2.11.5 Engine and Fuel System Instruments</td>
</tr>
<tr>
<td>3.2.10.1 Hydraulic Systems</td>
<td>A-V 7.1</td>
<td>A-II 6.10, 6.11.7</td>
</tr>
<tr>
<td>A-II 7.3</td>
<td>A-VII 3.2</td>
<td>A-III 3.3</td>
</tr>
<tr>
<td>A-III 8.2</td>
<td>A-VIII 2.10, 2.1</td>
<td>A-VII 5.3, 7.8</td>
</tr>
<tr>
<td>A-VII 2.2, 10.2, 1</td>
<td>3.2.11.2 Control System Description</td>
<td>A-VII 4.3</td>
</tr>
<tr>
<td>A-IX 3.1.5, 5.2, 4.1.5.1, 2.1.5.4</td>
<td>V-I 2.7</td>
<td>3.2.12 Navigation & Communications</td>
</tr>
<tr>
<td>A-XI 3.7</td>
<td>A-I 2.6, 3.6</td>
<td>Equipment</td>
</tr>
<tr>
<td>3.2.10.2 Pneumatic System</td>
<td>A-II 8.0</td>
<td>V-I 2.7</td>
</tr>
<tr>
<td>A-II 7.4</td>
<td>A-III 9.0</td>
<td>A-II 3.7</td>
</tr>
<tr>
<td>A-VII 2.3</td>
<td>A-VII 3.3</td>
<td>A-III 10.0</td>
</tr>
<tr>
<td>3.2.12.3 Electrical System</td>
<td>A-IX 3.1.6, 3.3.5, 4.1.6, 4.2.6, 5.1.6</td>
<td>A-VII 5.0, 10.5</td>
</tr>
<tr>
<td>A-II 7.2</td>
<td>A-XI 3.9</td>
<td>A-IX 3.1.7, 3.5.6, 4.1.7, 4.2.7, 5.1.7</td>
</tr>
<tr>
<td>A-III 3.2, 5.1, 10.3</td>
<td>3.2.11.3 Automatic Flight Control System</td>
<td>A-XI 3.11, 3.13, 3.14</td>
</tr>
<tr>
<td>A-VII 3.4</td>
<td>A-II 8.4, 9.8</td>
<td>Computer and Data</td>
</tr>
<tr>
<td>A-IX 3.1.5.1</td>
<td>A-III 9.7</td>
<td>Processors</td>
</tr>
<tr>
<td>A-XI 3.2</td>
<td>A-VII 3.3</td>
<td>A-II 9.2, 2.2, 9.3.1</td>
</tr>
<tr>
<td></td>
<td>A-XI 4.2.5, 5.1.6, 3.1.4.3, 5.1.6, 3.1.10</td>
<td>A-VII 5.1.5</td>
</tr>
<tr>
<td></td>
<td>A-XI 3.10</td>
<td>A-IX 4.2.1, App. B</td>
</tr>
</tbody>
</table>
INDEX OF PROPOSAL DOCUMENTS TO REQUEST FOR PROPOSAL PARAGRAPHS (Continued)

3.2.14 Environmental Control
V-I 2.7
A-I 2.7, 3.9
A-II 11.0
A-III 11.0
A-VII 6.0, 10.6
A-IX 3.1.9, 3.3.7,
4.1.2, 4.2.9,
5.1.8
A-XII 2.6
M-I 4.2, 4.7

3.2.15 Safety Features
A-I 2.1, 2.4, 3.1, 2.4
A-III 6.1.1
A-VII 7.0, 10.7
A-IX 3.3.8, 4.2.1.12

3.2.15.1 Oxygen
A-II 10.4.3, 10.5.5
A-III 6.3
A-VII 7.1
A-IX 4.2.1.12,
5.1.1.13

3.2.15.2 Anti-Icing
A-II 11.7
A-VII 4.2.4.5, 7.2
A-IX 4.2.1.12

3.2.15.3 Transparent Area
Delaminating, Defrosting,
Desiccating & Rain
Removal
A-I 11.7
A-III 5.2, 7.8
A-IX 4.2.1.12,
5.1.1.13
A-XII 3.5

3.2.15.4 Fire Protection
V-I 2.7
A-II 6.9, 7.2.14,
7.3.15, 10.4.2
A-III 6.1.5, 7.2
A-IX 2.10, 7.9.1
A-VII 7.8
A-IX 4.2.1.12,
4.2.4.9
M-I 4.2.4.3

3.2.15.5 Crash Fire Prevention
Data
A-II 4.1.10
A-III 6.1.5
A-VII 7.3
A-VII 3.1.10, 4.1.10,
5.1.10
M-I 4.2.4.3

3.2.16 Noise Data
A-I 2.5, 3.7
A-V 3.3.7, 3.3.8,
13.1.4, 13.5.8,
13.8.2
A-VII 10.0
A-VII 8.0
A-IX 3.1.3, 3.3.3,
4.1.1.11,
4.2.1.13,
5.1.1.14

3.2.17 Ground Support Equipment
A-I 2.10, 3.10
A-II 4.1.1, 4.1.8,
4.1.8, 6.11.8,
7.2.7, 11.2.3,
12.9
A-VII All
A-IX 3.1.10, 4.1.10,
5.1.10
M-I 4.2.4.3

3.2.18 Systems Test Program
A-I 2.4, 3.1.4
A-IV 10.2.7
A-VII 8.0
A-VII 4.1, 10.0
A-IX 3.0
<table>
<thead>
<tr>
<th>Section</th>
<th>Document</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.19</td>
<td>Aircraft Flight Test Program</td>
<td>4.1.2</td>
</tr>
<tr>
<td>3.2.19.1</td>
<td>Special Requirements - Sonic Boom and Noise</td>
<td>4.2</td>
</tr>
<tr>
<td>3.2.20</td>
<td>Flight Simulator Program</td>
<td>4.3</td>
</tr>
<tr>
<td>3.2.21</td>
<td>Aircraft Mockup & Design Engineering Inspection</td>
<td>4.4</td>
</tr>
<tr>
<td>*4.1</td>
<td>CONTRACTOR ORGANIZATION & MANAGEMENT</td>
<td>4.5</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Management and Operation</td>
<td>4.6</td>
</tr>
</tbody>
</table>

INDEX OF PROPOSAL DOCUMENTS TO REQUEST FOR PROPOSAL PARAGRAPHS (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Document</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2</td>
<td>Organization</td>
<td>4.7</td>
</tr>
<tr>
<td>4.2</td>
<td>MASTER PROGRAM PLAN</td>
<td>4.8</td>
</tr>
<tr>
<td>4.3</td>
<td>REPORTS AND REPORT FREQUENCY</td>
<td>4.9</td>
</tr>
<tr>
<td>4.4</td>
<td>PROGRAM EVALUATION REVIEW TECHNIQUE (PERT)</td>
<td>4.11</td>
</tr>
<tr>
<td>4.5</td>
<td>COST ESTIMATING & BUDGETING PROCEDURES</td>
<td>4.11.1</td>
</tr>
<tr>
<td>4.6</td>
<td>CONFIGURATION MANAGEMENT</td>
<td>4.11.2</td>
</tr>
<tr>
<td>4.7</td>
<td>VALUE ENGINEERING</td>
<td>5.4</td>
</tr>
<tr>
<td>4.8</td>
<td>STANDARDIZATION</td>
<td>7.9</td>
</tr>
<tr>
<td>4.9</td>
<td>QUALITY CONTROL</td>
<td>6.0</td>
</tr>
<tr>
<td>4.10</td>
<td>RELIABILITY</td>
<td>5.2</td>
</tr>
<tr>
<td>4.11</td>
<td>PRODUCT SUPPORT PLAN</td>
<td>8.0</td>
</tr>
<tr>
<td>4.11</td>
<td>Maintenability</td>
<td>8.1.2.8</td>
</tr>
<tr>
<td>4.12</td>
<td>Support Plan</td>
<td>11.0</td>
</tr>
</tbody>
</table>

12
INDEX OF PROPOSAL DOCUMENTS TO REQUEST FOR PROPOSAL PARAGRAPHS (Continued)

| 4.11.3 | Warranty Program | 4.15 | DEVELOPMENT COST | 4.18.3 | Ground Support Equipment Cost |
| | M-III 13.0 | | DATA | V-I 3.0 | M-V All |

4.11.4	Training	4.15.1	Phase II - Airframe & Engine Costs	M-V 2.0
A-I 2.12, 2.13, 3.12, 3.13			Phase III - Airframe & Engine Costs	M-V 3.0
A-XII 4.0			Allocation of Costs by Government Fiscal Year	M-V 4.0
M-III 8.0				

4.12	TOOLING	4.15.2		
A-I 2.1.6, 3.1.6				
M-IV 1.0, 2.0, 3.0, 6.0, 7.0				

4.13	FACILITIES	4.15.3		
A-I 2.1.9, 3.1.9				
M-I 4.2.3.3				
M-IV 1.2, 4.0, 8.0				
M-V 10.0				

4.14	MATERIALS	4.16	PRODUCTION COSTS	5.0	SUMMARY DATA
A-I 2.1.2, 3.1.5			Work-in-Process Financial Requirements	M-V 6.0	
A-IV 7.0					
M-I 1.4					
M-IV 1.3, 5.0					

| 4.16.2 | Estimated Sales Price of the Supersonic Transport | M-V 7.0 |

4.18.1	Cost Factors	M-VI 2.1, App. A
4.18.2	Cost Computations	M-VI 2.2, App. A
4.18.3	Ground Support Equipment Cost	M-V 8.0

4.19	DIRECT OPERATING COSTS			
V-I 1.2.2, 3.3				
A-I 2.1.2.1				
M-VI All				
CROSS REFERENCE INDEX
PROPOSAL DOCUMENTS - REQUEST FOR PROPOSAL (RFP)

This cross-reference index relates the paragraphs of the proposal documents to the Evaluation Factors and to the numbered paragraphs of the Request for Proposal. This index permits a reader to locate in the proposal documents each of the paragraphs which relate to any of the Evaluation Factors or any one of the paragraphs in the RFP.

The code uses the proposal document numbers as listed below:

<table>
<thead>
<tr>
<th>Vol. No.</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-I</td>
<td>Summary</td>
</tr>
<tr>
<td>A-I</td>
<td>Airframe Work Statement</td>
</tr>
<tr>
<td>A-II</td>
<td>Model Specification</td>
</tr>
<tr>
<td>A-III</td>
<td>Aircraft Description</td>
</tr>
<tr>
<td>A-IV</td>
<td>Structural Report</td>
</tr>
<tr>
<td>A-V</td>
<td>Aerodynamic Report</td>
</tr>
<tr>
<td>A-VI</td>
<td>Propulsion Report</td>
</tr>
<tr>
<td>A-VII</td>
<td>Systems Report</td>
</tr>
<tr>
<td>A-VIII</td>
<td>Ground Support Equipment Report</td>
</tr>
<tr>
<td>A-IX</td>
<td>Test & Certification Plan</td>
</tr>
<tr>
<td>A-X</td>
<td>Aircraft Mockup and DFT Plan</td>
</tr>
<tr>
<td>A-XI</td>
<td>Flight Operation and Safety</td>
</tr>
<tr>
<td>M-I</td>
<td>Management</td>
</tr>
<tr>
<td>M-II</td>
<td>Management Controls</td>
</tr>
<tr>
<td>M-III</td>
<td>Product Support Plan</td>
</tr>
<tr>
<td>M-IV</td>
<td>Preliminary Production Plan</td>
</tr>
<tr>
<td>M-V</td>
<td>Development & Production Cost</td>
</tr>
<tr>
<td>M-VI</td>
<td>Direct Operating Costs</td>
</tr>
</tbody>
</table>

For example, if a reader is interested in Boeing's Development Plan as a part of the Master Plan as one of the Evaluation factors, he will find this subject discussed in:

Development Plan

V-I - paragraph 4.1
A-I - paragraph 2.1.6, 3.1.6
M-IV - paragraph 1.0, 1.3, 2.0, 6.0 and 7.0

If the reader wishes to know where paragraph 3.2.11.3 of the RFP, AUTOMATIC FLIGHT CONTROL SYSTEM, is described he will find the subject discussed in:

3.2.11.3 AUTOMATIC FLIGHT CONTROL SYSTEM

A-II - paragraph 8.4, 9.6
A-III - paragraph 9.7
A-VII - paragraph 3.2.3
A-IX - paragraph 4.2.6.3, 5.1.6.3
A-XI - paragraph 3.10
INDEX OF PROPOSAL DOCUMENTS TO EVALUATION FACTORS

MANAGEMENT

- **MANAGEMENT & ORGANIZATION**
 - Organization
 - V-I 4.3
 - M-I 1.2, 1.3, 2.0, 3.0, App. A
 - Manpower
 - V-I 5.3
 - M-I 4.2.3

- **COMPANY COMPETENCE**
 - V-I 6.9
 - M-I 1.6, 6.0
 - Financial Competence
 - M-I 6.0
 - Commercial Product Development
 - V-I 5.0
 - M-I 6.2, 6.3
 - Reliability & Quality of Products
 - M-I 6.4
 - Meeting Commitments
 - M-I 6.5

- **FACILITIES (DEVELOPMENT & PRODUCTION)**
 - V-I 5.1
 - A-I 2.1.9, 3.1.9
 - M-I 4.2.3.3
 - M-IV 1.2, 4.0, 8.0

SUBCONTRACTING

- V-I 4.3
 - M-I 1.4, 3.6 App. B

MASTER PLAN

- V-I 4.0
 - M-I 1.5, 4.0

DEVELOPMENT PLAN

- V-I 4.1
 - A-I 2.1.6, 3.1.6
 - A-IX
 - M-I 4.0
 - M-IV 1.0, 1.3, 2.0, 6.0, 7.0

PRODUCTION PLAN

- V-I 4.1
 - A-I 4.0
 - M-IV 2.0, 6.0

MANAGEMENT CONTROLS

- A-I 2.1.7, 3.1.7
 - M-II All

Value Engineering

- A-I 2.1.2.5, 3.1.2.5
 - M-II 3.4

PERT

- A-IX 1.1, 2.2
 - M-II 7.2, 7.7

Safety

- A-I 2.1.2.4, 3.1.2.4
 - A-VI 6.4
 - A-IX 5.1.1.2
 - M-II 5.8

Reliability

- A-I 2.1.2.4, 3.1.2.4
 - A-VI 6.4, 9.0, 11.4.3
 - A-IX 1.2.2.3.2
 - M-II 5.8

Maintenance

- A-I 2.1.2.6, 3.1.2.8
 - A-VI 9.5, 11.4.3
 - A-IX 1.2.2, 3.2
 - M-III 2.0

Standardization

- A-II 13.0
 - M-II 7.0

Quality Control

- A-I 2.4, 3.4
 - A-IX 6.0

Program Reporting & Documentation

- M-I 5.9
 - M-V 12.0