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FOREWORD

This report presents the final results of one of the projects participating in the military-effect
programs of Operation Hardtack. Overall information about this and the other military-effect
projects can be obtained from ITR-1660, the “Summary Report of the Commander, Task Unit
3.” This technical summary includes: (1) tables listing each detonation with its yield, type,
environment, meteorological conditions, etc. ; (2) maps showing shot locations; (3) discussion
of results by programs; (4) summaries of objectives, procedures, results, etc., for all projects;
and (5) a listing of project reports for the military-effect programs.
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ABSTRACT

Self-contained mechanical reed gages, capable of measuring the displacement-shock spectrum
over a frequency range of 3 to 300 cps in any one direction, were used during Shots Cactus and
Koa. Canisters containing the gages were normally placed with their tops flush to the ground
level at predicted pressure levels from 75 to 200 psi on both shots. Additional gages were in-
stalled in earth-confined arch structures of Project 3.2. Satisfactory records were obtained
for both shots.

Limited comparisons have been made between the results obtained for the low-yield (Cactus)
and high-yield (Koa) shots at the Eniwetok Proving Ground (EPG) and between the results for
Shot Cactus and the low-yield Shots Whitney, Galileo, and Smoky during Operation Pluinbbob at
the Nevada Test Site (NTS).

In general, vertical and radial displacements for Shot Koa were much lower than expected
from the extrapolation of data obtained from low-yield shots during Operation Plumbbob. Dif-
ferences in soil conditions, surface versus raised bursts, and topography variations may have
been contributing factors. The Appendix contains the preliminary results of intensive parame-
tric analyses and theoretical studies being made in an attempt to establish suitable scaling laws.,

In general, the vertical displacements at low frequencies (less than 10 cps) are lower and
the displacements at high frequencies (greater tihan 100 cps) are higher from Shots Cactus and
Koa than from the shots during Operation Plumbbob. Also, the ratios between radial and ver-
tical components at various ranges tend to be more nearly equal for the two Hardtack shots than
for the Plumbbob shots. Specifically, at 110 psi the vertical displacements of Shot Cactus were
significantly less (one third to one fifth) than for the Plumbbob shots up to 20 cps where they are
almost equal. Above 50 cps, the vertical displacements for Shot Cactus were' two to four times
greater than for the Plumbbob shots. The radial gisplacements at 110 psi for Shot Cactus were
about the same as for the Plumbbob shots up to 10 cps and two to four time¥ greater at higher .
frequencies.

A comparison of the vertical displacement§*/at 90 psi for Cactus and at‘B4 psi for Koa, shows
that the displacements for Koa were higher in the low-frequency range (t)‘/ice as high/at 3 cps),
lower for the intermediate-frequency range_,(lO to 50 cps), and about equal for the high-frequency
range. The radial displacements for Ca~tus at 90 psi were about the sajne as for Koa at 84 psi,

except in an intermediate-frequency range (10 to 50 cps) where the Cactus values were found to
be greater.

5-6
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GROUND-SHOCK SPECTRA from SURFACE BURSTS

OBJECTIVE

The objective was to measure directly the displacement-shock spectra, near the ground sur-
face, of air-induced and ground-transmitted ground shocks produced by the blast wave from
surface-burst nuclear detonations. The displacement-shock spectrum is a plot of peak displace-
ment of a set of several linear fixed-frequency oscillators (of single degree of freedom) to spe-
cific blast wave, as a function of the frequency of the oscillators. Velocity- and acceleration-
shock spectra are derived from the measured displacement-shock spectra. The measurements
do not correspond to the ground motions but are the responses of linear vibration systems rela-
tive to the ground motion.

BACKGROUND

Headquarters, U.S. Air Force, has required the Air Force Ballistic Missile Division (AFBMD),
Air Research and Development Command (ARDC), to provide data for a “hard” operational base
for one of the ICBM missile systems. The AFBMD, in conjunction with the Space Technology
Laboratories, Inc. (STL), formerly a division of The Ramo-Wooldridge Corporation (R-W), will
specify input data to architect-engineer firms. As a minimum, the environmental information
includes vertical and radial ground-shock spectra, permanent ground displacements, and levels
of nuclear and thermal radiation. Desirable information includes soil pressures and transient
ground displacements and acceleration.

The Air Force Special Weapons Center (AFSWC) furnished to AFBMD the best-known limits
of peak values and transient variations of ground accelerations and displacements for the re-
quired overpressure region, based on measurements made by Sandia Corporation (SC), Stanford
Research Institute (SRI), and Ballistic Research Laboratories (BRL) during operations prior to
Plumbbob.

For the measurements of accelerations and displacements during Operation Plumbbob, SC,
SRI, and BRL used what might be termed “standard acceleration and displacement instrumenta-
tion” ; AFBMD/R-W used, for the first time in the weapon-effect tests, self-contained sets of
single-frequency reed gages for direct determination of the displacement-shock spectrum. The
measurements provided a better understanding of the ground-shock phenomena for kiloton-range
devices. On the other hand, the shock-spectra data could not be extrapolated into the high-yield
range because of the lack of normal acceleration-time records for the megaton-range devices.

The results of the AFBMD/R-W measurements during Operation Plumbhob are contained in
Reference 1.

It was considered desirable to establish scaling laws for effects at different yields, particu-
larly for application to missiles, which possess very low natural frequencies. The first attempt
at scaling was made on the basis that the displacement shock at zero frequency (the peak ground
displacement at the surface) should be proportional to the total overpressure impulse. Because
displacement-shock spectra were not measured below 3 cps during Operation Plumbbob, the cor-
relation at zero frequency could not be made. The attempt at correlation at 3 cps indicated a
trend, but the results were indecisive. As shown in Figure 1, the least scatter of data appears
to be given by a plot of vertical displacement at 3 cps versus (overpressure)‘/6 (yield)m.
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Figure 2 shows a compositc plot of pertinent Plumbbob results for the vertical direction.
Similarly, Figure 3 shows a composite plot of Plumbbob results for the radial direction.

Participation during Operation Hardtack was a continuation of the Plumbbob eifort. Shot
Cactus was in the kiloton range, and Shot Koa was in the megaton range. Correlation is avail-
able to a limited extent between low yields and high yields at the EPG, and between low yields
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(Overpressure)Y, (Y!eld)‘/,
Figure 1 Displacement at 3 cps versus vertical direction.

at the EPG and the NTS, which permits scaling of surface ground-shock spectra with yield for
similar conglomerate soils.

The shock spectra can be used for making estimates of upper bounds of response of missiles
and structures subjected to ground motions, for conditions similar to those under which the
shock spectra are obtained. The structures considered are, in general, linear with small
damping, although some effort is under way to extend methods to simple nonlinear structures.

Specifically, the shock spectra are useful for estimations of: (1) maximum stress, displace-
ment, or acceleration induced in a structure; (2) design criterion for a supporting-structure

shock mounting which will protect the missile; and (3) shock environment for equipment attached
to the missile.

THEORY

Complete discussions of the theory and application of shock spectra are given in References
2, 4, and 7. Briefly, if a shock due to ground motions is applied to a linear structure attached

12
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to the ground, the displacement of any point of the structure relative to the ground can be ex-
pressed as a sum of principal mode responses:

u(t’x’sz) - Eq(t) ¢(X,Y,Z) (1)

Where: u(t) displacement relative to ground
qft) generalized coordinate
¢(x,y,z) = mode shape

An upper bound of response is obtained assuming all modes have reached their peak values
at the same time:

u = Zlqmax¢| (2)
For an acceleration input, it can be shown (Reference 4) that for each mode:
q + 2ewq + wq = —ya(t) (3)

q = generalized displacement relative to ground
w = frequency of mode
€ = ratio of damping to critical viscous damping
y = kinematic factor = [p¢dv/fpptdv
p = mass distribution per unit volume

a(t) = acceleration of ground as function of time

The solution to Equation 3 for small damping is

qmax(w, E) = max

t-0 | ¢

! (t=7)
Y f a(T)e—Ew U sin w(t—7dTr (4)

0

Assuming an idealized single-degree-of-freedom system, such as a point mass on a weight-
less cantilever spring, the equation of motion for the mass is

Q + 2€wQ + W*Q = —a(t) (5)

With an appropriate gage factor to adjust for stylus position and for the fact that the sets of
cantilevered mass systems have distributed mass, the reed shock gages will give direct read-
ings of peak displacements as solutions of Equation 5. The frequency spectrum of the peak
displacements of the masses relative to the base that is being accelerated is called the
displacement-shock spectrum, which is defined as:

D(w) = Qmax = {n_.az)c

t
%) f a(T)e--E () sin w(t—7)d7 (6)
0

If the displacement spectrum, D{w), is known, the modal response of any other structure
having the same damping as the gage is given by:

9max = vD (7
or the upper bound of response by (from Equation 2):

u=2lyDo| (8)

14
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The “velocity” shock spectrum is defined as
V = wD (9

This quantity has the dimensions of velocity, but is not the peak velocity of the mass relative
to the base. The velocity shock spectrum ls useful, however, in the determlnation of an upper
bound of strain energy in the structures and is discussed in Reference 7.

The acceleration shock spectrum is defined as

A = W'D (10)

and can be shown to be (Reference 7), the peak abseclute acceleration of the mass for small damp-
ing, namely:

A=maxlC§+al (11)

Plumbbob results indicated a possible correlation of shock spectra (a particular displacement
for a particular frequency) with the total ground impulse (air slap) resulting from that particular
(low-yield) air-overpressure wave form. Predicted curves were derived on the basis that the
rise time (free-air overpressure versus time) from a high-yield detonation was similar, if not
identical, to that from a low-yield detonation, but that tlie duration (total impulse) was longer.
This increase in duration obtains greater displacements for high-yield nuclear devices at low
frequencies, with practically no change of the same measurement at high frequencles for this
type of device.

For a better determination of how yield, pressure, depth, and soil parameters affect the
scaling of measured shock spectra to different explosions and different sites, a separate study
to create a mathematical model that would estimate the gross eifects of these parameters has
been initiated. Although this study has not been completed, a brief outline of the work, published
as Reference 8, is given in the Appendix.

OPERATIONS

Activities at the test site included the placement of instruments, recovery of record plates
and, where possible, recovery of instruments. Recovery of record plates from instruments
inside two of the Project 3.2 test structures was not immediately possible, because the struc-
tures had been damaged by the blast effects of Shot Koa. Recovery of these record plates was
accomplished in October 1958, by Project 3.2 personnel.

The records of two other instruments, L8 and L9, Station 125.05, for Shot Koa were invali-
dated by the unexplained formation of a crater, 30 feet in diameter and 10 feet deep. One of
these two instruments had been displaced {rom its original position in the ground to a position
approximately 10 feet away on top of the crater lip.

Two types of gages were used. Both were self-contained mechanical units requiring no elec-
tronic or communication channels.

INSTRUMENTATION: HIGH-FREQUENCY GAGE

The high-frequency gage (120 pounds) consists of ten cantilevered masses mounted on a com-
mon base plate as shown in Figure 4. The natural frequencies of the cantilevered-mass systems
are approximately 3, 10, 20, 40, 80, 120, 160, 200, 250, and 300 cps. (For Shot Koa, however,
certain of the 3-cps and 10-cps cantilevered masses were immobilized, because the large dis-
placements anticipated could not be recorded on the area available on the record plate.) Peak
responses to shock input for each cantilevered-mass system were recorded on polished, smoked,
stainless-steel record plates by the movement of a stylus attached to each mass. The length of

the marks (measure of displacement) was determined by use of a microscopic micrometer In the
laboratory.

15
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Protection for the gage was obtained by placement inside a cylindrical canister (430 pounds,
2 feet in diameter, and 2 feet deep). Transmission of shock input to the gage, either in the ver-
tical or horizontal (radial) direction, was secured by bolting the gage in the desired position to
the 1-inch-thick base plate. Figure 5 shows a canister (lid off) with a gage installed in the ver-
tical position

A spring-driven record-preserving mechanism was built into the gage to raise the original
record Y, inch, preventing subsequent shock inputs from invalidating the original record. A

Figure 4 High-frequency gage.

comparison of the record-plate vertical positions before and after the initial shock input may be
made by inspection of Figures 4 and 6. The time interval for the initiation of the record-plate
movement was approximately 5 minutes.

INSTRUMENTATION: LOW-FREQUENCY GAGE

The low-frequency gage (40 pounds) had three guide-tube assemblies containing roller-mounted
bob weights elastically restrained by tension springs pulling on either end of the bob weight. The
three assemblies possessed natural frequencies of 3, 6, and 10 cps. Each bob weight had a
needle stylus which scribed through a slot in the guide tube onto a smoked metal record surface
that was outside the guide tube.

A spring-driven record-prescrving mechanism locked the bob weights after approximately a
5-minute delay from the time of the initial shock input. As with the high-frequency gages, the
lockout mechanism was employed to prevent subsequent shock inputs from invalidating the orig-
inal record.

Protection for the gage was obtained by placement inside a cylindrical canister (160 pounds,

16
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Figure 5 High-frequency gage installed
in vertical position in canister

Figure 6 High-frequency gage. Record
plate is in raised positior

)
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8 inches in diameter and approximately 5 feet long). Figure 7 shows a gage assembly partially
inserted into the canister.

GAGE INSTALLATIONS

Figures 8 and 9 show the location an. layout of the project installations for Shots Cactus and
Koa.

The sequence of installation of gages when used for measurements in the free field was:

1. Excavation of 30-inch cubical holes for the canisters with the high-frequency gages.
Excavation of 1-foot-diameter holes, 5 feet deep,for vertical installation, and 1-foot-deep holes,

Figure 7 Low-frequency gage
partially inserted into canister.

5 feet long, for radial installation of canisters with low-frequency gages. The object was to
have the tops of the canisters flush with the surrounding ground.

2. Placement of canisters, as shown in Figures 10, 11, 12, and 13.

3. Backfilling around canisters, with native material. Compaction was obtained through the
use of water and hand tamping. It is estimated that a compaction of 90 percent of maximum
density at optimum moisture content was obtained.

4. Placement of smoked record plates in the high-frequency gages. The low-frequency rec-
ord plates were installed as a part of the low-frequency gage assemblies.

5. Cocking of record-preserving mechanism.

6. Careful placement and bolting of canister lids. (Rough handling could excite the gages.)

7. Placement of two layers of sandbags (each 4 to 5 inches thick) over the lids.
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Y VONNE
(CACTUS)

- 625 TO GZ < 850" TO 6Z < 965' TO 6Z
{200 PS1) (100 Ps1) {70 PSI)

4 F et
:{_9.5‘ 2@ -:

F.
1 "
_l_a e DN ) 16.5'

STA.181.02
e I}
24'
k DOME

STA.18103

1
1

STA.125.10 I

STA.125.07 STA.125.08 (INSIOE STA. | )
322.01) [

]

]

O RADIAL POSITION HIGH FREQUENCY 3-300 CPS
(P VERTICAL POSITION HIGH FREQUENCY 3-300 CPS

Figure 8 Gage layout, Site Yvonne, Shot Cactus.

IRENE
(KOA)

«-3200'T0 62 «3940'T0 GZ «4200' 10 GZ 44450'TO GZ
[}] (200 PSI) (120 Ps1) {100 PS|) (5] (90PS1)

L2 |STA.I2503
Wp——

I(INSIDE STA.
Lo} 322.04)

7
STA 125.01

(INSIDE STA.
STA 125.02 322.03)

ORADIAL POSITION HIGH FREQUENCY GAGE
3,10,20,40,80,120,160,200,250, 8 300 CPS

(D VERTICAL POSITION {SAME CPS AS ABOVE) N Shsas

@RADIAL POSITION HIGH FREQUENCY GAGE
10,20,40,80,120,60,200,250, 8 300 CPS E

(@VERTICAL POSITION (SAME CPS AS ABOVE)

eRAOIAL POSITION HIGH FREQUENCY GAGE
20,40,80,120,160,200,250, & 300 CPS

(D VERTICAL POSITION (SAME CPS AS ABOVE)

VERTICAL POSITION LOW FREQUENCY GAGE 3,6, 810 CPS (LI, L4, ETC ARE GAGE NUMBERS)
—— RADIAL POSITION LOW FREQUENCY GAGE 3,6,8 10 CPS

Figure 9 Gage layout, Site Irene, Shot Koa.
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Figure 10 Station 125.09, Site Yvonne.
Placement of high-frequency gage canister.

Figure 11 Station 125.09, Site Yvonne.
High-frequency gages.
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Figure 12 Station 125.08, Site Yvonne.
High-frequency gages in place.

Y

Figure 13 Station 125.05, Site Irene.
Low-frequency gages in foreground.
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The installation within the Project 3.2 structures required the early piacement of six canis-
ters for high-frequency gages (not containing gages and record plates) inside these structures
(two canisters each in Stations 322.01, 322.03, and 322.04), because the dimensions of the can-
isters did not permit their passage through the finished hatches of these structures. Each can-
ister was boited to the floor slab with four %-inch anchor bolts. Gage and record-plate installa-
tion, and cocking of the record-preserving mechanism, were accomplished iater. The iow-
frequency instruments were placed inside the finished structure (Station 322.04) and anchored
to the floor siabs with "‘/‘-inch anchor boits. The gage in the verticai position was guyed with

Figure 14 Station 125.03, Site Irene.
Canister instaiiation inside Station 322.04.

four iengths of ?.‘B-inch aircraft cabie. Figure 14 shows the canister instaiiation inside Station
322.04.

GAGE CALIBRATION

The caiibration consisted of making three measurements on each gage: (1) the natural fre-
quency of each reed, (2) the effective viscous damping ratio, and (3) a geometric parameter,
denoted by the gage factor G. This geometric factor is required because the iength of the trace

that is recorded on the record piate is dependent upon the location of the scribe on the vibrating
reed and the mass distribution.

High-Frequency Gages. The fundamentai natural frequency for each reed-mass system was
determined by placing each gage on a shake tabie and reading, by means of a Berkley counter,
the iowest frequency that produced resonance of each cantilever mass.

The damping ratio was obtained by fastening a smaii crystai accelerometer to a reed, dis-
placing the reed, and recording the decay motion on a Heiiand recorder, during which time the
scribe was in contact with the record plate. Because the damping varied siightly with needle
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pressure and with the amplitude of motion, the test was not performed on each of the gages but
only on a sample, to get typicai values of the viscous damping ratio. This test also gave a nat-
ural frequency of each reed on the gages tested and was used as a check on the shake tests.

A gage factor for each typical cantilevered- mass system was computed or obtained experi-
mentally. This gage factor is a multiplying factor for converting the length of the trace on the
record plate to an equivalent displacement of a point mass, or:

D = GS (12)
Where: D = displacement of point mass
G = gage factor
S = iength of trace made by stylus

For one mode:
5 = qmaxq’(s) (13)
Where: ¢(s) = mode value at stylus

or since Quax = ¥D (from Equations 4 and 6)

S

yD $(s) (14)
Hence, from Equations 14 and 12,
G = 1/y¢(s) (15)
Now y ¢(s) can be determined experimentally by applying a known constant acceleration and
measuring the stylus trace. From Equation 3, the value of q for constant applied acceleration
c is
qe = ')’C/wz (16)

and the length of the stylus trace is

c
U = qco(s) = I3 o(s)
or
G = 1/y¢(s) = ¢/U* (17)
Where: c¢ = constant acceleration
U = length of trace
w = frequency of reed-mass system

For the lowest-frequency reeds, the static deflection U was measured by applying a 1-g load
by inserting the record, turning the gage on end, and removing the record. For the intermediate-
range reeds, a larger load was required. A steady 15-g load was applied by placing the gages in
a centrifuge, bringing the centrifuge up to speed slowly, and then stopping the centrifuge. The
trace recorded corresponded to the 15-g applied load. For the highest-frequency reeds, a higher
load was required. Since the centrifuge capacity was limited to approximately 15-g for the 120-
pound gages, the G values for the highest-frequency reeds were determined from calculations
using Equation 15.
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Low-Frequency Gages. The natural frequency was measured by displacing the Lob weight
and letting it interrupt a light beam as the weight vibrated under free vibrations. The light beam
was focused on a solar battery. The output voltage of the solar battery was amplified by a dc
amplifier and fed into a Berkley meter. The Berkley meter measured the length of time between
the variations in the voltage caused by the interruption of the light beam. This period of time
corresponded to the natural frequency.

The damping ratio was mecasured by displacing the bob weight, recording the motion on the
record plate, and manually rotating the plate during the decay motion of the weight; successive
amplitudes could be detected and hence the damping ratio determined.

The G value of these gages could be determined by applying a load of 1-g and measuring the
static deflection at the scribe. However, in this system, which closely approximates a single
degree of freedom, the G value can be shown to be very nearly 1.0.

DATA REQUIREMENTS

The specification of design parameters and the cross-corroboration between low-yield and
high-yield devices required that the displacement-shock spectra be obtained for the preselected
overpressure level of 100 psi. Statistical considerations, variable ground conditions, @nd a
probable variation in yield suggested the placement of gages in overpressure regions varying
from below 100 psi to above 100 psi on both Shots Cactus and Koa. Accordingly, the gages were
placed as shown in Figures 8 and 9.

The desire to delineate the attenuation of the ground shock through depth, and thence through
an elastic floor slab, led to the placement of gages within the Project 3.2 structures.

Free-air overpressures were furnished by Project 1.7.

DISCUSSION AND RESULTS

The results are given in Tables 1 through 9 and Figures 16 through 44.

Of primary interest are the comparison and correlations between the results obtained for:
(1) high-yield (Koa) and low-yield (Cactus) shots for similar soils and topography at EPG and
(2) similar yields for different soils and topography (Shot Cactus at EPG and Shots Whitney, d
Galileo, and Smoky during Operation Plumbbob at NTS).

The following general trends were established for free-field shock-spectrum displacements
near the surface at similar overpressures:

1. The vertical displacements at low frequencies (less than 10 cps) are less for EPG than
for NTS, regardless of yield. Preliminary scaling of Plumbbob data, shown as Figure 15, in-
dicated that the high-yield shot (Koa) should have given about three times the displacement of
the low-yield Plumbbob shots if the soil conditions were similar. The much higher seismic
velocity at EPG may qualitatively explain the differences. Quantitative studies are now being
performed to establish scaling relationships to take into account soil factors. As mentioned
earlier, the preliminary results of these studies are shown in the Appendix of this report.

2. The vertical and radial displacements at high frequencies (greater than 100 cps) are
greater at EPG than NTS, regardless of yield. Differences in seismic velocity may also be a
factor in this case.

3. The vertical and radial components at the low- and high-frequency ends of the spectrum

are nearly equal for the low-yield shot (Cactus) at EPG. At NTS, the vertical component is
about three times the radial component.

Shot Cactus. The vertical displacements measured by two gages adjacent to each other (21

and 3, Station 125.08) at 110 psi overpressure are similar (probably within 15 percent) as shown
in Figures 18 and 19. :

The vertical displacements at 110 and 90 psi (Gages 21 and 3, Station 125.08, and Gage 22,
Station 125.09) show a local peaking at about 40 cps (Figures 18, 19, and 21).
At 110 psi (Station 125.08) the radial components (Gage 12) are only slightly lower (within 25
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TABLE 4 DISPLACEMENT SHOCK SPECTRUM, SHOT KOA, SURFACE, VERTICAL DIRECTION

Station 125.02 Stadoa 125.04 Station 125.05
Overpressure 196 psi Overpressure 86 psi Overpressure 84 psi
Range 3,100 ft. Range 3,940 ft. Range 4,200 ft.
Gage Number 10 Gage Number 1 Gage Number 15 Gage Number 14 Gage Number 23
High Frequency Low Frequency High Frequency High Frequency High Frequency
f, cps D, inches f, cps D, inches f, cps D, inches f, cps D, inches f, cps D, inches
3.1 1.138 2.7 2.687 3.0 -_— 3.1 2.985 1.0 2.659
10.6 0.305 5.3 1.838 10.0 1.019 9.4 0.688 9.7 0.583
23.0 1.142 8.8 0.818 22.0 0.797 23.0 0.520 23.0 0.619
48.0 0.888 49.0 0.539 49.0 0.395 51.0 0.292
87.0 0.259 90.0 0.220 88.0 0.151 86.0 0.171
138 0.185 136 0.111 137 0.031 138 0.088
180 0.122 178 0.064 181 0.030 180 0.028
218 0.082 218 0.044 214 0.033 220 0.030
283 0.051 258 0.041 250 0.015 260 0.014
289 0.019 287 0.030 288 0.019 284 0.011

TABLE 5§ DISPLACEMENT SHOCK SPECTRUM, SHOT
KOA, SURFACE, VERTICAL DIRECTION

Station 125.06
Overpressure 78 psi
Range 4,450 ft.

Gage Number 4 Gage Number 2
Low Frequency High Frequency
{, cps D, inches f, cps D, inches
2.8 1.935 2.9 2.439
5.1 1.328 10.3 0.423
9.5 0.282 23.0 0.289
49.0 0.299
88.0 0.175
138 0.082
180 0.032
213 0.018
258 0.010
291 0.008

TABLE 6 DISPLACEMENT SHOCK SPECTRUM, SHOT KOA, SURFACE, RADIAL DIRECTION

Station 125.05 Station 125.08
Overpressure 84 psi Overpressure '8 psi
Range 4,200 ft, Range 4,450 ft.
Gage Number 18 Gage Number 19 Gage Number 7 Gsage Number 1
High Frequency High Frequency Low Frequency High Frequency
f, cps D, Inches f, cps D, inches f, cps D, inches {, cps D, Inches
2.5 1.764 3.3 1.089 2.8 1.272 3.2 0.858
9.8 0.292 10.0 0.394 5.6 0.508 9.8 0.127
23.0 0.078 23.0 0.084 9.4 0.248 23.0 0.122
50.0 0.105 490 0.125 48.0 0.050
88.0 0.055 90.0 0.065 90.0 0.040
138 0.025 138 0.033 138 0.020
180 0.018 177 0.026 177 0.012
222 0.015 221 0.014 215 0.011
261 0.111 254 0.007 262 0.005
286 0.010 286 0.004 288 —
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percent) than the vertical components (Gage 3) for all frequencies except between 10 and 100
cps when the peaking occurs in the vertical component (Figures 20 and 19).

At 90 psi (Station 125.09) the radial components (Gage 13) are less than the vertical (Gage 22)
except at the high-frequency range (greater than 200 cps) as shown in Figures 22 and 21.

The vertical displacements inside the shelter at 90 psi (Gage 7, Station 125.10) do not show
the peaking at 40 cps that the outside (Gage 22, Station 125.09) measurements do. The displace-
ments are nearly the same as for outside up to 10 cps but are attenuated (factor of 7) in the
intermediate-frequency range (20 to 100 cps) from the values measured in the free field adja-
cent to the structure (Figures 23 and 21).

The radial displacements inside the shelter (Gage 9, Station 125.10) and outside (Gage 13,
Station 125.09) at 90 psi are similar up to 10 cps. Displacements inside show high attenuation
(85 percent) at high frequency (greater than 100 cps) as compared with displacements outside
(Figures 24 and 22).

Shot Koa. At Station 125.05, the adjacent gages (14 and 23) give nearly duplicate records
for the vertical displacements at 84 psi (Figures 31 and 32).

The vertical displacements measured by the low-frequency gages (L1 and L4, Stations 125.04
and 125.06) for 86 and 78 psi agree fairly well up to 6 cps. Because these gages were designed
for much greater displacements than those measured, their accuracy is in doubt (Figures 27
and 38).

The radial displacements measured by the low-frequency gages (L5, L3, L6, and L7, Sta-
tions 125.04, 125.05, and 125.06) for 86, 84, and 78 psi show considerable scatter. Records
are not considered satisfactory (Figures 30, 33, 34, and 40).

The vertical displacements measured by the low-frequency gage (L1, Station 125.04) at 86
psi are consistent with low-frequency components measured by the gage (23, Station 125.05) at
84 psi (Figures 27 and 32).

The radial displacements for adjacent gages (16 and 19, Station 125.05) agree closely (within
20 percent) and indicate a dip in the spectrum (half of normal trend) at about 20 cps (Figures 35
and 36).

At Station 125.05, the vertical displacement (Gage 23) for 84 psi is generally higher than the
radial displacement (Gage 19) for the entire frequency range, being from about three times as
great at 3 cps to slightly greater at high frequency (above 100 cps); but with the largest differ-
ence (six times) at 20 cps, where the peak in the vertical displacements corresponds to the dip
in the radial displacements (Figures 32 and 36).

The vertical displacements inside the shelter (Gage 20, Station 125.01) are considerably at-
tenuated (factor of 8) in the intermediate-frequency range (50 to 200 cps) from the values meas-
ured in the free field (Gage 10, Station 125.02) adjacent to the structure (Figures 41 and 25).

The radial displacements inside the shelter (Gage 11, Station 125.01) are lower (factor of 4)
over the entire frequency range from the values measured in the free field (Gages 17 and L5,
Stations 125.02 and 125.04) adjacent to the structure (Figures 42, 26, and 30).

The vertical displacements inside the shelter (Gage 6, Station 125.03) are higher (average
factor of 3) in the low-frequency range (3 to 20 cps), equal at 20 cps, then extremely attenuated
(factor of 10 to 20) in the frequency range of 20 to 300 cps from the values measured in the free
field (Gage 2, Station 125.06) adjacent to the structure (Figures 43 and 37).

The radial displacements inside the shelter (Gage 8, Station 125.03) are equal at a frequency
of 20 cps and then gradually attenuated (factor of 7) over the range of 20 to 300 cps from the val-

ues measured in the free field (Gage 1, Station 125.06) adjacent to the structure (Figures 44
and 39).

Shot Cactus and Operation Plumbbob. At 110 psi, the vertical displacements of Shot Cactus
(Gage 3, Station 125.08) are significantly less (one third to one fifth) than for the shots during
Operation Plumbbob up to about 20 cps where they are almost equal. Above 50 cps, the vertical
displacements for Shot Cactus are two to four times greater than for the Plumbbob shots (Fig-
ures 19 and 2).
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The radial displacements at 110 psi for Shot Cactus (Gage 12, Station 125.08) are about the
same as those for the Plumbbob shots up to 10 cps. For the higher frequencies, the displace-

ments for Shot Cactus are two to four times greater than those for the Plumbbob shots (Figures
20 and 3).

Shots Cactus and Koa. A comparison of the vertical displacements at 90 psi for Shot Cactus
(Gage 22, Station 125.09) and at 84 psi for Shot Koa (Gage 23, Station 125.05) shows that the dis-
placements for Shot Koa are higher in the low-frequency range (twice as high at 3 cps), lower
for the intermediate-frequency range (10 to 50 cps) and about equal for the high-frequency range
(Figures 21 and 32).

The radial displacements for Shot Cactus at 90 psi (Gage 13, Station 125.09) are about the
same as for Shot Koa at 84 psi (Gage 19, Station 125.05) except in an intermediate-frequency
range (10 to 50 cps) where the Shot Cactus values are greater (Figures 22 and 39).

CONCLUSIONS

High-frequency gages (3 to 300 cps) gave readable records with excellent consistency of val-
ues in duplicate installations.

Low-frequency gages (3 to 10 cps), which were designed for much higher displacements than
observed, produced records with considerable scatter.

In general, vertical and radial displacements for the high-yield shot were much lower than
expected from the extrapolation of Plumbbob data. Differences in soil conditions, surface ver-
sus raised bursts, and topography variations may have been contributing factors.

A brief outline of separate parametric analyses and theoretical studies, published as Refer-
ence 8, is given in the Appendix.
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Appendix
DISPLACEMENT SHOCK SPECTRA VELOCITY, and ACCELERATION

of a HALF-SPACE in RESPONSE to a MOVING PRESSURE  PULSE -
GENERAL OUTLINE

INTRODUCTION

In this study, the following conditions are assumed to
exist in the soil, near the ground level, exposed to a
nuclear explosion.

1. The soil 1s homogencous, isotropie, and elastic.

2. The polnt under investigation is far enough away
from the explosion so that the radius of curvature of
the shock-wave front is large compared with the dimen-
sions of the soil body considered.

3. For the slze of soil body considered, the shock
wave appears as a steadily moving pressure pulse
whose intensity and geometrlc distribution are invari-
ant. (This assumptlon has been eliminated in later
studies; the theory is presented in Reference 12. Be-
cause the numerical calculations based on these later
studies have not yet been completed, none of the re-
sults are presented here.)

Under these assumptions the soil-response problem
may be approximated by a two-dimensional problem in
which an Invariant pressure pulse moves with a con-
stant speed over an elastlc half space. Future studies
will deal with the effects of soil layering, solid bodies
enclosed in the soil, nonlinear visco-elastic or plastic
and compactible soils, three-dimenslonal effects,
coupling of air and soil, and the like.

The problem of a steadily moving line load over
elastic half space was formulated and solved by Lamb,
Sneddon, Huth, and Cole (References 9, 10, and 11).
The simplicity of the problem and the applicatlons of
the solution to shock-spectrum studies are demonstrat-
ed below.

p—

THE MATHEMATICAL PROBLEM

Uo—j_’
* y

¥i

Xg
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Let x,, y, be space coordinates fixed in the medlum
which occupies the half space y, >0 and let x and y be
coordinates which move at the constant speed of the

pressure pulse U In the negative x, direction. The me-
dium is assumed to obey Hooke's law
= A 5, + A.l
%5 = M mmdyy T ¥y S

where A and p are Lamé are constants. The equation
of motlon is then, in vector notatlon

aly

at?

A+2)VV . U)=pV X (VXxUu)=p (A.2)

where J(u,v) s the displacement vector. If the dis-
placement is separated into a dilatational and rota-
tional part, so that, in the plane-strain case under
consideration,

9y

ay,

a solution is obtained, provided ¢ and y satisfy the
equations

L) (A.3)

20 oy
ox,

TBy, 0%y

¢ +¢ ==K
XXy Y1 al tt
A4
L o
XXV g2 tt
where
A+ 2 {;T
s P— A.5
1 ) 2 ) (A.5)

a, and a, are the dilatational and shear wave speeds in
the medium, respectlvely. In the plane-strain case,
the stress components are

o =(A+ 2u)u + Av
Xy Xy Y1

o4 =

Au 4+ (A4 2u)v A.6
by~ Mt Y (A-6)

=pu(u +v )

-
Xv1 Y1 X1

In the above problem, the pressure pulse ls considered
as a function of x + Ut only. Hence, wlth a Galilean
transformation
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x =x; + Ut y =y (A.7)
and the boundary conditions are

0 ==p(x 7. =0 when =0 A.8

y IR T y A.-8)

which is independent of the time t. In the steady state,
the differential Equations A.4 are transformed by A.7
into

ot +— 0o
XX Yy gy X
1
(A.9)
u?
+ =
Pt Yy T Y
2
or, introducing the Mach numbers,
U U
M, = = 2 = ; (A.10)
and the parameters,
By = N1 -M 8, = 1 -M (A.11)
if My, M, <1
and
By = Mi -1 By = \Mj -1 (A.12)
if M, M, >1
the elliptic equations are
2 +¢ =0 if M, <1
Bi d’xx vy 1
(A.13)
B+ =0 ifM,<1
Wex T Yy 2
and the hyperbolic equations are
12
Bid. _=¢ =0 ifM;>1
1D vy 1
(A.14)
2
3 ¢xx—¢yy=o if M, >1

Expressions for the stress components may be reduced,
by mcans of Equations A.9 and A.10 into

g
XM —om? _
T M -2Mi s e, -2

g
Y oM _ )
m (M} =2)¢ +2¢xy (A.15)
Txy
— - 2 -
o S0, - (Mi -2
46

The boundary conditions (Equation A.8) can be integrat-
ed once tc obtajn, at y =0,

X
1
(M —2)0, 24 = -2 f p(x)dx
(]

(A.16)
—-— z — =
2¢ (M; =2 0

When ¢ and y are solved from Equations A.13 or A.14
with the boundary conditions (Equation A.16) on the
free surface and suitable radiation and finiteness con-
ditions at infinity are satisfied, the displacements u
and v can be obtained from Equation A.3, the stresses
Ox, Oy, and 74, can be obtained from Equation A.15,
and the velocity and acceleration with respect to the
space coordinates fixed in the medium by

du du
g—Ua—x; _U(d’x—d’y)x
av av
3t~ Yax, —U(d>y * )
A.17)

d%u a%u (
=SV = R UK, =19)
at? ax} L

2 2
3 VS U? v Uz(d,y + d’x)xx
at? ax}

With the same steps as in Reference 11, it is possible
to obtain the following ground acceierations at any
depth, y =UY, and any time t in the horizontal (i) and
vertical (V) directions due to an invariant pressure

= = k .
p(t) pmp, (t), where pm peak overpressure

PRESSURE PULSE MOVING FASTER
THAN DILATATIONAL OR SHEAR
SPEED (M, > M; > 1, SUPERSONIC)

.. C = = -
P =i pl =B, V) + BCpl (- FrY)
pm §‘
(A.18)
pay

V = Cypf(t—38; Y)+ Copf(t =53, Y)
m

where primes indicate the derivatives of the pressurc-
pulse curve with respect to the argument and

(A 19)
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2 28, t
o) SECN Y | S
(@-1>+4EE a [ e gyt Jo (t-m)?+plY’

PRESSURE PULSE MOVING FASTER

THAN SHEAR WAVES AND SLOWER B

THAN DilATATIONAL WAVES =Pt » B =D
(M, > 1 > M,, TRANSONIC)

) B] < 0
pay . Ce [z L), G5 [z I°Hy 2 ANy t
—Ly==2 fuz—-1]+ Ul —L) + 5,Cy U & d
P By dx? By o dx? v 4N _-.% + P _p“L)._L_ (A.22)
dx? t —B,Y t—71-8Y
~ d?N
+ BiCy (U2 —4 &N =
dx? vi—4] =plit-3Y)
dx?
(A.20)
PRESSURE PULSE MOVING SLOWER
a? aH d*N THAN SHEAR OR DILATATIONAL
P4y - oy (v 8t ) vy fur L) 4, 2 R WAVES (1 > M, > M,, SUBSONIC)
Pm dx? dx? dx?
2 2
2 d’N, EL‘-J;SL Uzﬂ. - 3,Cy UZH:.
+ Cy U — P B 2
dx? m B dx? dx?
where (28)
. 2y? pa, .. d? d1,
c.=M (M By \1=8, B1y=c [B=2] -, [ 2
J n Nll 2 4 2 pm dxz dx2
1-3,) +16pF
< 52) AiBy where
= < 2 ’ 2 5
oM, (M, )% 4piE, \1 -3 C,:ﬂ M B
CB =g "_ M—l x 1 ) ™ M| . 2
- 5 1+ -4
<1 —Bz) + 16818, < ﬁz) i
(A.24)
(A.21)
2
2 H H
M, /M,\? 25 (1-’;,) c‘=M—' M, By (148,)
C-( = == == Lig M, 2
T AM, 2\ 2 1482 — 48,3
1-5,) + 16813, 2 182
M, \ 2 8833, SHHOCK-SPECTRA CALCULATIONS
Co = M| 17 -
1 2 2
<1 - Ez) + 166?{32 Shock spectra show the peak response of a single-
degree-of-freedom system relative to the ground, due
to the ground motion, as a function of the frequency of
the single-degree-of-freedom system attached to the
t d. That is D (maximum displacement) is
 d¥, tp,(0) p t—1 groun max P
u? -—; E> z—'— + R~ p{ (T)dr the maximum value of the solution of the differential
dx 4+ piY? Yo (t-1)+plY equation
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(A.25)

where a(t) is the acceleration of the support. For
this study various pressure-pulse curves were taken
and the resulting ground-acceleration time history for

100~-psi-overpressure region. The caleulations were
carried out for a triangular pressure-pulse approxi-
mation of Brode's theoretical pressure pulse by ehoos-
ing the duration of the triangular pressure-pulse eurve
s0 that the area under the curve was equal to the posi-
tive phase of Brode's theoretieal curve. The theoret-
ical shock-spectra curves shown were based on a soil
with dilatational speed, a, = 1,500 ft/sec, Poisson
ratio, v = 0.45, soil density = 100 1b/ft3, and depth

=5 ft. At this 100-psi-overpressure loeation, the
blast wave velocity of U = 3,000 ft/sec is larger than

M :E

o 2 a

o,
1 a

™~

U = pressure pulse speed
4, = dilatational wave speed

A, = shear wave speed

2.2 z 2
FiM, M) = (2-M3) - 4}1 - My [1 M5

Locus of F{Mlel =0
(Rayleigh Waves)

3.0

Figure A.1 Ground shoek studics, summary of cases.

various depths computeu. These ground accelerations
were then introduced in placc of a(t) in Equation A.25,
and the peak responses were dctermined.

Figure A.1 summarizes the range of parameters in-
vestigated. The straight iines represcnt constant
ratios of M,/M, or a,/a, which correspond to constant
Poisson ratios of the elastic half space. The three
regions of interest are designated by suhsonic
(1> M, > M,), transonic (M, > 1 > M) and supersonic
(M, > M, > 1). The range of parameters investigated
was 0 < M, < 2and 0 <y < 100 for Poisson ratios of
0.25 and 0.45.

Some typical results from the steady-state solution
are shown in Figures A.2 through A.5 where a theoret-
ical curve has been superimposed on plots of data from
the Hardtack and Plumbbob tests. These theoretical
curves were bascd on yields of 40 kt and 2 Mt, in the

48

either seismic speed and, therefore, corresponds to
the supersonic case. It should be noted that, in gener-
al, the theoreticai curves underestimate the measured
data. Since the shock spectra vary nearly inversely
with pa, in this rangc of U/a, values, a smaller value
of pa; will shift the theoretical curve upward and bring
it into closer agrecinent with the data.

In these caicuiations, the valuec of 100 Ib/ft? for
soil density may be slightly high. In addition, the
seismic speed of a, = 1,500 ft/sec is certainly high as
compared with the values measurcd close to the sur-
face during Operation Hardtack, wherc some measured
values were as low as 800 ft/sec. However, seismic
measurements showed that the seismic speed increased
rapidiy with increasing depth near the water table,
which was at about 20 feet. This, of course, makes it
difficult to pick a representative seismic speed to be
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used In this theoretical study. If, for example, the
seismlc speed of 1,000 {t/sec was used in place of the
value of 1,500 ft/sec, then the theoretical shock-
spectra curve would be shlfted upward by a factor of
1,500/1,000 = 1.5, bringing the theoretical curve Into
much closer agreement with the measured data.

It shouid be mentioned that since there is no data
available from which the Poisson ratlo can be deter-
mined for elther the Hardtack or Plumbbob test sltes,
a search of the llterature was made to determine a
representative value of the Poisson ratio for a typical
soll. In Reference 14, the shear and dilatational wave
speeds were measured in Pierre shale in eastern Col-
orado. From these speeds, the Poisson ratio is cal-
culated to be 0.415 and 0.419 In the vertical and hori-
zontal directions, respectlvely. In Reference 13, the
shear and dilatatlonal wave speeds were measured in
Eagle Ford shale and Austin chalk in Dallas County,
Texas. From these speeds, Poisson’s ratio was cal-
culated to be 0.47 and 0.46 in the vertical and horizon-
tal directions, respectively, for the Eagle Ford shale
and 0.40 and 0.41 in the vertical and horizontal direc-
tions, respectlvely, for the Austin chalk. From these
references, It appears that the theoretical shock spec-
tra calculated using the Poisson ratio of 0.45 is more
representative for a soil than the spectra calculated
using the Poisson ratlo of 0.25.

An examination of the expressions for the ground ac-
celerations show that in the subsonic case, the denomi-
nator of Cy and C, may be zero for certain values of the
seismic speeds a; and a,. Herein lies ore serious de-
fect with the steady-state solution. In this case the

51

pressure-~puise speed U is movlng over the half space
(the earth) at the same speed at which Raylelgh surface
waves are propagated within the half space and, there-
fore, a type of resonance exlsts. Of course, In a real
situation thle would not occur, because U ls not con-
stant, but rather, decreases with time. llence the air-
wave speed would pass through the Rayleigh wave speed
and would cause large but finlte ground motions at a
distance from the exploslon where the speed of the

wave front has slowed down to the Rayleigh-wave speed.

(This, of course, assumes that the speed of the wave
front at the epicenter is larger than the Rayleigh-wave
speed in the elastic half space.) Thus the shock spec-
trum cannot be computed when the Rayleigh-wave
speed colncides with the blast-wave speed or is in
some ‘“‘neighborhood” cf speeds “close” to the Ray-
lelgh-wave speeds. As a result of this defect In the
steady-state solution, another study has been under-
taken in which the blast-wave speed U is no longer con-
stant but decreases wlth Increasing distance from the
epicenter. The theoretical work of this study s re-
ported in Reference 12. The study indicated that the
steady-state solution herein reported 1s a good approx-
imatlon of the translent :olution for blast-wave speeds
““sufficiently far” from the Rayleigh-wave speeds.
Shock-spectrum calculations based on the transient
sofution of Reference 12 have not been compieted to
date. The results of these calculations will be pre-
sented in an STL report at the completion of the
investlgation.
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Delense Special Weapons Agency
6801 Telegraph Road
Alexandria, Virginia 22310-3398

OPSSI
MEMORANDUM FOR DISTRIBUTION

SUBJECT: Declassification Review of Operation HARDTACK Test Reports

The following 28 reports concerning the atmospheric nuclear tests conducted
during Operation HARDTACK in 1958 have been declassified and cleared for open
publication/public release:

WT-1606 thru WT-1611, WT-1613 thru WT-1617, WT-1620, WT-1626,
WT-1630, WT-1633, WT-1634, WT-1647, WT-1649, ITR-1653, ITR-1655, ITR-1656,
WT-1661, WT-1662, WT-1676, WT-1685 thru WT-1687, and WT-1689.

An additional 29 WTs from HARDTACK have been re-issued with deletions and
are identified with an “EX’ after the WT number. These reissued versions are unclassified
and approved for open publication. They are:

WT-1602, WT-1618, WT-1619, WT-1621 thru WT-1623, WT-1625, WT-1627,
WT-1629, WT-1636 thru WT-1641, WT-1648, WT-1650, WT-1651-1, WT-1657,
WT-1663, WT-1664, WT-1675, WT-1677, WT-1679 thru WT-1682, WT-1688 and
WT-1690

This memorandum supersedes the Defense Special Weapons Agency, OPSSI
memorandum same subject dated June 13, 1997 and may be cited as the authority to
declassify copies of any of the reports listed in the first paragraph above.

o
RITAM. METRO
Chuef, Information Security
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