THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
UNCLASSIFIED

AD 356271

CLASSIFICATION CHANGED
TO: UNCLASSIFIED
FROM: CONFIDENTIAL

AUTHORITY: DNA etc.

26 Jan 81

UNCLASSIFIED
U.S. Military Agencies may obtain copies of this report directly from DDC. Other qualified users shall request through Director, Defense Atomic Support Agency.
OPERATION CASTLE

Project 3.5

BLAST EFFECTS ON MISCELLANEOUS STRUCTURES

REPORT TO THE SCIENTIFIC DIRECTOR

Wayne J. Christensen, LCDR, GEC, USN

July 1955

[Handwritten note]

This document contains information deemed to be National Defense of the United States at the discretion of the President and the Joint Chiefs of Staff and its transmission or disclosure in any manner is prohibited.

- Armed Forces Special Weapons Project
- Washington, 25, D.C.
<table>
<thead>
<tr>
<th>DATE</th>
<th>CODE NAME (Unclassified)</th>
<th>TIME</th>
<th>LOCATION</th>
<th>TYPE</th>
<th>HOLES & MARSER COORDINATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shot 1</td>
<td>Bravo</td>
<td>06:40</td>
<td>Bikini, West of Chorlton (Run)</td>
<td>Land</td>
<td>N 170.61.17 E 76.16.398</td>
</tr>
<tr>
<td>Shot 2</td>
<td>Romeo</td>
<td>06:25</td>
<td>Bikini, Shot I</td>
<td>Barge</td>
<td>N 170.63.50 E 75.950.46</td>
</tr>
<tr>
<td>Shot 3</td>
<td>Koon</td>
<td>06:15</td>
<td>Bikini, Torre</td>
<td>Land</td>
<td>N 147.750.00 E 67.790.00</td>
</tr>
<tr>
<td>Shot 4</td>
<td>Nectar</td>
<td>06:15</td>
<td>Eniwetok, IVY Mike Crater, Flora (Eglogola)</td>
<td>Barge</td>
<td>N 147.750.00 E 67.790.00</td>
</tr>
<tr>
<td>Shot 5</td>
<td>Jax</td>
<td>06:05</td>
<td>Bikini, on Barge at intersection of Arc with Radu of 600' from Dog (Yurochi) and 5 statute miles from Fox (Apanem)</td>
<td>Barge</td>
<td>N 161.698.83 E 116.686.15</td>
</tr>
<tr>
<td>Shot 6</td>
<td>N-0</td>
<td>06:05</td>
<td></td>
<td></td>
<td>N 141.424.3 E 116.686.15</td>
</tr>
</tbody>
</table>

SECRET - RESTRICTED DATA
ABSTRACT

The unexpected structural damage which resulted from the Shot 1 (1 March) blast wave of Operation CASTLE presented an opportunity to determine the blast effects of high yield weapons on miscellaneous structures.

It became evident from this damage survey that the effective lethal range to light wood frame buildings was surprisingly great. This type of structure and tents were damaged severely beyond 14.5 miles.

Reinforced concrete shelter type structures exposed directly to the blast were vulnerable to the effects of air blast as far as 1-1/2 miles. This was evident from the postshot condition of station 1341 on Able Island. A survey of Station 1200 on Charlie Island indicates that earth cover affords a good deal of protection against this type damage.
FOREWORD

This report is one of the reports presenting the results of the 34 projects participating in the Military Effects Tests Program of Operation CASTLE, which included six test detonations. For readers interested in other pertinent test information, reference is made to WT-934, Summary Report of the Commander Task Unit 13, Programs 1-9, Military Effects Program. This summary report includes the following information of possible general interest.

a. An over-all description of each detonation, including yield, height of burst, ground zero location, time of detonation, ambient atmospheric conditions at detonation, etc., for the six shots.

b. Discussion of all project results.

c. A summary of each project, including objectives and results.

d. A complete listing of all reports covering the Military Effects Tests Program.

PREFACE

Immediately following Shot 1 of Operation CASTLE, an aerial radiological and photographic survey was made of the various islands of the Bikini Atoll. Two important facts were immediately apparent. (1) Considerable damage occurred to light structures at extremely great distances from ground zero. Also, the heavy reinforced concrete shelter type structures close to ground zero received significant damage. (2) All the islands of the atoll had a high level of radioactive contamination which made them uninhabitable. This report is concerned with structural damage only.

The damaged, reinforced concrete, shelter type structures to be discussed in this report had been designed to withstand the expected blast from a 6 MT thermonuclear device. These structures were instrument shelters on Able and Charlie Islands. Other installations such as the living area, the technical area, the warehouse and shop area, and the scientific area on Tare Island, and the airport facility on Peter Island were located at sufficiently great distances from Shot 1 ground zero that little or no structural damage had been anticipated. However, the actual yield of Shot 1 (about 14.5 MT) far exceeded the expected yield. The significant structural damage which resulted presented an excellent opportunity to study the effects of air blast from a high yield weapon on miscellaneous types of structures.

SECRET - RESTRICTED DATA
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ABSTRACT</td>
<td>5</td>
</tr>
<tr>
<td>FOREWORD</td>
<td>FOREWORD</td>
<td>7</td>
</tr>
<tr>
<td>PREFACE</td>
<td>PREFACE</td>
<td>7</td>
</tr>
<tr>
<td>ILLUSTRATIONS</td>
<td>ILLUSTRATIONS</td>
<td>10</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>13</td>
</tr>
<tr>
<td>1.1</td>
<td>Objective</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>PRESHOT DESCRIPTION OF THE PROJECT SITES</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Camp Site on Tare Island</td>
<td>14</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Living Area</td>
<td>14</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Mess Hall</td>
<td>14</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Power and Water Plants</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Shops and Warehouses</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Scientific Area - Tare Island</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Technical Area - Tare Island</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Airport Facilities - Peter Island</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Station 1341 - Able Island</td>
<td>16</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Design Criteria</td>
<td>16</td>
</tr>
<tr>
<td>2.6</td>
<td>Station 1200 - Charlie Island</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>RESULTS</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Air Blast Damage to Installations on Tare and Peter Islands</td>
<td>23</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Damage to Tents</td>
<td>23</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Light Wood Frame Structures</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2.1</td>
<td>Damage to the Mess Hall</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2.2</td>
<td>Damage to Power Stations</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2.3</td>
<td>Damage to Warehouses and Shops</td>
<td>24</td>
</tr>
<tr>
<td>3.1.2.4</td>
<td>Air Operations Building</td>
<td>25</td>
</tr>
<tr>
<td>3.1.2.5</td>
<td>Hangar, Peter Island</td>
<td>25</td>
</tr>
</tbody>
</table>

SECRET - RESTRICTED DATA
3.1.2.6 Miscellaneous Light Wood Frame Structures, Tare and Peter 25
3.1.3 Water Tower, Tare 25
3.1.4 Scientific Structures, Tare 25
3.2 Damage to Reinforced Concrete Instrument Shelters on Able and Charlie Islands 25
3.2.1 Exposed Structures 25
3.2.1.1 Failure of Walls 26
3.2.1.2 Failure of Doors 26
3.2.1.3 Other Miscellaneous Damage 26
3.2.2 Earth Covered Structures 27
3.2.2.1 Structure Failure 27
3.2.2.2 Damage to Doors 27
3.2.2.3 Other Miscellaneous Damage 27

CHAPTER 4 CONCLUSIONS 62

ILLUSTRATIONS

2.1 Typical Warehouse Section, Tare Island, 14-3/4 Miles from GZ 15
2.2 Plot Plan of Living, Administrative, and Warehouse Areas, Tare Island, 14-3/4 Miles from GZ 17
2.3 Technical Area - Tare Island, 14-3/4 Miles from GZ 18
2.4 Plot Plan of Airport Facilities, Peter Island 15-1/2 Miles from GZ 19
2.5 Station 1341, Able Island, 7500 ft from GZ, Longitudinal Vertical Section 20
2.6 Station 1341, Able Island (7500 ft from GZ) Front Elevation 21
2.7 Floor Plan, Station 1200, Charlie Island, 7555 ft from GZ 22
3.1 Postshot Aerial View of Camp and Warehouse Area on Tare Island, 14-3/4 Miles from GZ 28
3.2 Postshot Aerial View of Camp and Administrative Area on Tare Island after Shot 1, 14-3/4 Miles from GZ 29
3.3 Postshot Tent Damage in Scientific Area, Tare Island 14-3/4 Miles from GZ 30
3.4 Postshot Tent and Latrine Damage, Tare Island, 14-3/4 Miles from GZ 30
3.5 Camp and Warehouse Area, Tare Island Postshot, 14-3/4 Miles from GZ 31
3.6 Technical and Scientific Areas, Tare Island, Postshot 14-3/4 Miles from GZ 31
3.7 Typical Damage to Four-man Tents, Tare Island, Postshot, 14-3/4 Miles from GZ 32
3.8 Fire from Shot 1 (Origin 1) which Spread to Tents Downwind, 14-3/4 Miles from GZ 32
3.9 Fire Damage to Tents (Origin 1), 14-3/4 Miles from GZ 33

SECRET - RESTRICTED DATA
3.10 Fire (Origin I) Damage to Signal Corps Trailer, 14-3/4 Miles from GZ

3.11 Fire from Shot 1 (Origin II) which Did Not Spread, 14-3/4 Miles from GZ

3.12 North Side of Mess Hall Before Installation of North Wing, Tare Island, Preshot

3.13 North Dining Wing of Mess Hall, Tare Island, Postshot, 14-3/4 Miles from GZ

3.14 South Dining Wing, Tare Island, Preshot

3.15 South Dining Wing, Tare Island, Postshot, 14-3/4 Miles from GZ

3.16 Mess Hall, Tare Island, Preshot

3.17 Mess Hall, Tare Island, Postshot, 14-3/4 Miles from GZ

3.18 Mess Hall, Administrative, and Living Areas, Tare Island, Preshot

3.19 Mess Hall, Administrative, and Living Areas, Tare Island, Postshot, 14-3/4 Miles from GZ

3.20 Scientific Power House, Tare Island, Preshot

3.21 Scientific Power House, Tare Island, Postshot, 14-3/4 Miles from GZ

3.22 South End of Scientific Power House, Tare Island, Postshot, 14-3/4 Miles from GZ

3.23 West End of Bin Storage Warehouse, Tare Island, Postshot, 14-3/4 Miles from GZ

3.24 Bin Storage Warehouse Looking Southwest, Tare Island, Postshot, 14-3/4 Miles from GZ

3.25 Bin Storage Warehouse Looking Northwest, Tare Island, Postshot, 14-3/4 Miles from GZ

3.26 Holmes and Narver Warehouses, Tare Island, Preshot

3.27 Holmes and Narver Bulk Storage Warehouse, Tare Island, Postshot, 14-3/4 Miles from GZ

3.28 Bulk Storage Warehouse from Northwest, Tare Island, Postshot, 14-3/4 Miles from GZ

3.29 Another Bulk Storage Warehouse, Tare Island, Viewed from Direction of Burst, 14-3/4 Miles from GZ

3.30 Air Operations and Control Tower, Peter Island, Postshot, 15-1/2 Miles from GZ

3.31 Airport Facilities, Peter Island, Postshot, 15-1/2 Miles from GZ

3.32 Hangar Building Looking Northwest, Peter Island, Postshot, 15-1/2 Miles from GZ

3.33 Hangar Building Looking South, Peter Island, Postshot, 15-1/2 Miles from GZ

3.34 Hangar Looking North, Peter Island, Preshot, 15-1/2 Miles from GZ

3.35 Hangar Looking Northwest, Peter Island, Postshot, 15-1/2 Miles from GZ

3.36 Station 50, Tare Island, Preshot

3.37 Station 50, Tare Island, Postshot, 14-3/4 Miles from GZ

3.38 Station 50 Looking West, Tare Island, Postshot, 14-3/4 Miles from GZ

3.39 Front Wall of Station 1341 Looking South, Able Island, Postshot, 7500 ft from GZ

SECRET - RESTRICTED DATA
3.40 Front Wall of Station 1341 Looking West, Able Island, Postshot, 7500 ft from GZ 50
3.41 Station 1341, Able Island, Front Wall-Third Floor, Vertical Section, (7500 ft from GZ) 51
3.42 Position of Shutter Door, Station 1341, Able Island (7500 ft from GZ) 52
3.43 Southeast Wall, Station 1341, Able Island, Postshot, 7500 ft from GZ 53
3.44 Northwest Wall, Station 1341, Able Island, Postshot, 7500 ft from GZ 53
3.45 Main Personnel Door Second Floor, Able Island, Postshot, 7500 ft from GZ 54
3.46 Top of Station 1341, Able Island, Postshot, 7500 ft from GZ .. 54
3.47 Station 1341 on Able Island, Postshot, 7500 ft from GZ .. 55
3.48 Interior I - Room No. 3, Station 1341, Able Island, Postshot, 7500 ft from GZ 56
3.49 Interior II - Room No. 3, Station 1341, Able Island, Postshot, 7500 ft from GZ 56
3.50 Interior - Room No. 1, Station 1341, Able Island, Postshot, 7500 ft from GZ 57
3.51 Interior - Room No. 2, Station 1341, Able Island, Postshot, 7500 ft from GZ 57
3.52 Front of Station 1200, Charlie Island, Postshot, 7565 ft from GZ 58
3.53 Rear of Station 1200, Charlie Island, Postshot, 7565 ft from GZ 58
3.54 Retaining Wall, Station 1200, Charlie Island, Postshot, 7565 ft from GZ 59
3.55 Station 1200, View of Wall, Position (2) as Shown in Fig. 2.7, Charlie Island, Postshot, 7565 ft from GZ 60
3.56 Station 1200, Wall and Ceiling, Position (3) as Shown in Fig. 2.7, Charlie Island, Postshot, 7565 ft from GZ 60
3.57 Latch Bolt Holder - Interior Door, Station 1200, Charlie Island, Postshot, 7565 ft from GZ 61
3.58 Compressor Mount - Equipment Room, Station 1200, Charlie Island, Postshot, 7565 ft from GZ 61

SECRET - RESTRICTED DATA
CHAPTER 1

INTRODUCTION

1.1 OBJECTIVE

The objective of this study was to determine the effects of air blast from a high yield weapon on miscellaneous types of structures. The destructive forces unleashed by Shot 1 caused damage to typical structures at great distances. It was considered important to obtain all the data possible about the different types of blast damage to different types of structures. It is believed that the knowledge gained from these data will assist in establishing design criteria which will decrease the destruction.

The island orientation of Bikini Atoll is shown on page 3.
PRESHOT DESCRIPTION OF THE PROJECT SITES

2.1 CAMP SITE ON TARE ISLAND

Tare Island is a small strip of coral about 1000 ft wide and 3500 ft long oriented in an east-west direction on the southern side of the Bikini Lagoon (page 3). Most of the installations at the camp site on Tare were constructed to provide quarters and messing facilities for technical and operating personnel, storage warehouses and maintenance facilities, fresh water and power required during the operation, and administrative buildings. All the structures in the living area were standard types and will be discussed in greater detail below. Figure 2.2 is a plot plan of the camp site on Tare Island.

2.1.1 Living Area

The living quarters consisted of eight blocks of 14 eight-man tents and one block of 29 four-man tents of typical construction over concrete slabs. One 24 ft by 36 ft wood-frame, 100-man latrine with 3/8 in. exterior plywood siding and corrugated aluminum roofing was constructed to serve each block of tents. These buildings were framed with 2" x 4" studs 2 ft on center (O.C.), 2" x 6" rafters, and ceiling joists at 4 ft O.C. The rafters were braced with 1" x 6" struts.

2.1.2 Mess Hall

The mess hall, the largest building on the island, was a light wood frame structure. It consisted of two dining wings with galley facilities, butcher shop and bakery connecting the dining wings on the west, and a scullery connecting the dining wings on the east. This building was designed for 1000-man capacity. The structure was framed with 2" x 4" studs and trussed rafters 2 ft O.C., with extended 2" x 4" knee bracing 6 ft O.C. The siding was 3/8 in. exterior plywood and the roofing was corrugated aluminum sheet metal. The floor slab was 6 in. monolithic concrete without reinforcing steel. At the west end of the galley, a canvas shed covered the refrigeration equipment, ice machines, and storage spaces from the rain and sun. Other miscellaneous structures around the mess hall were relatively small (up to 24 x 30 ft) buildings. Their designed construction was very similar to that of the mess hall.

SECRET - RESTRICTED DATA
2.1.3 Power and Water Plants

The power plants and water distillation plant were constructed of slightly heavier framing than the other buildings and the western walls were not covered with siding except where sheds had been built along side. The water tower was constructed to support two 100-barrel water tanks 30 ft above the ground surface. This was done with six 10" x 10" columns with double 2" x 6" bracing. During this burst the tanks were left full and the tower was guyed to four bulldozers.

2.1.4 Shops and Warehouses

The shops and warehouses were light frame buildings similar to those previously described. Figure 2.1 is a typical section of a warehouse.

![Diagram of Typical Warehouse Section](image)

Fig. 2.1 Typical Warehouse Section, Tare Island, 14-3/4 Miles from GZ

2.2 SCIENTIFIC AREA - TARE ISLAND

The scientific area on Tare Island included a steel frame building at Station 5C with aluminum sheet metal siding on the two ends and removable canvas covers on the two sides; a steel camera tower, a few tents, and other installations pertinent to Shot 3 (7 April).

2.3 TECHNICAL AREA - TARE ISLAND

The technical area on Tare Island consisted of a fenced-in compound containing rows of four and eight-man tents, one Signal Corps trailer, and an outdoor storage area. Outside the compound was a 24' x 60' typical warehouse. See Fig. 2.3 for general layout of the technical area.
2.4 AIRPORT FACILITIES - PETER ISLAND

The airport facilities on Peter Island were composed of five temporary structures as shown in Fig. 2.4. The design of all the buildings except the hangar and Air Operations building was similar to those on Tare. The Air Operations building was a 60’ x 30’ structure. A 4’ x 10’ ridge beam was supported by five 4” x 4” posts. The framing consisted of 2” x 4” studs 2 ft O.C. and 2” x 8” rafters 4 ft O.C. The siding was 1/2” exterior plywood and the roofing was 0.032 gage corrugated aluminum sheet metal, secured to 1” x 4” nailing strips. The control tower was supported on four 4” x 4” posts. (Refer to AEC-Holmes and Narver plan # 1201-PE-2 Air Operations Bldg PE-1, Plan, Elevation, Section & Details for additional information.) The hangar was a 50’ x 75’ structure with 2” x 10” studs on the the two sides and partial studding on the back end. The roof consisted of two 75 ft trusses on each end supporting three 50 ft trusses. These in turn supported 2” x 10” rafters 4 ft O.C. The top chords of all trusses were two 3” x 8” timbers. The diagonals were 2” x 6” members and the vertical members were 3” x 6” for the 50 ft trusses and 3” x 8” for the 75 ft trusses. The siding and roofing consisted of corrugated aluminum sheet metal. (For further details, see AEC-H&N drawings 6213-PE-2 and 6214-PE-2.)

2.5 STATION 1341 - ABLE ISLAND

Station 1341 was an instrument shelter located on Able Island approximately 7500 ft to the southwest of Shot 1 ground zero. The longitudinal vertical section and front elevation of this station are shown as Figs. 2.5 and 2.6 respectively. The primary construction material was reinforced coral concrete with limonite concrete sections in the walls supporting the shelter door.

2.5.1 Design Criteria

Station 1341 was designed for an incident pressure of 50 psi and a reflected pressure on the front face of 130 psi. The factor of safety between the design strengths and material failure was over 2, therefore structural failure at pressures less than 260 psi would not be expected. 1/ The design strength for the construction materials was as follows:

1/ Holmes and Narver Post BRAVO Damage Report, 15 March 1954, (SECRET RD).

1) Coral concrete: compressive strength, 2250 psi; shear strength, 150 psi; bond, 375 psi;
2) Limonite concrete: compressive strength, 1600 psi; shear strength, 105 psi; bond 230 psi; and
3) Reinforcing steel: tensile strength, 26,700 psi. The shutter door was designed to yield at 400 psi. This door was designed to be open at the instant of burst and to close by gravity prior to the arrival of the blast wave.

2.6 STATION 1200 - CHARLIE ISLAND

Station 1200 was a reinforced coral concrete earth-covered instrument shelter located about 7565 ft northeast of ground zero. Figure 2.7 is a plan view of this station. This station was designed by approximately the same criteria as Station 1341.

SECRET - RESTRICTED DATA
Fig. 2.2 Plot plan of Living, Administrative, and Warehouse Areas, Tare Island, 14-3/4 Miles from GZ
Fig. 2.3 Technical Area - Tare Island, 1h-3/4 Miles from GZ.

1. SIGNAL CORPS TRAILER.
2. STANDARD 4-MAN TENTS ON CONCRETE SLAB.
3. STANDARD 8-MAN TENTS ON CONCRETE SLAB.
Fig. 2.4 Plot Plan of Airport Facilities, Peter Island
15-1/2 Miles from Ground Zero

1 FIRE CRASH BUILDING
2 OPERATIONS & CONTROL TOWER
3 HANGAR
4 POWER HOUSE
5 LATRINE
6 GREASE & PAINT TENT

SECRET - RESTRICTED DATA
Fig. 2.6 Station 1341, Mile Island (7500 ft from GZ) Front Elevation
CHAPTER 3

RESULTS

3.1 AIR BLAST DAMAGE TO INSTALLATIONS ON TARE AND PETER ISLANDS

The air blast damage to installations on Tare and Peter Islands varied from no damage to sturdy structures to severe damage to light frame buildings and tents. No air blast measurements were made on Tare or Peter Islands. It is estimated that the peak overpressure was about 1.4 psi with a positive phase duration of about 13.4 sec. on Tare Island. The peak overpressure was about 1.3 psi on Peter Island. The distance from Shot 1 ground zero was about 78,000 feet and the direction to ground zero was about N25.5°W from Tare, the distance from the airport installation on Peter to Shot 1 ground zero was about 83,000 feet, and the direction to ground zero was about N34.5°W.

3.1.1 Damage to Tents

The type of damage inflicted to the tents on Tare Island can be described in four general categories. The first type of damage which is of interest occurred in the living area where the sides of the eight-man tents were oriented about 62 degrees from the direction of burst as shown in Fig. 2.1. Generally, the first two rows of tents in each block were moved bodily from their slabs. This type of damage is best illustrated by referring to Figs. 3.1 - 3.5.

The second type of damage also occurred to eight-man tents, this type of damage consisted of failure of the two 2" x 6" hip rafters on the end or side of the tent most nearly facing ground zero; the end result being a partial or complete collapse of the tent roof. This type of damage can be observed in Figs. 3.1, 3.2, 3.5, and 3.6.

The third type of damage was the failure of the 2" x 4" top plate (see Fig. 3.7) in the ends of the four-man tents which faced nearly into the blast. Most of the four-man tents and some of the eight-man tents suffered this type of damage in varying degrees of severity. Few tent roofs collapsed because of this type failure.

The fourth type of tent damage was fire in the technical area. It will be noted that a fire was started in the tent marked X (Origin I) in Fig. 3.6 and spread downwind (Figs. 3.8 - 3.10) finally engulfing a Signal Corps trailer. A similar fire (Fig. 3.11) started in the tent marked Y (Origin II) in Fig. 3.6 but did not spread. The initial fires
were caused by electrical shorts at the master switch control panels, the power having been left on during the shot. There was no evidence of damage due to primary thermal radiation. The reasons for the fire spreading from its origin can be fairly well established. First, the fire spread downwind. The surface winds were brisk and fairly constant in direction. Second, all the tents except one downwind of fire origin had gasoline stored in them. Also, some tents had paint, polyethylene, and other inflammables stored inside. Two of the tents contained portable gasoline-driven generators. The tent immediately downwind of the fire origin had six 5-gallon and two 1-gallon gasoline containers. The next tent downwind had a number of polyethylene bottles in storage.

3.1.2 Light Wood Frame Structures

Damage to light wood frame structures varied from light to severe. For a given design, the larger structures received greater damage than the smaller structures. The structures oriented parallel to the direction of burst suffered less damage than those oriented normal to the direction of burst. Generally the side of buildings toward ground zero was caved in, usually by bending fractures of the studs. Also, the rafters on the burst side were usually broken. The damage to the sides and roofs away from the burst direction varied widely. Some were completely blown out, others were partially damaged, and some received no perceptible damage.

3.1.2.1 Damage to the Mess Hall

Figures 3.12 and 3.13 are pre- and postshot views of the north dining wing of the mess hall which most nearly faced ground zero. Most of the side was caved in and the rafters were badly damaged. Figures 3.14 and 3.15 are pre- and postshot views of the south dining wing. The entire side and large sections of the roof were blown out. One 16' x 40' section of roof was hurled a distance of 75 feet from its original location. Other views of interest are Figs. 3.2 and 3.16 - 3.19.

3.1.2.2 Damage to Power Stations

Figures 3.20 and 3.21 are pre- and postshot views of the scientific generator station looking east. Some of the rafters were broken, some sheet metal was ripped off the roof, and most of the plywood siding on the end of the building away from ground zero was blown off. Figure 3.22 is the end of this same building facing away from ground zero.

3.1.2.3 Damage to Warehouses and Shops

All the warehouses on Tare Island suffered severe damage. However, the shop buildings (Bldgs 19 and 20, Fig. 2.1) came through the blast with light damage even though the design of these buildings was similar. This is seen best by studying Fig. 3.1. No explanation is offered for this marked difference in degree of damage to similar structures in the same area. Figures 3.23 - 3.28 are views of the Holmes and Harver bin storage warehouse. Figures 3.26 - 3.28 show different views of the
bulk storage warehouse. Figure 3.29 shows another bulk storage warehouse which was moved bodily from its slab.

3.1.2.4 Air Operations Building, Peter Island

Figure 3.30 is a view of the front side of the Air Operations building of the airport facility on Peter Island. It is noted that the side has been caved in, the studs being broken near their center except at the corners of the building and door frames. The 2" x 8" rafters were broken near the center of their span. Also, about one-half of the sheet metal roofing had been blown off as shown in Fig. 3.31. Most of the sash had been removed from the control tower before the burst. The glass which was left in place was not damaged.

3.1.2.5 Hangar, Peter Island

This structure suffered moderate to severe damage. The northwest (back) end of the hangar, including the 75-foot truss, had been almost completely blown out. This is best illustrated in Figs. 3.32 - 3.35. The lower chord of the 75-foot truss on the southeast (front) end was deflected outward several inches at the center of the span. Also, a considerable number of the 2" x 10" rafters were broken by the blast.

3.1.2.6 Miscellaneous Light Wood Frame Structures, Tare and Peter

These structures received varying degrees of damage depending on size of structure, orientation, amount of bracing, and amount of openings in the buildings. Generally, the smaller buildings held up better than larger ones, and light knee bracing or truss work was effective in preventing collapse of rafters and walls of small buildings with their ends facing the burst. The buildings end-on were damaged less severely than those side-on. The buildings which were closed tightly received more damage than those which were left open.

3.1.3 Water Tower, Tare

There was no blast damage to the water tower or tanks.

3.1.4 Scientific Structures, Tare

The steel photographic tower received no damage from the blast. The aluminum sheet metal siding on the steel frame building (Station 50) was dished inward on the west end and blown off on the east end. Figures 3.36 - 3.38 illustrate this damage. The sheet metal had been removed from the north side prior to shot time for Shot 1.

3.2 DAMAGE TO REINFORCED CONCRETE INSTRUMENT SHELTERS ON ABLE AND CHARLIE ISLANDS

3.2.1 Exposed Structures

The damage which occurred to Station 1341 at Site Delta on Able

SECRET - RESTRICTED DATA
Island is an excellent example of the effects of direct air blast and thermal radiation on exposed reinforced concrete structures. The design criteria for this structure are given in section 2.5.1 of this report. The actual peak overpressure at this station was about 130 psi.

3.2.1.1 Failure of Walls

The front and side walls above the third floor received severe damage from the blast. Figures 3.39 and 3.40 show two views of the front wall above the third floor. Figure 3.41 indicates the design of this wall and shows the location of the reinforcing steel around the shutter door frame. This figure also shows the approximate failure surface of this wall. A tension failure due to bending of the wall above the opening can be seen in Fig. 3.40. Figure 3.42 is a schematic showing positions of the shutter door before and after failure. It could not be determined definitely that the shutter door was in position No. 2, as shown in Fig. 3.42, at the time of arrival of the blast wave. Several times during testing operations this door failed to latch shut when released. Figures 3.43 and 3.44 show primary shear cracks in the side walls adjacent to the shutter door opening.

3.2.1.2 Failure of Doors

Due to the failure of the wall supporting the shutter door, the blast wave entered the building. The shutter door was hurled inward and dropped part way down the chimney, lodging in a position No. 3 as shown in Fig. 3.42. The forces from the blast also broke the latches and hinges from three other doors, namely, the lead door entering the equipment room on the first floor, the light weight steel door between rooms No. 1 and No. 4 on the first floor, and the main personnel door on the second floor. This door is shown in Fig. 3.45. The following doors did not fail: two exterior lead doors on the side of room No. 4, and three steel doors on the outside of the back wall of the equipment room.

3.2.1.3 Other Miscellaneous Damage

In addition to the above, the following structural damage was noted:

(1) A concrete projection above the center of the shutter door failed and consequently stripped the reinforcing steel out of the concrete in the forward edge of the roof (see Fig. 3.46).

(2) The northwest buttress on the rear of the station showed a shear failure. This buttress contained an opening for access to the second floor. The southeast buttress, without openings, was undamaged. The damaged and undamaged buttresses are shown in Fig. 3.47.

(3) The scientific equipment, equipment racks, and other interior structures were severely damaged. This damage can be noted in Figs. 3.48 and 3.51.
3.2.2 Earth Covered Structures

Station 1200 on Charlie Island was exposed to approximately the same blast wave as Station 1341 at Site Delta on Able Island; namely, 130 psi. This structure proved remarkably resistant to very high blast pressures.

3.2.2.1 Structure Failure

The failures which occurred to the reinforced concrete walls were at the structural discontinuities and the retaining walls. Figures 3.52 and 3.53 are exterior views of the front and rear of Station 1200. Portions of the parapet and retaining walls at the rear of the structure were torn off by the blast. Figure 3.54 shows extensive cracking of the retaining wall at position No. 1 in Fig. 2.7. Figure 3.55 is a view of a corridor wall near the doorway at positions No. 2 and No. 3 respectively as shown in Fig. 2.7. These cracks and a crack in the corridor wall and ceiling at position No. 4 in Fig. 2.7 were the only major structural failures inside the building.

3.2.2.2 Damage to Doors

The latch bolt holders on several interior doors were sheared, allowing the doors to open. This damage is considered insignificant since the latch bolt holders were made of light flat bar stock, the strength of which was almost negligible after being bent to their final form and welded onto the doors. An examination of the fracture surfaces indicated that only a small area of steel sheared at fracture. This type of damage is shown in Fig. 3.57.

3.2.2.3 Other Miscellaneous Damage

The 1/2 inch Ø anchor bolts used to secure the compressors in the equipment room were sheared in the bottom of the Vibrex double deflection isolation rails as shown in Fig. 3.58. This indicated a fair amount of horizontal acceleration on the floor of the equipment room. A post-shot survey of Shot I of the scientific equipment inside rooms A, B, and C of Fig. 2.7 indicated that only minor damage had occurred. The structure had performed its mission despite an overpressure almost three times that for which the structure was originally designed.
Fig. 3.1. Postshot Aerial View of Camp and Warehouse Area on Tara Island, 1-3/4 Miles from CE.
Fig. 3.2 Postshot Aerial View of Camp and Administrative Area on Tare Island after Shot 1, 14.3/4 Miles from GZ
Fig. 3.3 Postshot Tent Damage in Scientific Area, Tare Island, 14-3/4 Miles from GZ

Fig. 3.4 Postshot Tent and Latrine Damage, Tare Island, 14-3/4 Miles from GZ

SECRET - RESTRICTED DATA
Fig. 3.5 Camp and Warehouse Area, Ture Island Postshot, 14-3/4 Miles from GZ

Fig. 3.6 Technical and Scientific Areas, Ture Island, Postshot, 14-3/4 Miles from GZ
Fig. 3.7. Typical Damage to Four-man Tents, Tare Island, Postshot, 14-3/4 Miles from GZ

Fig. 3.8. Fire from Shot 1 (Origin I) which Spread to Tents Downwind, 14-3/4 Miles from GZ
Fig. 3.9 Fire Damage to Tents (Origin I), 14-3/4 Miles from GZ

Fig. 3.10 Fire (Origin I) Damage to Signal Corps Trailer, 14-3/4 Miles from GZ

SECRET - RESTRICTED DATA
Fig. 3.11 Fire from Shot 1 (Origin II) which Did Not Spread, 14-3/4 Miles from GZ
Fig. 3.12 North Side of Mess Hall Before Installation of North Wing, Tare Island, Pre-shot

Fig. 3.13 North Dining Wing of Mess Hall, Tare Island, Post-shot 14-3/4 Miles from GZ
Fig. 3.14 South Dining Wing, Tare Island, Pre-shot

Fig. 3.15 South Dining Wing, Tare Island, Post-shot, 14-3/4 Miles from GZ
Fig. 3.16 Mess Hall, Tare Island, Preshot

Fig. 3.17 Mess Hall, Tare Island, Postshot, 14-3/4 Miles from GZ

SECRET - RESTRICTED DATA
Fig. 3.18 Mess Hall, Administrative, and Living Areas, Tare Island, Pre-shot

Fig. 3.19 Mess Hall, Administrative, and Living Areas, Tare Island, Post-shot, 14-3/4 Miles from GZ

SECRET - RESTRICTED DATA
Fig. 3.20 Scientific Power House, Tare Island, Pre-shot

Fig. 3.21 Scientific Power House, Tare Island, Post-shot,
14-3/4 Miles from G2

SECRET – RESTRICTED DATA
Fig. 3.22 South End of Scientific Power House, Tare Island, Postshot 14-3/4 Miles from GZ

Fig. 3.23 West End of Bin Storage Warehouse, Tare Island, Postshot 14-3/4 Miles from GZ
Fig. 3.24 Bin Storage Warehouse Looking Southwest, Tare Island, Postshot, 14-3/4 Miles from GZ

Fig. 3.25 Bin Storage Warehouse Looking Northwest, Tare Island, Postshot, 14-3/4 Miles from GZ

SECRET - RESTRICTED DATA
Fig. 3.26 Holmes and Narver Warehouses, Tare Island, Preshot

Fig. 3.27 Holmes and Narver Bulk Storage Warehouse, Tare Island, Postshot, 14-3/4 miles from GZ

SECRET - RESTRICTED DATA
Fig. 3.28 Bulk Storage Warehouse from Northwest, Tare Island, Postshot, 14-3/4 Miles from GZ

Fig. 3.29 Another Bulk Storage Warehouse, Tare Island, Viewed from Direction of Burst, 14-3/4 Miles from GZ
Fig. 3.30 Air Operations and Control Tower, Peter Island, Postshot, 15-1/2 Miles from GZ
Fig. 3.32 Hangar Building Looking Northwest, Peter Island, Postshot, 15-1/2 Miles from GZ

Fig. 3.33 Hangar Building Looking South, Peter Island, Postshot, 15-1/2 Miles from GZ

SECRET – RESTRICTED DATA
Fig. 3.34 Hangar Looking North, Peter Island, PreSHOT,
15-1/2 Miles from GZ

Fig. 3.35 Hangar Looking Northwest, Peter Island, PostSHOT,
15-1/2 Miles from GZ
Fig. 3.36 Station 50, Tara Island, Preshot

Fig. 3.37 Station 50, Tara Island, Postshot, 14-3/4 Miles from OZ

SECRET - RESTRICTED DATA
Fig. 3.38 Station 50 Looking West, Tare Island, Postshot, 14-3/4 Miles from GZ
Fig. 3.39 Front Wall of Station 1341 Looking South, Able Island, Postshot, 7500 ft from GZ

Fig. 3.40 Front Wall of Station 1341 Looking West, Able Island, Postshot, 7500 ft from GZ

SECRET - RESTRICTED DATA
Fig. 3.42 Position of Shutter Door, Station 1344, Able Island, 7500 ft from GZ

52

SECRET - RESTRICTED DATA
Fig. 3.43 Southeast Wall, Station 1341, Able Island, Postshot, 7500 ft from GZ

Fig. 3.44 Northwest Wall, Station 1341, Able Island, Postshot, 7500 ft from GZ
Fig. 3.48 Interior I - Room No. 3, Station 1341, Able Island,
Postshot, 7500 ft from CZ

Fig. 3.49 Interior II - Room No. 3, Station 1341, Able Island,
Postshot, 7500 ft from CZ

SECRET - RESTRICTED DATA
Fig. 3.50 Interior - Room No. 1, Station 1341, Able Island, Postshot, 7500 ft from GZ

Fig. 3.51 Interior - Room No. 2, Station 1341, Able Island, Postshot, 7500 ft from GZ

SECRET - RESTRICTED DATA
Fig. 3.52 Front of Station 1200, Charlie Island, Postshot, 7565 ft from GZ

Fig. 3.53 Rear of Station 1200, Charlie Island, Postshot, 7565 ft from GZ

SECRET - RESTRICTED DATA
Fig. 3.54 Retaining Wall, Station 1200, Charlie Island, Position (1) as Shown in Fig. 2.7, Postshot, 7565 ft from GZ
Fig. 3.55 Station 1200, View of Wall, Position (2) as Shown in Fig. 2.7, Charlie Island, Postshot, 7565 ft from GZ

Fig. 3.56 Station 1200, Wall and Ceiling, Position (3) as Shown in Fig. 2.7, Charlie Island, Postshot, 7565 ft from GZ

SECRET - RESTRICTED DATA
Fig. 3.57 Latch Bolt Holder - Interior Door, Station 1200, Charlie Island, Postshot, 7565 ft from GZ

Fig. 3.58 Compressor Mount - Equipment Room, Station 1200, Charlie Island, Postshot, 7565 ft from GZ
CONCLUSIONS

It is concluded that:

1. The blast wave of a 14.5 MT surface burst will cause considerable damage to light wood frame structures out to a radius of about 16 miles from ground zero.

2. Trussing and knee bracing is effective in decreasing the severity of damage to light wood frame buildings at these great distances.

3. Heavy reinforced concrete above ground shelter type structures subjected directly to the blast wave may receive significant damage as far as 1-1/2 miles. It is not known how much farther this damage will extend.

4. Earth cover appears to provide a considerable degree of protection to reinforced concrete shelter type structures from air shock. The addition of the earth cover appears to be beneficial primarily due to decreasing the blast loading by improving the aerodynamic shape which reduces reflection factors to a great extent. Also, there may be a possibility of slight attenuation of pressure incident on the structure depending on the depth and condition of the earth cover.
Commander, U.S. Naval Ordnance Laboratory, Silver Spring, Md. ATTN: DCG

Commander, U.S. Naval Ordnance Test Station, Inyokern, Calif.

Director, Air University Library, Maxwell AFB, Ala.

Commander, Flying Training, Air Force, Waco, Tex.

Commander, Technical Information Service, Oak Ridge, Tenn.

Commander, Crew Training Air Force, Randolph AFB, Tex.

Commander, Headquarters, Technical Training Air Force, Gulfport, Miss. ATTN: TRAD

Commandant, Air Force School of Aviation Medicine, Randolph AFB, Tex.

Commander, Wright Air Development Center, Wright-Patterson AFB, Dayton, O. ATTN: WADC

Commander, Air Force Cambridge Research Center, Yorktown Heights, N.Y.

Commander, Air Force Special Weapons Center, Kirtland AFB, N. Mex. ATTN: Library

Commander, U.S. Army Institute of Technology, Wright-Patterson AFB, Dayton, O. ATTN: Resident Office

Commander, Library AFB, Denver Colo. ATTN: Department of Armament Training

Commander, 100th Special Weapons Squadron, Andrews AFB, Wash. ATTN: Deputy Director of Intelligence, Headquarters, USAF, Washington, D.C.

Commanding General, Field Command, New Mexico Special Weapons Project, Box 1000, Albuquerque, N. Mex.

Commander, Field Command, Armed Forces Staff College, Kell, Texas.

Commander, Armed Forces Staff College, Kell, Texas. ATTN: Secretary

Commander, Armed Forces Staff College, Kell, Texas. ATTN: Technical Information Service, Oak Ridge, Tenn. (Surplus)

Commander, Armed Forces Staff College, Kell, Texas. ATTN: Technical Information Service, Oak Ridge, Tenn. (Surplus)