UNCLASSIFIED

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD355388</td>
</tr>
</tbody>
</table>

CLASSIFICATION CHANGES

<table>
<thead>
<tr>
<th>TO:</th>
<th>unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM:</td>
<td>restricted</td>
</tr>
</tbody>
</table>

LIMITATION CHANGES

<table>
<thead>
<tr>
<th>TO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlling Organization: British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008.</td>
</tr>
</tbody>
</table>

AUTHORITY

FAULT CARRYING CAPACITY - SANTON 200A ADMIRALTY TYPE ROTARY SWITCH, (U)

ADimiralty engineering lab west drayton (united ...}

25 sep 1964
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
RESTRICTED

CONDITIONS OF RELEASE

This information is disclosed only for official use by the recipient. No. 3243/3776/1
Government and such of its contractors, under seal of secrecy,
as may be engaged on a defense project. Disclosure to any other
Government or release to the Press or in any other way would be
a breach of these conditions.

The information should be safeguarded under rules designed to
give the same standard of security as that maintained by Her
Majesty's Government in the United Kingdom.

The recipient is warned that information contained in the
document may be subject to privately-owned rights.

ELECTRICAL DEPARTMENT

ADMIRALTY ENGINEERING
LABORATORY
WEST DRAYTON, MIDDLESEX

FAULT CARRYING CAPACITY - 36/20/70 ADJ.LXL
TY:E ROYAL S ITCH.

[U]

RESTRICTED
This document is the property of Her Majesty's Government. It is for the information of officers and responsible officials. The officer or official in possession of this document will be responsible for its safe custody and for ensuring that its contents are not disclosed to any unauthorized person.

This document must be kept under lock and key when not in actual use. Any loss or destruction must be reported immediately to the issuing authority through the normal channels.

"This document contains information affecting the National Defense of the United States within the meaning of the Espionage Acts, Title 18, U.S. C. §§ 793 and 794. Its transmission or disclosure of its contents in any manner to an unauthorized person is prohibited by law."

ELECTRICAL DEPARTMENT,
ARMED SERVICES LABORATORY,
WEST POINT, N.Y.

FAULT CLEARING CAPACITY - SWITCH 200: ARTILLERY TYPE ARTILLERY TYPE
R Sey'sitch.

Investigator: H.L.J. Batten

Head of Section

Authorized

Head of Electrical Department
An investigation was made into the ability of a 200A Triple Pole Sinton Rotary Switch, Admiralty Type, to carry heavy fault currents until they were cleared by the overload release of a feeder breaker. The tests described in this report are of the nature of a 'go' - 'no go' variety, and were made with direct current. The maximum safe current was found to be of the order of 10 000A at 628v D.C. (closing).

No attempt was made to strip and inspect the switch between tests.
1. Introduction

This type of switch is already in use in the service, normal type tests having been carried out under E.I. 2989. Tests to explore the capacity of the switch to carry large fault currents, until cleared by a feeder breaker, however, had not been made. This is of great importance, now that fault levels in ships are higher, and it became necessary to know if these switches need fuse protection. Tests were conducted, using direct current and were witnessed by Mr. S.H. Wardell of V/171/6.

2. Requirements:

The maximum time of operation of a feeder breaker was given as 0.25s, and it was required to know the highest current that the switch could be closed on, and carry for this period of time. Tests on a 440V a.c. supply were called for, but heavy current supplies were not available. Direct current was therefore used in accordance with Paragraph 4(d) of the initiating memorandum. An amendment to this clause required a.c. tests to be conducted at a voltage equivalent to the peak a.c. voltage of a 440V d.c. supply. It was also laid down that the switch should be rotated 1000 times in each direction on no load, prior to the current tests.

3. Description of Switch

The Santon 200A Triple Pole Switch is a quick make/quick break, rotary action switch, with self aligning Rotor-mounted silver plated sliding contacts engaging with pairs of spring loaded silver plated fixed contacts. The type used in this investigation had been developed for Admiralty service.

Whilst tests on Santon 200A Triple Pole Rotary Switch Type H2036, H179 was specifically asked for, this was not possible without unacceptable delay. Instead, tests were carried out on a makers reconditioned 200A Tripole Switch Type H2026 H10, which happened to be available.

The H179 and H110 types of switch are of similar design, differing only in the number of poles, and in the arrangement of contacts.

4. Test Rig

The switch was mounted unenclosed as shown in Fig. 1, and the batteries of the test station were grouped to supply 628V. Connections were made to allow current to flow through the 2 pairs of contacts (2 moving, 2 fixed) in series, which formed one way or "coll" of the switch. Resistances were arranged to give prospective currents of about 5000A, 10 000A, 15 000A and 20 000A, but no inductance was added to the test circuit, and the time constants were of the order of 0.004s. As the time of application was 0.25s, the current rose to the full peak, active level in each test. Although not specified in the requirements, it was decided to differentiate between capacity for "through", and for "closing" current. For the former test the switch was closed under open circuit conditions, the fault breaker being closed subsequently to complete the circuit, and remaining closed for 0.25s. For the latter test the fault breaker was initially closed, and the Santon switch was closed by hand. For safety precautions see Fig. 1). The fault breaker was set to open 0.25s after the Santon switch was closed.

U.S. CONFIDENTIAL
5. Tests

It was agreed to apply "through current" and "closing current" tests consecutively, at increasing levels of fault current. All switching operations were made in one direction only, namely clockwise. The same pair of contacts were used for the first six tests, since very little damage was sustained up to Test No. 5. Tests 1 to 7 revealed the approximate loads at 628V at which the switch would fail, and the results are listed in Table 1. The condition of the contacts are shown in Fig. 2. Oscillograms of current flowing, against a time base are shown in Figs. 3 and 4. The d.c. equivalent, (628V), of the peak voltage of an a.c. supply at 440V R.M.S. was used. To determine if the application of 440V D.C., i.e. the equivalent to the R.M.S. value, had a less severe effect, at the same current, Test No. 8 was made. Unused contacts were connected for this test, but the switch failed as before, unfortunately no oscillogram was obtained in this case.

6. Results of Through Current Tests

Tests 1, 3 and 5 indicated that the switch would carry 15 000A for the required time, with slight pitting of the contacts, which would not prevent normal use. Records shown in Figs. 3(a) and (a) prove that the current was uniform, without arcing. Test No. 7 showed that a current of 20 000A would destroy the contacts. This is backed up by the oscillograms shown in Fig. 3(d) which shows the current decreasing as the contacts heat up, followed, after an interval of 0.16s, by violent arcing.

7. Results of Closing Current Tests

Tests 2 and 4 indicate that the switch could be closed on a prospective fault current of 10 000A, and carry this consistently for the required time. This is confirmed by oscillograms shown in Fig. 4(a) and (b). In Test No. 6, the switch was closed on a prospective current of 15 000A, and arcing occurred which practically destroyed the contacts. Fig. 4(c) shows a slight decrease of current as the contacts became hot, followed, after 0.09s, by violent arcing.

8. Analysis of Results

No sign of mechanical parting, due to magnetic effect, of the contacts was apparent from the oscillograms taken when the switch carried current successfully for 0.25s, Fig. 3(a) and (a). Fig. 4(a) and (b). The two cases in which the switch failed, show a gradual decrease of current until the contacts began to arc, probably as a result of developing hot spots, Fig. 3 (d) and Fig. 4(c). This condition may have been accelerated in the second case when the switch was closed on the fault current; by initial pitting of the contacts. If failure of the contacts was due solely to heating, this effect would be the same for a given current and conditions, either a.c. or d.c. It would be advisable to verify this by some comparative a.c. tests, and these will be undertaken as soon as plant is available.

9. Conclusions

From the limited number of tests possible, with only one switch available, it would appear that,

(a) The 2000A Sinton Switch Type H2026 H110 will carry a through current of 15 000A for 0.25s, without serious damage, but 20 000A applied for the same period will destroy the contacts.

...../(b)
(a) The maximum current which the switch can be closed on, and carry for this period, without fuse is 10 000A.

(b) The incidence of 'sparking' following heating of the contacts, determined the fault carrying capacity of the switch, and this should be the case for a.c. and d.c.; but tests with d.c. may be necessary to investigate any other effects.

(d) Here fault levels in excess of 10 000A are possible, fuse protection for these 200A Rotary Switches is deemed necessary.
Table 1
Fault Carrying Capacity - Switch 200 A Afligality Type Switch

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Supply (V)</th>
<th>Type of Test</th>
<th>Prospective Current (A)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>628</td>
<td>Through current</td>
<td>5440</td>
<td>No effect</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>Make</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>Through current</td>
<td>10 000</td>
<td>Slight sticking of contacts</td>
</tr>
<tr>
<td>4</td>
<td>"</td>
<td>Make</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>Through current</td>
<td>13 800</td>
<td>Slight effort needed to separate contacts which were quite free afterward</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>Make</td>
<td>"</td>
<td>Contacts burst completely away, flash over to Earth</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>Through current</td>
<td>19 700</td>
<td>Contacts practically burnt away</td>
</tr>
<tr>
<td>8</td>
<td>440</td>
<td>Make</td>
<td>13 950</td>
<td>"</td>
</tr>
</tbody>
</table>
FAULT CARRYING CAPACITY - SANTON 200A ADMIRALTY TYPE SWITCH.

TEST RIG.

A

B

C
RESTRICTED

FAULT CARRYING CAPACITY - SANTON 200A ADMIRALTY TYPE SWITCH.

OSCILLOGRAMS OF CURRENT SWITCH CARRYING FAULT CURRENT FOR 0.25s.

(a) 5440 A

(b) 10,000 A

(c) 15,800 A

(d) 19,700 A --- 0.16s --- 14,700 A

TIME INTERVAL 0.005s.

REPORT No. 2428/3776/1.
FAULT CARRYING CAPACITY - SANTON 200A ADMIRALTY TYPE SWITCH.

OSCILLOGRAMS OF CURRENT.

SWITCH CLOSING ON, AND CARRYING FAULT CURRENT FOR 0.25s.

(a) 5440A

(b) 10,000A

(c) 15,800A → 0.09s → 15,700A

TIME INTERVAL 0.005s
Title: Fault Carrying Capacity of Santon 200 Amp Admiralty Type Rotary Switch

Availability: Open Document, Open Description, Normal Closure before FOI Act: 30 years

Former reference (Department) Report No. 2423/3776/1

Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

Access to UK public records is governed by statute, namely the Public Records Act, 1958, and the Public Records Act, 1967. The document has been released under the 30 year rule. (The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.