UNCLASSIFIED

AD NUMBER

AD-344 655

CLASSIFICATION CHANGES

TO UNCLASSIFIED

FROM CONFIDENTIAL

AUTHORITY

ONR via Ltr; May 4, 1977

THIS PAGE IS UNCLASSIFIED
NEW LIMITATION CHANGE

TO

DISTRIBUTION STATEMENT: A
Approved for public release; Distribution is unlimited.

LIMITATION CODE: 1

FROM

No Prior DoD Distr Scty Cntrl St'mt Assgn'd

AUTHORITY

ONR via Ltr; May 4, 1977

THIS PAGE IS UNCLASSIFIED
GENERAL
DECLASSIFICATION
SCHEDULE

IN ACCORDANCE WITH
DCD 5200.1-R & EXECUTIVE ORDER 11652

THIS DOCUMENT IS:
CLASSIFIED BY

Subject to General Declassification Schedule of
Executive Order 11652-Automatically Downgraded at
2 Years Intervals- DECLASSIFIED ON DECEMBER 31, 1972

BY
Defense Documentation Center
Defense Supply Agency
Cameron Station
Alexandria, Virginia 22314
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
This material contains information affecting the national defense of the United States within the meaning of the espionage laws, title 18, U.S.C. sections 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.
HISTORY AND DESCRIPTION OF MARINE CORPS BATTALION
LANDING TEAM AERIAL DRONE RECONNAISSANCE SYSTEM(U)

AAS 274-806

Address inquiries concerning this document to:
Director Advanced Aircraft Systems
Republic Aviation Corporation
Farmingdale, L.I., N.Y.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II SYSTEM DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>III TRAINING REQUIREMENTS</td>
<td>11</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reconnaissance System Complex</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Reconnaissance Drone</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Drone in Flight</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Drone Recovery</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Photograph Taken from Drone</td>
<td>8</td>
</tr>
</tbody>
</table>
Republic Aviation Corporation

This form to be used as a cover sheet and permanently attached to classified information

Select applicable group

See reverse side for instructions

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Exempted from declassifying; DOD DIR. 5200.10
Does not apply</td>
</tr>
<tr>
<td>Group 2</td>
<td>Exempted from automatic declassifying by
APPROVING AUTHORITY
DOD DIR. 5200.10</td>
</tr>
<tr>
<td>Group 3</td>
<td>Not automatically declassified
DOD DIR. 5200.10</td>
</tr>
<tr>
<td>Group 4</td>
<td>Exempted from automatic declassification
DOD DIR. 5200.10</td>
</tr>
<tr>
<td>Group 4</td>
<td>Declassified after 12 years
DOD DIR. 5200.10</td>
</tr>
<tr>
<td>Group 5</td>
<td>Declassify on
DOD DIR. 5200.10</td>
</tr>
</tbody>
</table>

This material contains information affecting the national defense of the United States within the meaning of the Espionage Act, Title 18 U.S.C., Secs. 793 and 794; the transmission or the revelation of which in any manner to an unauthorized person is prohibited by law.

RAC Document Control Number

J Berens 98511-59 2/65

UNCLASSIFIED

UNCLASSIFIED

NO. OF PAGES 2
This material contains information affecting the national defense of the United States within the meaning of the espionage laws, Title 18 U.S.C., Secs. 793 and 794, the transmission or the revelation of which in any manner to an unauthorized person is prohibited by law.
GROUP 1 MATERIAL

Material in this group is completely excluded from automatic declassifying and declassifying of classified information on a time-phased basis. Accordingly, if a document has not been assigned a group designation, select the group within which the document falls. Furnish dates when applicable, place your signature and date in the appropriate box on the reverse of this cover. Carefully note provisions applicable to automatic declassifying and declassifying of Group 1, 2 and 3 material. ATTACH COVER TO EACH DOCUMENT.

GROUP 2 MATERIAL

1. General. This group is established as a means whereby Department of Defense (DOD) personnel, agencies, or departments, of other agencies, and groups, including the Central Staff of Staff, can disseminate or receive material which, in the opinion of the originating organizations or groups, is exempt from automatic declassification under the provisions of this group. To prevent unauthorized disclosure of any such material, the declassified status of any document retained in this group will remain classified.

GROUP 3 MATERIAL

Material in this group contains certain types of information on subject matter which warrant a limited degree of classification for an indefinite period.

1. Definition. Specifically, Group 3 material is:

a. Plans for an operation of our forces that were prepared to an operational level higher than any division, containing the name of a major, numbered or numbered, or other military command of comparable or lesser level, plans or cover or deception, including dispositions of our forces, areas of operations, utilizing strategic and plans of action of enemy forces and action procedures.

b. Intelligence and counterintelligence documents, including but not limited to:

(1) Intelligence estimates, except those contained in classified intelligence reports and orders of any division, army task force, numbered army forces, or other military command of comparable or lesser level.

(2) Plans, directives, and reports regarding intelligence and counterintelligence operations; intelligence photography general and ground; reports of intelligence and counterintelligence investigations; and detailed reports in unclassified material.

(3) Documents containing information concerning special equipment or material for intelligence or counterintelligence activities.

c. Radar and aerial photography.

d. Documents containing information concerning electronic countermeasures.

e. Documents containing structural or performance data concerning naval vessels or naval aircraft and equipment in current use or for future use, as follows:

GROUP 4 MATERIAL

1. Definition. Group 4 contains all material which does not qualify for, or is not assigned to one of the preceding groups.

2. Decontrolling and Declassification:

a. Precoroshiot Material. Group 4 material originating before the date specified below will be automatically demilitarized, regardless of its original classification. This applies even if the material is not marked.

b. Precoroshiot Material. Group 4 material originating on or after the date specified below will be automatically declassified or marked down in accordance with the original classification and date.

(1) Except for AIRCRAFT, material in Group 4 will be automatically declassified or marked down in accordance with the original classification and date.

(2) AIRCRAFT material in Group 4 will be automatically declassified or marked down in accordance with the original classification and date.

(3) AIRCRAFT material in Group 4 will be automatically declassified or marked down in accordance with the original classification and date.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II SYSTEM DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>III TRAINING REQUIREMENTS</td>
<td>11</td>
</tr>
</tbody>
</table>

ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reconnaissance System Complex</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Reconnaissance Drone</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Drone in Flight</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Drone Recovery</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Photograph Taken from Drone</td>
<td>8</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

This is a brief summary of the concept for a Marine Corps battalion landing team aerial drone reconnaissance system, which was developed by Republic Aviation Corporation under Office of Naval Research contract Nonr 3250(00). The contract resulted from a recommendation by the director of the Marine Corps Landing Force Development Center that a short-range, simple, low-cost, lightweight reconnaissance system be developed that could be operated by two marines.

The contract, which began in June 1960, specified a feasibility study only. It was later amended to include the design, fabrication, and flight test of two research models of the proposed aircraft with a camera payload. Close liaison was maintained throughout the study between the Office of Naval Research, Marine Corps Headquarters, Quantico, and Republic Aviation Corporation to ensure that the system met Marine Corps requirements.

This first ONR contract was completed with the publication of the final report on 30 March 1962. In addition to the two drone aircraft that were built under contract, Republic fabricated five additional drones. A pneumatic, catapult-type launcher was also designed, fabricated, and tested. During development, the external configuration of the aircraft was not changed radically from the original design concept, but several structural and aerodynamic modifications were incorporated. Many successful flights have been made, excellent aerial photographs taken, and drones recovered undamaged repeatedly, by parachute.

An experimental flight test program lasting several months was conducted at Republic Field during the winter of 1962. This was followed by a successful flight demonstration in early April at Marine Corps Air Station, Quantico, Virginia. Testing of the pneumatic catapult launcher, including additional drone flights from it, took place at Republic during the summer.

In September 1962, a radar tracking flight test program was conducted at Marine Corps Base, Twentynine Palms, California. All previous flights had been made under visual control. The objective of this program, conducted under contract Nonr 3950(00), was to demonstrate that a ground operator could fly the drone beyond visual sight from a radar plotting board trace and digital altitude readout. In spite of the usual problems associated with a low-budget,
experimental program, radar tracking was accomplished successfully on one flight, demonstrating the feasibility of the proposed system. Several other long range flights under visual control were made.

In January 1963, Republic received another contract -- Nonr 4042(00) -- for further development of the aerial drone reconnaissance system, sponsored by the U.S. Marine Corps. The objectives are to refine the aerodynamics and stability of the drone through a wind tunnel test program, to improve the security and reliability of the radio command and control system, and to develop efficient operational procedures for the photographic mission. The contract will conclude with an evaluation by the Marine Corps of the photographic reconnaissance potential of the system under visual flight control conditions.

The following pages contain a brief description of the battalion landing team aerial drone reconnaissance system as recommended in the final report resulting from the original study contract.

II. SYSTEM DESCRIPTION

The aerial drone reconnaissance system consists basically of a small aircraft capable of carrying a 70-mm camera and a ground complex consisting of a launcher and track, command, and data processing equipment (Figure 1). The aircraft is 76 inches long, has a wing span of 96 inches, and weighs about 40 pounds at launch. It is powered by a two-cycle, two cylinder air cooled engine, developing 2.7 horse power (Figures 2 and 3).

The aircraft is carried partially disassembled in its case and can be assembled rapidly by attaching the propeller, the wings, and the tail surfaces. A pneumatic catapult launcher accelerates it to flying speed in a distance of 6 feet. After launch, the aircraft can climb at about 900 feet per minute to a maximum pressure altitude of 10,000 feet. Reconnaissance can be performed from 300 feet above the terrain to the aircraft ceiling. At 3000 feet above terrain with the normal 3-inch lens, a ground resolution of 1 foot can be obtained at a 2200-foot-square area per photograph. With the alternative, 1.5-inch lens at the same altitude, a ground resolution of 2 feet can be obtained of a 4200-foot-square area. The camera is operated by a radio command signal from the ground. The drone is recovered by parachute (Figure 4).
Figure 3. Drone in Flight
The drone, cruising at 60 to 80 miles per hour, has an endurance of about 45 minutes on 1 quart of automobile fuel. It can take 65 photographs (70-mm), which is a sufficient number to provide coverage along the entire length of the ground track when the 1.5-inch lens is used. There is no stable platform and no provision for image-motion compensation. High camera shutter speed (to 1/2000 second) prevents image-motion blur. Figure 5 is a photograph of Republic's airport taken from the drone.

In the system proposed as a result of the study contract, the drone is usually tracked by a lightweight, narrow-beam radar, which -- including plotter, tripod, and power supply -- weighs about 100 pounds. Because the drone is small and nearly transparent to radar, a small (1-pound) beacon is mounted in it to make it possible to track the drone to at least a 10-mile range. The aircraft is controlled by a semisecond radio link.

The system includes rapid film-processing equipment. The entire roll of film can be processed in about 2 minutes after the film magazine is removed from the camera. Negatives and positive transparencies can be produced. A printer-enlarger provides 9- by 9-inch prints.

The system has been designed for maximum flexibility in that the drone can be flown without radar tracking within the view of an observer using binoculars. The system has also been ruggedly designed to withstand normal handling by troops in the field.

When the drone is used with the proposed radar, a plot of drone position is automatically traced on the plotting board in real time. Altitude is automatically computed and shown numerically. The controller, through the radio command control system, corrects drone course for any deviations. This technique is considered to be more reliable and far more accurate than programmed guidance.

Among the features designed into the aerial drone reconnaissance system are the following:

1) The aircraft will be inexpensive in mass production
2) At photographic reconnaissance altitudes, the aircraft is nearly transparent to enemy radar, invulnerable to small-arms fire (because of speed, and small vulnerable area), and normally inaudible on the ground.
Figure 5. Photograph Taken from Drone
3) Night photography will be possible through the use of photoflash cartridges carried by the aircraft.

4) Except for the radar, each piece of equipment weighs 50 pounds or less. The radar can readily be disassembled into two packages, each weighing 50 pounds. Therefore, the system can be carried by men.

5) The entire ground system and three complete aircraft can be transported in one half-ton truck or in a jeep, with room for the two-man crew, their individual weapons, and voice radio.

6) The aircraft is sufficiently rugged in construction to withstand being flown into a cargo net for shipboard recovery.

7) The aircraft can carry many other payloads in addition to the normal camera payload. Possible alternative payloads are:
 a) Radar ferret (used with photographic payload)
 b) Television camera and transmitter
 c) Extra fuel for extended range
 d) High-priority cargo, such as medical supplies, captured documents, and photographs
 e) Air-dropped packages, such as radiosondes, chemical, biological, and radiological analyzers, chaff, and smoke markers
 f) Explosives

8) The engine is simply constructed and is highly reliable.

9) A minimum of maintenance is required.

10) The only expendable supplies required for system operation are fuel, film, processing chemical and paper, and photoflash cartridges for night photography.

Performance and other data are given in Table 1.
<table>
<thead>
<tr>
<th>Item</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, pounds</td>
<td>40</td>
</tr>
<tr>
<td>Speeds, miles per hour</td>
<td></td>
</tr>
<tr>
<td>Cruise</td>
<td>60 to 80</td>
</tr>
<tr>
<td>Maximum</td>
<td>80 to 100</td>
</tr>
<tr>
<td>Launch</td>
<td>50</td>
</tr>
<tr>
<td>Sensor</td>
<td>P 2 camera</td>
</tr>
<tr>
<td>Altitude, feet above sea level</td>
<td>10,000</td>
</tr>
<tr>
<td>Recovery</td>
<td>Parachute</td>
</tr>
<tr>
<td>Operating crew</td>
<td>Two men</td>
</tr>
<tr>
<td>Transport</td>
<td>One jeep or mechanical mule</td>
</tr>
<tr>
<td>Wing span, inches</td>
<td>96</td>
</tr>
<tr>
<td>Length, inches</td>
<td>76</td>
</tr>
<tr>
<td>Launcher</td>
<td>Compressed-air catapult</td>
</tr>
<tr>
<td>Launcher weight, pounds</td>
<td>60</td>
</tr>
<tr>
<td>Engine</td>
<td>Two-cylinder, Two-cycle, 2.7 horsepower</td>
</tr>
<tr>
<td>Fuel</td>
<td>1 quart of regular automobile fuel</td>
</tr>
<tr>
<td>Starter</td>
<td>Pull-cord type</td>
</tr>
</tbody>
</table>
III TRAINING REQUIREMENTS

Throughout the feasibility study, the requirement of simplicity of equipment operation has been stressed. It is assumed that the operating personnel to be trained will be of average intelligence. Training will include indoctrination in the purpose, capabilities and limitations of the system; it will develop the skills required to maintain and operate the equipment.

The feasibility study suggests a list of qualifications for the selection of operating personnel and a training program requiring 150 hours during 19 days of indoctrination.