AD NUMBER

| AD341885 |

CLASSIFICATION CHANGES

| TO: | UNCLASSIFIED |
| FROM: | CONFIDENTIAL |

LIMITATION CHANGES

| TO: |
Approved for public release; distribution is unlimited. |
| FROM: |
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 15 MAY 1963. Other requests shall be referred to Naval Ordnance Lab., White Oak, MD. |

AUTHORITY

NOL ltr 29 Aug 1974 ; NOL ltr 29 Aug 1974
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
A HEAT RESISTANT EXPLOSIVE FILL FOR LEADS AND BOOSTERS (U)

RELEASED TO ASTIA
BY THE NAVAL ORDNANCE LABORATORY
☑ Without restrictions
☐ For Release to Military and Government Agencies Only.
☑ Approval by BuWeaps required for release to contractors.
☐ Approval by BuWeaps required for all subsequent release.

15 MAY 1963

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

NOTICE: This material contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C. Sections 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

Downgraded at 3 Year Intervals
Declassified after 12 Years. DOD DR 5200.30
A HEAT RESISTANT EXPLOSIVE FILL FOR LEADS AND BOOSTERS (U)

By J. N. Ayres
L. D. Hampton

ABSTRACT: The sensitivity of small highly confined charges of DATB has been investigated. The charges were press-loaded into axially drilled brass cylinders, either 1.0-inch or 2.0-inches outside diameter, 0.1 to 0.6-inch inside diameter, and 0.25 to 1.0 inches in length. The investigation was a preliminary survey from which it is held that DATB has sufficient sensitivity to be used as a heat-resistant explosive fill for leads and boosters. This abstract is Confidential.
This report describes work to determine whether or not DATB would be suitable as an explosive material for high temperature resistant leads and boosters. The work was conducted in the Explosion Dynamics Division, Explosions Research Department under Task No. RUME-4E-000/212-1/F008-10-004 (Problem 012), Study of Explosive Properties. Although the testing was limited, the data show that DATB has sufficient sensitivity and output to serve as a lead and booster explosive. Since DATB is also capable of withstanding higher temperatures than the usual explosives being used for these components, this report should be of interest to missile and space vehicle designers faced with the utilization of explosives at high temperatures.

R. E. Odening
Captain, USN
Commander

C. J. Aronson
By direction
CONTENTS

INTRODUCTION 1
EXPERIMENTAL PROCEDURE AND DATA TREATMENT 1
DECOUPLING STUDIES 3
COLUMN DIAMETER AND CONFINEMENT STUDIES 5
CONCLUSIONS 15
REFERENCES 18
APPENDIX A 19

ILLUSTRATIONS

Figure Title Page
1 Experimental Set-ups 2
2 The Effect of Column Length and Initiator Strength on the Output of 0.1875-Inch Diameter Pressed DATB Charges 6
3 Effect of Charge Column Diameter on the Output of 1.0-Inch Long DATB Charges 7
4 The Effect of Charge Column Diameter on the Output of 1.0-Inch Long DATB Charges; Dent Values Normalized to 0.1875-Inch Charge Diameter 9
5 Dent Profile Variation with Charge Diameter 1.00-Inch O.D. Charge Holder 10
6 Dent Profile Variation with Charge Diameter 2.00-Inch O.D. Charge Holder 11
7 Dent Profile Variability 0.600-Inch Diameter Charges 1.00-Inch O.D. Charge Holder 12
8 Effect of Charge Holder O.D. on Dent Profile of 0.600-Inch Diameter Charges 13
9 Dent Profile: Two 0.600-Inch Diameter Pellets, Total Length 1.00-Inch, No Confinement 16

TABLES

Table Title Page
1 The Average Dent Outputs Observed for Various Initiator and DATB-Charge Configurations 4
2 Output (Expressed in Mils) of Various 1.0-Inch Long DATB Charges, Pressed at 10K PSI in 1.0-Inch Diameter Bodies 14
A HEAT RESISTANT EXPLOSIVE FILL FOR LEADS AND BOOSTERS (U)

INTRODUCTION

This report presents the results of a preliminary exploration of the effects of charge size, initiation strength, and confinement on the output of small, pressed* DATE charges. These studies were undertaken to determine the feasibility of using DATE for high-temperature resistant leads and boosters. The data are scanty. Many obvious experiments involving possible combinations of parameters have not yet been tried. For those combinations which have been tried, the sample size has been small (four or five shots). The data nonetheless reveal very interesting relationships which suggest directions for future study.

EXPERIMENTAL PROCEDURE AND DATA TREATMENT

The data for this study were obtained with experimental setups patterned after the revised Small Scale Gap Test. These setups, shown in Figure 1, consist of an initiator firing into a cylindrical acceptor charge which rests on a cylindrical steel witness block. The parameters explored were wall thickness (ranging from zero to nearly an inch), column length (ranging from 0.25 to 1.0 inch), column diameter (ranging from 0.10 to 0.60 inch), and initiator strength. Very few of the many possible parametric combinations were studied. The performance of the explosive under the various test combinations that were used was evaluated by the measurement of the denting of steel witness blocks. The dent produced by the acceptor explosive was taken as the deepest penetration below the plane of the undisturbed surface.

As is suggested by equation 15 of reference 2, the ratio of the dent depth to the charge radius should be constant for highly confined charges of a given density and composition after steady-state detonation has been established. For the

* This report will deal with charges pressed at only one pressure (10K PSI) from pure DATE. The charge increment length is chosen to be equal to or less than the charge diameter. The DATE does not have any Zytel binder such as is used in the PBX compositions which are used in the fabrication of warheads.
CONFIDENTIAL
NOLTR 63-50

FIG. 1 EXPERIMENTAL SETUPS

NOTE: THE DETONATOR IS SUPPORTED IN POSITION BY A LIGHT-WEIGHT LOOSE-FITTING MOLDED POLYSTYRENE HOLDER (NOT SHOWN)
purpose of this report a transformation was made so that in addition to presenting data as observed, the output readings of column diameters other than 0.1875 inch have been normalized to that diameter by multiplying the observed dent by the ratio \(\frac{0.1875}{\text{column diameter}} \)

The individual data points are to be found in Tables A-1, A-2, and A-3 of Appendix A. These data have been summarized in the main body of the report in Table 1. In each of the graphic displays of the observed relationships (Figures 2, 3, and 4) the individual data points have been plotted to show the variability in regard to the fitted curve as well as the usual plotting of the relationship between appropriate averaged values.

Pronounced variations were noted in the shape of the dent—particularly in the differences in output of charges loaded in 2.0 inch bodies compared to those in 1.0 inch bodies. Traverses which were made across the blocks on a diametral path running through the point of deepest dent were used to generate the dent profiles some of which are shown in Figures 5 through 9. This measurement was carried out using a dial gage mounted on a lathe bed with cross-feed used to traverse the block under the dial gage. The precision of the traverse motion is probably better than ±0.002. The precision of depth measurements on nearly level surfaces is better than ±0.001 inch. Considerable error in depth may be expected in the detail of sharply inclined sides of some of the dent profiles because of the finite diameter of the dial gage probe. For this reason, computations of the volume of the dent by revolution of the observed area would be expected to underestimate the true volume.

DECOUPLING STUDIES

DATB is classified as a relatively insensitive high explosive. Yet it has been used as the base charge in electric detonators and as a core-load for Mild Detonating Fuse (MDF), thus indicating that it will support detonation at small diameters. The first series of tests was therefore designed to explore its properties as a lead explosive. It was decided to measure the output of the 0.1875-inch diameter DATB charges pressed at 10K psi. The effects of column length and initiator strength on the output would be observed. The charge holders were 1.0-inch diameter brass cylinders with axial holes 0.1875 inch in diameter and of four different lengths; 0.25 inch, 0.50 inch, 0.75 inch, and 1.00 inch. Three initiators were used:
Table 1

The average dent outputs observed for various initiator and data-charge configurations.

<table>
<thead>
<tr>
<th>Charge Diameter (in)</th>
<th>Charge Length (in)</th>
<th>Confinement</th>
<th>DENT (mils) When Initiated By-</th>
<th>42 mils Lucite</th>
<th>64 mils Lucite</th>
<th>70 mils Lucite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSGT Donor</td>
<td>Mk. 70 Det.</td>
<td>Mk. 70 Det Attenuated With</td>
<td></td>
</tr>
<tr>
<td>0.100</td>
<td>1.00</td>
<td>Brass</td>
<td>20.6</td>
<td>31.9</td>
<td>24.0</td>
<td>34.2</td>
</tr>
<tr>
<td>0.150</td>
<td>1.00</td>
<td>Brass</td>
<td>56.0</td>
<td>26.7</td>
<td>24.0</td>
<td>34.2</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.50</td>
<td>Brass</td>
<td>48.7</td>
<td>34.9</td>
<td>34.2</td>
<td>34.2</td>
</tr>
<tr>
<td>0.1875</td>
<td>0.75</td>
<td>Brass</td>
<td>45.2</td>
<td>39.7</td>
<td>36.6</td>
<td>39.8</td>
</tr>
<tr>
<td>0.200</td>
<td>1.00</td>
<td>Brass</td>
<td>42.4</td>
<td>41.0</td>
<td>41.6</td>
<td>40.0</td>
</tr>
<tr>
<td>0.250</td>
<td>1.00</td>
<td>Brass</td>
<td>46.8</td>
<td>39.7</td>
<td>41.0</td>
<td>39.7</td>
</tr>
<tr>
<td>0.300</td>
<td>1.00</td>
<td>Brass</td>
<td>71.5</td>
<td>74.8</td>
<td>77.7</td>
<td>74.8</td>
</tr>
<tr>
<td>0.400</td>
<td>1.00</td>
<td>Brass</td>
<td>80.9</td>
<td>74.8</td>
<td>77.7</td>
<td>77.7</td>
</tr>
<tr>
<td>0.500</td>
<td>1.00</td>
<td>Brass</td>
<td>93.9</td>
<td>77.7</td>
<td>77.7</td>
<td>77.7</td>
</tr>
<tr>
<td>0.600</td>
<td>1.00</td>
<td>Brass</td>
<td>99.7</td>
<td>77.7</td>
<td>77.7</td>
<td>77.7</td>
</tr>
<tr>
<td>0.600</td>
<td>1.00</td>
<td>Air</td>
<td>56.3</td>
<td>55.8</td>
<td>55.8</td>
<td>55.8</td>
</tr>
<tr>
<td>0.300</td>
<td>1.00</td>
<td>Brass*</td>
<td>60.3</td>
<td>78.7</td>
<td>78.7</td>
<td>78.7</td>
</tr>
<tr>
<td>0.400</td>
<td>1.00</td>
<td>Brass*</td>
<td>78.7</td>
<td>94.5</td>
<td>94.5</td>
<td>94.5</td>
</tr>
<tr>
<td>0.500</td>
<td>1.00</td>
<td>Brass*</td>
<td>94.5</td>
<td>111.7</td>
<td>111.7</td>
<td>111.7</td>
</tr>
<tr>
<td>0.600</td>
<td>1.00</td>
<td>Brass*</td>
<td>111.7</td>
<td>111.7</td>
<td>111.7</td>
<td>111.7</td>
</tr>
</tbody>
</table>

* 2.0 Body O.D. (All other brass-confined charges: 1.0 O.D.)

CONFIDENTIAL

NOLTR 63-50

CONFIDENTIAL
(1) The Small Scale Gap Test donor; to furnish the highest shock pressure.

(2) The Detonator Mk 70 Mod 0; to provide a moderate shock pressure.

(3) The Detonator Mk 70 Mod 0 attenuated by a Lucite barrier; to provide a weak shock just strong enough to start detonation.*

The results of these experiments are plotted in Figure 2. The output of initiators (1) and (2) (as measured by the depth of dent in a steel block) are plotted at a zero column length of DATB. As the DATB column length is increased it can be seen that the dent changes asymptotically from a value characteristic of the initiator to a value of about 40 or 42 mils which would be expected of long columns of DATB loaded under the given conditions. Decoupling from the initiators is nearly complete in one inch. The center and right-hand plots in Figure 2 are included to show the scatter of the individual data points and to demonstrate that the observed phenomena are significant and reproducible.

The results with DATB appear to be consistent with work done in years past on tetryl. By correcting the dents observed with tetryl at 0.200 inch diameter to what would be expected at a 0.1875-inch diameter, it was found that tetryl would decouple in about 3/4 to 1 inch at a value of about 47 mils, as shown by the + symbols in Figure 2. If the output of DATB is assumed to be about 0.89 of tetryl, the tetryl data fall reasonably well on the observed DATB curve, as shown by the x symbols in Figure 2.

COLUMN DIAMETER AND CONFINEMENT STUDIES

The other phase of this program was to study the effect of column diameter, and to some extent confinement, on the output of 1.0-inch long columns of DATB pressed at 10K PSI. In all diameters, ranging from 0.1 inch to 0.6 inch, the confined charges support detonation and have similar decoupling. By inspection of the solid line of Figure 3 it can be seen that

* This barrier size was selected as being representative of the interface thickness encountered in some weapon systems and nearly as thick as the barrier size at which some failures to initiate were observed.
FIG. 2 THE EFFECT OF COLUMN LENGTH AND INITIATOR STRENGTH ON THE OUTPUT OF 0.1875-DIAMETER PRESSED DATB CHARGES
FIG. 3 EFFECT OF CHARGE COLUMN DIAMETER ON THE OUTPUT OF 1'-LONG DATG CHARGES
the output falls off essentially linearly with diameter between diameters of 0.3 inch and 0.1 inch. There is, as yet, no sudden break in the curve toward zero dent with decreasing diameter such as would be seen if the failure diameter were encountered.

Above 0.3-inch diameter, a curvature is noticed indicating that the output dent is not increasing with the column diameter as rapidly as would be expected from the scaling law. The most obvious reason for this curvature would be the loss in confinement with increasing charge diameter as a result of holding the charge case diameter to 1.0 inch. To check this effect, 2.0 inch outside diameter pieces were used to get data for charge diameters of 0.3, 0.4, 0.5, and 0.6 inches (data plotted as a dashed line in Figure 3). Since the straight line relationship is restored, this interpretation is tenable. This is further borne out by comparing the data after they have been normalized to the 0.1375-inch column by the scaling law (Figure 4).

The plots in Figures 3 and 4, and relevant tabulated data, are in terms of depth of dent and not the more fundamental parameter of volume of dent. Dent volumes were not measured. Dent profiles, however, were taken in a plane passing as close as possible through the point of deepest dent. Figure 5 compares typical profiles for each of the charge diameters studied in 1.0-inch diameter, 1.0-inch long bodies. Vertical tick marks have been drawn on the profiles to give a reference as to the diameter of the original charge.

The reader is cautioned to note that the vertical scale of all the profiles is exaggerated in comparison to the horizontal scale. Figure 6 is a similar comparison of the 2.0-inch outside diameter charges. From these profiles it can be seen that the variation in shape of the dent is not as great within each of the types of outside diameters as it is between the two types. The extra constraint to the steel block offered by the larger mass of brass in the 2.0-inch diameter system leads to a much different shape by preventing upsetting of the steel. The cross-over of the 1.0-inch and 2.0-inch diameter curves in Figure 3 is much less puzzling when the difference in profiles is considered.

Figure 7 has been included to show as typical the similarity of profile that is observed for replicate experiments. Figure 8 has been included to show typical comparisons of the effect of the change of body outside diameter on the profile.

By selecting appropriate data it is possible to show (Table 2) that the variation in explosive charge diameter does not have an appreciable effect on the decoupling. That is, the
CONFIDENTIAL
NOLTR 63-50

FIG. 4
THE EFFECT OF CHARGE COLUMN DIAMETER ON THE OUTPUT OF 10 LONG DANTZ CHARGES, DENT VALUES NORMALIZED TO 0.1875-CHARGE DIAMETER

50 40 30 20 10 0
EXPLOSIVE COLUMN DIAMETER (INCHES)

50 40 30 20 10 0
NORMALIZED TO 0.1875 CHARGE DIAMETER

CONFIDENTIAL
Figure 6: Dent Profile Variation with Charge Diameter 2-00 OD Charge Holder

CONFIDENTIAL
NOLTR 63-50
CONFIDENTIAL
NOLTR 63-50

FIG. 8 EFFECT OF CHARGE HOLDER O.D. ON DENT PROFILE OF 0.060-DIA. CHARGES

1.00-OD. CHARGE HOLDER
2.00-OD. CHARGE HOLDER
0.060-DIA. CHARGE

SCALES

0.020
0.050

CONFIDENTIAL
TABLE 2
OUTPUT (EXPRESSED IN MILS) OF VARIOUS 1.0-INCH LONG DATE CHARGES, PRESSED AT 10K PSI IN 1.0-INCH DIAMETER BODIES

<table>
<thead>
<tr>
<th>Acceptor Initiated by</th>
<th>Explosive Column Diameter (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.1875</td>
</tr>
<tr>
<td>SSGT Donor (Strong Shock)</td>
<td>42.4</td>
</tr>
<tr>
<td>Detonator Mk 70 Mod 0</td>
<td>41.0</td>
</tr>
<tr>
<td>Detonator Mk 70 Mod 0 Attenuated by 64 mils Lucite (Weak Shock)</td>
<td>40.0</td>
</tr>
</tbody>
</table>
output of the DATE column when initiated by the weak shock is in the order of 5% less than when initiated by a strong shock.

In the final portion of this study unconfined 0.6-inch diameter pellets, used two at a time to give a 1.0-inch column length, were fired without confinement against a steel witness plate. The observed dent depth was about half that of the same column diameter when confined (Figure 3). Also the dent profile (Figure 9) was much less flat-bottomed indicating that the shock front was far from plane wave and that the peripheral explosive may have been contributing relatively little to the total explosive action. From this it can be seen that close confinement of the DATE greatly enhances its explosiveness in these small size charges.

CONCLUSIONS

In those weapon systems where a temperature-resistant explosive is needed for the explosive train components, i.e., in the leads and boosters, it should be possible to employ DATE. CH-6, which is in current use in a number of systems, can be used where the temperatures are in the order of 350°F. for short lengths of time. DATE would be expected to withstand temperatures of about 100°F. higher than CH-6.*

The thermal advantage over CH-6 in using DATE will in part have to be paid for by a decrease in relative explosive strength and perhaps also by some changes in the loading methods to allow for the differences in physical properties of the two materials and also to increase the confinement in order to enhance the explosive vigor of DATE.

There is still another way to improve the DATE output over what was observed in this set of experiments. The charges in this study were only at about 80% of Theoretical Maximum density (TMD). By increasing the density the output can be increased considerably. Such a change would have to be balanced off against the concomitant desensitization of the DATE charge which in turn can alter the probability of detonation transfer in the train. The choice of optimum TMD would of course require experimental work.

* The RDX used in CH-6 is Class A - - a material which by virtue of the manufacturing process contains up to about 10% HMX. The melting point of this material may be as low as 375°F. DATE has so far been produced with very nearly CP quality. A decrease in purity could sharply degrade its temperature-resistant properties as is often the case with other high-temperature explosives.
FIG. 9 DENT PROFILE: TWO 0.060-DA PELLETS, TOTAL LENGTH≈700, NO CONFINEMENT

0.057
DEPTH OF DENT

0.600-DA PELLET

SCALES

0.250

16
CONFIDENTIAL
From Figure 2 it can be seen that the DATB should be usable as a lead explosive since it acts as an explosive amplifier. Furthermore it satisfies the requirement usually placed on fuze explosive trains, namely, that it can be used beyond the train interrupter since it is definitely less sensitive than tetryl.

It also appears to be feasible to use DATB as a booster explosive. But, as for the leads, it will be necessary to tinker with such variables as charge length, loading pressure, booster case wall thickness, and initiator strength to achieve an optimized design.
REFERENCES

5. B. J. Meleski, "Development of Flexible Explosive Lead, Mk 11 Mod 0 and Warhead Booster, Mk 36 Mod 1 (U)", NAVORD Report 6664, 30 June 1959, (Confidential).

Appendix A

Table A-1

Output of various DATB charges pressed at 10k PSI into 1.00 inch O.D. brass bodies and initiated by MK 70 detonators

<table>
<thead>
<tr>
<th>Col. Diam.</th>
<th>Col. Length</th>
<th>No Attenuator Between Mk. 70 Detonator and DATB</th>
<th>With Lucite Attenuator Between Mk. 70 Detonator and DATB</th>
<th>Normalized Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Attenuator (mils)</td>
<td>Observed Dent (mils)</td>
<td>Observed Dent (mils)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1875</td>
<td>1.00</td>
<td>none, 64 mils</td>
<td>41.55 (mils)</td>
<td>41.55 (mils)</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.00</td>
<td>none, 64 mils</td>
<td>38.35 (mils)</td>
<td>38.35 (mils)</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.00</td>
<td>none, 64 mils</td>
<td>23.90 (mils)</td>
<td>23.90 (mils)</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.00</td>
<td>none, 64 mils</td>
<td>32.90 (mils)</td>
<td>32.90 (mils)</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.00</td>
<td>none, 64 mils</td>
<td>30.40 (mils)</td>
<td>30.40 (mils)</td>
</tr>
<tr>
<td>0.1875</td>
<td>1.00</td>
<td>none, 64 mils</td>
<td>33.80 (mils)</td>
<td>33.80 (mils)</td>
</tr>
<tr>
<td>With Lucite Attenuator Between Mk. 70 Detonator and DATB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Expanded acceptor body without shattering it.
TABLE A-2

OUTPUT OF VARIOUS DATE CHARGES PRESSED AT 10K PSI INTO 1.00 INCH O.D. BRASS BODIES AND INITIATED BY SSGT DONORS

<table>
<thead>
<tr>
<th>Col. Diam.</th>
<th>Col. Length</th>
<th>0.10</th>
<th>0.15</th>
<th>0.1875</th>
<th>0.1875</th>
<th>0.1875</th>
<th>0.1875</th>
<th>0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Observed Dent (mils)</td>
<td></td>
<td>18.72</td>
<td>31.25</td>
<td>56.35</td>
<td>49.65</td>
<td>43.25</td>
<td>41.28</td>
<td>44.38</td>
</tr>
<tr>
<td></td>
<td>21.20</td>
<td>30.78</td>
<td>57.40</td>
<td>48.25</td>
<td>45.95</td>
<td>42.08</td>
<td>47.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.80</td>
<td>32.60</td>
<td>54.95</td>
<td>48.05</td>
<td>46.42</td>
<td>42.58</td>
<td>47.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.50</td>
<td>32.95</td>
<td>55.22</td>
<td>48.82</td>
<td>45.12</td>
<td>43.62</td>
<td>47.70</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Col. Diam.</th>
<th>Col. Length</th>
<th>0.25</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed Dent (mils)</td>
<td></td>
<td>62.50</td>
<td>69.98</td>
<td>80.28</td>
<td>93.5</td>
<td>96.6</td>
</tr>
<tr>
<td></td>
<td>59.25</td>
<td>70.05</td>
<td>79.35</td>
<td>94.8</td>
<td>100.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60.20</td>
<td>70.32</td>
<td>81.40</td>
<td>95.8</td>
<td>102.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61.58</td>
<td>75.50</td>
<td>82.68</td>
<td>94.5</td>
<td>99.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Col. Diam.</th>
<th>Col. Length</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.25</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Dent (mils)</td>
<td>Normalized to 0.1875</td>
<td>35.1</td>
<td>39.1</td>
<td>41.6</td>
<td>46.9</td>
<td>43.7</td>
<td>37.6</td>
<td>35.1</td>
<td>30.2</td>
</tr>
<tr>
<td></td>
<td>39.8</td>
<td>38.5</td>
<td>44.4</td>
<td>44.4</td>
<td>43.8</td>
<td>37.2</td>
<td>35.6</td>
<td>31.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40.9</td>
<td>40.8</td>
<td>44.9</td>
<td>45.2</td>
<td>44.0</td>
<td>38.2</td>
<td>35.9</td>
<td>31.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38.4</td>
<td>41.2</td>
<td>44.7</td>
<td>46.2</td>
<td>47.2</td>
<td>38.8</td>
<td>35.4</td>
<td>31.1</td>
<td></td>
</tr>
<tr>
<td>Column Diameter</td>
<td></td>
<td>34.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-3

OUTPUT OF VARIOUS 1.0 INCH LONG DATB CHARGES PRESSES AT 10K PSI

<table>
<thead>
<tr>
<th>Column Diameter</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.6*</th>
<th>0.6*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body O. D.</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Initiator Type</td>
<td>SSGT Donor</td>
<td>SSGT Donor</td>
<td>SSGT Donor</td>
<td>SSGT Donor</td>
<td>SSGT Donor</td>
<td>Mk 70 Det.</td>
</tr>
<tr>
<td>Observed Dent (mils)</td>
<td>59.5</td>
<td>80.8</td>
<td>91.5</td>
<td>109.0</td>
<td>59.0</td>
<td>55.2</td>
</tr>
<tr>
<td></td>
<td>62.0</td>
<td>79.0</td>
<td>97.2</td>
<td>113.2</td>
<td>56.0</td>
<td>53.8</td>
</tr>
<tr>
<td></td>
<td>59.0</td>
<td>77.8</td>
<td>94.5</td>
<td>111.5</td>
<td>55.0</td>
<td>56.8</td>
</tr>
<tr>
<td></td>
<td>60.8</td>
<td>77.2</td>
<td>94.8</td>
<td>113.0</td>
<td>55.0</td>
<td>58.0</td>
</tr>
<tr>
<td>Dent (mils)</td>
<td>37.2</td>
<td>37.9</td>
<td>34.3</td>
<td>34.1</td>
<td>18.4</td>
<td>17.3</td>
</tr>
<tr>
<td>Normalized to 0.1875</td>
<td>38.8</td>
<td>37.0</td>
<td>36.5</td>
<td>35.4</td>
<td>17.5</td>
<td>16.8</td>
</tr>
<tr>
<td>Column Diameter</td>
<td>36.9</td>
<td>36.5</td>
<td>35.4</td>
<td>34.8</td>
<td>17.2</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>38.0</td>
<td>36.2</td>
<td>35.6</td>
<td>35.3</td>
<td>17.2</td>
<td>18.1</td>
</tr>
</tbody>
</table>

2 pellets, total length approximately 1.0 inch
<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief, Bureau of Naval Weapons</td>
<td></td>
</tr>
<tr>
<td>Department of Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>RMNO-5</td>
<td>1</td>
</tr>
<tr>
<td>DLI-3</td>
<td>2</td>
</tr>
<tr>
<td>RRRE-5</td>
<td>1</td>
</tr>
<tr>
<td>RUME-32</td>
<td>1</td>
</tr>
<tr>
<td>Director, Special Projects Office</td>
<td></td>
</tr>
<tr>
<td>Department of Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>SP-20</td>
<td>2</td>
</tr>
<tr>
<td>SP-27</td>
<td>2</td>
</tr>
<tr>
<td>SP-2733</td>
<td>1</td>
</tr>
<tr>
<td>Dr. J. P. Craven</td>
<td>1</td>
</tr>
<tr>
<td>K. M. Boley</td>
<td>1</td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td></td>
</tr>
<tr>
<td>Department of Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td>2</td>
</tr>
<tr>
<td>Chief, Bureau of Yards & Docks</td>
<td></td>
</tr>
<tr>
<td>Department of Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td>1</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Department of Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td>2</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
</tr>
<tr>
<td>Operational Development Force</td>
<td></td>
</tr>
<tr>
<td>U. S. Atlantic Fleet</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Base</td>
<td></td>
</tr>
<tr>
<td>Norfolk 11, Va.</td>
<td>2</td>
</tr>
</tbody>
</table>
Commander
U. S. Naval Ordnance Test Station
China Lake, California
 Code 556 1
 Code 4572 1
 Technical Library 2
 B. A. Breslow
 J. Sherman

Director
Naval Research Laboratory
Washington 25, D. C.
 Technical Information Section 2

Commander
Naval Air Development Center
Johnsville, Pennsylvania
 Aviation Armament Laboratory

Commander
U. S. Naval Weapons Laboratory
Dahlgren, Virginia
 Technical Library 2
 Weapons Department 1
 Terminal Ballistics Department 1

Commander
U. S. Navy Electronics Laboratory
San Diego, California

Commandant
U. S. Marine Corps
Washington 25, D. C.

Commanding Officer
U. S. Naval Weapons Station
Yorktown, Virginia
 R&D Division 2

Commanding Officer
U. S. Naval Ordnance Laboratory
Corona, California
 C. R. Hamilton, Code 55 1
 R. Hillyer, Code 55 1

Commanding Officer
U. S. Naval Propellant Plant
Indian Head, Maryland
 Technical Library
 EODTC

Copies
Commander
Naval Radiological Defense Laboratory
San Francisco, California
R. Schnider

Commander
Pacific Missile Range
Point Mugu, California

Superintendent
Naval Post Graduate School
Monterey, California

Commanding Officer
Naval Ammunition Depot
Crane, Indiana

Commanding Officer
U.S. Naval Ordnance Plant
Macon, Georgia

Commanding Officer
U.S. Naval Ammunition Depot
McAlester, Oklahoma
R. E. Halpern

Commanding Officer
U.S. Naval Ammunition Depot
Waipelu Branch
Oahu, Hawaii
Special Projects Officer
Quality Evaluation Laboratory

Commanding Officer
U.S. Naval Ammunition Depot
Navy Number Six Six (66)
c/o Fleet Post Office
San Francisco, California

Commanding Officer
U.S. Naval Weapons Evaluation Facility
Kirtland Air Force Base
Albuquerque, New Mexico

Commanding Officer
Holston Ordnance Works
Kingsport, Tennessee
Commanding General
Army Material Command Hdqts. U.S. Army
Washington 25, D. C.
R & D Division

Office of Chief of Engineers
Department of Army
Washington 25, D. C.
ENGMB
ENGEB

Commanding General
Picatinny Arsenal
Dover, New Jersey
ORDBB-TH8, Technical Information
ORDBB-TJ1, H. E. Section
ORDBB-TK3, Prop. & Expl. Unit
ORDBB-TM1, Chem. Res. Section
ORDBB-TF1, Proj. Fuze Section
ORDBB-TP2, GM, Rocket & Bomb Fuze
ORDBB-TP3, Init. & Spec. Div.
ORDBB-TR2, Phys. Res. Section
ORDBB-TS1, Pyrotech. Lab.

Commanding Officer
Harry Diamond Laboratories
Conn. Ave. & Van Ness Sts., N. W.
Washington 25, D. C.
Ord. Develop. Lab
M. Lipnick (Code 005)

Commanding Officer
Office of Ordnance Research
Box CM
Duke Station
Durham, N. Carolina

NOLTR 63-50

Copies
NOLTR 63-50

Commanding Officer
Chemical Corps
Chemical & Radiological Laboratory
Army Chemical Center, Maryland

Commanding Officer
Engineer R&D Laboratory
U. S. Army
Ft. Belvoir, Virginia
Tech. Intelligence Branch

Commanding Officer
Fort Detrick, Maryland

Commanding General
U. S. Army Ordnance Ammunition Center
Joliet, Illinois

Commanding General
Aberdeen Proving Ground
Aberdeen, Maryland
BRL

Commanding General
Frankford Arsenal
Philadelphia 37, Pennsylvania
Technical Library

Commanding General
Redstone Arsenal
Huntsville, Alabama
Technical Library

Commander
Army Rocket & Guided Missile Agency
Redstone Arsenal
Huntsville, Alabama
ORDXR-RH

Commander
Ordnance Corps
Lake City Arsenal
Independence, Missouri
Ind. Engr. Division

Commanding General
White Sands Proving Ground
White Sands, New Mexico
Chief of Staff
U. S. Air Force
Washington 25, D. C.
APORD-AR

Wright Air Development Division
Wright-Patterson AFB, Ohio
WWAD

Hq. Air Proving Ground Center
U. S. Air Force, AFSC
Eglin Air Force Base, Florida
PGTRI, Technical Library

Commander
Air Force Systems Command
Andrews Air Force Base
Washington 25, D. C.

Commander
Rome Air Development Center
Griffiss Air Force Base
Rome, New York

Commander
Holloman Air Development Center
Alamagordo, New Mexico

Commanding Officer
Air Force Missile Test Center
Patrick Air Force Base, Florida

Commander
Air Force Cambridge Research Center
L. G. Hanscom Field
Bedford, Massachusetts

Commander
Air Force Special Weapons Center
Kirtland Air Force Base
Albuquerque, New Mexico

Defense Documentation Center
Arlington Hall Station
Arlington, Virginia
TIPDR

Atomic Energy Commission
Washington 25, D. C.
DMA

Copies

1
2
1
1
1
1
1
1
10
1
Chief, Defense Atomic Support Agency
Washington 25, D. C.

Director, U. S. Bureau of Mines
Div. of Explosive Technology
4800 Forbes Street
Pittsburgh 13, Pennsylvania
Dr. R. W. Van Dolah

Director, USAF Project RAND
(Via USAF Liaison Office)
The Rand Corporation
1700 Main Street
Santa Monica, California

Lawrence Radiation Laboratory
University of California
P. O. Box 808
Livermore, California
Technical Information Div.

Director
Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, New Mexico

National Aeronautics & Space Administration
Headquarters
1520 H Street, N. W.
Washington 25, D. C.

National Aeronautics & Space Administration
Goddard Space Flight Center
Greenbelt, Maryland

Lewis Research Center, NASA
21000 Brookpark Road
Cleveland 35, Ohio
Library
George Mandel

George C. Marshall Space Flight Center, NASA
Huntsville, Alabama
Library

Langley Research Center, NASA
Langley Field, Virginia
Library
NOLTR 63-50

Manned Spacecraft Center, NASA
P. O. Box 1537
Houston, Texas
Library

High-Speed Flight Station, NASA
Edwards Air Force Base, California
W. C. Williams
Librarian

Ames Research Laboratory, NASA
Moffett Air Force Base, California
A. G. Boissenain
Library

Director, Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland

Sandia Corporation
P. O. Box 5400
Albuquerque, New Mexico

Sandia Corporation
P. O. Box 969
Livermore, California

Director
Waterways Experiment Station
Vicksburg, Tennessee

Aerojet-General Corp.
11711 South Woodruff Avenue
Downey, California
F. Walsh, Librarian

Aerojet-General Corp.
Ordnance Division
Downey, California
Dr. Louis Zernow

Aerojet-General Corp.
P. O. Box 1947
Sacramento, California
Technical Information Office
Dr. Kirchner
Dr. Whitmore

NORD 16881

NOW 63-0050

Copies

1
1
1
1
1
1
1
1
1
1
1
2
1
1
E. I. duPont deNemours
Eastern Laboratories
Explosives Dept.
Gibbstown, New Jersey
Dr. L. Coursen

NOLTR 63-50

The Franklin Institute
20th & Benjamin Franklin Parkway
Philadelphia, Pennsylvania
Technical Library
N60921-7008
(SPIA C-15)
1

General Electric Co.
2198 Chestnut Street
Philadelphia 4, Pennsylvania
Re-Entry Systems Dept.
NOW 61-0136
1

Institute for Defense Analyses
1666 Connecticut Avenue, N. W.
Washington, D. C.
Classified Library
(SPIA C-134)
1

Lockheed Missiles & Space Co.
P. O. Box 504
Sunnyvale, California
Dr. Loyd Wilson
Allen Feller
Technical Information Office
NOW 63-0050
1

Martin Co.
Baltimore 3, Maryland
Science-Technology Library-Mail 398
(SPIA C-24)
1

McDonnell Aircraft Co.
Box 516
St. Louis 66, Missouri
Dr. Morey Schimmel, Dept. 331
NOas 60-0134-r
2

Midwest Research Institute
425 Volkmer Blvd.
Kansas City 10, Missouri
Librarian
(SPIA C-25)
1

Olin Mathieson Chemical Corp.
Marion, Illinois
Research Library - Box 508
(SPIA C-43)
1

University of Utah
Salt Lake City, Utah
Dr. M. Cook, Expl. Research Group
NOW 61-04118
1
<table>
<thead>
<tr>
<th>SOURCE</th>
<th>DESCRIPTORS</th>
<th>CODES</th>
<th>SECURITY CLASSIFICATION AND CODE COUNT</th>
<th>DESCRIPTORS</th>
<th>CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REPORT NUMBER</td>
<td>NOL technical report</td>
<td>NOLTR</td>
<td>Confidential - 24</td>
<td>C024</td>
<td></td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>63-50</td>
<td>630950</td>
<td>CIRCULATION LIMITATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>15 May 1963</td>
<td>Ø563</td>
<td>CIRCULATION LIMITATION FOR BIBLIOGRAPHIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUBJECT ANALYSIS OF REPORT</td>
<td>DESCRIPTORS</td>
<td>CODES</td>
<td>DESCRIPTORS</td>
<td>CODES</td>
<td></td>
</tr>
<tr>
<td>Explosive</td>
<td>EXPL</td>
<td>Loaded</td>
<td>LOAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill</td>
<td>FILL</td>
<td>Axially</td>
<td>AXIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leads</td>
<td>LEAS</td>
<td>Drilled</td>
<td>DRILL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boosters</td>
<td>BOOS</td>
<td>Brass</td>
<td>BRAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat-resistant</td>
<td>HEAA</td>
<td>Metal</td>
<td>META</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charges</td>
<td>CHAR</td>
<td>Cylinders</td>
<td>CYLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>SENV</td>
<td>Explosives (tests)</td>
<td>EXPLT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamino</td>
<td>DIAM</td>
<td>High temperature</td>
<td>HTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trinitro</td>
<td>TRIT</td>
<td>Temperature</td>
<td>TEMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>BENZ</td>
<td>Decoupling</td>
<td>DECU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confined</td>
<td>CTAI</td>
<td>Column</td>
<td>COLU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Press</td>
<td>FRSG</td>
<td>Diameter</td>
<td>DIAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Report Title</td>
<td>Lead Authors</td>
<td>Booster Authors</td>
<td>Project Authors</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>The sensitivity of small highly confined charges of a heat resistant explosive has been investigated. The charges were press-loaded into axially drilled brass cylinders, either 1.0-inch of 2.0-inches outside diameter, 0.1 to 0.6-inch inside diameter, and 0.25 to 1.0 inches in length. The investigation was a preliminary survey from which it is held that the heat resistant explosive investigated has sufficient sensitivity to be used as an explosive fill for leads and boosters. Abstract card is unclassified.</td>
<td>Explosives, Heat resistant</td>
<td>Ayres, James N.</td>
<td>Hampton, Laurence O., Jr.</td>
<td>Project</td>
<td>Confidential</td>
</tr>
<tr>
<td>The sensitivity of small highly confined charges of a heat resistant explosive has been investigated. The charges were press-loaded into axially drilled brass cylinders, either 1.0-inch of 2.0-inches outside diameter, 0.1 to 0.6-inch inside diameter, and 0.25 to 1.0 inches in length. The investigation was a preliminary survey from which it is held that the heat resistant explosive investigated has sufficient sensitivity to be used as an explosive fill for leads and boosters. Abstract card is unclassified.</td>
<td>Explosives, Heat resistant</td>
<td>Ayres, James N.</td>
<td>Hampton, Laurence O., Jr.</td>
<td>Project</td>
<td>Confidential</td>
</tr>
<tr>
<td>The sensitivity of small highly confined charges of a heat resistant explosive has been investigated. The charges were press-loaded into axially drilled brass cylinders, either 1.0-inch of 2.0-inches outside diameter, 0.1 to 0.6-inch inside diameter, and 0.25 to 1.0 inches in length. The investigation was a preliminary survey from which it is held that the heat resistant explosive investigated has sufficient sensitivity to be used as an explosive fill for leads and boosters. Abstract card is unclassified.</td>
<td>Explosives, Heat resistant</td>
<td>Ayres, James N.</td>
<td>Hampton, Laurence O., Jr.</td>
<td>Project</td>
<td>Confidential</td>
</tr>
<tr>
<td>The sensitivity of small highly confined charges of a heat resistant explosive has been investigated. The charges were press-loaded into axially drilled brass cylinders, either 1.0-inch of 2.0-inches outside diameter, 0.1 to 0.6-inch inside diameter, and 0.25 to 1.0 inches in length. The investigation was a preliminary survey from which it is held that the heat resistant explosive investigated has sufficient sensitivity to be used as an explosive fill for leads and boosters. Abstract card is unclassified.</td>
<td>Explosives, Heat resistant</td>
<td>Ayres, James N.</td>
<td>Hampton, Laurence O., Jr.</td>
<td>Project</td>
<td>Confidential</td>
</tr>
<tr>
<td></td>
<td>Explosives, Heat resistant</td>
<td></td>
<td>Explosives, Heat resistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A HEAT RESISTANT EXPLOSIVE FILL FOR LEADS AND BOOSTERS (U), by J. N. Ayres and L. B. Hampton. 15 May 1963. 32p. illus., tables. Buweps task RMB-02-000/212-1/7902-10-004.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Diamino-trinitro benzene</td>
<td>2</td>
<td>Diamino-trinitro benzene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Leads, Explosive Boosters, Explosive</td>
<td>3</td>
<td>Leads, Explosive Boosters, Explosive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Ayres, James N.</td>
<td>II</td>
<td>Ayres, James N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Hampton, Lawrence D., jt. author</td>
<td>III</td>
<td>Hampton, Lawrence D., jt. author</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Project</td>
<td>IV</td>
<td>Project</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 63-50)
The sensitivity of small highly confined charges of a heat resistant explosive has been investigated. The charges were press-loaded into axially drilled brass cylinders, either 1.0-inch of 2.0-inches outside diameter, 0.1 to 0.6-inch inside diameter, and 0.25 to 1.0 inches in length. The investigation was a preliminary survey from which it is held that the heat resistant explosive investigated has sufficient sensitivity to be used as an explosive fill for leads and boosters. Abstract card is unclassified.