<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>AD339794</td>
</tr>
<tr>
<td>CLASSIFICATION CHANGES</td>
</tr>
<tr>
<td>TO: unclassified</td>
</tr>
<tr>
<td>FROM: confidential</td>
</tr>
<tr>
<td>LIMITATION CHANGES</td>
</tr>
<tr>
<td>TO: Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>FROM: Distribution authorized to U.S. Gov’t. agencies only; Foreign Government Information; NOV 1962. Other requests shall be referred to British Embassy, 3100 Massachusetts Avenue, NW, Washington, DC 20008.</td>
</tr>
<tr>
<td>AUTHORITY</td>
</tr>
<tr>
<td>DSTL, AVIA 6/17694, 30 Apr 2009; DSTL, AVIA 6/17694, 30 Apr 2009</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

NOTICE:

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
SOME PERFORMANCE DETAILS OF A PROTOTYPE TUNING-FORK GYROSCOPE, SERIAL No. K.H.I [U]

by

R. J. Pitt

NOVEMBER, 1962
ROYAL AIRCRAFT ESTABLISHMENT
(FARNSBOROUGH)

SOME PERFORMANCE DETAILS OF A PROTOTYPE TUNING-FORK
GYROSCOPE, SERIAL NO. K.H.1

by

R. J. Pitt

RAE Ref. IEE/3803

SUMMARY

A test schedule has been designed and it is shown that the information available after carrying out this schedule should be sufficient to enable a performance assessment to be made of any tuning-fork gyroscope.

Comparisons between open loop and closed loop behaviour are made and an overall value for the tuning-fork's reliability as a rate-of-turn indicator is derived. A modification to the instrument design which should result in an improved performance is suggested.

Long-term stability and the effects of temperature changes are amongst the measurements quoted.

Since this is the first investigation of this type an unusually large number of test records are included in this Note as a basis for future reference.
LIST OF CONTENTS

1 INTRODUCTION 4
2 ACCURACY OF MEASUREMENTS 4
3 CALIBRATION TESTS 5
 3.1 Gyro mounted on rate-table with table axis vertical 5
 3.2 Gyro mounted on rate-table with table axis horizontal 8
 3.3 Summary of calibration test results 9
4 POLAR AXIS TESTS 9
 4.1 Results 10
 4.1.1 Open loop tests 11
 4.1.2 Closed loop tests 11
5 TEMPERATURE EFFECTS 11
6 LONG TERM STABILITY 11
7 CONCLUSIONS 12

LIST OF REFERENCES 13
ADVANCE DISTRIBUTION LIST 14
APPENDICES 1 and 2 15-17
ILLUSTRATIONS - Figs. 1-36
DETACHABLE ABSTRACT CARDS

LIST OF APPENDICES

Appendix
 1 K.H.1 tuning fork gyroscope test schedule 15
 2 Some parameters for K.H.1 17

LIST OF ILLUSTRATIONS

Effect of ±10 volts change in torsion compensation voltages 1
Effect of rotations about a vertical input axis 2
Rotation about vertical YY' axis, open loop 3
Rotation about vertical YY' axis, closed loop 4
Rotation about vertical ZZ' axis, open and closed loop 5
Rotations about a horizontal input axis, open and closed loop 6
Open loop polar axis test. XX' axis X up. 1000°/hour 7
Closed loop polar axis test. XX' axis X up 1000°/hour 8
Open loop polar axis test. XX' axis X up 100°/hour 9
LIST OF ILLUSTRATIONS (Contd.)

<table>
<thead>
<tr>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed loop polar axis test. XX' axis X up 100°/hour</td>
<td>10</td>
</tr>
<tr>
<td>Open loop polar axis test. XX' axis X' up 1000°/hour</td>
<td>11</td>
</tr>
<tr>
<td>Closed loop polar axis test. XX' axis X' up 1000°/hour</td>
<td>12</td>
</tr>
<tr>
<td>Open loop polar axis test. XX' axis X up 100°/hour</td>
<td>13</td>
</tr>
<tr>
<td>Closed loop polar axis test. XX' axis X' up 100°/hour</td>
<td>14</td>
</tr>
<tr>
<td>Open loop polar axis test. YY' axis Y up 1000°/hour</td>
<td>15</td>
</tr>
<tr>
<td>Closed loop polar axis test. YY' axis Y up 100°/hour</td>
<td>16</td>
</tr>
<tr>
<td>Open loop polar axis test. YY' axis Y up 100°/hour</td>
<td>17</td>
</tr>
<tr>
<td>Closed loop polar axis test. YY' axis Y' up 100°/hour</td>
<td>18</td>
</tr>
<tr>
<td>Open loop polar axis test. YY' axis Y' up 100°/hour</td>
<td>19</td>
</tr>
<tr>
<td>Closed loop polar axis test. YY' axis Y up 1000°/hour</td>
<td>20</td>
</tr>
<tr>
<td>Open loop polar axis test. ZZ' axis Z up 1000°/hour</td>
<td>21</td>
</tr>
<tr>
<td>Closed loop polar axis test. ZZ' axis Z up 1000°/hour</td>
<td>22</td>
</tr>
<tr>
<td>Open loop polar axis test. ZZ' axis Z' up 1000°/hour</td>
<td>23</td>
</tr>
<tr>
<td>Closed loop polar axis test. ZZ' axis Z' up 100°/hour</td>
<td>24</td>
</tr>
<tr>
<td>Open loop polar axis test. ZZ' axis Z' up 100°/hour</td>
<td>25</td>
</tr>
<tr>
<td>Closed loop polar axis test. ZZ' axis Z up 1000°/hour</td>
<td>26</td>
</tr>
<tr>
<td>Effect of temperature variations within T.F.G. enclosure</td>
<td>27</td>
</tr>
<tr>
<td>Temperature variation test. 31°C to 30°C</td>
<td>28</td>
</tr>
<tr>
<td>Temperature variation test. 30°C to 31°C</td>
<td>29</td>
</tr>
<tr>
<td>Long-term stability X up</td>
<td>30</td>
</tr>
<tr>
<td>Long-term stability Y up</td>
<td>31</td>
</tr>
<tr>
<td>Long-term stability Z up</td>
<td>32</td>
</tr>
<tr>
<td>K.H.i on polar axis test rig</td>
<td>33</td>
</tr>
<tr>
<td>K.H.i detail</td>
<td>34</td>
</tr>
<tr>
<td>Section through XX', YY' axes of the gyroscope</td>
<td>35</td>
</tr>
<tr>
<td>The T.F.G. axis system</td>
<td>36</td>
</tr>
</tbody>
</table>
INTRODUCTION

A detailed theoretical analysis of the behaviour of a tuning-fork gyroscope (T.F.G.) in steady-state operation was published recently together with some practical results obtained with an experimental model operated in a laboratory environment. The conclusions carried several suggestions for the improvement of later experimental instruments and these modifications have been embodied in a T.F.G., Serial No. K.H.1, designed at the R.A.E. and manufactured by S. Smith and Sons (England) (Kelvin Hughes Division) under M.O.A. contract.

Figs. 34 and 35 show a photograph of K.H.1 and a unit scale diagram of a section through the instrument. It should be noted that one fundamental difference between K.H.1 and the instrument examined in Technical Note No. I.A.W. 1139 is that the driving forces are now contained entirely within the tuning-fork assembly; the drive electrodes and tine pick-off assemblies are fixed to the centre stem so that deformations of the structure cannot introduce an in-phase signal which is due directly to a change in the relative positions of the electrodes and tines.

A theoretical study has shown that the introduction of a suitable force-feedback system round the output torsion stem should modify the open-loop behaviour so that the T.F.G. becomes a more useful rate-of-turn indicating instrument. The effects would be to reduce the response time of the device and to lower the 'Q' of the torsion output, at the expense of a smaller signal to noise ratio. An electrical feedback system was developed for use with the T.F.G. so that practical confirmation of this theory could be carried out.

The feedback system used takes a proportion of the pick-off signal, amplifies it and feeds it back in the appropriate phase to a pair of electrodes adjacent to the torsion system. When combined with a stabilised polarizing voltage the electrostatic forces set up between the feedback electrodes and torsion system oppose the oscillatory motion of the torsion stem and the torsion pick-off signal is correspondingly reduced. Random noise in the original torsion pick-off output arising from electrical, magnetic and mechanical interference will also be amplified and fed back to the electrodes, but only the small fraction of this noise which is at the exact, resonant frequency of the torsion system will contribute to the damping. Therefore, since no attempt has been made at this stage to filter out random noise from the torsion pick-off output, a smaller signal to noise ratio is obtained when feedback is applied. For the tests described, the torsion output is sampled at the feedback amplifier and fed to a phase-sensitive rectifier (P.S.R). The P.S.R. itself is, under these circumstances, an adequate random noise filter for measuring purposes.

A series of tests was designed to examine and compare the open and closed loop performance of K.H.1, and the results of these tests are presented in this Note. The test schedule is given in Appendix 1, and some operating parameters are listed in Appendix 2.

Reference will be made in the text to the sensitivity of the T.F.G. under open and closed loop operating conditions. The term "sensitivity" is used here to express the ratio of torsion pick-off output to angular rate of the T.F.G. about its own input axis.

ACCURACY OF MEASUREMENTS

The output from the two series-connected torsion pick-offs was fed through a calibrated amplifier into a Resolved Components Indicator (R.C.I.) and compared in amplitude and phase with the tine pick-off voltage. Outputs
from the R.C.I. were then transferred to a Record Duoflex pen recorder and continuous records were made of the components of the output signal in phase with and in quadrature with the tine pick-off, or reference, voltage. Pen recorder friction and visual analysis of the recorded outputs were judged to contribute the major proportion of errors in this arrangement, and it is estimated that an accuracy of ±2 per cent of the recorder's full scale deflection (equivalent to ±% small divisions on the recorder charts) was achieved. Since the majority of the functional tests were carried out with a recorder sensitivity equivalent to a detected input rate of 50°/hour for a full scale deflection, an accuracy of ±1°/hour is implied in the tabulated results unless otherwise stated.

3 CALIBRATION TESTS

Fig.36 is a schematic diagram of a T.F.G. showing the three orthogonal axes to which reference will be made in the text. The XX' axis is both the input and the output axis. An input rate about XX' will be converted, under the action of Coriolis forces acting on the vibrating tines, into an oscillatory motion of the torsion stem about XX' whose amplitude will be directly proportional to the input rate and to the maximum tine velocity. The line of motion of the tines is parallel with the YY' axis, and the ZZ' axis is orthogonal with XX' and YY'.

The T.F.G. was balanced to minimise lateral motions along the YY' axis and residual torques about the XX' axis. In general such lateral motion is due to a mass and/or stiffness difference between the two tines; residual torques arise from misalignment of the lines of motion of the tines with the YY' axis.

The tine and torsion system frequencies were then made equal (in tune) to achieve maximum sensitivity and minimum phase error in the response signal with X' upwards. By this means it would be possible to study the behaviour of the T.F.G. in both the tuned (X' up) and un-tuned (X up) states. After further small adjustments to the balancing a series of tests was carried out to calibrate the instrument.

3.1 Gyro mounted on rate-table with table axis vertical

3.1(a) Effect of ±10 volts change in torsion compensation voltages (Fig.1)

In the following two test values of compensating voltage were approximate (±0.5 volts) and the tests were intended primarily as functional ones to prove that changes in applied compensation would alter the output values.

T.F.G. Attitude: XX' vertical, X up, Y' North

Fork frequency: 522.449 c/s

<table>
<thead>
<tr>
<th>Open Loop Test No.</th>
<th>Compensation applied</th>
<th>Output (μV x 10^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In Phase</td>
<td>Quadrature</td>
</tr>
<tr>
<td>1(a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>OV 0°</td>
<td>OV 270°</td>
</tr>
<tr>
<td>(ii)</td>
<td>10V 0°</td>
<td>OV 270°</td>
</tr>
<tr>
<td>(iii)</td>
<td>10V 180°</td>
<td>OV 270°</td>
</tr>
<tr>
<td>(iv)</td>
<td>OV 0°</td>
<td>10V 270°</td>
</tr>
<tr>
<td>(v)</td>
<td>OV 0°</td>
<td>10V 90°</td>
</tr>
<tr>
<td>(vi)</td>
<td>OV 0°</td>
<td>OV 270°</td>
</tr>
</tbody>
</table>

6.9 5.3

- 5 -

CONFIDENTIAL
A change of 10 volts in the compensation applied altered the torsion pick-off output by approximately $29 \times 10^3 \mu V$ when in phase with the reference voltage, and by approximately $24 \times 10^3 \mu V$ when in quadrature with the reference. These variations were accompanied by phase-shifts of the torsion pick-off output relative to the reference voltage of approximately 18° in the former case and 24° in the latter.

<table>
<thead>
<tr>
<th>Closed Loop Test No.</th>
<th>Compensation applied</th>
<th>In Phase</th>
<th>Quadrature</th>
<th>Output (µV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a) (i)</td>
<td>0V 0°</td>
<td>0V 270°</td>
<td>196</td>
<td>72</td>
</tr>
<tr>
<td>(ii)</td>
<td>10V 0°</td>
<td>0V 270°</td>
<td>590</td>
<td>48</td>
</tr>
<tr>
<td>(iii)</td>
<td>10V 270°</td>
<td>0V 270°</td>
<td>1000</td>
<td>96</td>
</tr>
<tr>
<td>(iv)</td>
<td>0V 0°</td>
<td>10V 270°</td>
<td>259</td>
<td>580</td>
</tr>
<tr>
<td>(v)</td>
<td>0V 0°</td>
<td>10V 90°</td>
<td>153</td>
<td>715</td>
</tr>
<tr>
<td>(vi)</td>
<td>0V 0°</td>
<td>0V 270°</td>
<td>196</td>
<td>72</td>
</tr>
</tbody>
</table>

A change of 10 volts in the voltage applied altered the torsion pick-off output by approximately $300 \mu V$ when in phase with the reference voltage, and by approximately $250 \mu V$ when in quadrature with the reference. The associated phase-shifts of the output were approximately 2° and 5° respectively.

3.1(b) Effect of rotations about a vertical input axis (XX') (Fig.2)

<table>
<thead>
<tr>
<th>T.E.G. Attitude</th>
<th>Open Loop Test No.</th>
<th>Applied Rate</th>
<th>Direction</th>
<th>Output (µV x 10^3)</th>
<th>Fork Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>X up</td>
<td>1(b) (i)</td>
<td>Stationary</td>
<td>C.W.</td>
<td>+0.14</td>
<td>-0.48</td>
</tr>
<tr>
<td>X up</td>
<td>(ii)</td>
<td>100°/hour</td>
<td>C.W.</td>
<td>-2.95</td>
<td>-1.57</td>
</tr>
<tr>
<td>X up</td>
<td>(iii)</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>+3.26</td>
<td>+0.94</td>
</tr>
<tr>
<td>X up</td>
<td>(iv)</td>
<td>1000°/hour</td>
<td>C.W.</td>
<td>-23.2</td>
<td>-9.10</td>
</tr>
<tr>
<td>X up</td>
<td>(v)</td>
<td>1000°/hour</td>
<td>A.C.W.</td>
<td>+7.10</td>
<td>+7.10</td>
</tr>
<tr>
<td>X up</td>
<td>(vi)</td>
<td>Stationary</td>
<td>0</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>X' up</td>
<td>(vii)</td>
<td>Stationary</td>
<td>0</td>
<td>-0.32</td>
<td></td>
</tr>
<tr>
<td>X' up</td>
<td>(viii)</td>
<td>100°/hour</td>
<td>C.W.</td>
<td>+4.37</td>
<td>522±499 c/s</td>
</tr>
<tr>
<td>X' up</td>
<td>(ix)</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>-2.84</td>
<td>-0.71</td>
</tr>
<tr>
<td>X' up</td>
<td>(x)</td>
<td>1000°/hour</td>
<td>C.W.</td>
<td>+31.2</td>
<td>+0.20</td>
</tr>
<tr>
<td>X' up</td>
<td>(xi)</td>
<td>1000°/hour</td>
<td>A.C.W.</td>
<td>-31.2</td>
<td>-1.40</td>
</tr>
<tr>
<td>X' up</td>
<td>(xii)</td>
<td>Stationary</td>
<td>0</td>
<td>-0.29</td>
<td></td>
</tr>
</tbody>
</table>

These figures show that, with the input axis vertical and fork base downwards, a change of rate of rotation of 2000°/hour caused a change of the in-phase component of the output of $6.2 \times 10^3 \mu V$ or $3.1 \times 10^3 \mu V/100^\circ$/hour. A 2000°/hour change of input rate caused a change of $55.4 \times 10^3 \mu V$ or $2.8 \times 10^3 \mu V/100^\circ$/hour.

With the fork base uppermost, the corresponding sensitivities were $3.6 \times 10^3 \mu V/100^\circ$/hour and $3.4 \times 10^3 \mu V/100^\circ$/hour.

The difference in sensitivities between the two attitudes was the result of de-tuning, the fork frequency varying with attitude but not the torsion system frequency.

The differences between sensitivities at each input rate could have been attributed to non-linearities in the damping of the torsion pick-off motion.
The difference between the outputs at X up and X' up, stationary, was due to the difference in the components of Earth's rate detected by the T.F.G. in these attitudes.

<table>
<thead>
<tr>
<th>T.F.G. Attitude</th>
<th>Closed Loop Test No.</th>
<th>Applied Rate</th>
<th>Direction</th>
<th>Output (μV)</th>
<th>Fork Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>X up</td>
<td>(b)</td>
<td>Stationary</td>
<td>C.W.</td>
<td>-2.4</td>
<td>522.449 c/s</td>
</tr>
<tr>
<td>X up</td>
<td>(ii)</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>-14.4</td>
<td></td>
</tr>
<tr>
<td>X up</td>
<td>(III)</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>-17.3</td>
<td></td>
</tr>
<tr>
<td>X up</td>
<td>(iv)</td>
<td>1000°/hour</td>
<td>C.W.</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>X up</td>
<td>(v)</td>
<td>1000°/hour</td>
<td>A.C.W.</td>
<td>-13.0</td>
<td></td>
</tr>
<tr>
<td>X up</td>
<td>(vi)</td>
<td>Stationary</td>
<td>A.C.W.</td>
<td>-1.9</td>
<td></td>
</tr>
<tr>
<td>X' up</td>
<td>(vi)</td>
<td>Stationary</td>
<td>A.C.W.</td>
<td>-8.2</td>
<td>522.459 c/s</td>
</tr>
<tr>
<td>X' up</td>
<td>(vii)</td>
<td>100°/hour</td>
<td>C.W.</td>
<td>-11.4</td>
<td></td>
</tr>
<tr>
<td>X' up</td>
<td>(viii)</td>
<td>100°/hour</td>
<td>C.W.</td>
<td>-9.6</td>
<td></td>
</tr>
<tr>
<td>X up</td>
<td>(ix)</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>-4.8</td>
<td></td>
</tr>
<tr>
<td>X' up</td>
<td>(x)</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>-5.2</td>
<td>522.459 c/s</td>
</tr>
<tr>
<td>X' up</td>
<td>(xi)</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>-16.0</td>
<td></td>
</tr>
<tr>
<td>X' up</td>
<td>(xii)</td>
<td>Stationary</td>
<td>C.W.</td>
<td>-7.2</td>
<td></td>
</tr>
</tbody>
</table>

These figures show sensitivities of 79 μV and 79.3 μV/100°/hour for input rates of 100°/hour and 1000°/hour respectively, the time basis being downwards. With the base upwards, the corresponding sensitivities at 100°/hour and 1000°/hour were 79.3 μV and 80 μV/100°/hour. The negligible difference between these sensitivities working in a "closed loop" condition shows two major improvements over the "open loop" state. The variation of torsion pick-off damping with applied rate became very small, so that there was little difference between the sensitivities for 100°/hour and 1000°/hour input rates, and the reduction of the "Q" of the torsion system meant that there was little difference in response between the tuned and detuned state as the fork changed its attitude. In addition, two further features of closed loop operation discussed in Technical Note No. I.E.E.8 have been confirmed in practice. First, the difference in sensitivities between open and closed loop operation is in the same ratio as the difference between the open and closed loop values of torsion Q, i.e. just over 40:1. Secondly, as presented in the following table, there is considerably less phase error of the closed loop output than of the open loop output when the T.F.G. is in the poorly tuned attitude. There is a much smaller difference in the nearly-tuned attitude.

<table>
<thead>
<tr>
<th>T.F.G. Attitude</th>
<th>Applied rate</th>
<th>Direction</th>
<th>Phase Error (to nearest 0:1°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X up</td>
<td>Stationary</td>
<td>C.W.</td>
<td>+19.4°</td>
</tr>
<tr>
<td>X up</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>+18.4°</td>
</tr>
<tr>
<td>X up</td>
<td>1000°/hour</td>
<td>C.W.</td>
<td>+17.0°</td>
</tr>
<tr>
<td>X up</td>
<td>1000°/hour</td>
<td>A.C.W.</td>
<td>+15.6°</td>
</tr>
<tr>
<td>X up</td>
<td>Stationary</td>
<td>A.C.W.</td>
<td>+13.3°</td>
</tr>
<tr>
<td>X' up</td>
<td>100°/hour</td>
<td>C.W.</td>
<td>+5.1°</td>
</tr>
<tr>
<td>X' up</td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>+8.4°</td>
</tr>
<tr>
<td>X' up</td>
<td>1000°/hour</td>
<td>C.W.</td>
<td>+0.2°</td>
</tr>
<tr>
<td>X' up</td>
<td>1000°/hour</td>
<td>A.C.W.</td>
<td>+1.5°</td>
</tr>
<tr>
<td>X' up</td>
<td>Stationary</td>
<td>A.C.W.</td>
<td>-2.0°</td>
</tr>
</tbody>
</table>

The phase error angles quoted were derived from the output voltages given in the results of tests 1(b)0 and 1(b)c.
3.1(c) Effect of rotations about a vertical axis through the plane of the tines (Z axis) (Fig. 3 and 4)

When the T.F.G. is rotated about a vertical axis through the plane of the tines, the input (Z') axis moving in a horizontal plane, the instrument will detect a varying component of Earth's rate which is a maximum with the input axis along a N-S line and zero along an E-W line. At latitude 51°17', this maximum value is 9.38°/hour. The output amplitude in the open loop test was 332 μV, or 3.54 x 10³ μV/100°/hour. The output amplitude in closed loop was 7.56 μV, or 80.7 μV/100°/hour. The rate of table rotation was 1000°/hour in each case.

No acceptable reason has yet been discovered for the non-sinusoidal waveform of the in-phase signal in these two test runs. It is unlikely to be a function of the rate table behaviour, since it does not appear in the next test.

3.1(d) Effect of rotations about a vertical (ZZ') axis perpendicular to the plane of the tines and to the input axis (Fig. 5)

For these tests, the input axis was still horizontal, detecting a maximum component (9.38°/hour) of Earth's rate along a N-S line. In open loop, the response was 286 μV, or 3.07 x 10³ μV/100°/hour. In closed loop, the output amplitude was 7.44 μV, or 79.5 μV/100°/hour. The rate of table rotation was 1000°/hour in each case.

It should be noted with these two tests that the difference between open and closed loop output signals is shown clearly in Figs. 3 and 4. For open loop behaviour, Fig. 3 shows a quadrature signal which is due almost entirely to a phase error of about 17 degrees in the output signal, and is one-third of the in-phase component. When the loop is closed, as in Fig. 4, this phase error is practically eliminated and there is very little quadrature component of the in-phase signal. There is, however, more noise as indicated by the broader line drawn by the recorder during closed loop operation.

3.2 Gyro mounted on rate table with table-axis horizontal (Fig. 6)

3.2(a) Input axis horizontal along a N-S line. X North.

<table>
<thead>
<tr>
<th>Open Loop Test No.</th>
<th>Applied Rate</th>
<th>Direction</th>
<th>Output (μV x 10³)</th>
<th>Fork Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(o)i)</td>
<td>Stationary</td>
<td>0,7°</td>
<td>-0.05</td>
<td>+0.6</td>
</tr>
<tr>
<td></td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>-3.0</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td>100°/hour</td>
<td>A.C.W.</td>
<td>+2.0</td>
<td>+4.0</td>
</tr>
<tr>
<td></td>
<td>1000°/hour</td>
<td>A.C.W.</td>
<td>+30.0</td>
<td>-0.6</td>
</tr>
<tr>
<td></td>
<td>1000°/hour</td>
<td>Stationary</td>
<td>+29.0</td>
<td>+0.6</td>
</tr>
<tr>
<td></td>
<td>Stationary</td>
<td>0.0</td>
<td>+0.05</td>
<td>0</td>
</tr>
<tr>
<td>iv)</td>
<td>Stationary</td>
<td>0.0</td>
<td>+0.05</td>
<td>0</td>
</tr>
</tbody>
</table>

i.e. An average sensitivity of 2.95 x 10³ μV/100°/hour.
Technical Note No. IEEE.10

Closed Loop Test No. of Outputs

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Applied Rate</th>
<th>Direction</th>
<th>Output (μV)</th>
<th>Fork Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(o)(i)</td>
<td>Stationary</td>
<td>C.W.</td>
<td>41.5</td>
<td>9.6</td>
</tr>
<tr>
<td>(ii)</td>
<td>100°/hour</td>
<td>C.W.</td>
<td>-79.0</td>
<td>+11.0</td>
</tr>
<tr>
<td>(iii)</td>
<td>1000°/hour</td>
<td>A.C.W.</td>
<td>+81.0</td>
<td>+6.7</td>
</tr>
<tr>
<td>(iv)</td>
<td>100°/hour</td>
<td>C.W.</td>
<td>-79.0</td>
<td>+38.0</td>
</tr>
<tr>
<td>(v)</td>
<td>1000°/hour</td>
<td>A.C.W.</td>
<td>+81.0</td>
<td>-5.0</td>
</tr>
<tr>
<td>(vi)</td>
<td>Stationary</td>
<td></td>
<td>+1.5</td>
<td>0</td>
</tr>
</tbody>
</table>

| 522.454 c/s |

Summary of Calibration Test Results

1. An average sensitivity of 80 μV/100°/hour.

2. The R.M.S. value of any voltage applied to the compensating electrodes to counteract residual torques must remain stable to within 10 mV if the torsion pick-off output is to be correct to within 1°/hour. This applies for both the open and closed loop states.

3. The average sensitivity of the torsion pick-off system in open loop can be taken as 3.3×10^3 μV/100°/hour, irrespective of attitude or applied input rate up to 1000°/hour. The output will then be within $1/2%$ of the correct value except when the input axis is vertical and the tine base is downward; the error in this attitude may reach $1/2%$. This could be substantially reduced by tuning the T.F.G. with the input axis horizontal.

4. The average sensitivity in closed loop operation can be taken as 80 μV/100°/hour. This will be correct to within $1/2%$ for all T.F.G. attitudes and input rates up to 1000°/hour.

5. The sensitivities in open and closed loop operation are in the same ratio as that predicted in R.A.E. Technical Note No. IEEE.8, i.e. in the ratio of the open and closed loop values of the torsion system Q.

6. One effect of closing the feedback loop is to reduce the phase-error in the output signal caused by mis-matching the tine and torsion natural frequencies. This reduction virtually eliminates the appearance of quadrature components of in-phase rate signals. Where mass unbalance torques produce a quadrature signal, closed loop operation prevents the appearance of an in-phase component of these torques by the same process of reducing the phase error to very small proportions.

POLAR AXIS TESTS

Polar axis tests are designed to examine the effect of varying acceleration forces on the T.F.G. A full description of the tests and the mechanisms involved is given in R.A.E. Technical Note No. IEEE.8.

The rate table, on which the T.F.G. was mounted, had its axis of rotation aligned with Earth's polar axis. When the T.F.G. input (XX') axis was along this axis of rotation, the rotation of the Earth was detected and appeared as a constant in phase signal. The rate table rotation was also detected and, since this was a constant, was 'backed-off' by the application of suitable voltages to the compensating electrodes. The T.F.G. detected no component of Earth's rotation if topped about the YY' or ZZ' axes. Any change in the residual torque output signal under any of these conditions was therefore due to variations in the attitude of the instrument.
By examining the components of 'g' acting along each of the T.F.G. axes during these tests it was possible to determine a set of 'g' coefficients indicating the change of residual signal with T.F.G. attitude.

Figs. 7-26 inclusive show the recorded outputs from the T.F.G. during rotations about a polar axis, with the XX', YY' and ZZ' axes in turn along the axis of rotation. A Fourier analysis of these curves gave the sets of 'g' coefficients shown below. The in-phase coefficients K_x, K_y and K_z are derived from the amplitudes of the in-phase records as each axis has the maximum component of 'g' acting along it. Thus, F_x represents the in-phase response to acceleration forces along the XX' axis. It is calculated from the recordings of rotations about the YY' and ZZ' axes. Similarly, the quadrature coefficients L_x, L_y and L_z are derived from the amplitudes of the quadrature recordings at the same attitudes. L_x represents the quadrature response to acceleration forces along the XX' axis.

The sets of 'g' coefficients were determined for 1000°/hour input rates, and for a representative number of tests at 100°/hour to establish repeatability standards and to study the effect of a lower input rate.

4.1 Results

'g' coefficients for tuning fork gyroscope K.H.1

<table>
<thead>
<tr>
<th>OPEN LOOP</th>
<th>CLOSED LOOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000°/hour</td>
<td>100°/hour</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K_x</th>
<th>K_y</th>
<th>K_z</th>
<th>L_x</th>
<th>L_y</th>
<th>L_z</th>
<th>K_x</th>
<th>K_y</th>
<th>K_z</th>
<th>L_x</th>
<th>L_y</th>
<th>L_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>+6.3</td>
<td>+4.0</td>
<td>+1.6</td>
<td>+6.3</td>
<td>+4.0</td>
<td>+1.6</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>+3.2</td>
<td>+3.2</td>
<td>+3.2</td>
<td>+3.2</td>
<td>+3.2</td>
<td>+3.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>-19.6</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

* Interference from local sources, both electrical and vibrational, made analysis of this test run impracticable. The coefficients are certainly no larger than those obtained at 1000°/hour input.
4.1.1 Open Loop Tests (Figs. 7, 9, 11, 13, 15, 17, 19, 21, 22, and 25)

The variation in sensitivity of the residual in-phase torsion signal to acceleration along the XX' axis was from +6.3°/hour/g in the Y upwards attitude to +0.7°/hour/g for Y' upwards, whilst the change from Z to Z' upwards was from +3.0°/hour/g to -0.2°/hour/g.

For accelerations along the YY' axis the sensitivity of the residual in-phase signal varied from +0.4°/hour/g to +4.0°/hour/g between X and X' upwards and from +3.2°/hour/g to +3.5°/hour/g between Z and Z' upwards.

The residual signal was much more sensitive to accelerations along the ZZ' axis. The change from X to X' upwards resulted in a change of sensitivity from -18.2°/hour/g to -14.9°/hour/g, and from -19.6°/hour/g to -15.6°/hour/g as the T.F.G. was moved from Y to Y' upwards.

4.1.2 Closed Loop Tests (Figs. 8, 10, 12, 14, 16, 18, 20, 22, 24, and 26)

The application of electrostatic damping forces derived from and in anti-phase with the torsional motion of the T.F.G. torsion system had the effect of lowering the "Q" of the system and decreasing the response time. Under the conditions applied, the new "Q" of the torsion system was approximately 1/40th of the open loop "Q", and the sensitivities of the residual signals to accelerations along the major axes were correspondingly smaller.

Sensitivities of up to +1.1°/hour/g and +3.6°/hour/g to accelerations along the XX' and YY' axes respectively showed only small changes from the open loop values. There was, however, a marked decrease in sensitivity to accelerations along the ZZ' axis, the maximum value being +2.2°/hour/g.

5 TEMPERATURE EFFECTS

There are two types of temperature variation which may affect the T.F.G. performance.

5.1 A change in the mean value of the ambient temperature within the instrument container will alter the natural frequency of the tuning-fork and also that of the torsion system; the two systems will change at different rates and the state of tuning will therefore alter. This will give rise to a change in sensitivity and a phase change between the input and output signals. In closed loop operation the effect of this change of tuning and the phase change will be extremely small and will not affect the performance, except that a T.F.G. with some residual torques will require adjustment of the applied compensation voltages. K.H. required a change of approximately 1 volt in the in-phase compensation after a ±0° change, corresponding to a spurious signal of 100°/hour. For open loop conditions, re-tuning would be necessary for less than ±0° change.

5.2 The torsion output will vary in both open and closed loop operation when there is a rate of change of ambient temperature. Fig. 27 shows that with the T.F.G. mounted with its input axi. vertical, base downwards, the temperature control of the enclosure was such that air temperature variations of ±1/10th °C at a frequency of 1 cycle every four minutes caused changes in the residual in-phase torsion output equivalent to ±3/4°/hour. This effect varied a little with T.F.G. attitude, and could always be allowed for in the analysis of the recorded output.

6 LONG TERM STABILITY

The stability of the gyro output when stationary and in closed loop operation was determined over 8 hour periods with the X, Y and Z axes vertical.
Recordings of the output during 3 hour intervals selected at random in each of the three attitudes are reproduced in Figs. 30, 31 and 32. They show that variations in the residual torques which produced the output signal did not contribute more than $1/2^\circ$/hour/hour change in the apparent detected input rate, once the most stable state had been achieved.

After rotation from the X vertical to Y vertical position, the T.F.G. took approximately 2 hours to stabilise, the indicated output changing during this period from $+9^\circ$/hour to -1°/hour. No settling down period was required after rotation from Y vertical to Z vertical. 1 hour after rotation from Y vertical to X vertical the indicated output had changed from $+2^\circ$/hour to $+4^\circ$/hour and remained stable to within $1/2^\circ$/hour/hour thereafter.

Small changes (less than 0.2 volts) in the compensation voltages were made after attitude changes. These were necessary to keep the recorded outputs near zero.

One measurement of long term drift which became available during the polar axis tests is shown in Fig. 13. After a test in which the T.F.G. had been rotated at 100°/hour about a ZZ' polar axis, the instrument was left operating over a period of nearly 56 hours, the recorders having been switched off. On re-starting the recorders it was found that the fork output had drifted by 3.6°/hour, an average drift rate over the stationary period of less than 0.07°/hour/hour.

7 CONCLUSIONS

The performance of a T.F.G. must ultimately depend on the pattern of its behaviour in various attitudes when no rate of turn is being applied about the input axis. This pattern is defined by the size of the in-phase 'g'-coefficients which in a practical system will present themselves as errors in the rate-of-turn indication.

In-phase 'g'-coefficients arise either from effects which are proportional to time-velocity and include viscous damping, eddy current damping, rate of change of temperature, and variations of sensitivity with de-tuning, or to components of quadrature effects which are proportional to time acceleration or time displacement and arise as a result of de-tuning.

Quadrature g-coefficients can be caused by mass unbalance between the tines (L_z), lack of symmetry of the tines about the YY' axis (L_y), or by components of in-phase g-coefficients resulting from de-tuning.

7.1 These tests have provided practical confirmation of the theory of closed loop operation discussed in R.A.E. Technical Note No. I.E.E.8. The components of the originating torques arising from the de-tuning are virtually eliminated in closed loop operation. When the fork is correctly adjusted for dimensional symmetry about the input axis the quadrature g-coefficients should disappear and the limiting factors on T.F.G. performance will be the in-phase effects listed above which are proportional to time-velocity.

7.2 Modifications to the torsion pick-off system which will reduce the effects of viscous and eddy current damping should limit the amplitude of the zero input rate signal to a much smaller value than K.H.1 gives in its present form.

7.3 A more critical assessment of the change of apparent rate with attitude will be required for future tests. Changes of 10 mV in the compensation voltages are known to contribute 1°/hour changes in the indicated output, and minor modifications to the existing test equipment should be made before examining more advanced T.F.G.'s.
7.4 Whilst the temperature control system surrounding X.H.1 is adequate in relation to the performance of the T.F.G. in its present form it is likely that temperature fluctuations of \(\pm 1/10^\circ C \) will be too great for satisfactory control in later models. Since the value of the ambient temperature is not as important in closed loop operation as it is in open loop, a container which will reduce the rate of temperature fluctuations within the T.F.G. space to a much longer period is required.

It is also believed that large temperature gradients exist within the enclosure which are a function of the temperature difference between the enclosure and the laboratory ambient. These may account for the change in compensation voltage required after changing the enclosure temperature. It is expected that the provision of thicker walls to future enclosures will reduce these gradients.

7.5 The long period required for reaching a stable output after changing attitude from X up to Y up is possibly due to the breakdown of temperature stratification within the container caused by the T.F.G. having been in the X up attitude for several days prior to this test.

7.6 Once stable, long-term drift rates of as little as \(0.07^\circ C/hour/hour \) are possible, although a general figure of \(1^\circ C/hour/hour \) would cover most situations.

7.7 It is reasonable to assess the closed loop performance of the T.F.G. as being that of a \(2^\circ C/hour \) instrument on closed loop over long periods. In its present form, g-sensitivities can contribute 2 to \(3^\circ C/hour/g \) spurious signal in addition to the basic reliability figure.

7.8 The test schedule quoted appears to be adequate for a performance analysis of a T.F.G. to be made, and could be adopted as a standard test procedure.

7.9 Whilst the phase-sensitive rectifier in the measuring circuit was, during these tests, an adequate filter against random noise in the torsion pick-off output, it may be necessary under some circumstances to incorporate suitable filtering in the feedback loop and to sample the feedback signal for performance data. This could arise if a pick-off system with a substantially higher noise content in the output were required in order to meet, say, limitations on available space, or to reduce reaction torques.

LIST OF REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title, etc.</th>
</tr>
</thead>
</table>
ATTACHED: Appendices 1 and 2
Drg. Nos. IEE 163-4
Neg. Nos. 160,031 - 160,064
Detachable abstract cards

ADVANCE DISTRIBUTION:

MOA Headquarters
DCA(RAF) DA Arm
DCA(RN) AD Nav 1
DCA(RN) AD Nav 2
ADSR(A) AD Nav 3
DCC
DA Nav
Nav 1(b) Action copy
Til 1(b) 80

MOA Establishments RBE; A&AE
RAE
Director, RAE Bedford Library
DDRAE(BO) BLEU
Pets 1 Weapons Dept
Library Space Dept

IEE Dept
Head of Dept
Head of I.N. Divisi... Head of I.N. Research Section
Head of Bombing Division
Head of Controls Division
Mr. Sharp
Mr. Shuttlewood
Mr. Cowie
Mr. Carr
TPI Section
Mr. Hobbs
Author

- 14 -
APPENDIX 1

K.H.1 TUNING-FORK GYROSCOPE TEST SCHEDULE

GENERAL

The gyro must be completely set-up and in tune inside a temperature controlled enclosure. Before starting tests the relevant operating voltages and temperature must be noted, and the 'Q's measured by noting the delay times of oscillation.

Unless otherwise stated, all tests will be carried out in open loop and closed loop operation.

All tests below marked RECORD imply recording on a chart recorder the in-phase and quadrature output from the gyro. All relevant details must be noted on the record.

Each test may be regarded as distinct, and except where otherwise noted adjustments of compensating voltages may be made only between tests. The compensating voltages must be noted for each test.

1 GYRO MOUNTED ON RATE-TABLE WITH TABLE AXIS VERTICAL

(a) With XX' axis vertical, apply ±10 volts change to the voltages on each of the compensating plates, and RECORD.

(b) With XX' axis vertical, rotate table at ±100°/hour, ±1000°/hour, note frequency and RECORD for X up and X' up.

(c) With YY' axis vertical, rotate table at 1000°/hour through 2 cycles of revolution and RECORD. Repeat at 100°/hour and RECORD.

(d) With ZZ' axis vertical, repeat 1(c) and RECORD.

2 GYRO MOUNTED ON RATE-TABLE WITH TABLE AXIS HORIZONTAL

(a) With the XX' axis along the rate-table axis, rotate table at ±100°/hour, ±1000°/hour, RECORD, and note fork frequency.

3 GYRO MOUNTED ON RATE-TABLE, WITH RATE-TABLE AXE PARALLEL WITH EARTH'S POLAR AXLE

(a) With YY' axis parallel with table axis and X up. Rotate at 1000°/hour, backing off input rate by altering compensating voltages, note frequency at 45° intervals and RECORD. Continue for 2 cycles, and repeat at 100°/hour input rate.

(b) Repeat 3(a) with XX' parallel with table axis and X' up. RECORD.

(c) With YY' axis parallel with table axis and Y up, repeat 3(a) and RECORD. Note frequency at 90° intervals.

(d) Repeat 3(o) with Y' up and RECORD.

(e) Repeat 3(c) with ZZ' parallel with table axis, Z up, and RECORD.

(f) Repeat 3(e) with Z' up and RECORD.
(g) Repeat 3(f) with 100°/hour input rate, and RECORD.

(h) Repeat 3(e) with 100°/hour input rate, and RECORD.

For tests 3(a) to 3(h) calculate the 6 sensitivity coefficients from Fourier analysis of the results (See T.N.I.A.P.1139)\(^1\).

4. **Gyro mounted on rate-table with table axis vertical**

(a) With \(XX'\) axis vertical, \(X\) up, zero input rate. RECORD over 8 hour period. Note frequency.

(b) With \(YY'\) axis vertical, \(Y\) up, zero input rate. RECORD over 8 hour period.

(c) With \(ZZ'\) axis vertical, \(Z\) up, zero input rate. RECORD over 8 hour period.

(d) Repeat 4(a), but with temperature control adjusted to reduce ambient temperature inside container by 1°C. RECORD for 8 hours after stability has been achieved. Note compensating voltages and tone and torsion system frequencies.

(e) Repeat 4(a), after restoring gyro container to normal ambient temperature, and RECORD. Note tone and torsion system frequencies.
APPENDIX 2

SOME PARAMETERS FOR K.H.1

Drive electrode gaps: \(Y = 0.014" \) \(Y' = 0.015" \).

Time pick-off gaps: \(Y = 0.028" \) \(Y' = 0.029" \).

Compensating and feedback electrode gaps: \(YZ = 0.023" \); \(Y'Z = 0.024" \);
\(Y'Z' = 0.024" \); \(YZW = 0.023" \).

F.23 thermistor temperature recorder balance: 1380 Ω.

M.53 + F23 T.F.G. thermistors on heater bridge balance: 5468 Ω.

Heater cycling time with 15 Ω series resistance: 82 seconds on, 120 seconds off.

Difference between torsion pick-offs: Input 1: 39 mV pk-pk for 1000°/hour Input 2: 38 mV pk-pk input rate.

Time Q = 12,500

Torsion Q = 8,000

Closed loop Q = 170

Response time (closed loop) = 0.1 seconds

Time-drive voltages: 84 V. R.M.S. A.C. 350 V. D.C.

Compensation voltages: XX' vertical X up. OV 0° OV 270°

Operating temperature within container + 31°C.
FIG. 1 EFFECT OF ±10 VOLTS CHANGE IN TORSION COMPENSATION VOLTAGES. OPEN LOOP AND CLOSED LOOP OPERATION.

T.F.G. ATTITUDE: XX' VERTICAL, X UP
Y' NORTH

FORK FREQUENCY: 522.449 C/S

CHART SPEED: 12 INCHES/HOUR

CONFIDENTIAL
FIG. 2 EFFECT OF ROTATIONS ABOUT A VERTICAL INPUT AXIS. OPEN LOOP AND CLOSED LOOP OPERATION.

FORK FREQUENCIES:
X UP, \(f = 522.449 \) C/S
X' UP, \(f = 522.459 \) C/S
CHAR S SPEED: 12 INCHES/HOUR
FIG. 3 EFFECT OF ROTATIONS ABOUT A VERTICAL AXIS THROUGH THE PLANE OF THE TINES (VV' AXIS). OPEN LOOP OPERATION.

FORK FREQUENCY: 522,456 C/S
CHART SPEED: 12 INCHES/HOUR
RATE OF TURN: 1000°/HOUR
FIG. 4 EFFECT OF ROTATIONS ABOUT A VERTICAL AXIS THROUGH THE PLANE OF THE TINES (YY' AXIS). CLOSED LOOP OPERATION.

FORK FREQUENCY: 522,455 C/S
CHART SPEED: 12 INCHES/HOUR
RATE OF TURN: 1000°/HOUR
FIG. 5 EFFECT OF ROTATIONS ABOUT A VERTICAL (Z') AXIS PERPENDICULAR TO THE PLANE OF THE TIMES AND TO THE INPUT AXIS. OPEN LOOP AND CLOSED LOOP OPERATION.

FORK FREQUENCY: 522.455 C/S
CHART SPEED: 12 INCHES/HOUR
RATE OF TURN: 1000°/HOUR
FIG. 6 EFFECT OF ROTATIONS ABOUT A HORIZONTAL INPUT AXIS. X NORTH. OPEN LOOP AND CLOSED LOOP OPERATION.

FORK FREQUENCY: 522.454 C/S
CHART SPEED: 12 INCHES/HOUR
FIG. 7 OPEN LOOP POLAR AXIS TEST. ROTATION ABOUT INPUT (XX') AXIS. X UP 1000°/HOUR INPUT RATE: BACKED OFF BY 14V 0° OV 270° COMPENSATION.
FORK FREQUENCY AT EACH 45° POSITION = 522.451 C/S
CHART SPEED: 12 INCHES/HOUR
FIG. 8 CLOSED LOOP POLAR AXIS TEST. ROTATION ABOUT INPUT (XX') AXIS. X UP 1000'/HOUR INPUT RATE: BACKED-OFF BY 15V 0° 0V 270° COMPENSATION.
FORK FREQUENCY AT EACH 45° POSITION = 522.452 C/S
CHART SPEED = 12 INCHES/HOUR

CONFIDENTIAL
FIG. 9
OPEN LOOP POLAR AXIS TEST - ROTATION ABOUT INPUT AXE. X UP.
Y UP - 500 INCHES/HOUR INPUT RATE. BENDED AT 45° AT EACH POINT. FORFREQUENCY AT EACH POSITION = 45°.
CHART SPEED = 3 INCHES/HOUR.

OPEN LOOP POLAR AXIS TEST # 3 (a') 8.
FIG. 10 CLOSED LOOP POLAR AXIS TEST. ROTATION ABOUT INPUT (10°) AXIS. X UP 100°/HOUR INPUT RATE; BACKED OFF BY 2V 0° 0V 270° COMPENSATION FORK FREQUENCY AT EACH 45° POSITION = 522.452 C/S CHART SPEED = 3 INCHES/HOUR CONFIDENTIAL
FIG. 11 OPEN LOOP POLAR AXIS TEST. ROTATION ABOUT INPUT (XX') AXIS. X' UP 1000°/HOUR INPUT RATE: BACKED-OFF BY 6V 180° OV 270° COMPENSATION.
FORK FREQUENCY AT 45° POSITIONS = 522.456 + 7 C/S
CHART SPEED = 12 INCHES/HOUR
FIG. 12 CLOSED LOOP POLAR AXIS TEST. ROTATION ABOUT INPUT (XX') AXIS, X' UP
1000°/HOUR INPUT RATE; BACKED-OFF BY 6V 180° OV 270° COMPENSATION.
FORK FREQUENCY AT EACH 45° POSITION = 522.458 C/S
CHART SPEED = 12 INCHES/HOUR
FIG. 13 OPEN LOOP POLAR AXIS TEST. ROTATION ABOUT INPUT (XX') AXIS. X' UP, 100°/HOUR INPUT RATE. NO BACKING OFF REQUIRED.
CHART SPEED = 3 INCHES/HOUR.

CONFIDENTIAL
FIG. 14 CLOSED LOOP POLAR AXIS TEST. ROTATION ABOUT INPUT (XX') AXIS. X' UP. 100°/HOUR INPUT RATE. NO BACKING OFF REQUIRED.
CHART SPEED = 3 INCHES/HOUR.
CONFIDENTIAL
FIG. 15 OPEN LOOP POLAR AXIS TEST. ROTATION ABOUT YY' AXIS. Y UP.

RATE OF TURN: 1000°/HOUR
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 12 INCHES/HOUR

CONFIDENTIAL
FIG. 16 CLOSED LOOP POLAR AXIS TEST, ROTATION ABOUT YY' AXIS, Y UP.
RATE OF TURN: 1000°/HOUR
COMPENSATION: 0V 0° OV 270°
CHART SPEED: 12 INCHES/HOUR

CONFIDENTIAL
FIG. 17

GM4
LOW POLAR AXIS
ET. ROTATION
ABOUT Yr. AXIS.

Yr.
RATE
OF
TURN
100*/IOA.

CMGWMSTCN:
OV
OV
0°

OPEN LOOP POLAR AXIS TEST NO. 3(87).
FIG. 18 CLOSED LOOP POLAR AXIS TEST. ROTATION ABOUT YY* AXIS, Y UP.
RATE OF TURN: 100°/HOUR
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 3 INCHES/HOUR
FIG. 19 OPEN LOOP POLAR AXIS TEST. ROTATION ABOUT YY' AXIS, Y' UP.
RATE OF TURN: 1000°/HOUR
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 12 INCHES/HOUR
FIG. 20 CLOSED LOOP POLAR AXIS TEST. ROTATION ABOUT YY' AXIS, Y' UP.

RATE OF TURN: 1000°/HOUR
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 12 INCHES/HOUR
FIG. 21 OPEN LOOP POLAR AXIS TEST. ROTATION ABOUT ZZ' AXIS. Z UP.
RATE OF TURN: 1000°/HOUR
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 12 INCHES/HOUR
FIG. 22 CLOSED LOOP POLAR AXIS TEST. ROTATION ABOUT ZZ* AXIS. Z UP.
RATE OF TURN: 1000°/HOUR
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 12 INCHES/HOUR

CONFIDENTIAL
Fig. 23 Open Loop Polar Axis Test. Rotation about ZZ' axis. Z' up.

Rate of Turn: 1000°/Hour
Compensation: 0V 0° 0V 270°
Chart Speed: 12 Inches/Hour
FIG. 24 CLOSED LOOP POLAR AXIS TEST. ROTATION ABOUT ZZ' AXIS. Z' UP.
RATE OF TURN: 1000°/HOUR
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 12 INCHES/HOUR
FIG. 25 OPEN LOOP POLAR AXIS TEST. ROTATION ABOUT ZZ' AXIS. Z' UP.
RATE OF TURN: 100°/HOUR.
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 3 INCHES/HOUR

CONFIDENTIAL
Fig. 26 Closed Loop Polar Axis Test. Rotation about ZZ' axis. Z' up.
Rate Of Turn: 100°/Hour
Compensation: 0V 0° 0V 270°
Chart Speed: 3 Inches/Hour
FIG. 27 EFFECT OF TEMPERATURE FLUCTUATIONS WITHIN T.F.L. ENCLOSURE

TEMPERATURE FLUCTUATIONS INSIDE KHI CONTAINER

PARK TO PEAK AMPLITUDE 1/36°C ABOUT 31°C

OPEN LOOP

CLOSED LOOP

Y'Y' AXIS VERTICAL, Y UP
STATIONARY

CLOSED LOOP

Z'E' AXIS VERTICAL, Z UP
STATIONARY

CONFIDENTIAL

TECH. NOTE: I.E.E. 10

FIG. 27
Fig. 29 Temperature Variation Test No. 4.

XX' Axis Vertical. X Up stationary.

Compensation: 0v 0° 0v 90°

Chart Speed: 3 inches/hour

Closed Loop Operation.

21/7/62
FIG. 30 LONG-TERM STABILITY TEST.
XX' AXIS VERTICAL, X UP STATIONARY.
COMPENSATION: 0V 0° 0V 270°
CHART SPEED: 3 INCHES/HOUR.
3-HOUR SECTION OF 10-HOUR RUN.
CLOSED LOOP OPERATION.

CONFIDENTIAL
FIG. 31 LONG-TERM STABILITY TEST.
YY' AXIS VERTICAL, Y UP STATIONARY.
COMPENSATION: 0V 0° 0V 90°
CHART SPEED: 3 INCHES/HOUR.
3-HOUR SECTION OF 8-HOUR RUN.
CLOSED LOOP OPERATION.
FIG. 32 LONG-TERM STABILITY TEST.
ZZ’ AXIS VERTICAL, Z UP STATIONARY.
COMPENSATION: 0V 0° OV 27°
CHART SPEED: 3 INCHES/HOUR
3-HOUR SECTION OF 10-HOUR RUN.
CLOSED LOOP OPERATION.

CONFIDENTIAL
FIG.33 T.F.G. IN POSITION FOR POLAR AXIS TEST ABOUT YY' AXIS. Y UP.
FIG. 34 CONSTRUCTION DETAILS OF T.F.G. SERIAL NO. K.H.1.

CONFIDENTIAL
FIG. 35. SECTION THROUGH XX', YY' AXES OF THE GYROSCOPE.
FIG. 36. T.F.G. AXIS SYSTEM.
CONFIDENTIAL

Technical Note No. 1010
Royal Aircraft Establishment

S.F.D. PERFORMANCE DETAILS OF A PROTOTYPE TUNING-FORK GYROSCOPE,
SERIAL NO. 12345, Pitt, R. J., November, 1962.

A test schedule has been designed and it is shown that the
information available after carrying out this schedule should be sufficient
to enable a performance assessment to be made of any tuning-fork gyroscope.

Comparisons between open loop and closed loop behaviour are made and
an overall value for the tuning-fork's reliability as a rate-of-turn
indicator is derived. A modification to the instrument design which
should result in an improved performance is suggested.

Long-term stability and the effects of temperature changes are
amongst the measurements quoted.

CONFIDENTIAL

Technical Note No. 1010
Royal Aircraft Establishment

S.F.D. PERFORMANCE DETAILS OF A PROTOTYPE TUNING-FORK GYROSCOPE,
SERIAL NO. 12345, Pitt, R. J., November, 1962.

A test schedule has been designed and it is shown that the
information available after carrying out this schedule should be sufficient
to enable a performance assessment to be made of any tuning-fork gyroscope.

Comparisons between open loop and closed loop behaviour are made and
an overall value for the tuning-fork's reliability as a rate-of-turn
indicator is derived. A modification to the instrument design which
should result in an improved performance is suggested.

Long-term stability and the effects of temperature changes are
amongst the measurements quoted.

CONFIDENTIAL

Technical Note No. 1010
Royal Aircraft Establishment

S.F.D. PERFORMANCE DETAILS OF A PROTOTYPE TUNING-FORK GYROSCOPE,
SERIAL NO. 12345, Pitt, R. J., November, 1962.

A test schedule has been designed and it is shown that the
information available after carrying out this schedule should be sufficient
to enable a performance assessment to be made of any tuning-fork gyroscope.

Comparisons between open loop and closed loop behaviour are made and
an overall value for the tuning-fork's reliability as a rate-of-turn
indicator is derived. A modification to the instrument design which
should result in an improved performance is suggested.

Long-term stability and the effects of temperature changes are
amongst the measurements quoted.

CONFIDENTIAL

Technical Note No. 1010
Royal Aircraft Establishment

S.F.D. PERFORMANCE DETAILS OF A PROTOTYPE TUNING-FORK GYROSCOPE,
SERIAL NO. 12345, Pitt, R. J., November, 1962.

A test schedule has been designed and it is shown that the
information available after carrying out this schedule should be sufficient
to enable a performance assessment to be made of any tuning-fork gyroscope.

Comparisons between open loop and closed loop behaviour are made and
an overall value for the tuning-fork's reliability as a rate-of-turn
indicator is derived. A modification to the instrument design which
should result in an improved performance is suggested.

Long-term stability and the effects of temperature changes are
amongst the measurements quoted.
Since this is the first investigation of this type an unusually large number of test records are included in this list as a basis for future reference.
Defense Technical Information Center (DTIC)
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, VA 22060-6218
U.S.A.

AD#: AD0339794

Date of Search: 30 Apr 2009

Record Summary: AVIA 6/17694
Title: Performance details of prototype tuning fork gyroscope, serial No KH1
Availability Open Document, Open Description, Normal Closure before FOI Act: 30 years
Former reference (Department) TECH NOTE IEE 10
Held by The National Archives, Kew

This document is now available at the National Archives, Kew, Surrey, United Kingdom.

DTIC has checked the National Archives Catalogue website (http://www.nationalarchives.gov.uk) and found the document is available and releasable to the public.

The document has been released under the 30 year rule.
(The vast majority of records selected for permanent preservation are made available to the public when they are 30 years old. This is commonly referred to as the 30 year rule and was established by the Public Records Act of 1967).

This document may be treated as UNLIMITED.