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SKIN TEMPERATURE RISE IN AN AIRCRAFT
EXPOSED TO THERMAL RADIATION
FROM A NUCLEAR EXPLOSION

SUMMARY

It is shown that, in many siijuations, cerodynamic cooling substantially
reduces the temperature rise in thin skins of aircraft exposed in flight to
thermal radiatica from nuclear explosions. The maximum acceptabie thermal
dcse, where this is determined by skin tempsrature rise, depends upon the
time scale of the thermal input and thus upon the yield of the weapon
involved,

The prohlem i3 attacked by a finite difference analysis, and the
maximum tcaperature rise and the time at vhich it occurs are shown to depend
on a single non-dimensional paramzters The results are presented f'or a
range of this parumeter corresponding to the mejority of practioal situations,

1 INTRCDUCTION

In many situations, the maximum yield of weapon which an aircraft may
safely deliver is governed by the thermal dose it can withstand. In parti-
cular, the temperature rise in the skin may be limited to some critical value
determined by deterioration of the properties of the material or by unaccept-
ably high thermal stresces. It is clear that the operetional capabilities
of an aircraft can only be determined realistically if both the critical
temperature limitc and the temperature rise in a given situaticn are known
accurately. This Note considers the laster fastor,

In previous British analyses of the effects of thermel radiation on
aircraft, il has been assuned that the ircident thermal dose, corrected far
reflection at the surface and the obliquity of *he skin to the direction of
propagation, is thereafter totally absorbed by the ckin and contributes in
its entirety to the temperature rise, It was known that during the time in
which the thermal 1mdiation was received, some heat would be lost from the
surface by ferced convection Lo the airstream, but this effect had not been
evaluated and had been considered to be a factor of safety. With the advent
of thermonuclear weepons of high yield, it has nwuw bscome necessary to
examine this and other sefety faclors, in order to determine whether these
weapons can be delivered at all by existing aircraft without damaging them
seriously.
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This Note considers the effect of aerodynamic cooling c¢n the temperature
rise of aircraft skins exposecd to thermal radiation from nuclear weapons.
The analysis is generalised end the range of varisbles chosen is believed to
cover any likely situation.

2 RATE OF THERMAL INPUT

The thermal energy from a nuclear explosion is released in a pulse,
the rate of output rising rapidly to a peak and decaying more slowly aver a
relatively lonz period o time. It is possible to represent the thermal
pulse in a generalised form giving the rate of thermal energy release as a
fraction of its peak value, in terms of a non-dimensional time whose units
are the time t, . &t whicli the energy releas: is a maximum, i.e,

P(t)/Pmax = f(t/tmx) . (1)

This function, which is independant of yield, is szhown in Fig.11; it also

represents the chape of the pulse received by a surface exposed to the
radiation.

In the subszqueni analysis, the emount of erergy received up to a
given time it required, and this is cbtained fram an integral of equation (1)
and takes the non-dimcensional form

Wt)/Q = f(e/t, ) (2)

where Q is the total thermal enercy received. A curve of equation (2), of
American origin, has been widely publishad‘I erd is shown in ¥Fig.2. The data
actually used in this study are very siriler to those remresented in Fig.2,
but were obteined in British trials with weapons in the megaton range<.
There appear to be no data for times longer then 10 t_,., and it is of

importance to note that cnly about 80% of the thermzl energy is released up
to this time. Since

1
toe = 0:032 W2 secs (Ref.1) (3)

it may be seen that some 20% of the thermal energy is still to be released

efter a time t = 0,32 W2, which for a 5 Mt weapon, for example, is

22,6 secss The fact that most of the energy is released after the peak
permits a significant emount of convective cooling to occur in most circum-
stances, as shown below.

3 RATE OF HEAT LOSS

It is assumed that the rate of loss of heat from an aircraft skin to
the airstream can be represented by a heat transfer coefficient h such
that when the temperature difference between the skin and the airstream
is T, the rate of heat loss per unit area is hTs It is not proposed to
enter into a detailed cxamination of means by which the heat transfer
coefficient may be calculated in different circumstances, but a brief state~
ment of relevent data is given below.

The heat transfer coefficient at any point depends upon the conditions
in the boundary layer and the location of the point. It is usually

6
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assumed that the development of the boundary layer is similar to that on a
flat plate, for which considersble experimental data are availsble, A
nurrer of empirical formuilae have been developed to represent these data,
and those recommended for use in kinetic heating studies seem to be ths
most apprOpriate3. At any point whose distance is x downstream from the
leading edge, the local heat transfer coefficient is given by

-2 -1
h = 0.332 pVCp Pr 73 e Ve (1)
when the flow in the boundary layer is laminar, and by
h = 0,176 pVCp (log,, Re)~2*H3 (5)

when the flow in the boundary laver is turbulent. These equations may be
modified by campressibtility effects and chordwise pressure gradients and

the heat transfer coefficient also varies somewhat with the temperature
difference T when this becames large. The effects of some of these factors
are considered elsewhere, and appropriate specialist reports should be
consulted3,4,5, It will be seen later, howevesr, that the maximum tempera-
ture rise in many situations is relalively insensitive to the heat transfer
coefficient, to an extent which makes great accuracy in determining the
latter unnecessary,

L RATE OF TEMEERATURE RISE

In attempting a gereral analysis of the rate of increase in skin
temperature, it is necessary to make the following agsumptions, ail of
which appear to be Justified in the majority of situations:

(a) The heat transfer coefficient remains constant.

(b) The thermal properties of the skin material remein constant.

(c) The reflectivity of the surface remains constant,

(@) The skin and boundary layer temperatures are initially equal.

(e) There are no temperature gradients through the skin,

(f) Heat loss to adjacent structure is negligible.
(g) Heat loss by radiation is negligible.

Under these circumstances the temperature rise in the skin is governmed
by the differential equation

zcl %% = P(t) ~ KT (6)

where, in this context, P(t) is the rate of heat input per unit area of skin
at time t.

Clearly, equation (6) can only be evaluated if P(t) is known as en
analytic function of time, Since it is not, it is necessary to consider an

7
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anelysis using finite differences of the varisbles, Equation (6) then
becomes

zccg{- = B(t) = hT (7)
or
P(t) At hT At
8T = zcl = zcl (8)

where T is taken as the tempereture rise ct the centre of the time interval
At, Now P(t) At is the amcunt of heat entering the skin during the interval
4t, which is 4Q(t). Then

AQ(t) hT At
zct  zct ° (9)

To effect a gzneral solution, we may make the substitutions

aa(r) = A q

and
&y 'tAt * “nax *
max
Further, let
A \
2t = 4 (10)
where is the "ideal" temperature rise which would result if no heat were

iy
lost, aid let

ht

mex
vl (11)

where b is a non-dimensional variable,

Then equation (9) becomes

o = 2908 g oLy, AE g (12)
Q i t
max
whence
AT AQ(t) At T
T0= "¢ "Per T (13)
i i
a non-~dimensional equation,
8
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Then during the nth interval of time the non-dimensional temperature
rise increases by

AT AQ(t) 5
n _ oy, At , B (1)
Ti Q t T
max 2

'1"; 7 8T
= (15)
1

During the next interval, the non-dimensional temperature rise increases
by

M‘n+1 _ AQ(t)nM _ At r]"n-0-1 (16)
T - Q ’ txnta.x tor ) .
i i
But
M‘n-&1 5 Tn+4 T_z: (
B B v o B e
i i i
Then equation (16) gives
T T 8Q(t) =
e U B Gl e WAL N g L B (18)
T. T . Q + 2 . T .
i i max

Now the non-dimensional. temperature rise at the end of the (n+1)th
interval is given by

r'i"n+1 Tn+1 9 Ar]"n-0-1
T, =T tEem (19)
i i

341 prom equation (17)

and substituting for T

i
s 2T o
n+l nyl _n
I, I, I,

9
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It is now possible to erect a series from which the temperature rise at
any time can be determined. During the first interval

at, 2T,
4
T.O= T (21)
i i
and thus, fromequation (14)
T 8q(t) it
1 1 1 b 4t
T— = 3 Q \ 1+ '2- . t"_' (22)
i max
and
T, 2T,
o= T (23)
1 1
Subsequently
T -7 aQ(t) .
n+1 { *n n+1 b At
i = LT—-+% S 147 e 3 (18)
i i max
and
Tn+1 2 T114»1 .T—n-
- = TR =T - (20)
i Al i

Using equations (22), (23), (18) and (20) in turn, the variation of
T/’l‘i with t/tmax may Ye determined for any value of the ncn-dimensional

variable by Thus the temperature rise time~history for any situation may be
presented in terms of cne parameters In using this method, it should be noted
that the temperature rise Tn occurd at the centre af the nth interval, i.e, et

a time (n-%)bt. In order to produce a generalised solution, a large number
of temperature-time series has been evaluated, using the basic assumptions
given previously, It is worth noting however, that in any particular
situation, the solutions may be obtained if all the assumptions except (e)
are discarded, so long as the variation or all the relevant terms is known as
a function of temperature or of time,

Typical solutions have been worked out in the range 0,01 < b < 1,0,
within which most precticel situations are believed to lie. Scme of these

are shown in Fig,3, the working having been concluded just after the mrxima
had been reacheds For these solutions, the time intervals used were

At/tmax = 0,25,

In Figse.lk and 5, the meximum non-dimensional temperature rise T“/‘I‘i
and the non~dimensional time tr r/tmax at which it occurs are plotted against

10
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the parameter ba A difficulty was encowntered in determining these values
when they occurred after 10 tmax’ sinoe there are no input data beyond thiss

pcint, which corresponds espproximately to b = 0,01, In Figel, the extra-
polation down to b = 0,005 has been dotted to emphasise its hypothetical
nature. This extrapolation is mads since situations involving low-yield
weapons and little cooling have been found to involve values of b some-
what below 0,01,

5 DISCUSSION

It may be seen from Fige.4 that the maximum temperaturse rise in an
aircraft skin in the presence of aerodynamic cooling is substantially less
than has been assumed hitherto when no allowance for cooling has been made,
The varlation of maximum temperature rise with the parameter b is not rapid
over the range 0,01 < b < 0.1, which is believed to be the most important
range. It therefore appears that the values of the properties which
compose b need not be known with extreme accuracy in order to determine the
maximum temperature rise with some confidence.

In using Fige4, it must be remembered that although high values of h
and LS invariably favour low temperature rises, small values or (zcé) not

only increase the value of b, but also that of Ti’ aince

5 = ?S? (10)

Thus, thin skins always suffer greater temperature rises than thicker ones,
even though they favour lower values of Tn/Ti' This is illustrated in

Fig.6, for example, where the actual maximum temperature rise is plotted
against htmax for skins of various thicknesses in DID.546 material. Fige6

elso demonstrates more clearly than does Figel the relative insensitivity
of the maximum temperature rise to the heat transfer coefficient. Even in
the thinnest material, a change in h by a factor of two changes TIn by sbout
10=20%,

When the ekin is very thin, the reflective paint epplied to the
surfaces may contribute significantly to the heat capacity, If the seme
assumptions are made as in Section L, the subsequent analysis is appliocable
when the product (zc¢) is replaced by the total heat capacity per unit area
of the skin together with its paint,

It ics important to note that, when aerodynamic cooling is taken into
account, it is no longer possible to state a maximum thermal dose which
a given aircraft will withstand, when this is limited by the rise in skin
temperature. Any such critical dose must be associated with the yield
of the weapon from which it emanates. In general, a greater total thermal
dose may be accepted from a weapon with a high yield than from one with a
low yield, because of the increase in the time scale for the former weapons

6 ILIUSTRAT IVE EXAMPLE

An example involving a hypothetical situaticn is worked out below as
en illustration of the mnse of the results.

The maximum temperature rise in the aileron skin of a bomber is
required when a total thermal dose, corrected for reflectivity and obliquity

11
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of tne surface, of 10 cals cm™2 is received from a 2 Nt. explosion. The
skin is 26 gauge light alloy to DID 546 and the point of interest is 12 ft
dovmstream from the leading edges The aircraft is flying straight and
level at M = 0.8 at 45,000 ft,

It will be assumed, in this example, that the temperature rise is
small encugh for the properties of the air to be evaluated at ambient
conditions, i.e.,

P = Leb x 104" slugs x f“c"3
B o= 2.9 x 1078 slugs x £t sec™

x = 12 ft

V = 795 £t seo !

Then Re = PX_" = 149 x 107. The boundary layer would thus te turbulent,
and from equation (5).

h = 0.176 x pVCp (log,, Re)™2+l

h = 329 x 10™° CHU £t~ sec! o¢™}

2

= 1,61 x 1077 caly o gec™! o1

Fram equation (3)
1
t = 0,032 W2 secs
= 1a43 sccs.
For 26 gauge DD, 5,6

(2c€) = 0.,0262 cals cm 2 oc™ T

Then from equation (11)

ht
t zcé
= 0,088
From Fig.h
T n/T 4 T 0. 56
12
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Fram equation (10)

T, = /208
= 3819C
Then
Tm = 213°C .,
Prom Fig.5
t/t e = 375
Then

tm = 5436 secs.

Thus, the maximum temperature rise is 2139C occurring 5.36 secs after
burst.

7  CONCLUSIONS

A simplified enalysis has been made of the effects of aerodynamic
cooling on the temperature rise of thin skins exposed to thermal radiation
from nuclear weapons,

It is shown that the maximum temperature rise, expressed as a fraction
of the value which would result without cooling, is a functim of a single
non -dimensional parameter. A curve 1s given of this function together
with a curve showing the time at which the maximm temperature rise occurs,
also in non-dimensional form.

The results indicatc that the maximum temperature rise is substan-
tially recduced by aerodynamic cooling in meny practical situations,.
Attention is drawn to the fact that the maximum thermal dose which a
structure may withstand depends upon the yleld of the weapon from which
it emanates.,

NOTATION

The symbols used are defined as follows:

ht
b parameter P
c specific heat of skin material
Cp specific heat of air at oonstant pressure
h heat trensfer coefficient
k thermal conductivity of air

13
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NOTATION (CONTD., )

2/ skin thickness
t time after burst
toax time at which P(t) = E
tm time at which T = ’1‘m
At interval of time
x distance of point fram leading edge
z density of skin material
Pr Prandtl number Q-P}?&
P(t) rate of emission or recception of thermal energy at time t
Poox maximum value of P(t)
Q(t) thermal energy emitted or received up to time t
aQ(t) increment of Q(t) in time interval At
Q total thermal energy emitted or received
Rex Reynolds number 9—?
T temperature rise
Ti "ideal® temperature rise 5—2‘7
Tm maximm temperature rise
Tn temperature rise at centre of nth time interval
ATn temperature rise during nth interval
ﬁ temperature rise at end of nth interval
w weapon yield in kilotons
p density of air
p viscosity of air
14
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