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FOREWORD

This report is submitted as an interim report in full compliance with the
requirements of Clause 3, Paragraph (e) of Contract DA 44-177-TC-710 as amen-
ded by Modifications Nos. 1 and 5 thereof.

The report presents the design considerations and construction techniques
which resulted in the fabrication of a man-carrying test vehicle using re-
circulating ejectors for 1lift. The work presented herein was conducted
over a 9 month period, from July 1961 to April 1962.

Mr. J. Butsko compiled the information from the individual contributionsof

R. Reiland, B. Robinson, and C. Middlebrooks. This report has been reviewed
and approved by Mr. K. Cossairt, GEM Project Engineer.
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1.0 SUMMARY

This report describes the design and construction of a research vehicle
utilizing recirculating ejectors for the 1ift system. The design, fab-
rication and installation of the power plant, recirculating ejector sys-
tem, primary structure, pneumatic duct system, and control system are
discussed in detail and an overall description of the vehicle is pre-
sented.

A hover height of one foot and a weight/power ratio of 8 to 10 were the
basic performance objectives which governed the design philosophies and
considerations. The initial purpose of the man-carrying test vehicle is
to evaluate the hovering performance, stability and control of a vehicle
using annular recirculation.,




2.0 INTRODUCTION

The Martin Company began its effort in the field of GEM research as early

as 1958, Extensive experimental and analytical work was done at the Orlando
Division on flow phenomena, performance, and static stability of conven-
tional annular jet configurations. Martin Marietta began studying the gen-
eral concept of recirculation in 1959, and the development of the recircu-
lating ejector principle was the result of this effort.

A program to substantiate and extend the existing theoretical analysis of
Reference 1, and to prove two-dimensionally, the feasibility of the recir-
culating ejector concept was conducted over a one year span, from January
1961 to January 1962. The program was sponsored by TRECOM under Contract
DA 44-177-TC-710. The results of the study substantiated the feasibility
of the Ejectijet principle. The logical extension of the study was the
construction of a test vehicle which would demonstrate the application of
recirculating ejectors as a 1lift system for GEM's. The design and con-
struction of a man~carrying test vehicle (MCTV), which initially would
evaluate the hovering performance, stability, and control effectiveness
of an Ejectijet GEM, is described in this report.




3.0 DESIGN ANALYSIS

3,1 PRELIMINARY DESIGN CONSIDERATIONS

The scope and extent of the design program was established i1nitially by
determining the operating characteristics and size of the vehicle. To
demonstrate basic feasibility and performance of an Ejectijet vehicle,

it was decided that the MCTV should primarily be a hovering vehicle., A
basic performance objective was established by the selection of the design
hover height of one foot. A second performance objective was established
by the selection of a weight-to-power ratio between 8 and 10 pounds per
horsepower. These values were considered reasonable for the initial
Ejectijet test vehicle. It is subsequently shown that these values of
weight-to-power ratio exerted a strong influence on vehicle weight, engine
selection, and e jector design.

The overall size of the MCTV was determined by the performance objectives

of the program. Since the MCTV was to be an experimental vehicle, the pay-
load capability was restricted to the weight of the operator. The total
1ift required was dependent on the weight of the vehicle subsystems and the
weight of the primary structure. The planform size and shape of the primary
structure were dictated by the base pressure and jet curtain perimeter
available from the 1lift system as design height.

The design of the MCIV was divided into five basic areas:

1 Propulsion system

2 Primary platform structure

2 Recirculating ejector system
4 Pneumatic ducting system

5> Ceontrol system

These design areas, although related by the requirements of each system,
required individual analysis and investigation to produce a prototype
Ejectijet vehicle.

3.2 DESIGN ANALYSIS OF POWER PLANT

3.2.1 Selection of Power Plant, Limitations, and Future Reguirements

During the preliminary design of the MCTV, the AiResearch GTC-85 gas
turbine compressor was chosen for the power plant. It was chosen

mainly because of its availability (GFE), ease of installation, and

ease of servicing. One engine in new condition produces 160 pneumatic
horsepower at standard day condition and weighs 230 pounds. Preliminary
weight estimates indicated that the vehicle would weigh approximately
2,500 pounds, therefore two GTC~-85 turbo-compressors were required to
maintain the established weight/power ratio of 8 to 10. Also, the
ejector design analysis showed that two of these engines would be
required to produce the necessary jet curtain strength.




Subsequent calibration tests (Section 3.2.2) of the procured engines
(which had the lowest performance rating of the series requested)
indicated that pneumatic performance was marginal at amhient temperatures
greater than 75°F, However, at this stage the design of the ejectors and
header-nozzle combinations had been ''frozen'" and tooling initiated, hence
an engine change was out of the question,

Two-dimensional recirculating ejector tests conducted as the MCIV was
nearing completion showed that significant gains in vehicle performance
could be obtained. However, this could only be accomplished by utilizing
engine-compressor units capable of delivering significantly different
quantities of compressed air at a different pressure than the AiResearch
GTC-85 series are capable of delivering.

The experience gained from the present MCTV power plant instaliation
combined with the results of the latest propulsion studies and two-
dimensional recirculating ejector tests are summarized in Table 1.

The first sectior of this table shows the performance of the present con-
figuration and the performance that could be expected with relatively
minor modifications. No assumption is made as to whether an engine-
compressor unit is available to provide the primary air in the quantities
or pressors indicated.

Section II of Table 1 is a survey of engines and the related wvehicle
performance. A comparison of the two sections illustrates that there
are no units available which deliver air in the desired quantities and
pressures indicated by line I ¢). Comparing line I &) with line I ¢)

it is seen that the 1lift at a 12 inch height can be increased from 1,800
pounds to 3,000 pounds while the installed horsepower is slightly
reduced. This is a result of increasing the ejector efficiency by
increasing the primary mass flow and reducing the primery pressure.

3,2,2 Description of Power Plant

The MCTV is powered by two AiResearch model GTC-85-24 gas turbine
auxilary power units. These units are normally used by both the
military and commercial airlines for starting turboprop and turbojet
aircraft engines.

The model GTC-85-24 gas turbine auxilary power unit is basically a
self-contained gas turbine-driven air compressor. Compressed air is
~obtained from the unit by bleeding from the second stage of a two-
stage centrifugal compressor, which also supplies air to the turbine.
Turbine inlet air from the compressor is directed through the outlet
plenum of the turbine housing into a turbine combustion chamber, and
is then directed into the radial-inflow-type turbine wheel., All power
produced by the turbine, except for the demands of lubrication, fuel
pumping, control system components, the unit generator, and other
integral accessories; is absorbed by the compressor. The unit requires
an external source of fuel and oil for all operations and an external
source of electrical energy for starting.




3,2.3 Performance Rating

With NACA standard sea level day conditions external to the air inlet
and exhaust duct and with the use of the turbine exhaust gas diffusing
duct shown on the compressor outline drawing, or its equivalent, each
unit is capable of the following continuous output rating.

+ 0
(1) Compressor bleed-air flow ~ 117 - 3 1lb/min

(2) Compressor bleed-air total temperature ~ 408 ¥ z5°F

(3) Compressor bleed-air total pressure ~ 103.8 in. hg abs
(minimum) (51 psia)

Figure 1 presents the flow calibration curves for these engines.

Other general specifications are:

(1) Fuel consumption ~ 230 #/hr @ 100 percent load and 60°F

(2) 0il consumption ~~ 0.25 1b/hr maximum

(3) Exhaust temperature (maximum) ~ 1200°F

(4) Fuel type ~ MIL-F-5624, Grades JP-3 and JP-4

(5) 0il type ~ MIL-0-6081, Grade 1010

(6) Weight dry ~ 230 1bs

3.2.4 Forward Propulsion

Nominal forward speeds will be accomplished through utilizing the
residual thrust of the exhaust. BEach engine is equipped with a
modulation valve that allows 100 percent thrust variation. With the
valve fully open, each engine produces approximately 40 pounds of

static thrust with zero load. At 100 percent pneumatic load, the

thrust level drops approximately 20 percent. Precise thrust values as

a function of percent pneumatic load may be obtained by referring to the
thrust calibration curves of Figure 2.

3.3 DESIGN ANALYSIS OF PRIMARY STRUCTURE

The structural design philosophy of the primary structure resulted directly from
the basic objective of the program. Since the MCTV was designed primarily to
demonstrate the hovering performance of a recirculation system, the primary
structure was required to support the recirculating ejectors at the periphery
and to support the primary pneumatic ducting, power plants, control system

and associated hardware while fulfilling the structural design criteria

in hover.

The following discussion presents a brief description of the facts and assump-
tions used in the design of the primary structure. The discussion is divided
into four parts:

Structural design criteria
Structural design philosophy

Structural description

I+ M v -

Structural analysis
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3,3.,1 Structural Design Criteria

In order to design the MCTV primary structure, it was necessary to
select design criterla which would satisfy the vehicle performance
requirements and at the same time provide a high degree of safety

and reliability.

The performance criteria for the MCTV required a primary structure
of size and strength sufficient for hover at a height of 12 inches
with a gross weight not exceeding 2,500 pounds. However, further
design considerations were added since forward flight demonstration
would be a natural extension of the initial MCTV development program.
Design of the structure primarily for hovering but with forward
flight capabilities required a restriction on anticipated forward
flight operations. It was established that the MCTV would be
operated only over smooth terrain or unobstructed water surfaces,
This limitation eliminated the necessity of designing for collision
with stumps, rocks, or similar obstacles. It was concluded that
such design requirements would needlessly penalize the vehicle in
both weight and cost.

The principal structural design conditions for the primary structure
designed the primary bending and shear members. This condition
consisted of & 4 g .acceleration due to impact resulting from a
complete power failure at a hover height of 24 inches. This accelera-
tion was based upon an excursion distance of 3 inches as a result of
tire deflection, structural deflection and ground or water surface,
The impact was assumed reduced by 50 percent due to the cushioning
resulting from the time-delay of base pressure loss.

A safety factor of 1.50 was applied to this load in order that no
permanent deformation should occur at 4 g's and no failure should
occur at 6 g's. Maximum ultimate bending moment at the vehicle
center-of-gravity is approximately 254,000 in-lbs. Figure 3
1llustrates the structural load imparted by a 1 g landing.

Another structural design condition was established which produced
maximum torsional moments allowable on the basic structure. Such
a condition could be produced in a variety of ways such as an off-
center landing, jacking loads on one corner, and control forces
produced by the ejectors,

%3.%3,2 Structural Design Philosophy

Several decisions were made early in the structural design program
which produced definite philosophy and requirements concerning the
structural arrangement and fabrication technique to be used. These
decisions were obviously interrelated.
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Some of the most significant design philosophies established were:

1l Fabricate single article with minimum expense using
informal shop/engineering relationship.

2 HlMust be built with crude tooling requiring no long
lead times. No exotic fabrication methods or
materials permitted.

Floatation must be provided for overwater operation.

1+

Must have ability to make modifications simply and
quickly.

5 Must have convenient access to systems and equipment
for modification during experimental flight test
program.

6 Must have rigidity to minimize distortion of the
platform due to movement and torques produced by
the control system.

Ease of fabrication was the principle reason for selection of the
torque-box. All parts are simple straight line elements with no
curved surfaces or similar complications. This type of structure
permits very simple jigs and fixtures since only flat sheets and
"right angle joints are involved. Another valuable quality is the
convenience of being able to make modifications to this type of
structure. A significant application of this advantage was
illustrated when the addition of corner ejectors and marginal engine
performance necessitated an increase in size of the base platform
after it had been built. This was accomplished by simply adding
another '"cell" on each side of the original platform.,

The torque-box structure was selected secondarily for its excellent

stiffness qualities which are provided at minimum weight. Rigidity

was considered of prime importance in minimizing deflection problems
associated with loads from uleed air ducts, engines, control system

and ejectors,

The primary structure was designed so that the addition of brackets
or mounts could be accomplished conveniently by picking up fasteners
at the nearest structural member since the vehicle is essentially a
grid of beams, ribs and stringers.

3,%3.3 Structural Description

The base platform structure supports the majority of the vehicle
equipment and payload in addition to transmitting the base pressure
to the entire vehicle., The dimensions of the platform are 14k inches
x 180 inches with beams running the long dimension and ribs running
the width. This grid of beams and ribs is covered by skins to form
a torque-box. Figure & illustrates the platform construction.

10







Simplicity in construction is easily achieved with this type of
structure. Six beams extend the length of the vehicle and are

spaced laterally at appropriate intervals to accept mounting of
engines. Slab type caps are placed over the flanges of the beams

in order to provide sufficient material to carry the bending loads

in the beam caps. These caps also serve as skin splices in some
cases. At the edge of the platform the piano-hinge (for ejector
movement) is also used as the beam cap in that area. Depending

upon load requirements, the cap thickness varies from .040 to .125
inches. Beam web thickness is .063 inches with flanged lightening
holes incorporated for stiffening. Major shear loads and concen-
trated loads are introduced to the beams either directly by attaching
fittings or indirectly as transferred from ribs to the beams. Ribs
are also stiffened by flanged lightening holes, as shown in Figure 5,
and web thickness varies from .032 to .063 inches depending upon lccal
load requirements. In the corners of the platform the ribs are
especially heavily lcaded by introduction of landing gear loads and
by transverse bending. Ribs are therefore reinforced by nested cap
angles or cap strips where necessary. -

Conventional round head rivets are used for attaching except in
blind areas (the bottom of the platform) where pull-type rivets
are used. Panel size is controlled by spacing of angle-type
stringers axial to the long dimension of the platform.

3,3,4 Structural Analysis

Sample calculations are subsequently presented to illustrate the
type of stress analysis performed in the design of the primary
structure. It is noted that typical aircraft techniques were used.

3.4 DESIGN ANALYSIS OF EJECTOR SYSTEM

The design of the recirculating ejector system which provides the 1lift and
control of the MCTV were designed in three phases. The first phase of the
design was the analytical and experimental selection of a recirculating
ejector geometry which would provide the required performance. The second
design phase was the selection of the ejector arrangement on the periphery
of the MCTV platform to achieve the desired control and to provide an
effective sealing curtain at the corners. The third phase was the design
of the ejector structure and hardware to provide the required ejector
geometry and structural strength by means of conventional manufacturing
methods.,

3.4,1 Selection of Ejector Geometry

The basic design criteria which governed the selection of the ejector
geometry were as follows:

1 Design hover height ~ 1 foot

2 Base pressure ~ 15 psf

3 Total primary air available ~ 3.7 1lb/sec at 34 psig
4 Platform perimeter ~~ 52 feet

12
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The analytical design of the recirculating ejector for the MCTV was
accomplished using the methods established in the previous research
progream and covered in detail in Section 7 of Reference 2. Figure 6
illustrates a typical recirculating ejector and indicates the parameters
which govern the analytical design.

The analytical design of the recirculating ejector was accomplished by
use of a digital program which provided a simultaneous solution to the
flow equations describing the ejector system. Inputs to the program
included the primary stagnation pressure, density, and temperature plus
the tertiary mass flow and velocity at the end of the ejector mixing
section. An empirical correction to account for turn losses was
considered after the centerline geometry of the ejector, turn, and

exit were established along with the inlet and exit angles. The
tertiary exit conditions were established from the height and base
pressure and the selection of an exit thickness-to-height ratio (t_/h)
of 0.25. Solutions of the flow equations were obtained for varioug
values of secondary pressure recovery and mixing section static pressure
until a solution that matched the available primary mass flow from the
power plants was obtained. The required secondary pressure recovery
was approximately 50 percent of the tertiary exit pressure. This value
was realistic since pressure recovery values greater than 50 percent
had been obtained experimentally on other ejector models. The matched
solution of the ejector flow equations provided the necessary areas

and area ratios., Figure 7 presents the important recirculating

ejector dimensions.

The final design of the recirculating ejector geometry to be utilized
in the MCTV was established after an experimental program was under-
taken to check performance and optimize inlet and primary nozzle header
configuration. A full scale two-dimensional model of the ejector was
fabricated for testing in the existing two-dimensional test facility.
Five inlet shapes and three primary nozzle arrangements were tested.
These tests were run using the air from the MCTV power plants to
determine the effect of hot (400°F) primary air on ejector component
performance. The inlet and nozzles which resulted in the highest
performance were incorporated in the final design. The use of flaps
at the tertiasry exit had proven to be valuable in maximizing base
pressure at off-design heights in models tested in previous studies,
The incorporation of small flaps at the exit of the ejector completed

the geometrical design of the ejector for use on the MCIV,

The two-dimensional model was tested over a range of primary pressure
and temperatures and operating heights. The performance of the
ejector was sufficient to accomplish the performance objectives of
1ift and height.

3,4,2 Selection of Ejector Control and Corner Configuration

One of the basic performance objectives to be demonstrated by the MCTV
was the utilization of the momentum force produced by the ejector flow
for control. The magnitude and direction of the force on the ejector
walls resulting from the turning of the internal flow is shown in
Figure 8.

14
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The magnitude of the resultant force is not appreciably affected by
the rotation of the ejector around the hinge point. The existence
of this force in the ejector and the ability to change the directiom
of the force by rotation of the ejector comprises the control system
utilized on the MCTV, Differential movement of ejector banks around
the vehicle periphery produces the moments necessary for pitch, yaw,
and roll control.

The selection of an ejector peripheral configuration which would
provide the required control functions with minimum complexity was
governed by the dimensions of the vehicle platform. The original
dimensions of the platform were 8 feet x 15 feet. Control moments .
of similar magnitude around the three axes were achleved by arranging
the ejectors as shown in Figure 9.

Results from tests of the small three-dimensional wind tunnel model
(Reference 3) indicated a loss of lift performance resulting from

corner leakage. The leakage of the cushion pressure was attributed

to the imcomplete curtain at the corner using a configuration similar

to that shown in Figure 9. Small scale testing of corner configurations
established that an effective curtain seal could te achieved by the
configuration shown in Figure 10,

Incorporation of the corner ejector while retaining the same pitch
and roll control moments made necessary a redesign of the basic
platform. The platform dimensions were therefore changed from 8 feet
x 15 feet to 12 feet x 15 feet.

3,4,%2 Ejector Structural Design

The recirculating ejector system is of primary importance in
achieving 1ift performance. However, the ejectors are structurally
secondary to the base platform. Therefore the main structural con-
sideration in the design of the ejectors was to provide the strength
necessary to hold the dimensional tolerances of the ejector geometry.
The structural design of the ejectors therefore received considerable
attention during the design phase of the program.

Primary considerations in the design of the ejectors were light weight,
overall rigidity and local panel stiffness., Panel stiffness was

necessary in the region of the mixing section in order to hold critical
dimensions under operating pressures down to ~50 psf. Each ejector is
provided with a stainless steel header which supplies primary air through
airfoil rozzle banks spaced at 1.8 inches along the header. These headers
are shown in Figure 11,

The ejector structure consists of a closed box beam which forms the
aerodynamic configuration for the inner wall and cavity area. The
Lbeam acts as a torque box under normal loads and is of semi-monocoque
construction with a ,.125 inch aluminum skin, The outer wall of
-020 inch aluminum is constructed on the torque box by means of ribs
spaced at approximately 18 inches. The ribs are formed to the aero-
dynamic shape required in the ejector. Local stiffness to support

i3
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3.5

operating pressure in the mixing area is provided by a sandwich
construction utilizing a urethane foam filler. This same sandwich
material ds used to form the closing ribs at each end of the ejector.
In this manner, the required rigidity is transferred .o the outside
wall since the end plates resist any warpage that would be produced
by torsional loads, Figure 12 illustrates the construction methods
used on the ejectors and Figure 13 shows the piano hinging used to
attach the ejectors to the platform.,

DESIGN ANALYSIS OF DUCT SYSTEM

3,5.1 Design Considerations

The pneumatic ducting system on the MCTV supplies compressor bleed
air to the ejector nozzle headers. The design and selection of a
suitable ducting system was therefore dictated by the compressor
flow and the ejector configuration which had been established.

The ejector configuration as shown in Figure 10 was composed of twe

10 foot ejectors for the front and rear, four 6.5 foot ejectors for
the side sections, and four 1.4 foot ejectors for the corners. Each
ejector was designed for the same amount of primary flow per foot of
header length. Although each header required amounts of primary air
established by the header length, each header was designed to be fed
by a single duct. This design consideration was dictated by the
requirement for ejector rotation which necessitated ducting simpiicity
and flexibility.

Single ducts to each of the 10 ejectors required the design of a
plenum to diffuse the flow from each compressor and minimize losses
in dividing the flow to the ducts. Bach of the distribution ducts
from the plenum was required to alleviate all thermal expansion and
minimize flow resistance with minimum weight penalty.

3.5.2 Duct System Design and Description

The requirement for low thermal expansion and flexibility at the ejector
eliminated steel tubing as ducting. It was determined that ducts made
of 2-ply neoprene on fiberglass action-flex tubing would alleviate
thermal expansion effects, provide thermal insulation to resist cooling
of the air within the ducts and have low weight and low cost. This type
of ducting was selected for the ducts connecting the plenum and the
headers and also for the larger ducts feeding the plenum from the two
compressor outlets. Preformed elbows were designed to provide the
required flexibility at the ejector hinge,

To simplify the design and minimize costs, all ducting connecting the
plenum and headers was designed with the same internal diameter,
Sizing of the ducts was established by determining the duct diameter
required to maintain low flow velocities in the feed duct with the
highest flow. Ducting to the corner ejector is therefore about twice
the required diameter. The ducting system and plenum are illustrated
in Figure 14.

21
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Method of Ejector Hinging to Platform

FPigure 13.
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3,5.3 Duct Loss Analvysis

An analysis was made of the ducting system to determine anticipated
losses in the temperature and pressure of the air feeding the headers.
The following assumptions were made in order to evaluate the duct
design:

1l Air leaves the compressors at 50 psia and L3zo°F

2 Each compressor delivers 108 1b/min

Figure 15 shows the estimated effect of the ducting on the total pressure
of the primary air as it flows from the compressor to each primary nozzle
of the ejector system. In order to gain the advantages of light weight,
thermal insulation and low thermal expansion of the fiberglass flex-tubing
a penalty in friction factor due to surface roughness was incurred.
Friction factors were estimated to be twice that of smooth metal tubing.
Consequently, the pressure drop for this ducting is twice that experienced
in stainless steel ducting of the same configuration; however, this amo--ts
to only a 5 percent loss in total pressure between compressor and headers.

It is noted in Figure 15 that there is some difference in the estimated
pressure drop in the ducting connecting each compressor to the plenum.
This is best explained by examination of Figures 14 and 16 which show
that duct 9 is twice as long as duct 10 and has a correspondingly greater
pressure loss, (Ducts 9 2nd 10 have the same diameter.) The plenum will
equalize the total pressure from each supply duct to the lower value and
duct 9 will have a slightly lower flow than duct 10,

3,.5.4 Duct System Component Testing

During the experimental verification of the MCTV ejector two-dimensional
performance, the fiberglass flex-tubing was also tested to ensure its
ability to withstand the temperatures and pressures of the primary air
supplied by the compressors. Measurements made during check-out runs

of the complete MCTV engine-duct installation showed a negligible
pressure loss in the system indicating that the preceding duct-loss
analysis is conservative.

3.6 DESIGN ANALYSIS OF CONTROL SYSTEM

The forces produced on the recirculating ejector walls by turning the fliow
through approximately 180° offer an effective means of control for a recir-
culation GEM. Hinging of the ejector banks on the periphery of the platform
as described in Section 3.3.2 establish the basis for the design of the
control system.

Deflection of the hinged ejectors is achieved by a conventional aircraft-type
control system which provides complete manual control by the operator. The
ejectors are linked by a series of pushrods and torque-tubes and are manipulated
by a control stick and a '"rudder bar" foot mechanism. Control stick operation
is the same as for conventional aircraft. Fore and aft motion of the stick
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deflects the front and rear ejectors to produce a pitching moment. Lateral
motion of the stick deflects the side ejectors in unison to produce a
rolling moment. Movement of the "rudder bar'" causes differential motion of
the side ejectors to produce .. yawlng moment,

Each ejector can be rotated through a range of 10° up and 10° down around
the hinge point. The side ejectors can be rotated through an additional
10° up and 10° down for yaw control. A vernier adjustment of plus or minus
10° is incorporated in each pushrod to provide for increased or decreased
ejector deflection if required. The controls may be locked for operation

with the ejectors in the neutral position. . The ¢ontrol system is illustrated

in Figure 17,
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Sample Cap Analysis

Element 6, BL 13.0 cap (from previous page)

4 20 ,..1
'-—Z.SD—-«———| N
Ol ® | ® |
m T =
® oWe ©
(4)
245-T3 Clad AL
L P = 5,580 1b for BL'13.0 cap
Item t b or R A b/t or R/t Fcc (Ksi) Pec (1b)
ol .063 1.00 063 15,9 15.5 975
2 .063 .209 .021 3.32 L4L7.8 926
3 .063 1.00 - .063 -15.9 15.5 975
L .063 1.00 .063 15.9 15.5 975
5 L0632 .209 .021 3,32 L47.8 926
6 .063 1.00 .063 15.9 15.5 975
7 .103 2.50 .258 2h.3 11.2 2,880
8 .0ko .85 .03k 21.3 12:5 k2s
9 .0ko .85 LO34 21.3 12.5 425
.620 9,480
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Sample Column Analysis

Element(}), BL 35.0

r—»aot:.ee”_-‘
= 032" T —7
a

skin

|")( I”X ,OL}OAL

4
[

NA

>
1]

e=,/1/A = A/.oo954/.1o672

= 00954

.10672

. 300

In area where maximum cap load occurs, the bay length between ribs is 33 inches.

An effective length for column action is obtained by assuming end fixity of

c = 1.5.
L' =L/We = 33/W1.5 = 27.0
L'/e = 27/.300 = 90
TZ E
1) - -
From Euler's column formula, Fcol = —_TET7?;72 = 12,100 ps%
i = 7,800 psi for element (&) BL 35.0
Fcol 12,100
M.S. = I —l= 7’800 -1 = +Q
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4,0 DESCRIPTION OF MAN CARRYING TEST VEHICLE

The overall configuraticn of the MCTV is iilustrated in Figure 17. This
drawing presents the location <f &all the sub-systems and components which
comprise the test bed., The wvehicle is approximately 19 feet wide and 22
feet long., At a hover helght of 12 inches;, the clearance height of the
vehicle is 5 feet (to the top of the cperator’s head). Figure 18 shows
the completed MCTV,

4,1 WEXGHT BREAKDOWN AND BALANCE

A basic perfeormance criterion established for the MCTV design required a
gross welght-to-1ift horsepower ratioc of 8 Lo 10. The selection of two
AiResearch GTC-85 turbo-compressors as “re primary powerplant set the pneu~
matic horsepower for 1ift to be approximateiy 290 horsepower. The pre-
liminary design gross weight of 2500 1b resulted from the selection of
these engines,

The design of each major and minor systewm wnich cemprise the total MCTV
configuration was closely controiled by the weight requirements. Weight
estimates were made during each design phase and certain systems required
close design attenticn to walntsin the gross weight below the nominal
weight requiremente.

A second design censideration which affected the overall design of the
MCTV was the requiremeni of =taflec talance to insure a level attitude in
hover, The leccatior of each compocsn® was determined initially to produce
static balance. A number of major conponents were designed with the flex-

ibility of limited movement for balancing. Balance was simplified by the
symmetry of the configuration laterally and provisions for longitudinal
bajance changes were incorporated primarily.

The final! weight estima%te prior to actual completion of the MCTV was 2564
1b, Table 2 shows the weight estimates of the components which make up the
total weight of the vehicles

After completion of the wehicle, the gross weight was measured by suspending
the venicle from a sling ccoupled %o a lcad cell., The gross weight including
piiot and full fusl load was determined to be 2430 1b. The static balance
of the vehicle proved to be guite c¢lose and only minor adjustments were re-
guired to balance it ccmpletvely.

4.2 DESCRIPTION OF SECONDARY SYSTEMS

4.2,3 Fuel System

The fuel system for the MCTV was chosen after the fuel requirements of
the engine and the fueil waight limitations were established. Two 1ight-
weight fibergliass 20 gallon tanks were mounted forward of each engine
and secured tc the platforir by straps as shown in Figure 19. Standard
flexible hose was installed to couple the tanks to the fuel pump and
turbine combustion sestion,
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4,2.2 Instrument Console

The instrumentation and powerplant controls were limited to the minimum
requirements of the powerplants. Switches for each engine were provided
for start, ignition on, ignition off, bleed on and bl eed off. Instru-
ments for each engine included a tachometer and an exhaust temperature
meter. The total pressure in the plenum was monitored with a Bourdon
gage. All instruments and switches were mounted in a console located

at the operators left, as shown in Figure 19. Bourdon gages were mount-
ed on the compressor section of each engine for monitoring compressor
bleed pressures.

4L,2.3 Operators Seat

The operators seat is of the type used in small private alrcraft. The
seat is mounted on a framework fabricated of welded aluminum tubing.
The seat bolts to a roller-rail mounting which allows' adjustment of the
seat for operator comfort. Seat belts are provided for maximum oper-
ator safety. The seat 1s shown in Figure 19.
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TABLE 2

MCTV COMPONENT WEIGHT SUMMARY

Structure
Base (12' x 15')
Ejectors
Corner Ejectors

Engine Installation

Compressors (2) GTC 85-24

Mounts

Exhaust

Intake

0il System

Fuel System
Primary Air Ducting
Control System
Instrument Group

Instrument and Panel

Instrumentation
Electrical System
Pilot Accommodations
Landing Gear
Weight Empty
Useful Load

Pilot

011 (3 gal) -
Fuel 40 Gal (JP-4)

Gross Weight

38

Weight ~ 1b.
(1172)

52l
508
140
(596)
450
45
25
32
5
%9
137
98
(24)
14
10
17
20
Ll
2108
(456)
175

21
260

2564
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