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Errata Sheet
for

"Design Criteria for High-Speed Power-Transmission Shafts"

Part 1., Analysis of Critical Speed Effects and Damper
Support Location,

Technical Documentary Report No. ASD-TDR-62-728
Part 1, August 1962,

The first phase report of a research program titled '"Design Criteria

for High-Speed Power Transmission Shafts' was issued in December, 1962, This

report is titled "Part 1. Analysis of Critical Speed Effects and Damper

Support Location' and is designated as Technical Documentary Report No.

ASD-TDR-62-728, Part 1, It was prepared under Contract No, AF 33(616)-8290,

and was Project No, 8128, Task No., 812802, Since this report was issued, the

following Errata has been compiled.

(1)
2
(3)

)

(5)
(6

Page
Page

Page

Page

Page

Page

ERRATA

X1V, Line 11; Add X
XV, Line 3; Add k

10, Equation (14); should be

TP% ybe _ VD2 + d°

[oF . d4)1/3
D

rpmsolid

14, Equation (16); should be

_ T 2 2
WS 4 (D" - d°) Lp, 1b.
42, Figure 15; Change to Figure 16,

49, Figure 16; Change to Figure 15.




Errata Sheet

2=

(7) Page 73, Equation (103); should be
H=oa

(8) Page 95, Equation (11l); should be

(9) Page 137, Line 10; Change from rev/sec to revolutions per minute.
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FOREWORD

This report was prepared by Battelle Memorial Institute, Columbus, Ohio, on
Air Force Contract AF 33(616)-8290, under Task No, 812802 of Project No. 8128,
"Design Criteria for High-Speed Power-Transmission Shafts'. The work was adminis=-
tered under the direction of Flight Accessories Laboratory, Aeronautical Systems
Division. Mr. Bruce P. Brooks was project engineer for the laboratory.

The studies presented began in May, 1961, and were concluded in July, 1962.

Group Director John E. Voorhees was the engineer responsible for research activity of
Battelle Memorial Institute.

This report is the Final Technical Report of Phase I activities.

The contractor's
report number is G-4869.

This report is unclassified.




ABSTRACT

Repeated successful operation of high-speed power-transmission shafts at and far
above their first critical speeds hi.s been achieved. A basic new analytical technique:
for the design and analysis of high~speed shafting has been developed using electrical
transmis sion line theory. Limited experimental work has shown the technique to predict
successfully the damper parameters necessary to high~speed shait operation. Equations
relating full-scale and model shaft configurations to produce similar dynamic behavior
have been formulated. The experimental application of torque on high-speed shafting
did not change lateral critical speed. This is not in agreement with theory, which pre-
dicts a decrease in critical speed. Damping ccatings applied continuously along the
length of high-speed shafts controlled vibration amplitudes to a slight degree at the
lowest critical speeds. At higher order criticals the coatings had no desirable effects.
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INTRODUCTION AND SUMMARY

In connection with the need for light-weight componerts in military helicopters
and STOL and VTOL aircraft, a research program sponsored by the Aeronautical
Systecmis Division has been conducted by Battelle to determine the meritsof hypercritical-
speed power~transmission shafts. The research program has produced considerable
information which confirms the feasibility of such shafts, and relates their design to
practical applications,

For any rotating shaft there exists a series of discrete speeds at which the cen-
trifugal force resulting from unbalance causes progressively greater shaft deflection.
The elastic restoring forces developed as the shaft deflects are overcome by the cen-
trifugal force developed by the deflected shaft. Extremely large deflections and even
destruction of the shaft and its bearings can result from operation at these speeds,
called critical speeds. ¥for this reason designers of power-transmission equipment
normally avoid the problem by operating shafts below their first critical speed.

There are of course, disadvantages to restricting operation to below the first
critical speed. For transmitting a given horsepower, torque and consequently shaft
size must be increased as operating speed is reduced. In case of long shafts, the shaft
size may be increased above that size required to transmit the torque simply to raise
the first critical speed above the operating speed range. Alternatively, the shaft size
may be determined by the torque loading, but additional bearings may be installed to
support the shaft and thereby raise its first critical speed. The major disadvantage of
these conventional practices applied to aircraft is the weight penalty.

The research program has shown that shafting can be operated consistently far
above its first critical speed, with consequent savings in shaft and support weight,
through the use of one or two damped supports, Methods have been developed to predict
necessary damping values and support locations to provide satisfactory operation at any
range of speed at and above the first critical. Methods are also included to relate the
parameters which provide good operation of one shaft to any other shaft, no matter what
the shaft dimensions or material. In short, hypercritical-speed shafting, with its
associated advantage in weight, is a very practical and feasible means of transmitting
power. With today's high-speed power sources it is especially attractive, since consid-

erable weight could be pared from engines and gearing by transmitting power at the same
speed as it is produced.

Manu:cript released h)'_lTu- authors July 1762 for publication as an ASD Tcchnical Docuimentary Report.
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TECHNICAL WORK

Relationships Between Power, Speed, Torque, Shaft Size, and
Critical Speed

Solid Shafts

The power-transmission properties of high-speed-shaft sizes studied in this re-

search program can be most easily visualized upon consideration of some basic
relationships.

Torque transmitted by a shaft is given by:
_mD3Sg
16

T (1)

where
T =torque, in-lb
S. = shear stress, psi
D = shaft diameter, in.

Horsepower transmitted by a shaft is given by:

hp - 27 T{rgm) , (Z)
12 x 33,000

where
hp = horsepower
(rpm) = revolutions per minute.

Substituting Equation (1) in Equation (2) gives

b Z"TZSS (rpm)D3 (3)
P=12XT16 x 33,000 ° :

This relationship may be further simplified if a given stress level is assumed.
For high-quality, heat-treated steel shafting the highest torsional endurance limit that

may be expected is around 50,000 psi. Substituting this value for Sg in Equation (3)
gives the following result:

hp = 0. 1557(rpm)D°> . (4)

In Figure | the above relationship between shaft diameter and speed is shown for
various horsepowers. It may be seen from this figure that relatively small-diameter
shafts will transmit large powers at high speeds. The area in the figure bounded by the
solid heavy line denotes the range of speed and shaft diameters for which the shaft test
machine was designed. By interpolating between the constant horsepower lines it is seen

that a 0. 5-inch-diameter shaft running at 50,000 rpm can transmit nearly 1000
horsepower,
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Transmitting large horsepowers with small-diameter shafts presents the problem
of controiling shaft vibration at the critical speeds. The shaft speed at which the first

principal mode of vibration or first critical speed would occur can be calculated from
the following equation [Ref, (W™

D% 4 1 _467D [E
5 = (60 52 1l 87 /8% - 60 x 1,57 [386E TD ENE 5 5
< x wl * 24 64 mDZP (2 NP ()

where
g = acceleration of gravity, 386 in. /sec?
E = modulus of elasticity, lb/in. % (30 x 108 for steel)
1 = section moment of inertia, in. 4
w = unit weight of shaft, lb/in.
4 = shaft Ie’ngfh between supports, in.
P = shaft density, 1b/in. 3 (0.283 for steel).

For a steel shaft, Equation {5) may be reduced to the following:

4,8 x 106D

22

rpm =

(6)

Equation (6) gives the first critical speed of a simply supported shaft or a contin-
uous shaft on equally spaced simple bearing supports for any shaft diameter and length.
Solutions of this equation for various spans between bearings are plotted in solid lines
on Figure 1. The second principal mode of vibration of the shaft would occur at a
speed four times that computed from Equation {(6). The third principal mode of vibra-
tion would occur at a speed nine times that computed using Equation (6), and the nth

principal mode of vibration would occur at a speed n

times the speed computed from
Equation (6).

It can be seen, therefore, that a whole family of curves for higher modes
of vibration would exist for each curve plotted in solid lines orn Figure 1. Besides the
curves representing the first principal mode of vibration, only the curves for the tenth
principal mode are shown in dotted lines to prevent confusion.

Referring to Figure 1, a 0, 5-inch-diameter shaft turning at 50,000 rpm would be

running at the tenth critical speed, if the span length between bearings were approxi-
mately 70 inches. As mentioned, nearly 1000 horsepower could be transmitted by such
a shaft. But without suitable means to damp lateral vibrations the shaft would be use-

less, unless ten or more intermediate supports were installed to decrease the span
length to below that of the first critical speed.

For a simply supported steel shaft, Equation (6) gives the first critical speed for
any shaft length and diameter. If n denotes the first, second, or nth mode of vibration,
the critical speed for any vibration mode can be found by the following:

* References are given on page 142,




4.8 x 10%02D
L2 ’

rpm =

(7)

Figure 2 is a graph of this equation with a family of curves of néD equal to various con-
stants, plotted against speed and shaft length, Figure 2 also shows the maximum length
and speed capabilities of the test machine as indicated within the dotted lines. From the
figure, a 70-inch 50,000-rpm shaft has an n’D constant of approximately 50, Then the
value of n for a 0., 5-inch-diameter shaft equals 10, meaning that the shaft is running at
its tenth critical speed. A number of intermediate supports could be added to reduce the
order of the vibration mode to one, or even less than one to completely avoid critical
speeds. The distance between supports to reduce operation to the first critical speed
for the 0, 5-inch shaft running at 50,000 rpm can be calculated easily. At the first
criticaln = ! and n®D = 0,5, On Figure 2 the intersection of the n“D curve equal to

0.5, and 50,000 rpm, shows the distance between supports to be about 7 inches., For
operation of the shaft below the first critical speed, ten or more supports must bc added
to reduce support spacing below 7 inches.

Figure 2 shows graphically another interesting relation between vibration mode and
diameter of simply supported shafts. Suppose the installation using a 70-inch-long shaft
running at 50,000 rpm had no framework on which to mount intermediate supports along
its length. A shaft diameter could be chosen to operate at or below the first critical
speed. From Figure 2 the value of nD for the 70-inch-long, 50,000-rpm shaft is 50,

If n is made equal to 1, then d must equal 50 inches. A diameter somewhat larger than
50 inches would permit operation below the first critical. Although this example is
ridiculous from a practical standpoint, it illustrates the application of Figure 2 in situa-
tions where the distance between driving and driven members is fixed.

Probably most of the situations to which high-speed power-transmission shafts
might be adapted would be those with considerable shaft-end fixity. Rather than bcing
freely supported, the shaft ends would be built-in or cantilevered. Due to the increascd
stiffness of such shafts, their critical speeds are higher than indicated by Equations (6)
and (7) and Figures 1 and 2.

The critical-speed equation for any fixed-end solid steel shaft, and for any vibra-
tion mode is:

3.07 (1. 25n + 0. 637)210D
—E—

rprn o — (8)

&

Equation (8) was derived from material in Reference 1. Dividing Equation (7) by Equa-
tion (8) produces the critical-speed ratio of simple to fixed-ended shafts for any vibra-
tion mode n, The critical-speed ratio is:
TPMgimple - 1. 57n%
TPMfixed  (1.25n + 0. 637)

= (9)

and is plotted in Figure 3 for the first 20 critical speceds.

At the higher criticals there is less difference in speed due to the decreasing
prominence of the two end vibration loops compared to the total number of loops along
the shaft, Referring to Figure 3 the critical-speed ratio for the tenth mode is about 0.9,
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‘The 0, 5-inch-diameter 70-inch-long steel shaft with simple ends vibrates at its tenth
(rilical when turning at 50,000 rpm. The same shaft with fixed ends must turn at
50,000/0.9 = 55,600 rpm to achieve the tenth critical speed. Figure 2 shows that the
same 0. 5-inch-diameter 70-inch-long shaft simply supported runs at its first critical
speed (nZD = 0. 5) at about 500 rpm. The critical-speed ratio from Fiéure 3 for the
first vibration mode is approximately 0. 44, Then the first critical speed of the same
shaft, but with clamped ends is 500/0, 44 = 1137 rpm.

Tubular Shafts

Tubular power-transmission chafts have some very attractive advantages when
compared to solid shafts. These advantages can be easily understood with the aid of
graphs which are developed in this section.

Equation (1) gives the torque transmission ability versus solid shaft diameter for

a certain torsional stress level., Equation (10) presents the same relationship for a
tubular shaft:

nS4(D% - a%)
B 16D

) (10)

where

D

shaft outside diameter, in,

d

shaft inside diameter, in.

If solid and tubular shafts are compared on the basis of transmitting equal torque which
develops the same stress levels at the surfaces of the shafts, Equations (1) and (10}

reduce to:

1/3

4 _ 44

DS =( ——-—-—-D d > ] (11)
\ D

where

Dg = diameter of a solid shaft which is torsionally of equal strength as a
tubular shaft of given dimensions, in.

Figure 4 shows a plot of Equation (11) which compares the outside-diameter ratio of
equally stressed solid and tubular shafts with equal torque capacity to the ratio of tubular
shaft inside to outside diameters. For instance the 0.5-inch-diameter solid steel shaft
was capable of transmitting nearly 1000 horsepower. If an equally stressed tube of

0. 8-inch outside diameter were substituted to carry the same power at the same speed,
the tube inside diameter could be easily calculated from Figure 4. The ratio of solid to
tubing outside diameter is 5/8, or 0. 625. From the curve the inside to outside tube-
diameter ratio is read to be about 0.93. Then a tube of 0. 744-inch bore and 0, 8-inch

outside diameter can handle the same torque at the same stress level as can the 0. 5-
inch solid shalft.

Equation (12) shows the relationship between critical speed and shaft length for
tubular steel shafts with simply supported ends:
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6 ——
rpm 5 B8 MT N Dé + al . (12)

Dividing Equation (12) by Equation (6) shows the critical-speed relation between tubular
and solid shafts for the same shaft length:

rpm tube ,/ DZ + d2

= . 13
T'PmM s5olid D (13)

Substituting Equation (11) produces the relation between tubular and solid-shaft critical
speeds for shafts which can transmit the same torque 2t the same stress level:

rpmiybe «/ D2 + a2
TPM 50lid -,;3/ D% - g4
D

. (14)

Equation (14) is plotted in Figure 5.

The 0. 5-inch solid shaft and the tube with 0. 8- and 0. 744-inch outside and inside
diameters both can transmit nearly 1000 horsepower at 50,000 rpm. The torsional
stress levels of both shafts are equal. Figure 5 shows that the critical-speed ratio of
the tube to the solid section is 2,218, In other words for the same vibration mode the
critical speed of the tube is 2. 218 times that of the solid shaft,

Previously i1t was seen that for the 0. 5-inch-diameter 70-inch-long solid steel
shaft the first critical speed was 500 rpm. The first critical speed of the equal-strength
tube = 2,218 x 500 = 1109 rpm. Obviously there is an advantage to the use of tubing
since fewer intermediate supports are needed. Reference to Figure 2 shows graphically

the advantage in number of intermediate supports needed when tubular rather than solid
shafts are used.

In Figure 2 the intersection of 70-inch span and 1109 rpm occurs at an n¢D value
slightly greater than l. 1. Actually the value of nD is 1. 113, which can be calculated
exactly from Equation (7). This value, when divided by n = 1, provides a solid shaft
diameter of 1. 13 inches which is equivalent from the critical-speed standpoint to the
0. 8-inch-diameter tube of the same length. Since the vibration speeds of the tube and
1. 13-inch~-diameter equivalent solid shaft are identical, the vibration mode of the tube
occurring at 50,000 rpm can be calculated easily from Figure 2. At this speed and with
a shaft length of 70 inches the n®D value is 50. Dividing 50 by the equivalent 1, 13 diam-
eter shows n to be equal to 6. 65. This means that the tube operates between the sixth
and seventh vibration modes. To determine the span between intermediate supports
necessary to permit operation of the tube at the first critical speed find the intersection
of the line equal to 1. 13 and 50,000 rpm. The span length £ for this point is 11 inches.
At 50,000 rpm the introduction of six intermediate supports permits operation of the
0. 8-inch-diameter 70-inch-long tube below its first mode of vibration, while it is neces-
sary to include ten intermediate supports along the 0, 5-inch-diameter 70-inch-long
solid shaft to provide operation below the first critical speed. Both the tube and solid
shaft can transmit the same horsepower at the same level of stress in the shafts.

10
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Another advantage of tubular shafts over their solid counterparts is the reduction
in shaft weight necessary to transmit the same level of power. Figure 6 shows the
curve of the following equation which permits calculation of the weight ratio of equal
strength tubes to solid shafts:

W tube D? - g2
Wsolid= 4 4 2/3 (15)
D
where
Wiube = weight of a unit length of tubular shaft, 1b

W s olid = Weight of a unit length of solid shaft, lb.

Checking Figure 6 for the ratio of inside to outside diameter of 0.93 we find a ratio of
tube to solid weight of about 0. 33. For similar torque~-transmission ability the tube
weighs one-third that of the solid shaft.

Tubular shafts may of course be run with fixed rather than simply supported ends.
The first critical speed of the 70-inch-long tube with simply supported ends was found
to be 1109 rpm with an n®D value of 1.13. Reference to Figure 3 shows the critical
speed of a simply supported shaft to be about 0. 44 that of a fixed-end beam. The first
critical speed of the tube with fixed ends is approximately 2520 rpm. Other fixed-end
critical speeds can be calculated in a similar manner,

When damped support bearings are provided to permit shaft operation through
several critical speeds, the tubular shaft will have to pass through fewer critical speeds
than an equivalent solid shaft in the same application. More effective damper design
should therefore be possible for use with tubular shafts, since fewer design compro-
mises would result from dealing with a smaller number of critical speeds.

Shaft Modeling Procedure

Numerous successful high-speed-shaft experiments have been made with damped
intermediate supports. For instance, with one damped support bearing included on a
0. 25-inch-diameter, 89. 3-inch-long steel shaft, successful vibration suppression was
obtained at all shaft critical speeds up to the twelfth mode. This is a remarkable ac-
complishment, but it must be possible to extract broader implications from this experi-
ment to permit the design of successful shafts of different materials, lengths, and

diameters. To make it possible to achieve similar performance with other shafts a set
of modeling equations is needed.

Modeling Equations Relating Dynamically
Similar Shafts

The following relationships between dynamic shaft parameters were developed to
define the basic properties of all circular shafts of uniform cross section:
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Characteristic Shaft Weight, Wg =%‘ (D2 - d)% LP, b, (16)

4 _ 44
Characteristic Shaft Lateral Stiffness, Kg = ETL(D_Lg_“_E, 1b/in. (17)
< s _ [Rsg
Characteristic Shaft Natural Frequency, w = , rad/sec (18)
s
. ; L . W_K .
Characteristic shaft Critical Damping Value, Cg = 2 S S, lb-sec/in. (19)
where

D = shaft outside diameter, in.
d = shaft inside diameter, in,
L = shaft over=-all length, in.
P = shaft density, 1b/in. 3
E = shaft modulus of elasticity, 1b/in.>
g = 386 in. /sec?
The following symbols refer to the intermediate support bearing:

W = weight of bearing plus 1/3 the weight of each support spring, 1b

K

combined spring rate of damper springs, 1b/in,

C

support damping coefficient, lb-sec/in.

X = distance between support and shaft end, in.
over-all shaft length, L, in.

Four dynamic scaling ratios exist which relate parameters of shafts and their
intermediate supports for similar dynamic behavior. Let subscript 1 refer to a shaft
configuration of known behavior, and subscript 2 refer to a shaft of different dimensions
which is to be dynamically similar to the first shaft.

W,y - W, (20)
Ws1 Wg2

L 3 (21)
sl s2

1. % (22)
Cs1 GCs2

X) = X,. (23)




Knowing the support-to-shaft ratios of Equations (20) through (23) for Shaft 1, all that
reinains is calculating the necessary damper characteristics W2, K, and C, for the
diameter, length, and materials of the second shaft,

To illustrate the modeling procedure let us say that a 114. 2-inch-long 0. 5-inch-
diameter aluminum tubular shaft of 20-gage wall thickness is needed to transmit power
between driving anc driven components. The shaft ends are to be clamped tightly in the
spindles of the driving and driven elements, and shaft speed is to be 30,000 rpm. Using
Equations {16) through (19) the characteristic aluminum-shaft parameters are:

W, = 0.572 1b
Kgz = 1. 848 1b/in.
Cgz = 0.1048 Yb-sec/in.
w = 35, 35 rad/sec.
s2

Now it is necessary to know if the vibration mode at the operating speed of the aluminum
shaft is within the range of successful vibration suppression of one of the damped test

shafts. This information can be obtained casily with a fifth relation given by Equa-
tion (24):

L s S (24)

where the subscripts are as before.

The 0. 25-inch-diameter, 89. 3-inch-long solid steel shaft with clamped ends and
one damped support has been successfully run to the twelfth vibration mode, which
occurs at approximately 22,000 rpm. The parameters of this shaft are as follows:

Wy = 1.260 Ib

1. 550 1b/in.

Ksl
Cq) = 0. 142 1b-sec/in.

w oy = 21. 8 rad/sec.

Substituting values in Equation (24):

@] _ 35.35 x 22,000 _
w1 21.8

Wy = wgo 35,700 rpm .

This calculation shows that the aluminum shaft could operate at speeds as high as
35,700 rpm without encountering severe vibrations, and that a speed of 30,000 rpm is
well within the range of good operation.

To establish the damped support characteristics of the aluminum shaft it is neces-

sary to know the support characteristics used with the 0. 25-inch-diameter steel shaft.
They are as follows:
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Wi = 0.609 Ib

Ky = 11.6 1b/in.

C; = 1.736 lb-sec/in.
X, = 0.05.

The aluminum-shaft support characteristics are calculated as follows from Equa-
tions (20) through (23):

w
w 1 _ 0.572 x 0,609

W2= SZWSI_ 1.260 =0.276 lb
K] 1.848 x 11. 6
; = L % _ 13.83 1b/in.
K2 = K2 g7 1. 550 83 1b/in
C
c,=cC 1 0.1048 x1.736 _ ) ,g8 1h-sec/in.

52 Cq) 0. 142

X2=X1=0.05

The aluminum tubular shaft equipped with one damper with the above calculated
parameters and located 5. 71 inches from a shaft end would transmit power satisfacto-
rily at 30,000 rpm.

Since damped shafts related to each other by the modeling Equations (20} through
(23) have similar vibration characteristics when operated at speeds defined by Ecua-
tion (24) they may be said to be dynamically similar. No matter how physically dis-
similar are the shafts, dynamic similarity car be achieved with the proper selection of
support parameters. The use of these modeling equations permits scaling the satisfac-

tory operational characteristics of a known shaft configuration to any physically dis-
similar situation.

Mcdeling Equations Relating Vibration Amplitude

If vibration amplitudes of a certain shaft configuration are known, then it is pos-
sible to predict vibration amplitudes of a dynamically similar second shaft configura-
tion. If both shafts have an exactly similar distribution of shaft runout, vibration
amplitudes for both will be proportional to their maximum shaft eccentricities when run
at dynamical similar speeds. This may be seen by defining the following shaft
parameter:

2

Characteristic Shaft Unbalance, Fg = ——S——g-—s— , b, (25)

where
e = maximum shaft runout or eccentricity, -in.

Shaft deflection, y, is proportional to the force, Fg, trying to deflect it, and inversely
proportional to the shaft stiffness, Kg. Then:
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Yy * — = (26)
s gKg ’
but
Ksg
2 s
w_ © = 9 (18)
s W
Jo Y < e, (27)
and
Yg1 Ys2 y1 V2
B s (28)

It must be remembered that Equation (28) is true only if Shafts 1 and 2 are modeled
accurding to Equations (20) through (24); the deflections, y) and y,, are measured at

the same relative position along each shaft; and the shaft runouts are exactly similar
in distribution.

Modeling Equations Relating Shaft Power
Transmission

Full-scale transmission shafts will be called upon to carry power in the range
from 250 to 2500 horsepower. Simulation of the effects of torsion in the laboratory
using much smaller horsepower levels is highly desirable, since the equipment neces-
sary to transmit low horsepower is less expensive.

The following defines the relative horsepower transmission ability of a circular
shaft of uniform cross section:

4 4
(D" = d7)Sgew

Characteristic Shaft Power-Transmission Ability, hp_ = )

(29)
where S = torsional endurance stress, psi. The following equation permits scaling
down of horsepower f.om full-scale to model values with the same percentage of
torsional operating stress to torsional yield stress maintained:

h h

Py %

hpsl hps&

where-hp; = the actual horsepower transmitted by the shaft.

(30)

As an example a steel tube of 1. 5-inch outside and 1. 372-inch inside diameter is
capable of transmitting 2500 horsepower at 17,000 rpm with a resulting torsional
operating stress of 50,000 psi. This can be calculated using Equations (19) and (26)
in the report section entitled, Relationships Between Power, Speed, Torque, Shaft Size,
and Critical Speed. If it were desired to test a model shaft at the same relative stress

level, application of Equation (30) would show the necessary value of model shaft
horsepower.
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Suppose it were convenient to test at 4,700 rpm a 0. 25-inch~diameter solid shaft
of the same material as the full-scale tubular shaft. The model shaft characteristic
horscpower transmission ability equals:

(0.25% - 0H)s, . x 4,700

hpg, = 535 =73.65S,, -
The full-scale shaft characteristic equéls:
(1.5% - 1.372%)S5e x 17,000
hpg = TE 2 =17,000 Sg, .
Applying Equation (30}
hoo = h hps2 2500 x 73. 6 Sge 10. 84 1
P2 = Pl hper 17,000 Sgo TP

Transmitting 10. 84 horsepower through the model shaft produces the same relative
torsional stress level as 2500 horsepower carried in the full-scale tubular shaft.

Experimental Modeling Tests

Seven tests were made in the laboratory using shafts with support characteristics
which fulfilied the requirements of Equations (16) through (19). Shafts were of steel,
aluminum, and brass, with various lengths and diameters. Two of the shafts tested
were tubes. The critical-speed ratio of the test shaft with the highest first critical
speed to the shaft with the lowest was 4. 75. The diameter ratio of the largest to the
smallest test shaft was 2. 67, and the ratio of the longest to the shortest length was

2. 62. In brief, the dimensions and critical speeds of the shafts tested were distinctly
dissimilar.

Figure 7 shows a plot of all the ratios of actual shaft critical speeds to charac-
teristic shaft speed plotted versus the order of the vibration mode., The test speeds all
fall within the solid-line envelope. As can be noted from the figure, the shaft critical
speeds determined experimentally show good agreement with each other.

Five of the seven shafts became excessively noisy or developed excessive vibra-
tion at the fourth critical, a fairly good experimental agreement. Accurate similarity
was not achieved in the amplitude versus vibration mode curves of the seven shafts,
Three reasons are responsible for this fact. The intermediate support has a nonlinear
moment-restraint versus shaft-angle curve. Second, some unavoidable inaccuracy
occurs in adjusting damping. But probably most important in preventing precise model-
ing procedure verification was the shaft straightness. The shafts were bought commer-
cially and were subject to bending in manufacture and in handling. The tubing was sub-
ject to an additional error in mass eccentricity, since the inside diameter was probably
not concentric with the outside diameter. Considering these variables we concluded that
similar dynamic behavior was obtained for a majority of the shafts. The critical speeds
were in good agreement in spite of the test variables, whichindicates that critical speeds
are not particularly sensitive to shaft runout, damping tolerance, or varied intermediatc
support moment restraint.
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Computed Modeling Tests

In order to eliminate the difficulties encountered in the experimental verification
of modeling, it was decided to use the computer. In the computer program, calculation
of shaft deflection is carried out using the exact same damping factor as indicated on
the input cards. The program dictates zero moment restraint at the intermediate
support bearing. And, of major importance, the shaft straightness or mass eccentric-
ity is controlled exactly and is also one of the computer inputs.

Two dimensionally dissimilar shafts were selected and the intermediate support
parameters adjusted to conform to the modeling equations. Table 1 shows the shaft
dimensions, support parameters, and values of the four modeling relations. Eccentric-
ity was the -same for both shafts. Referring to Equation (28), the ratio of vibration
amplitude to eccentricity, the amplitudes were predicted to be equal since the eccen-
tricities were equal. The computed amplitude of the large aluminum shaft was 0. 059
inch and for the small steel shaft 0. 060 inch at the same location. The mode shape of
both shafts was similar. These two computer calculations are indicated as Runs 35
and 36 on the tabulation of runs in the computer section.

TABLE 1. PARAMETERS OF THE TWO COMPUTER MODELING TESTS

Cs, Sq
Computer D, L, Ws, K, lb-sec, w, K, lb-sec/ W K <
Test in. in. Material 1b ib/in. in. b 1b/in. in. Ws K C,
33 0.25 89.3 Steel 1.260 1.550 0.142 0.701 66 0.868 0.556 42.6 6.11 21.8
36 2.218 174.1 Aluminum 68.3 432 17.4 31.9 18,300 106.3 0.556 42.6 6.11 49.4

Note: Both shafts calculated at the second critical; 2580 rpm for the steel shaft and 5850 rpm for the aluminum shaft. Eccen-
wicity, e, and support location, X= 0.416, were thc same for both shafts. Amplitudes were measured at the same posi-
tion for both shafts, and cqualed 0,060 in. for the steel shaft and 0.0592 in. for the aluminum shaft.

Conclusions

From the experimental tests it is safe to say that the modeling procedure relates
shaft and support parameters so that critical speeds for cther modeled shafts can be
predicted with accuracy. This in itself is reasonable proof that the modeling relations
are correct. From the computer calculations there can be no doubt that the relations

are correct, because mode shapes, amplitudes, and critical speeds can be predicted
accurately between modeled shafts.

Digital-Computer Calculation Procedure, and Computed Shaft
Speed and Deflection Results

Development of design criteria for high-speed power transmission shafts will rely
on analytical procedures for verifying design predictions. These analytical procedures
are adaptable to high-speed computation equipment, and adaptation of the problem for
solution by digital computer will be presented, as well as ‘wiil a discussion of the digital
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computer prog=ams. Shaft critical speeds and the deflection curves were computed for
various shaft configurations, and results are discussed.

Digital- Computer Calculation Procedure

The Vibrating-Shaft Equation. The problem of determining the vibration of elastic
bodies requires an infinite number of coordinates for specifying its position since it has
an infinite number of degrees of freedom. Consider a shaft mounted in rigid bearings
as shown in Figure 8. The first critical speed is determined by calculating the natural
frequency of lateral vibration for the equivalent fixed-end beam. The differential equa-
tion of the vibrating shaft is:

34y  PA 3%y 31
x4 = T 386. 4EI d3t2 (31

where
y = shaft lateral deflection, in.
x = distance along shaft, in.
t = unit of time, sec
P = shaft density, lb/in. 3
A = shaft cross-sectional area, in. 2
E = shaft modulus of elasticity, lb/in. 2
I = shaft moment of inertia, in4.

With the boundary conditions for the fixed-end shaft given in Equation (32) below:

y:Oand%:Oatx:O (32)
y=0and§X=Oatx=L,
dx

where
L = over-all shaft length, in.
the solution for the critical speed and deflection curve may be obtained. [Ref. (2})]

With introduction of an intermediate support having a damping coefficient and a
spring rate, as shown in Figure 9, Equation (31) is written for each span of the shaft.
In order to solve this equation, the boundary conditions at the intermediate support
must be written. The number of constants of integration to be evaluated is increased to
eight. It can be seen that for all but the most sirnple support systems the mathematical
work increases tremendously. The digital computer has been utilized in the solution of
the problem of vibration of high-speed shafts, by formulating the problem in a manner
adaptable to sclution by computer techniques.
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Digital-Computer Solution of the Vibrating-Shaft Equation. If the distributed-
mass system shown in Figure 9 is replaced by a lumped-parameter system of many
masses, as shown in Figure 10, the solution of the lumped-parameter system will
approximate that of the distributed-mass system. The larger the number of masses,
the better the approximation of the solution of the original problem.

In order to determine shaft behavior using the digital computer, the uniform shaft
was approximated by a large number of rnasses by dividing it into a convenient number
of equal intervals. Next, the mass of each section was calculated and divided in half,
and these halves concentrated at the two ends of the interval. The shaft between inter-
vals was assumed to possess stiffness, but not weight.

In the determination of shaft behavior there are four quantities to bg evaluated at
each cut; the deflection y, the slope ¢ = %, the bending moment M = EI C%—X, and the
dx

3
shear force V = EI 9—% It is necessary to find the relation between these quantities for
dx
adjacent intervals. Figure 11 shows the interval between the kth and the k+ 1st cut and
the quantities acting. The following equations are written for the interval of length £.:

Vk-l-l

Vk + Bck (yk + ek), 1b, (33)
My 17 M+ chk + 1 in-lb, (34)
Per1 TP Vi s T A My Tad, (=5
Vs 1=V L’chk + hCSk 1t fCMk, in. , (36)
where
Vk, k + 1 = shear force, 1b
e = eccentricity, in.
Yk, k+1 = deflection, in.
Bck = inertia force co:stant, lb/in.
Mk, k + ] = moment, in-lb.

£ = shaft length, in.

d)k’ k + 1 - slope, rad

f. = influence coefficient for a moment, 1/in-1b
q. = slope influence coefficient for a moment, 1/in-1b
h¢ = deflection influence coefficient for shear force, in. /1b

where the first two are the equilibrium equations of the interval subject to the inertia
force, or centrifugal force mg w? (vk + ek)at the chosen frequency w?. The last two
equations are deduced from geometric configurations.
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The coefficients of Equations (33) through (36) are defined in terms of the input
parameters as follows:

) 22
L D*N“P 7[/7-[ 2
= - — 1b/in.,
%c " T386.24 4 30>’ /in. , (37)
_ Ll .
b, = CN =, 1b/in. , (38)
4
1:%, n. 4; (39)
2
fc = _2;1, 1/1b, (40)
EC Q
q. = B’ 1/1b=-in. , (41)
zc3
h, =EE’ in. /1b, (42)
pzlﬁi<1)21wm (43)
€ 386.4 \ 30/ ' ’
ﬁck =a_- Q [/K + bcsf——1> -pc:l , Ib/in. (44)

where
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a_. = centrifugal force constant, 1b/in.

c
EC = shaft length between computer stations, in.
D = shaft diameter, in.

N = shaft speed, rpm

P = shaft density, 1b/in. >

b_. = damping constant, 1b/in.

C = support damping coefficient, lb-sec/in.

I = section moment of inertia, in. 4

f. = influence coefficient, 1/1b

E = modulus of elasticity, 1b/in. c

q. = slope influence coefficient for a moment, 1/1b-in.
hc = deflection influence coefficient for a shear force, in. /1b
P, = support weight constant, 1b/in.

W = weight of intermediate support bearing, 1lb

Sck = inertia force constant, 1b/in.

Q = index: Q =1 indicates presence of a support;

Q = 0 indicates no support at that station

K

intcrmediate support spring rate, 1b/in.

Equations (33) through (36) constitute a set of linear recursion relations among
the four r quantities Sy, Mg, Pk, Yk- The problem is to determine these quantities for
a fixed-end shaft; i. e. , subject to the boundary conditions that the deflection and slope

are equal to zero at both ends of the shaft. Expressing the boundary conditions mathe-
matically yields:

yk:¢k=yr=¢r=o. (45)

Digital-Computer Shaft-Deflection Program. The problem of determining the
deflection of a high-speed power-transmission shaft in fixed-end bearings is the deter-
mination of yyx from Equation (36). This problem becomes the solution of the four
r quantities from Equations (33) through (36) for the boundary given in Equation (45).
Battelle's Digital Computer Program Library contained an IBM 650 computer program
which calculated the dynamic deflection of shafts. This program was for a shaft with
one end fixed and the other end simply supported. Modification of this program to in-
clude fixed ends yielded the desired deflection information.
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The resultant 1BM 650 double-precision computer program calculates the deflec-
tion curve for a fixed-end shaft with damped, flexible intermediate supports. These
supports are located at a mass point, and a support may be located at each mass. A
restriction on the program is that the number of intervals or masses selected must be
larger than 3 and less than 50. Since it was found that the coefficients grew very large
in magnitude, equations were calculated starting from each end of the shaft and solved
near the middle of the shaft. A double-precision routine (utilizing 18 digits) was used to
decrease the effect of round-off error. This enabled the computer to calculate the
deflection curve up to approximately the thirteenth mode of vibration. Equation (44)
necessitates the use of complex algebra.

Shaft parameters substituted into the computer are the shaft diameter, length of
shaft interval, shaft speed, specific weight and modulus of elasticity of the shaft ma-
terial. lntermediate-support-bearing information required for the computation includes
the spring constant, the damping coefficient, and the weight of the support bearing.
Additional information required is the number of stations into which the shaft is divided,
and the station number where the shaft is broken for computational purposes. Another
item required as an input to the computer program is the initial deviation of the shaft
from the center of rotation, or mass eccentricity. The results obtained from the com-
puter program for the deflection of shafts are the shear force and moment at the ends
of the shaft, the force at the intermediate support bearing, and the deflection at each
station. 1f these values of deflection arc plotted along the length of the shaft, a shaft-

deflection curve results. Figure 12 shows the deflection curve calculated for a specific
set of conditions.

Initial computer calculations showed the importance of the mass eccentricity on
the calculation of shaft deflection. 1lf a constant mass eccentricity was assumed, it
would not excite the even mode shapes and the computer would give incorrect deflection
shapes. Substitution was made of an assumed parabolic mass eccentricity distribution
with a maximum of 0. 010 inch at one end. In order to correiate calculated shaft deflec-
tions and measured shaft deflections, it was necessary to use measured values of shaft

eccentricity. Some typical measured values of the shaft eccentricities are shown in
Appendix C.

The computer program for the deflection of high-speed power-transmission shafts
was utilized to determine the critical speed of the shaft. A particular critical speed
could be determined by performing various computer shaft-deflection calculations at
small intervals of speed on either side of the estimated critical speed. The amplitude
of a particular station was plotted versus the speed of rotation. Figure 13 shows such
a plot. The critical speed was determined to be the speed at which the amplitude of
shaft deflection was a maximum. Although the shaft-deflection computer program
allowed the critical speed to be determined from a series of runs, a separate critical-

speed computer program was prepared to do the job with a series of calculations in just
one run.

Digital- Computer Shaft-Critical-Speed Program. In preparing a program to de-
termine the shaft critical speed, extensive use was made of the computer program
previously described. This program determines a shaft speed in a given speed interval
by maximizing the values of shear force and moment at the fixed ends. The input infor-
mation concerning the shaft configuration is identical to that of the deflection program.
Additional input information consists of an initial shaft speed, a final shaft speed, and
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an increniental shaft speed. An indicator is also included which indicates which of the
four values is to be maximized.

Successful determination of the critical speed has been obtained by maximizing the
fixed-end moment at the last station. The output consists of the calculated values of
all of the four factors. When it is determined that the desired factor has been maxi-
mized, the computer will automatically stop calculating. The speed which produces the
maximum value of the complex moment is the critical speed.

Computer Shaft-Critical-Speed and
Deflection Results

Successful operation of the two computer programs described above has augmented
the experimental work considerably, and has been utilized to perform calculations to

substantiate the modeling theory. Table 2 presents a tabulation of computer results in
this research program.

Importance of Mass Eccentricity Distribution to Calculate Shaft Deflection. To
determine the suitability of the computer program in computing critical-speed shaft
deflections, Runs 1l and 2 in Table 2 were conducted with an undamped shaft vibrating
at its first and third critical speeds, respectively. A shaft unbalance or mass eccen-
tricity constant along the shaft was used as the forcing function to excite critical-speed
vibrations. Tbe shaft-deflection curves were as expected in these two runs; one loop
was pr2sent at the first critical, and three at the third. However, when shaft deflection
was computed at the second critical, there was no change in amplitude across the shaft.
Presuming that constant mass eccentricity would not excite the even numbered modes of
vibration, a parabolic eccentricity was tried.

Recalculation of the third critical speed, Run 3, with parabolic eccentricity
showed the program to function correctly at this speed. The amplitude was less than in
Run 2, as was the averaged value of mass eccentricity. Run 4 was conducted at the
second critical with the same eccentricity as in Run 3, and this time calculated the
correct two-loop shaft deflection.

From these tests we concluded the necessity of using a forcing function which

varies in value across the shaft length. All subsequent computer runs were made with
varied mass eccentricity distribution.

Further Validation of Computer Program. Numerous computer calculations were
performed for fixed-end shafts with three equally spaced rigid intermediate supports.
Critical speeds were first calculated by hand for particular vibration modes and then
used as a computer input. Calculated shaft deflections of sizable value showed the
correctness of the input speed, and shaft-deflection shape indicated the validity of the
compuler program. As explained in the section discussing prediction of critical speeds
and mode shapes of equally supported continuous beams, there are as many first-
vibration-mode critical speeds as there are span lengths between bearings. The com-
puted deflection curves were of the same shape as predicted.
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A number of computer calculations were made with a single damped intermediate
support. As before, the shaft-deflection curves were similar to those expected; in this
case to experimentally observed deflections. Shaft critical speeds were also quite

similar. However, difference in vibration amplitude was noted between computed and
experimental runs.

The amplitude variation in computed and experimental runs stems from the diffi-
culty in adjusting damping exactly, variations in shaft runout, and shaft moment absorb-
ing ability of the damper plate. In the computer these items are inputs and not subject
to variation. For these reasons the computer was used to obtain absolute proof of
modeling procedure validity.

Effect of Shaft Mass Eccentricity on Vibration Amplitude. Computer Runs 31, 23,
26, and 25 were made with identical input conditions with the exception of shaft mass
eccentricity. Table 3 shows the maximum shaft mass eccentricity and the vibration
amplitude. This calculated vibration amplitude was found to increase with increasing
mass eccentricity. Amplitude was not proportional to eccentricity because of different

eccentricity distribution along the shafts, but amplitude did increase with increasing
mass eccentricity.

TABLE 3. TABULATION OF COMPUTED VIBRATION AMPLITUDE
FOR VARIOUS VALUES OF SHAFT MASS ECCENTRICITY

Maximum
Computer Mass Eccentricity, Vibiaiion
Run in. Amplitude, in.
31 0.0079 0.0436
23 0.010 0. 047
26 0.0192 0.091
25 0. 0344 0.1072

Computed Modeling Procedure Tests. Since mass eccentricity affects vibration
amplitude it was decided to calculate the deflection of two dynamically modeled shafts
using the same distribution and maximum value of shaft mass eccentricity. Computer
Runs 35 and 36 refer to the dynamically similar model shafts. As noted in Table 2 the

shaft dimensions are quite apart from each other, not to mention the larger being of
aluminum and the smaller of steel.

Using the procedures found in the section discussing modeling, suppoit parameters
were adjusted to provide dynamically similar operation. Rotation speeds were also
scaled. Since the distribution and maximum value of shaft eccentricity were equal it was
predicted that amplitudes would be also. The computed amplitudes differed by less

than 2 per cent (0, 00l inch), proof enough of the validity of both the modeling procedure
and the computer program.
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Conclusions

The computer program has been shown to calculate shaft critical speeds correctly,
as well as correct shaft-deflection curves. It is necessary to use a forcing function or
shaft mass eccentricity which varies with respect to shaft length, however. Otherwise
the even-numbered vibration modes cannot be computed.

The two computer runs of dynamically similar shafts have shown both the modeling
procedure and the computer program to be correct in all respects.

High-Speed Shafting Design by Electrical Analogy

Conventional methods of analysis of high-speed shaft behavior have been used with
considerable success in the digital-computer analyses conducted throughout this re-
search program. Although the conventional analysis procedures permitted accurate
calculation of critical speeds and shaft deflections, they are somewhat cumbersome as
aids to high-speed shafting design. An analytical approach to high-speed shafting design
was therefore sought which would provide more insight into the manner in which shaft

vibration is related to the dynamic parameters of the shaft and its intermediate support
bearings.

The possibility that an analogy might cxist between high-frequency electrical trans-
mission lines and high-speed shafts lead us to perform a detailed study of the similar-
ities between the two types of problems. A particularly attractive feature of such an
electrical analogy is the fact that exhaustive investigation and analysis of electrical

transmission lines has developed extensive technology and analysis techniques for the
solution of the electrical problems.

As a result of this work an analogy has been developed between high-speed shafting
and high-frequency electrical transmission lines. As this analogy was developed late
in the Phase I research program it must be emphasized that exhaustive checks and veri-
fications are not yet completed. The extreme promise of the technique, which has re-
sulted in the successful high-speed operation of an experimental shaft, justifies further
detailed study during the second phase of the research program.

Theoretical Verification of Transmission- Line
Analogy

The analogy between the bending vibrations of high-speed shafting and the standing
waves in an electrical transmission line is valid if the displacements of the shaft are
strictly sinusoidal functions of position along the shaft. This is shown by writing the
differential equation for bending vibrations in the form

2 2 2
g1 2% (9% >+E§_xa -0, (46)
dx¢ \ dx? g oté
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where

A = cross-sectional area, in. 2

E = modulus of elasticity, 1b/in. 2

I = section moment of inertia, in. 4

P = density, 1b/in.3

g = acceleration of gravity, 386 in, /sec?
y = deflection, in.

x = distance along the shaft, in.

t = time, sec.

Now, if 3%y/dx? = -ka, we obtain
2 2
Elk2 3y - PA 3% s (47)
dx¢ g otl
where

k = constant, 1/in.

which is the ordinary wave equation with a phase velocily equal to (Elkzg/PA)l/Z. The
condition 32y/3x2 = -k2y implies that the bending moment is everywhere proportional
to the displacement, which results in y = B} sin kx + B cos kx. The hyperbolic func-
tion terms vanish in the general solution of the bending wave equation,

= B sin kx + B cos kx + B3 sinh kx + B4 cosh kx, (48)
y 1 2 3 4

where
Bl, 2,3,4°7 constants.

The transmission-line analogy is a useful one because the shape of the bending
shaft is approximately sinusoidal for all modes of vibration of interest, except near the
ends of the shaft, where the condition 32y/dx2 = -kZy is not valid for either simply
supported or fixed-end conditions. Consequently, the analogous transmission-line
computations are not carried out to the ends of the shaft. A portion of the shaft near

each fixed end is replaced by the equivalent impedance of a short cantilever beam in the
manner described in the following section of this report.

Electrical Analogy of High-Speed Shafting

The general arrangement of the high-speed shafts and their supports studied in this
program is shown in Figure 14A. As indicated in the figure the ends of the shafts were
rigidly supported in the spindles of the testing machine. For the purposes of developing
a suitable analogy this shaft configuration was considered equivalent to the configuration
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shown in Figure 14B, where the rigidly clamped shaft ends are replaced by a spring-
mass combination. To make this change valid, the following reasoning was employed:
for each critical speed of the fixed-ended shait a shorter shaft having simply supported
ends can be found which has the same critical speed. The fixed-ended shaft is therefore
considered equivalent to a simply supported shaft joined at each end to a short cantilever
beam. The springs and masses shown in Figure 14B attached to the ends of the shaft

are equivalent to the effective masses and spring rates of the short cantilevered ends of
the shaft in Figure 14A.

The mechanical system shown in Figure 14B is considered equivalent to the
electrical system shown in Figure 14C for the purposes of the transmission-line analegy.
In Figure 14C the spring-mass combination representing the fixed ends of the shait has
been replaced by a capacitance and inductance combination. At an equivalent distance
in wave lengths down the transmission line from the end, a combination of capacitance,
resistance, and inductance is placed in series with the line to represent the dynamic
characteristics of the shaft support bearing. Each additional shaft support bearing is
replaced by its analogous resistance, capacitance, and inductance at the correct dis—
tance in wavelengths from the end of the transmission line. It should be noted here
that for purposes of wavelength measurements along the line, the end of the mechanical
shaft is considered to lie at the juncture between the equivalent simple beam and the
equivalent cantilever as shown in Figure 14A.

For efficient energy transfer in high-frequency power-transmission lines the load
on the transmission line is designed to appear purely resistive at the operating fre-
quency, and to have a resistance value equal to the characteristic impedance of the
transmission line. In the case of the high-speed shaft the loac to which vibratory
energy is to be delivered is the damper located at the intermediate support bearing.

One, two, or more intermediate support bearings may be used. Figure 14 shows two
bearings for purposes of illustration only. The dar ~rs at these two bearings represent
the loads on the shaft insofar as vibratory energy is concerned. The intention of the
design procedure is to select proper values and locations for the intermediate supports

to match the impedance of the transmission line, or in this case the shaft, at the desired
operating frequencies.

Relationships Between Mechanical and
Electrical Quantities

The first critical specd of a simply supported beam is given by the expression

Ve
f=1.57 [%&4] , (49)
where
f = critical speed, cycles or rev/sec

E = modulus of elasticity, psi

1 = section moment of inertia, in. %

g = acceleration due to gravity, 386 in. /sec?
w = unit weight of beam, 1lb/in.

. = becam span length, in.
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The moment of inertia of a tubular or solid shaft is given by the expression

4 4
I=71’$D 6—d !’ (50)
4

where
D = outside diameter, in.
d = inside diameter, in.
The weight per inch of a tubular or solid shaft is given by the expression
w = ﬂDZ;‘}le P, (51)
where

P = density of shaft material, 1b/in. 3

Substituting (50) and (51) in (49) gives

1
f=7.76[E@2+d2)] Ve
22 P ’

(52)

For steel shafting, where E = 3 x
reduces to

07 psi and P = 0. 283 1b/in. 3, Equation (52)

y
_ 80,000 (D% + ¢4) 7

f 2 (53)
For solid steel shafting, Equation (53) becomes
f=802000D' (54)

92

In thi case ofa simply supported shaft, the length between supports or between
nodes of a vibrating shaft is equal to one-half a wavelength. That is,

L=%, (55)
2
where

A = the vibration wavelength, in.

Substituting Equation (55) in Equation (54) gives the following:

¢ = 32;)2: 000 D (56)

Equation (56) may be rewritten in the following form for convenient use later.

r = 263D ) (57)
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In the case of a lossless, high-frequency electrical transmission line, the velocity
of propagation of an electrical impulse is equal to the velocity of light. It is called the
velocity of phase propagation, and is independent of frequency. In the case of a lossless
transmission line [Ref. (3)],

_ 1
vE—"""17, (58)
(LeCe)

where
v = velocity of phase propagation
Le = inductance per unit length of line
Ce = capacitance per unit length of line

Also, for the transmission line
A= X 5
I (59)
Substituting equation (58) in equation (59) gives

re—— (60)
f(LeCg) 7*

Equation (60) for the wavelength on the electrical transmission line corresponds
to Equation (57) for the wavelength on the high-speed shaft.

Mechanical equivalents of inductance and capacitance per unit length of line are
needed for the development of the analogy. Mass per unit length of shaft is clearly
analogous to inductance per unit length of transmission line.

L.=m (61)

2 _ 32

u 4g ’
where
m, = mass of shaft per unit length, b-sec?/in. 2
For a solid steel shaft
m_ = 5.76 x 1074D2. (63)

Capacitance per unit length of the transmission line is analogous to compliance
per unit length in the mechanical shaft.

1
Ce ==. 64
e =g (64)
Therefore, from Equations (61) and (64),
m
u
LeCe = K (65)
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From Equations (57) and (60),

\ - 565 (DN)%_ 1
f f(L,C,) ¥
or
320,000 Df = —L1 (66)
Lece

Substituting (63) and (65) in (66) gives
K = 184 D31 . (67)

A basic parameter of the electrical transmission line is the characteristic imped-
ance of the line. This is the impedance that would be offered by a transmission line of
infinite length. A line of any finite length, connected at one end of a resistance equal to
the line's characteristic impedance, would appear at the other end to present the same
impedance as an infinitely long line. An electrical impulse introduced at one end of the
line would be completely dissipated in the resistive load at the other end. Thus, no
reflection of energy would occur from the end of the line, and there would be no standing
waves of voltage on the line. In such a case, the transmission line is said to be
"matched' to the load. The voltage standing wave ratio, or ratio of maximum to mini~
mum voltages along the line, equals one in the matched case, as there are no standing
waves, and equal voltages would be measured at all points.

The characteristic impedance of the transmission line is given by the following

expression [Ref. (3)]:
L 1
ZS :( -c_:£> /2 g (68)
e

Zg = characteristic line impedance.

where

Substituting (61) and (64) in (68) gives
1
Zg = (m, K)/z . (69)

Substituting (63) and (67) in (69) gives the characteristic impedance of a solid steel
shaft as

z, = 0.325 p2(Df) % . (70)

A limited time was available at the end of Phase I for experimental verification of
this analogy. Nevertheless, several tests were completed, and highly satisfactory high-
speed operation was obtained. During the course of this experimental work it was deter-
mined that adjustment of the constant term in Equation (70) from 0. 325 to 1. 0 gave
apparently superior results in actual high-speed shaft tests. This fact was actually
discovered by accident, as a mistake of this magnitude was made in the original develop-
ment of the analogy relationships. When the dampers of the test machine were read-
justed to 'correct' the mistake, however, smoothness of shaft operation suffered. Pend-

ing further experimentation, therefore, the following expression for characteristic shaft
impedance will be used:

Z = D¥(Df)%. (71)
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The Smith Chart as a Design Tool

A valuable aid to electrical engineers in the study of high-frequency electrical
transmission lines is the Smith chart [Ref. (3})] shown in Figure 15. The chart is a
complex plot of load impedance on a transmission line as seen from various points
along the line. So that a single plot may be used for studies of transmission lines having
various characteristic impedances, all impedances are normalized, that is, divided by
the characteristic line impedance. A resistive load equal in magnitude to the impedance
of the line would therefore appear at the very center of the chart, at the point marked
1.0. A resistive load equal in magnitude to three times the characteristic imnpedance
of the line would be plotted along the straight horizontal center line of the chart at the
point designated 3. 0. Purely reactive loads, that is, loads containing no resistive com-
ponent, are plotted around the outer perimeter of the chart. Loads composed of both
resistance and reactance are plotted at the intersection on the chart of lines representing
the correct resistive and reactive magnitudes.

For loads that are not perfectly matched to the line impedance, that is, not purely
resistive and equal to the characteristic line impedance, the load offers different
characteristics when the line length is changed. Point A on Figure 15 is shown to
illustrate this. The normalized impedance of Point A is 0.3 + j0.5. This means that
the resistance component of the load impedance is equal to 0. 3 times the characteristic
line impedance, while the inductive reactance of the load is equal to 0. 5 times the
characteristic line impedance. If the reactive component had been negative, that is,

capacitive, the load would have been represented by Point B, having a value of 0.3 -
j0. 5.

The radius drawn from the center of the chart through Point A crosses the outer
wavelength reference circle of the chart at Point C, equal to 0. 078 wavelength. This
particular number of wavelengths has no significance in itself but is us€ful as a refer-
ence from which other wavelength measurements may be made. If measurements are
made of load impedance from a location down the line from the load toward the genera-
tor, the circle drawn through Point A and having its center at the chart center is the
locus of all measured values of load impedance. For example, if a measurement of
load impedance were made from a point 0. 172 wavelength toward the generator from the
load, the measured impedance would be represented by Point D. The original load
impedance was located at 0, 078 wavelength. Adding 0. 172 wavelength gives 0. 250 wave-
length. When this position is located along the outer circle of the Smith chart, and a
radius drawn to that point from the center of the chart, the radius crosses the circle
representing the locus of load impedance at Point D. Thus, from this location, the load
would appear to be a pure resistance equal in magnitude to 4, 2 times the characteristic
line impedance. At a location 1/4 wavelength from the load at Point A the apparent load

impedance would be represented by Point E where the normalized impedance is 0. 88 -
jl. 48.

Another important piece of information obtained from the Smith chart is the voltage
standing wave ratio, abbreviated VSWR. This quantity, often called simply the standing
wave ratio, is given by the intersection of the impedance locus with the right-hand sec-
tion of the Smith chart center line. In the example given, therefore, the standing wave
ratio would be 4. 2 as indicated at Point D.
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Example of High-Speed Shafting Design
Procedure Using Smith Chart

As a preliminary verification of the transmission-line analogy of high-speed
shafting, it was decided to design and test a damped support system., Examination of
15 combinations of variables already tested experimentally proved to be enlightening.
Studying these cases with the use of the electrical analogy and the Smith chart showed
that high-standing wave ratios were predicted, corresponding to large vibration
amplitudes. It became apparent that standing wave ratio is a measure of the severity
of shaft vibration in the examples studied. It was also apparent that the high standing
wave ratios resulted primarily from the high inductive reactance (high mass) of the
support bearing relative to the shaft. For this reason it was decided that the largest
shaft that could be accommodated by the high-speed testing machine would be used, so
that the support bearings would appear less massive relative tp the shaft.

The shaft selected was of solid steel, 1/2 inch in diameter and 138 inches long.
An arbitrary decision was made to design a damped support bearing for correct imped-
ance matching at the sixth critical speed, and to determine the resulting standing wave
ratios at other critical speeds. A different starting point for design could have been
chosen, but for purposes of a first demonstration this choice was considered suitable.

It was decided that behavior of the shaft would be examined at the first nine
critical speeds. Voltage standing wave ratio as determined from the Smith chart was
selected as the parameter to be minimized for smooth operation of the high-speed
shaft.

A large number of rather elementary calculations were involved in carrying out
the design of the damped support bearings. The essential results of these calculations
are given in Table 4. The first 11 items in the table are basic parameters of the 138-
inch-long, 1/2-inch-diameter, solid steel shaft.

Line 1 in Table 4 lists the critical speeds of the shaft. These critical speeds were
tcd from the following equation:

3.07 (1. 25n + 0. 637)2D x 10°

cpm = (8)
LZ
where
n = order of critical speed
D = shaft diameter, in.
L = shaft length, in.

cpm = critical speed, cycles per minute.
Line 2 lists the length of a simple beam which would have the same speed for its

critical speed as does a 138-inch-long beam having rigidly fixed ends. These simple
beam lengths were calculated from the expression

1
L=n<8_°,?_00_9>/2, (72)
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where
L = simple beam length, in.

D

"

shaft diameter, in.
f = critical speed, cps
n = order of critical speed.

Line 3 lists the equivalent length of what is here termed the cantilevered ends of
the fixed-ended shaft. This length is equal to one-half the difference in length between

the total shaft length of 138 inches and the equivalent simple beam lengths listed under
Item 2.

Line 4 gives the wavelength of the vibrations on the equivalent simple beam, and
is equal to twice the distance between vibration nodes.

Line 5 lists the characteristic shaft impedance calculated from the equation
\
YA DZ(Df)/Z o (71)

Line 6 lists the stiffness measured at the ends of cantilever beams having the
lengths listed in Line 3. If the spindles and bearings of the test machine were periectly
rigid the stiffness values in Line 6 could have been computed from standard beam
formulas. Because of the finite stiffness of the testing machine spindles and bearings,
however, it was considered more accurate to determine the effective cantilever stiff-
ness experimentally. Lengths of 1/2-inch shaft equal to the values given in Line 3
were installed in the testing-machine spindles, and the deflection at their ends was
measured with loads applied at their ends.

Line 7 lists the effective mass that could be considered concentrated at thec end
of the cantilevered section of the shaft. This effective mass was determined by first
computing the theoretical stiffness of the cantilever, next computing the theoretical
natural frequerncy of vibration of the cantilever by itself, and finally computing the mass
which, together with the stiffness first computed would produce the same natural fre-

quency for the cantilever beam. The expression for cantilever stiffness is as follows:

k=3, (73)
where
K = stiffness of cantilever, 1b/in.
E = modulus of elasticity, psi
1 = section moment of inertia, in. 4

L = cantilever length, in.

The natural frequency of a cantilever is given by
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1

f=o.56[E—IE;J % (74)
wlL

where

2

o
fl

acceleration due to gravity, 386 in. /sec
w = unit weight of shaft, 1b/in.
f = lowest natural frequency of vibration, cps.

Since the natural frequency of any vibratory system is given by

(75)

an expression for effective mass at the end of the cantilever can be derived by combin-

ing Equations (73), (74), and (75). By this means the effective cantilever mass is found
to be equal to

m = 0,242 wL ) (76)
g
For a solid steel shaft this expression becomes
m = 0. 000139D?L. , (77)

where

L = length of cantilever section of shaft, in.

D = shaft diameter, in.

Line 8 gives the reactance offered by the sliifness of the cantilever beam ends.
This reactance is equal in magnitude to the stiffness in pounds per inch divided by the
angular frequency in radians per second. Like capacitive reactance in electrical
circuits this reactance is multiplied by -j to give the correct phase angle.

Line 9 gives the reactance offered by the effective mass of the cantilever beam
ends. This quantity is equal to the mass given in Line 7 multiplied by the frequency in

radians per second. The quantity is multiplied by +j to indicate the correct phase
angle.

Line 10 is the algebraic sum of Lines 8 and 9.

Line 11 is equal to the value in Line 10 divided by the corresponding characteristic
impedance given in Line 5.

The section of Table 4 listing Items 12 through 24 is based upon the arbitrary
decision to optimize the damped support bearing for operation of the shaft at its sixth
critical speed. Involved in the design procedure is the assumption that the critical
speeds are only slightly changed by the presence of the damped support bearings.
Experience has shown this assumption to be sufficiently accurate for practical design
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purposes. Design of the damped support bearing will therefore be carried out in this
case for effective operation at the sixth critical speed of 5330 rpm.

Line 12 lists the normalized support damping, that is, the value of the damping
coefficient divided by the corresponding characteristic impedance given in Line 5. For
best impedance matching at the sixth critical speed the normalized damping value must
equal 1. 0 at that speed. The actual damping coefficient must therefore be equal to
1.67 lb-sec/in. so that when divided by 1. 67 the normalized value will equal 1. 0. The
normalized damping values at the other critical speeds are equal to 1. 67 divided by the
corresponding characteristic impedances.

Line 13 gives the reactance of the support bearing mass. The weight of the
bearing assembly used on the testing machine was equal to 0. 56 pounds. The reactance
is given by 0, 56 divided by 386, times frequency in radians per second.

Line 14 gives the normalized reactance of the support mass, equal to the values
in Line 13 divided by the values in Line 5.

At this point it is convenient to refer to the Smith chart in Figure 16. Point A is
plotted at the location -jl. 32, equal to the normalized reactance of the cantilever given
in Line 11 for the sixth critical speed. The radius drawn through Line A crosses the
wavelength circle at about 0. 3535 wavelength. Proper adjustment of the damped support
bearing requires that it be placed at such a location that its own reactance is canceled
by the reactance of the cantilevered shaft end as seen from the support location. It
would be possible, therefore, to locate the damped support bearing at a position where
the normalized reactance of the support mass, equal to jO. 485, would be just canceled
by the reactance of the cantilever seen from that location. This condition would result
if the support were located 0. 075 wavelength from the end of the equivalent simple
beam section of the shaft. This placement of the support is illustrated by Point B in
Figure 16. At this time it was decided that support placement on the test machine might
be critical if an attempt were made to locate it only 0. 075 wavelength from the end of
the equivalent simple beam. The value of 0, 075 waveléngth was obtained from the
Smith chart as follows: the radius drawn through Point B crosses the circle at 0, 4285
wavelength. The radius through Point A crosses the wavelength circle at 0. 3535 wave-
length. The difference between these two values is 0. 075 wavelength.

So that the support could be located as far as possible from the end of the equiva-
lent beam section of the shaft it was decided that stiff support springs would be added
at the support bearing. The stiffest springs conveniently provided on the testing machine
have an effective rate equal to 120 1b/in. The reactance offered by these springs is
given in Line 15, andis equal to 120 1b/in. divided by frequency in radians per second.

Line 16 lists the normalized value of reactance of the support stiffness, and is
cqual to the value in Line 15 divided by the corresponding value in Line 5.

Line 17 gives the total normalized reactance of the support bearing, and is equal
to the algebraic sum of Lines 14 and 16.

Now that the total normalized support reactance is known, the required value of
reactance to be contributed by the cantilever shaft end is fixed for correct impedance
matching at the sixth critical speed. Line 18 lists the reactance of the cantilever seen
from the support location, andin the case of the sixth critical speed it must be made
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FIGURE 16. SMITH CHART SHOWING APPLICATION OF DESIGN PROCEDURE
TO 138-INCH-LONG, 1/2-INCH-DIAMETER SHAFT

Smith chart published with permission of P. H. Smith and
Kay Electric Co.
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equal and opposite to the normalized support reactance. Therefore, for correct
impedance matching at the sixth critical speed the reactance of the cantilever refer-
enced to the support location must equal -j0, 35, This value is found at Point C on the
Smith chart of Figure 16. The radius through Point C crosses the wavelength circle at
0. 4467 wavelength. The distance in wavelengths from Point A to Point C is therefore
equal to 0. 0932 wavelength.

Another property of the Smith chart can now be illustrated. It should be noted that
one revolution around the chart is equal to a distance along the transmission line of
0.5 wavelength. It is possible, therefore, to obtain the same impedance match with
the support bearing located 0. 0932 or 0.5932 wavelength from the end of the equivalent
simple beam. In this case it appeared that operation of the shaft at the lower critical
speeds would be favored with the support located farther from the shaft end. The deci-
sion was therefore made to locate the support 0. 5932 wavelength from the end of the
equivalent simple beam.

As the wavelength at the sixth critical speed is 42. 5 inches, 0. 5932 wavelength
equals 25.22 inches. The distance from the end of the equivalent simple beam is thus
25. 22 inches, making a total distance from the end of the actual shaft to the support of
30. 47 inches. This is obiained by adding the equivalent length of the cantilever end,
given in Line 3 as 5. 25 inches, to the value of 25. 22 inches.

Now that the support location has been fixed to favor operation at the sixth critical
speed, conditions at the other critical speeds may be examined. The combined nor-
malized load reactance given in Line 19 has deliberately been made equal to jO which,
together with a normalized load resistance of 1. 0, results in a voltage standing wave
ratio given in Line 24 of 1. 0 for the sixth critical speed. Standing wave ratios were
determined for the other critical speeds to determine the effectiveness of damping at
those speeds.

At the seventh critical speed, for example, the following determiinations can be
made. The normalized reactance of the cantilever equal to -jl. 38 is shown at Point D
on Figure 16. The radius through Point D crosses the wavelength circle at 0. 3496 wave-
length, given in Line 22. As the support is located 30, 47 inches from the end of the
shaft, it can be seen that it is located 26. 07 inches from the end of the equivalent simple

beam. This value is obtained by subtracting the equivalent length of cantilever beam in
Line 3 from 30. 47 inches.

In Line 21 the number of wavelengths from the simple beam end to the support is
equal to the distance in Line 20 divided by the wavelength in Line 4. The wavelength
reading at the support bearing location, Line 23, is obtained by adding the values in
Lines 21 and 22. Integral numbers of half=wavelengths may be disregarded, as they
represent identical points on the Smith chart. The value in Line 23 is therefcre listed
as 0. 0556 wavelength, although the sum of Lines 21 and 22 equals 1. 0556 wavclengths.
The reactance of the cantilever seen from the support location is shown at Point E. This

value equals +j0. 37 and is located by a radius drawn through the wavelength circle at
0. 0556 wavelength.

The total normalized support reactance in Line 17 is added to the reactance of the
cantilever as seen from the support in Line 18 to give combined normalized load react-
ance in Line 19. The combined normalized load reactance in Line 19, together with
the normalized load resistance or damping in Line 12 represents the total load imped-
ance. For the seventh critical speed the total load impedance is therefore 0. 87 + jO. 83.

50




This value is plotted at Point 7 4n Figure 16. The circle drawn through Point 7 with its
center at the chart ceunter crosses the right-hand section of the chart center line at a

value of 2. 4. This value is equal to the predicted voltage standing wave ratio for opera-
tion at the seventh critical speed.

This samec procedure was followed for each of the other critical speeds to deter-
mine voltage standing wave ratios. It will be seen from Line 24 that high values of
standing wave ratio were predicied for the first, fourth, and ninth critical speceds, with
a moderately high value predicted for the eighth critical speed. The values predicted
for the second, third, {fifth, sixth, and seventh critical speeds are all low, predicting
effective damper action at these speceds.

At this point in the design procedure it was decided that a second support should
be added, designed for optimum performance at the fourth critical speed. This choice
was made because previous experience had shown that vibrations at the first critical
speed seldom were serious, while if conditions were optimized for the ninth critical

speed bad vibrations at the fourth critical could prevent ever achieving operation at the
ninth,

Lines 25 through 37 of Table 4 list parameters for the second damped support
which was designed for operation at the fourth critical speed by the same procedure as
that followed above, Following the design of this support, standing wave ratios were
checked at the first, eighth, and ninth critical speceds. The values obtained indicated
that besides controlling the fourth critical specd, the second support should be quite
effective at the first and eighth criticals as well. This support, like the first one, was
relatively ineffective at the ninth critical speced, so severe vibrations were anticipated
at speeds around 11,000 rpm.

Experimental Demonstration of Design Procedure

The shaft testing machine was set up with two damped support bearings at the
locations and having the parameters given in Table 4. The very first operation of the
machine was fully successful using these values. Operation of the shaft was smooth at
each of the first eight critical speeds. As the shaft speed exceeded 10,500 rpm,
approaching the ninth critical spced, noise became apparent. Project personnel were
reluctant to operate the shaft at or above the ninth critical specd because of the severec
sound of the vibrations at that speed. This general behavior tended to support the
general thcory and calculations made in designing the supports.

At the encouragement of the technical monitor of the project from Wright-
Patterson Air Force Basec, speeds of the test machine were gradually increased during
a demonstration on July 5. Vibration at the ninth critical speed was slightly noisy,
though not as violent as expected. The shaft did not touch the metal guards which
surrounded it at a radial clearance of only 1/8 inch. After 11,000 rpm was exceeded,
speed increased smoothly with littie cbvious distress to the machine.
runs made on July 5 the speed was gradually increased to 45,500 rpm. Some noise
developed at 2 or 3 speeds in this range; however, shaft operation in general may be
termed the best achieved during the course of the research program.

In a series of

Because a considerable time is required for the calculations illustrated it has not
yet been possible to calculate, using the newly developed procedure, the performance to
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be expected of the test shaft over the entire spced range covered. Shaft speed during
the tests exceeded the eighteenth critical speed. Behavior of the shaft over the speed

range up to and including the ninth critical speed is closely similar to the predicted
performance.

The positive results achieved in this first demonstration point to the extreme
promise of the newly developed theory as a high-speed shafting design tcol. Additional
experimentation and analysis will be required for full confirmation of the theory.

It should be noted here that following the successful demonstration of the shaft a
numerical error was found in the calculations of characteristic shaft impedance. When
the damping values used in the test were changed to account for this error, shaft opera-
tion suffered. For this reason, as noted previously in the derivation of the analogy, the
equation for characteristic shaft impedance was corrected by a constant factor to pro-
duce the damping values which had already been used in the successful first demonstra-
tion. Additional work with this design procedure should serve to develop the optimum
correction factors and design techniques for successful high-speed shaft operation.

Of general interest is the fact that the example shaft tested has a power trans-
mission capability of approximately 900 horsepower at the maximum speed of 45,500
rpm achieved during tests. This speed limitation was imposed not by the behavior of
the shaft, but by slippage of the flat drive belts on the testing machine. The ultimate
speed and power transmission capacity of this shaft are therefore not yet known,

The first demonstration of this design procedure was aimed at satisfactory shaft
operation through the eighth critical speed. A far wider speed range was achieved. It
is reasonable to expect that future design efforts with more ambitious objectives than
this first one will achieve even more satisfactory shaft operation in the high-speed
range. The most obvious trouble spot, the ninth critical speed, was identified in the

design process, and presumably could have been controlled by a change of support
parameters.

Determination of Shaft Lateral Critical Speeds

The design and analysis of power-transmission shafts for hypercritical-speed
operation requires relatively accurate knowledge of the critical speeds. Selection of

the dynamic parameters of the damped supports is dcpendent upon the discrete speeds
at which vibration must be suppressed.

Critical Speeds and Vibration Node Position of
Shafts Supported Only at Their Ends

The first section following the heading Technical Work presents formulas and
curves to predict critical speeds of shafts supported only at their ends. Both simply
supported and fixed-end shafts are discussed. Indication from the Sponsoring Agency
has been that fixed-end shafts represent more closely the configuration to be expected

in the majority of practical installations. Hence, research has been directed toward
shafts with this type of end f{ixity.
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The critical-speed formula for any circular shaft with both ends built-in is:

NPV
cpm = 29223c [E (D¢ + d2) , (78)
L P

where
D = shaft outside diameter, in.
d = shaft inside diameter, in.
L = shaft length, in.

P = shaft density, 1b/in, 3

E = shaft modulus of elasticity, 1lb/in. z

¢ = proportionality constant
= (1. 250n + 0. 637)%
n = number of the vibration mode,

Most work has been done, in both the digital-computer program and experimen-
tally, with solid steel shafts. The resulting simplified critical speed formula for solid
steel shafts with both ends built-in is:

3.07c D x 10°

cpm = 12

(79)

An important aspect of shafts vibrating at critical speeds is the position of the
vibration node, A vibration node is characterized by absence of vibration amplitude,
while an antinode is termed the position along the shaft of the maximum vibration. For
instance at the first critical speed the antinode falls half-way between the shaft ends,
and the nodes at each shaft end. At the third critical speed three vibration loops appear
and there are three antinodes — one at each vibration loop. There are four nodes how-
ever; two appear at the shaft ends and the other two at 35.9 per cent of the shaft length
from each end. The shaft length between nodes is the length of a vibration loop.

The formulas which describe node position along the shaft are given below,

For the position of the node nearest the shaft end:

_ _1.25 2
Xl = m for n= 4 (80)
Xy = 0. 359 for n = 3 (81)
X1=0.50 for n = 2. 92y

For the position of the node second from the shaft end:

2,25
Xy = L2
2 n+0.5° )
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For the position of the node third from the shaft end:

X, = 3:25
n+0.5

and so on where:

(84)

X = Distance between the node in question and the shaft end
Over-all shaft length

Table 5 lists the critical-speed proportionality constant, ¢, and node location, X,
through the first 20 critical speeds for any shaft with fixed ends. The formulas for ¢ and
and X were derived from a reference table in a vibrations textbook [Ref. (1)].

Critical Speeds of Fixed-End Shafts With Simply
Supporting Egually Spaced Rigid Intermediate Supports

When rigid equally spaced intermediate supports are included along a shaft with
fixed ends, the determination of critical speeds becomes more involved. One difficulty
stems from the different moment absorbing ability of the bearings, when a fixed-end
shaft is supported between ends by bearings of the self-aligning type. Another difficulty
is occurrence of critical speeds not predicted by the simple formulas included else-
where in this report., These difficulties have been discussed and solved in an article
entitled, Natural Frequencies of Continuous Beams of Uniform Span Length. [Ref, (4)]

Consider a fixed-end shaft with three equally spaced simple bearings included
along its length. Since lateral shaft stiffness is greater at the end spans. the first
critical speed is a compromise between the fixed-hinged end spans and the simply
supported center spans. As the number of supports increases, or higher critical
speeds are encountered, the number of simple vibration loops overshadows the two
fixed~hinged loops adjacent to the shaft ends. The shaft critical speed for many vibra-
tion loops begins to approximate that of a continuous beam with as many equally spaced
intermediate supports and with the shaft ends simply supported.

Discussing the example given before with three equally spaced intermediate
supports there are not one but four critical-speed vibrations which correspond to the
first mode of vibration. Figure 17 shows the deflection shapes of this shaft for the first
two groups of natural modes, and the four critical speeds occurring in each group.

The first critical speed of the first group of natural modes has a deflection curve
with simple vibration loops at the center and fixed-hinged loops at each end, From the
aspect of lateral shaft stiffness, this is the least stiff arrangement of the loops and
therefore it appears at the lowest critical speed. The second speed occurs at the loop
orientation to present the next higher over-all shaft stiffness. In this situation the
center support bearing acts as would a fixed or moment-absorbing member. The third
speed occurs at the next higher over-all shaft stiffness with a total of four of the five
shaft bearings acting as moment-absorbing members. At the fourth speed of the first
group of natural modes all support bearings act as built-in shaft supports, and provide
the highest critical speed which can occur with one vibration lccp ger span between
bearings. In the second group of natural modes the sequence repeats itself with the
basic difference that there are two instead of one loop between support bearings. The
number, h, in Figure 17 refers to the number of shaft span lengths between bearings.
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TABLE 5. CRITICAL-SPEED PROPORTIONALITY CONSTANT ¢ AND NODE LOCATION X THROUGH THE FIRST TWENTY

CRITICAL SPEEDS OF A SHAFT WITH FIXED ENDS

n c X, Xo Xy X4 X3 Xg Xq Xg Xg e
1 3.50 -- -- -- -- .- - -- -- - --
2 9.82  0.500 -- -- -- = oc = oc oo -
3 19.27  0.359 -- -- -- - -- .- .- - -
4 3L75  0.278 0.500 -- - oo - - -- - -
5 47.4 0.227 0. 409 -- -- - oo - -- - .-
6  66.2 0.192 0.342 0,500 - - - -- -- - -
7 88.1 0.167 0.300 0,433 -- -- me - .- - -
s 113 0.147 0.265  0.382 0. 500 -- - - - .- -
9 141 0.132 0.237  0.342 0,447 -- o -- -- - --
10 132 0.119 0.214  0.309 0.405  0.300 .- == -- - -
1 207 0.109 0.195  0.283 0.370 0,457 -- - = - .-
12 244 0.100 0.180  0.260 0.340  0.420 0. 500 -- -- - -
13 285 0.0926 0.167  0.241 0.315  0.389 0.462 -- -- - ce
14 329 0. 0862 0.155 0,224 0.293 0,362 0.431 0,500 -- - .
15 376 0.0807 0.145  0.210 0.274 0,339 0.403 0,467 -- -- --
16 426 0.0757 0.136 0,197 0.258  0.318 0.379  0.439 0.500 -- --
17 479 0.0714 0.128  0.186 0.243 0,300 0.357 0,414 0.471 -- --
18 535 0.0876 0.122 0,176 0.230 0,284 0.338 0,392 0.446 0,500 --
19 395 0,064 0.115 0,167 0.218  0.269 0.320 0,372 0.423 0,474 -

20 657 0.0609 0.110 0,158 0.207 0,256 0.305 0,354 0.402 0,451 0,500
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The number, h, also indicates the number of critical speeds for each group of natural
modes, The number i refers to the position in the vibration sequence.

The number n;
is a proportionality constant used in critical-speed calculations.

The critical speed for any round shaft with fixed ends can be found from the
following formula:
2 =
466(n; 3 2
cpm = (ni)” JE(D® + d%) , 85)
L2 P

span length between supports, in.

where

IS
]

n; = proportionality constant

other symbols as before.

Converting the equation for use with solid steel shafts gives the more simple relation:

4.8 x 106 (n;)2D
cpm = . (86)
gZ

Table 6 lists values of the critical-speed proportionality constant, n,, with re-
spect to number of spans between supports, h, and vibration speed number, i. With
these values critical speeds can be calculated, and applied to the appropriate shaft-
deflection curve adapted from Figure 17.

Table 7 lists comparative values of critical speeds calculated using the above
equations, determined experimentally, and calculated by the digital-computer program,
of fixed-end shafts with equally spaced rigid support bearings. In the experimental
work critical speeds were determined by averaging the speeds at which the test shaft
first contacted the shaft guards as shaft speed increased and decreased through the
critical, In the computer tests the speed at which shaft amplitudes were computed to
be substantial, was chosen as the critical speed. The tabulation shows reasonably good

correlation of calculated and observed speeds, indicating that calculation procedure is
correct,

Critical Speeds of Fixed-End Shafts With One
Intermediate Support Not Centrally Located

Numerous experimental tests have been conducted with one intermediate support
positioned away from the shaft center. Critical-speed vibrations have been successfully
controlled only when the spans are unequal in length, which complicates the critical-
speed problem. Determination of critical speed with various support positions has been
made experimentally both with one rigid and one damped intermediate support.

Using a steel test shaft of 1/4-inch diameter 89. 3 inches long, a rigid support
was positioned at many locations between the chaft end and mid-point. At each rigid
support location, shaft speed was increased through critical speeds until thc noise of
the shaft meeting the shaft guards became highly objectionable. Lateral-vibration mode
shape and critical speed were recorded versus support location. Figure 18 shows a
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TABLE 6. VALUES OF n; VERSUS h AND i FOR FIXED-END SHAFTS WITH EQUALLY SPACED
SIMPLE INTERMEDIA TE BEARINGS

;1 ) 2 3 4 b 6 7 3 9 10

i
1 1,51 1.25 1.13 1,03 1.05 1,04 1.03 1.02 1,02 i.02
2 2.50 1.51 1.37 1,25 1.18 1,13 1. 10 1.08 1. 06 1. 05
3 3.50 2.25 1,561 1.42 1.32 1.25 1,20 1.16 1.13 1,11
4 4,50 2.50 2.13 1,51 1.45 1.37 1,30 1.25 1.21 1,13
5 5.90 3.25 2.37 2.08 1,51 1.46 1.40 1.34 1.29 1.25
6 6,50 3. 50 2,50 2.25 2.05 1.0l 1.47 1,42 1.37 1.32
7 7.50 4.25 3.13 2.42 2.18 2.04 1,681 1.48 1,44 1.39
8 8.50 4. 50 3.317 2. 50 2.32 2.13 2.03 1.9l 1.49 1.45
9 9, 50 5.28 3. 50 3.08 2.45 2.25 2.10 2.02 1.91 1.49
10 10. 50 5. 50 4.13 3.25 2,20 2.37 2,20 2,08 2,02 1,41
11 11, 50 6,25 4,37 3.42 3.05 2.46 2.30 2.16 2,06 2.02
12 12,50 6. 50 4.30 3.50 3.18 2. 50 2.40 2.25 2.13 2.05
13 13, 50 7.25 5.13 4,08 3.32 3.04 2,47 2.34 2,21 2.11
14 14,50 7.50 5.31 4,25 3.45 3.13 2. 90 2.42 2.29 2.138
15 15,50 8,25 5. 50 4.42 3. 50 3.25 3.03 2.48 2.31 2.25
16 16, 50 8. 50 6,13 4,50 4.05 3.317 3. 10 2.50 2.44 2.32
17 11, 50 9.25 6.37 5.08 4,18 3.46 3.20 3.02 2.48 2.39
13 18. 50 9. 50 G. 50 5.25 4.32 3.50 3.30 3.08 2.50 2.45
19 19,50 10.25 7.13 5.42 4.45 4,04 3.40 3.16 3.02 2.48
20 20, 50 10, 50 7.317 5. 50 4. 50 4,13 3.47 3.25 3.06 2.90
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TABLE 7. HAND-CALCULATED VERSUS EXPERIMENTAL AND
COMPUTER-CALCULATED CRITICAL SPEEDS OF
FIXED-END STEEL SHAFTS WITH EQUALLY
SPACED RIGID SUPPORTS

First Group of Modes Second Group of Modes

d, in. L, in. h Ist 2nd 3rd 4th Ist 2nd 3rd 4th

Calculated, rpm

Critical Speed - :
Experimental, rpm

4 1740 2555 3105 5660 7640 8490

e 89.3 3 900 2550 2975 NOP° %300 7450 8300 None
2830 4900

1/8 63 4 2 o 4960 o o - - -

2810 3770 4870

1/4 89.3 4 o S 55 55 .
/ ? 3095 3850 4800

1/4 126 , 1410 1890 2445 2675 5240 6120 7090

1470 1951 2448 2738 5275 6125 7000

2830 3790 490C 5550

1/2 126 4 = - -- -- - -
2935 3820 4850 5445
Critical Speed - CCUEG6, mam
Computed, rpm-
1/8 126 4 708 948 1225 1387 - -- - .
702 940 1213 1367
1/2 120 o 2000 A6 . - - - .
3070 4120
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summary of the data collected, Observed speeds are noted, and for the same vibration
modes the speeds generally fall in a smooth curve as shown in the figure, The curve
marked 1-4 means that one vibration lcop occurs in the shorter span, while four loops
are seen in the longer span.

The lower left portion of Figure 18 shows speced of each vibration mode to increase
as support location progresses toward shaft mid-point. Since, as observed in the tests,
the vibration of the loops in the longer section of the shaft is more severe than that of
the single loop in the shorter span, the vibrations in the longer span are the more
dominant. This is evident from a glance at the lower left portion of the figure, which

shows the critical speed of each vibration mode to increase as the long span becomes
shorter,

However, as support location proceeds toward mid-point, a point is reached where
the vibration amplitudes in both spans are equal. This support location is coincident
with a vibration node point. Then as the support is again moved toward shaft mid-

point, the short span vibration becomes predominant and speed of the particular vibra-
tion mode decreases.

The x's shown on Figure 18 refer to predicted speed and location of vibration
nodes. The tabulation of node position, X, and critical speed constant, c, is listed as
Table 5 in this section. There is good agreement between predicted and measured
speeds, as well as predicted and measured node locations. The experimentally deter-

mined node position occurs at the point of maximum speed for any certain mode of
vibration.

For the various single damped support tests critical speeds followed the same
pattern and occurred at the same approximate speed as for the rigid single support
test. Curves of critical speeds versus support location for damped supports can be
found in the section discussing high-speed shaft operation. Results of the single damped
tests showed that good vibration control might be secured if the damper were not located
at a vibration node point. Since the damper is active only when shaft vibration occurs
at the damper, it must be positioned away from vibration nodes. Figure 19 shows a
series of curves which represent the data of Table 5. The curves connect node positions
which have similar characteristics, and the ordinate plots vibration speed for a 1/4-
inch-diameter 89. 3-inch-long steel shaft with clamped ends. It can be seen from the
figure that damper locations other than tocward a shaft end will eventually be positioned
at or close to a node. This is undoubtedly the reason the single damped support tests

have shown consistently better operation with the damper close to a shaft end, rather
than toward shaft mid-point.

Critical Speeds of Fixed=-End Shafts With Damped
Multiple Intermediate Supports

One Support Fixed Close to Shaft End and Other Varied. A series of tests using
two damped intermediate supports produced the critical-speed pattern shown in Fig-
ure 20, One damped support retained its position close to a shaft end, while the other
was varied between the shaft mid-point and the other end. Comparison of Figures 19
and 20 shows a very similar orientation of vibration modes and speeds at which they
occur. Figure 20 terminology is the same as previously used; for instance, the curve
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described by 1-3 means that one vibration loop is present in the shorter span side of the
novable support, and three loops occur in the long span between supports.

The x's again indicate critical speeds and node locations of the same size shaft,
but without intermediate supports. There is good agreement between peaks of the
curves and x's, indicating that the presence of the second damper fixed close to one
shaft end did not materially alter vibration speeds with respect to those of an unsup-
ported shaft, or a shaft with one variably positioned damper.

Two and Three Variably Positioned Supports. Figures 21 and 22 show curves of
tests with two and three damped supports, respectively. The positions of the supports
are defined by the number, k, which is the ratio of the shortest span length between
dampers to the next longer span length. A value of k equal to 1. 0 means that the spans
are divided evenly, while k = 0. 8 means that the shortest span is 0. 8 the length of the
next longer, and so on. In these two test series span orientation was such that the
shorter spans were adjacent to the shaft ends. More detail on this subject is included
in the section discussing high-speed shaft operation.

Figures 21 and 22 indicate shaft critical speed and vibration mode with respect to
support position. The numbers next to the vibration-speed points refer to the number of
vibration loops along the total shaft length. There is no ovbious pattern in the critical
speeds and vibration modes as was seen in Figures 19 and 20. Critical speeds of an
unsupported fixed-end shaft of the same size are indicated on the curves by dashed
lines. The only pattern which emerges from these plots is that shaft critical speed
generally occurs at a different value than indicated by the dashed lines.

Conclusions

ILateral vibration critical speeds of transmission shafts with simple and fixed-
end supports can be calculated accurately. The positions of vibration nodes can also be
predicted with accuracy. Knowing the critical speeds of unsupported shafts is neces-

sary so that suitable means can be applied to limit vibration in hypercritical-speed
applications.

Critical speeds of continuous shafting with equally spaced rigid supports can also
be predicted. Reference (4) has indicated, and experiment has shown, that there are
as many critical speeds of each order as tlhiere are equal spans in a continuous beam
with equally spaced rigid supports. That is, with three equally spaced rigid supports

between the end supports, making four shaft spans, there will be four first critical
speeds, four second criticals, and so on.

In tests with one rigid support positioned at various locations along the shaft there
are consistent changes in critical speeds of the various vibrations modes, As the sup-
port progresses toward the shaft mid-point, critical speeds increase to a peak and then
start to decrease. The peak speed occurs at the node position for the particular
vibration mode, and indicates that vibration frequencies of the shaft sections on either
side of the support are equal and matched. From the numerous single damped support
tests made, it is safe to say that shafts with single supports, whether damped or rigid,
perforin identically so far as critical speed is concerned.
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A test of two damped supports with one fixed quite close to a shaft end showed
similar critical speeds and mode-shape curves. However, in tests of two and three
dampers variable in location and considerably away from the shaft ends, the pattern
of critical speeds was not apparent.

Effects of Axial Shaft-End Force and Torque on Shaft Critical Speeds

The problem of determining the shaft critical speed for various shaft end loading
conditions of axial force and torque is important to the development of design criteria
for power-transmission shafts. Work on this problem consisted of the investigation of
the effect on critical speeds as predicted by theoretical work, and investigation by
experimental tests. The theoretical results were compiled from a search of the litera-
ture on shaft critical speeds, while the experimental tests were performed in the high-
speed shaft test machine. The effect of each external load upon the shaft critical speed
was investigated separately. lnasmuch as these loads will interact when applied to a
shaft simultaneously, the effect of combined loads was also investigated. A comparison
of the theoretical and experimental results is presented toward the end of this section.

Theoretical Work

Effect of Axial Force. The problem of determining the frequency of lateral vibra-
tion of a beam subjected to an axial compressive force has been solved {Ref. (5)]. This
problem is identical to the problem of determining the critical speed of a shaft subjected
to an axial compressive force [Ref. (6)]. A vibrating beam subjected to an axial

compressive force, F, has a deflection curve, see Figure 23, under static lateral load
given by the following equation:

2
El8Y._ M- Fy, (87)
dx2

where

E = modulus of elasticity, lb/in. 2

ry
1l

axial force, 1b
I = moment of inertia, in. 4
M = bending moment caused by lateral load, in-1b

deflection, in.

<
I

»
1

distance along shaft, in.
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F F
\‘__

FIGURE 23. DEFLECTION CURVE OF VIBRATINGBEAM SUBJECTED
TO AN AXIAL FORCE

By differentiating twice the following equation is obtained.

2 2
d d"y d%y
—-—< El =w-=-F 5 (88)
dx2 dx?2 dx

where
w = lateral load on beam, 1lb/in.

Substitution of the inertia force for w gives the equation for the lateral vibration of the
beam.

2 2 2 2
L(Elé_x ypY_ AR (89)
dx? dx? dxl g ate

where
A = cross sectional area, in. 2

g = acceleration of gravity, 386 in. /secZ

d
n

density, 1lb/in. 3
t = time, sec.

Assuming that the beam is prismatic and that the beam performs one of the natural
modes of vibration, the solution is in the form

y = X (Bg cos wt + By sin wt) , (90)
where
BS, 6= constants
X = function of x
w = frequency, rad/sec.

Substitution of Equation (90) into Equation (89) yields

4 2
g1d X, pd°X _AP 2o (91)




The solution of this equation for the natural frequency of lateral vibration for a

simply supported beam yields
2 12
u*le_ /_B.EI 1- £ 22 (92)
12N AP m2El

where

1S5
1l

length of bezm, in.

w, = natural frequency of lateral vibration of a beam with an axial force,
rad/sec.

As can be seen from Equation (92), the frequency of vibration is reduced as the axial
compressive force is increased. The frequency of vibration is determined by the value
of the ratio of ¥ x,z/ﬂ EI, which is the ratio of the axial compressive force to the Euler
critical load. 1f the value of this ratio approaches one, the frequency of vibration of the
first mode approaches zero, and lateral buckling of the beam results.

If the beam is subjected to an axial tensile force, F, the natural frequency of

lateral vibration increases and the value may be obtained by substituting ~F for F in
Equation (92). 'This substitution yields

2 )2
W, -1t /Elg ﬁ+ . (93)
i~ AP neEl

Equations (92) and (93) present the equations for the natural frequency of lateral
vibration of a simply supported beam subjected to an axial force. These equaticns are
also the equations for the critical speeds of a simply supported shaft subjected to an
axial force. The first term in each equation is the first critical speed of a shaft with-

out an axial force, as shown below
2
w=1" /Elg (94)
22N AP

Substituting Equation (94) into Equation (93) yields

2
w*=w/1+FZ ) (95)
ﬂZEI

Dividing both sides of this equation by w yields

:' ﬂZEI . (96)

This critical-speed ratio including the effect of the axial force is plotted as the function
of the axial force to the Euler critical-load ratio in Figure 24. For axial compressive
forces, the critical-speed ratio is less than one, and for axial tensile forces, the
critical-speed ratio is greater than one.
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The theoretical effect of axial forces upon the shaft critical speed has been pre-
sented in a graphical form to assist in the development of a design criteria for high-
speed power-transmission shafts. In the development of this criteria the effect of
axial torque upon shaft critical speed must also be considered.

Effect of Axial Torque. The problem of determining the critical speeds of shafts
subjected to axial torque has been investigated thoroughly in the development of a de-
sign criteria, since the primary purpose of the power-transmission shaft is to transmit
torque. A search of the technical literature indicated that the problem has been solved
previously. Greenhill [Ref. (7)] solved the related problem of the influence of axial
torque on the buckling load of an Euler column. Approximate solutions of the problem
based on the work of Greenhill are presented in standard textbooks on strength of ma-
terials [Ref. (&), Ref. (9)]. The problem of determining the critical speeds of a rotating
shaft of uniform cross section, which is subjected to an axial forque was sclved by
Rosenberg [Ref. (10), Ref. (l1}].

The problem is treated by formulating a differential equation from the equations
of motion which balance the force components in the two perpendicular planes whose
intersection is the x-axis and the center line of the undeflected shaft. Substitution of
the boundary conditions for shafts with simply supported ends and fixed ends yields two
boundary value problems. The solution of the boundary value problems employs
elegant mathematical techniques which are interesting, but will not be presented in this
report because of the length and complexity of the problem. This solution yields
numerical results for the effect of torque on the critical speed of shafts in simply sup-
ported and fixed-end bearings.

This investigation of the theoretical treatment of the influence of axial torque on
the shaft critical speed indicates that the critical speed always decreases with increas-
ing torque. The decrease in critical speed is greater for shafts mounted in simply
supported or self-aligning bearings than for shafts mounted in rigid bearings. An addi-
tional conclusion is that the reduction in critical speed is less for higher critical speeds
than that for lower speeds. This information is expressed graphically in Figure 25.

Figure 25 is a plot of the frequency function, 3, versus the torque function, a, for
shafts with simply supported ends and fixed ends. Both of these functions are defined
in terms of physical dimensions of the shaft. As defined in the theoretical work, the
frequency function may be expressed as:

w2t m,,
p = 16E1 (97)
where
E = modulus of elasticity, lb/in.-2
I = moment of inertia, in. <
£ = shaft length, in.
m = mass per unit length of the beam, lb-sec?/in. 2
£ = frequency function, dimensionless
w = {requency, rad/sec.
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and the torque function may be expressed as

TA

a=—, (98)
2E1

where

T = axial torque, in-1b

It

a = torque function, dimensionless.

Values for the frequency function and the torque function are represented by the solid
lines in Figure 25.

This theoretical work also predicts the existence of a critical torque with each
critical vibration mode. Critical torques are sufficient to cause instability of the non-
rotating shaft; i. e. , sufficient to reduce the corresponding critical speed to zero. The
equation for the critical torque for a shaft with simply supported ends is

27

Ty =k = EI, (99)
2
where
Tk = critical axial torque for the kth mode, lb-in.
k = index corresponding to the mode number.

Figure 25 shows the torque function a,; = 3. 14 for the first critical torque for a shaft
with simply supported ends.

For a shaft mounted in fixed-end bearings, the equation for the critical torque is

= 2EI
Tk = = (100)
where
ay = critical torque function for the kth mode, dimensionless.

The value of a) is determined from the following transcendental equation

tanak=ak. (101)

The solution of this equation may be visualized by rewriting it as two equations. Re-
writing Equation (101) as

H = tan a) (102)

and

h=a_ (103)

where H = dimensionless parameter and plotting these cquations results in Figure 26.
The values of a at the intersections of the two curves are solutions of Equation (101).
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For the first vibration mode, the torque function, a;, equals 4. 495 satisfies Equa-

tion (101l). Figure 25 shows this value of the critical torque for the first mode of a
shaft mounted in fixed-end bearings.

Figure 25 is a graphical summary of the solution of the problem of the theoretical
effect of axial torque on the critical speed of a shaft. From this figure, it is concluded
that a shaft will become unstable at a lower speed as the torque is increased; and that
a critical torque exists for each vibration mode which is sufficient to cause instability
of the nonrotating shaft.

As in all cases of buckling or instability, it is hecessary to answer the question
of the range in which this result applies; i. e., find out the region in which the shaft
will buckle before it will yield. Examination of Equations (99) and (100) indicates that
the critical torque for instability or lateral buckling is directly proportional to the shaft
diameter and the modulus of elasticity of the shaft material and inversely proportional

to the shaft length. The expression for the torque required to yield a circular shaft
subjected to an axial torque is

%
Ty=SSyZ s (104)
where
Ssy = shear yield stress, lb/in. 2
4
z¥ = polar section modulus = —I', in. 3

Substituting the value Qe for the first mode critical torque and equating Equations (100)
and (104), rearranging yields

E

= 4,495 — (105)
S
sy

o I=

where
D = outside diameter, in.

This equation represents the boundary between the region of lateral buckling and
yielding of a shaft as a result of the axial torque. Defining a new quantity

N=2_, (106)
Sey

where

N = ratio of modulus of elasticity to shear yield stress, dimensionless

and substituting Equation (106) into Equation (105) indicates that a shaft will buckle be-
fore it will yield ii

f—)>4.495N. (107)

Figure 27 shows the value of the £/D ratio for various values of N for the inequality of
Equation (107).
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1f the point for the £/D ratio versus N is above the boundary curve, the shaft will
buckle laterally; however, if the point is below the curve, the shaft will yield in torsion.
A curve separating the two regions is shown in Figure 27 for the shaft mounted with
simply supported ends, as well as for fixed ends. The information in Figure 27
sunplements the information in Figure 25.

The effect of the axial torque and axial force on the critical speeds of shafts has
been considered separately. Since it is impossible to anticipate the type of external
loads acting on the shaft as a result of the design geometry; i. e., flexible couplings,
supports, etc., it is considered essential to present an investigation of the combined
effect of axial force and axial torque on the critical speced of shafts.

Effect of Combined Axial Force and Torque. The general problem of determining
the critical speeds of a shaft subjected to simultaneous axial force and axial torque has
been solved by Southwell and Gough [Ref. (12}]. This theoretical work presents a
stability criterion for a shaft subjected to a rotational speed, an axial force, and an
axial torque. The solution of the problem is carried out by writing the equations of
neutral equilibrium and solving the resulting differential equations by classical mathe-
matical techniques, The solution is extremely complicated, but the authors have made
the results usable by representing the solution in the form of diagrams. Figures 28
and 29 exhibit the stability criteria graphically by means of curves which connect values
of the frequency factor and the axial force factor for various values of the torque factor.
The stability criterion for a shaft with simply supported ends is diagrammed in Fig-
ure 28, and for a shaft with fixed ends in Figure 29,

The coordinates of Figures 28 and 29 are nondimensional quantities., The quan-
tities A*, B*, and C* relate to the dimensions and material of the shaft and the axial
torque, axial force, and the critical speed, respectively:

A*F = T4

(108)
2EI
p* - E £ (109)
4EI
v myetit (110)
16E1
where
A¥ = torque constant, dimensionless
E = modulus of elasticity, lb/in. ¢
I = section moment of inertia, in. 4
£ = shaft length between supports, in.
T = torque, in-1lb
B* = force constant, dimensionless
F = force, Ib
c* = frequency constant, dimensionless
m, = mass per unit length of shaft, lb-sec?/in. 2
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These diagrams illustrating the solution of the problem have been extended to the
negative B¥ region. It should be pointed out that this analysis considers the negative
B* region as the region of axial tensile force. Examination of Figures 28 and 29 indi-
cates that the axial tensile force maintains stability, i.e., the frequency factor increases
for a constant torque factor in the negative B¥* region. In the positive B* region,
corresponding to an axial compressive force, instability will occur at lower rotational
speeds for a constant torque factor. Thus the critical speed is said to be reduced.
These diagrams indicate that axial force, axial torque, and rotation are equally impor-

tant in causing instability; i. e. , reducing the critical speed, when they act
simultaneously.

Figures 28 and 29 may be used to investigate the stability of a shaft subjected to
a single external load while rotating. Investigating the stability of a fixed-end shaft
subjected only to an axial torque means that the value of the axial force factor,

*

iB_*, must equal zero. The diagram reduces to points of the frequency factor, &‘ci;._,

bt 7r

.. *

where the values of the axial torque factor cross the axis at 4_52_ equal to zero. A plot
it

of these values of frequency factor versus the values of the axial torque factor is shown

in Figure 30.

. . 16C* . - ' . .
If the ordinate of Figure 30, ol is multiplied by — ; and the abscissa of Fig-
" s 16
A—v‘

ure 39, 2>, is multiplied by 7, and the calculated points are plotted, a curve is ob-
T

tained as shown in Figure 31. This is a plot of frequency function versus torque func-
tion showing the effect of axial torque on the critical speed. Comparison of Figure 31
and Figure 25 shows good correlation between the calculated curves. This indicates

identical results for the effect of axial torque on the critical speeds of shafts based on
the two theories presented.

Using the general solution in the graphical form by Southwell, it is possible to
prepare a curve for the effect of axial force on the critical speed of a shaft with fixed
ends. In Figure 29, the calculated points on the contour of A*/T equal to zero will
yield the desired curve. These results can be transformed into a curve of critical-

q . * .
specd ratio versus the axial force constant. Rearranging the values of 16C” in terms
T'
of the critical speed, and dividing by the expression for critical speed without axial
force yields the ordinate of the curve as plotted in Figure 32. Thus Figure 32 is the
critical-speed ratio including the effect of the axial force versus the axial force constant

for a shaft with fixed ends, and Figure 24 is the same curve for a shaft with simply
supported ends.

This section has presented the results of theoretical work on the effects of
external loads on the shaft critical speeds. It has been found, theoretically that an
axial compressive force and an axial torque reduce the critical speeds. Each type of
loading has a critical value which causes lateral buckling; i. e., reduces the critical
speed to zero. Axial compressive force and axial torque are equally important in
causing instability when they act simultaneously.

Experimental Study of Torque Effects

The effect of axial torque on the shaft critical speed has been studied in the shaft
test machine. Tests were conducted with a steady torque and with a transient torque

80




CircrLes DenoTE
-, CaLcuLATED PoinTs

(V] w

»*

oL
29l

<

olLvy

o)

o~

{
—_—
I
| .
b . o e -
_ . ol . - -
h
- —o o o =0 0f—0 —ocs
.. -— .- b = .. + .-—pe - - ———
— o000 0 06 § o (ST G S -
RN ° - Gots fl=o o
.....  ARarT I Rt i Sl S
= =q o = - o6 9 & =% o 2 oo S S
——o ne—al o= A oo - - e
= R l_ i —v S S T T T I N g L
| Y
o S e o e M L . ]
I oY S === | i =
. - . A ooty om0 R . ]
PR NSRS I o e e
e i e - - —pe = e e
e N - — o P J— - - S
: f e E e Et s R
N SR RS S P -+ I R
= — RS S e s pane e SOV QU Jllll_.ll
== e e e — 1T 441.».. = = t—t— s 64t4|11r|..i
—— o e > B e —r=—t e e —
= S Hoomotie = . Y T R
eSc ) g { - - . . — — e gy bt
—_— ———t of s o L R — b - = - 1
o © oo o =g so=0=1 B el s — A~ gttt ~ 1 i~
; Redlefidlc I e el e b papas
ST s v RO RS N e n e N [ b _
- o

ADNINDIULH 3 SINTVA

1.50

as .25

25
VarLves Of ToRQUE RATIO

FREQUENCY RATIO VERSUS TORQUE RATIO FOR AN

AXIAL FORCE RATIO EQUAL TO ZERO

FIGURE 30,

81



NOILONAJ FNVUOL SASHIA NOILONAJL ADNINDIYA AILVINDTVD

0'S

o
<

o't

132/ 1L -

St

O’t S'e Qe

NOILONAS 3NOAUOL

S\ o

S0

‘1€ J¥NOIA

I m——

o

)

T — )

|
i

20!

O\

13 91
w’[zm

- NOILONNLH AININDIAN Y

82



35u04 VINY LOOHLIM
V914189 0] 39WO4 IVIXY HLIM G33dG TVIILIND 40 01V - e

- AXIAL ForceE CONSTANT

CRITICAL-SPEED RATIO INCLUDING EFFECT OF

FIGURE 32

AXIAL FORCE VERSUS AXIAL FORCE CONSTANT

FOR A SHAFT WITH FIXED ENDS

83



applied as the shaft was rotating. In addition the influence of axial torque and of axial

force was observed with the shaft stationary. The results of these tests are discussed
in this section.

Data on the effect of torque on the critical speeds of shafts are summarized in
the following tables. Table 8 shows the critical speeds obtained in rotational tests for
the second and fifth critical speeds for a 1/8-inch~diameter and 1/4-inch-diameter
shaft. The deviation of the measured speed and the calculated speed is attributed to
induced shaft-end tension or compression obtained during setup. The 1/8-inch-diameter
shafting was loaded with a torque of 13. 78 in-1b which caused a torsional shearing
stress of 36,000 psi. This magnitude of stress is approximately the torsional yield
strength of the drill rod steel. The tests were repeated with shorter lengths of 1/8-
inch-diameter shafting. These tests showed a very small reduction in the second and
fifth critical-speeds with the application of torque.

In order to obtain more definite information about the reducticon of the critical
speed caused by axial torque, the tests were repeated using commercial music spring
wire as the shaft material. The hardness of this material was Rockwell C 47, which
corresponds to an approximate yield strength in shear of 92,000 psi. Tests performed
with the high strength material are presented in Tables 9 and 10.

Table 9 lists experiments conducted with constant sag and varied torque. Tests 9
and 10 note a negligible difference in measured critical speed with applied torque in-
creased from 0 to 26. 45 in-1b (sufficient to cause a shearing stress of 69,000 psi in
the test shaft). Consequently critical speed appeared insensitive to torque change.
Since the initial shaft deflection or sag was nominal, indicating tensile shaft-end forces,
measured critical speed was higher than that calculated for a shaft without axial force
or torque shaft-end effects,

Experiments 11 and 12, and 13 and 14 produced negligible change in critical
speed with change in torque. There was again, however, a difference between the
measured and calculated critical speeds. The nominal sag of Tests 11 and 12 produced
a measured critical speed nearly three times as high as the calculated value. In Tests
13 and 14 the shaft was adjusted to be in compression and the measured value was some-
what lower than calculated for the shaft without applied axial shaft-end force and torque.
For the shaft in Tests 13 and 14 the adjusted sag of the test shaft was 1, 44 inches
greater than its natural sag of 3 inches.

In Tests 15through 22 the shaft was adjusted with 1. 6 inches initial deflection —
equal to the natural sag. As applied torque was increased beyond the levels of the
previous six tests, measured critical speed increased. However, with increasing
torque, the shaft became horizontally deformed in an '"S'' shape — inducing tensile
effects at the shaft ends. At very high torsional stress critical speed dropped perhaps
caused by axial slip between the shaft ends and the gripping collets.

In Table 10 tests were conducted with torque held constant, and with initial
deflection or sag varied. The first group beginning with Test 13 and ending with 29
shows the effect of sag on critical speed when the shaft was untorqued. As sag was
decreased from the beginning value producing shaft-end compression to the value of
least sag denoting shaft-end tension, critical speed changed from a value below to
considerably higher than calculated for the shaft without axial shaft-end force or torque.
The second and third groups of tests in Table 9 showed a similar sensitivity of critical
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speed to axial shaft-end forces. From the results of Tables 8 and 9 critical speed is
quite dependent upon axial shaft-endforces, but is relatively insensitive to torque change.

Table 11 presents the results of tests conducted to determine the effect of axial
torque on the natural frequency of lateral vibration for various conditions of critical
installation and axial force. Tests 32 through 36 show no significant change in the
frequency of lateral vibration even though the torque was sufficient to begin yielding the
shaft, This test group was performed with an initial mid-point deflection of 1. 67 inch
and the bearing preload springs undeflected. In Tests 37 through 42, conducted with
the bearing preload springs undeflected, the natural frequency of vibration did not
change until the torsional shear stress exceeded the yield strength by a substantial
amount. Tests 45 through 48 were conducted with the bearing preload springs deflected
substantially; i. e, , developing an axial tension, and showed an increase in natural
frequency of lateral vibration. The natural frequency of lateral vibration was reduced
as the shaft mid-point deflection was increased as shown by Tests 49 through 54.

Data on the effect of axial torque on the natural frequency of lateral vibration of
a 1/4-inch-diameter shaft for two distinct installation methods are presented in
Table 12. Tests 57 through 64 present the results of natural-frequency tests as torque
is increasing for the shaft installed with the spindle bearing prelcad springs undeflected.
As can be seen no change was observed in the natural frequency of lateral vibration as
axial torque was applied. Tests 68 through 75 were to be conducted with the bearing
preload springs deflected the same amount as in Tests 45 through 48; however, it was
impossible to install the 1/4-inck-diameter shaft in the same manner as the 1/8-inch-
diameter shaft. The stiffness of the 1/4-inch-diameter shaft is 8 times.as large as
the 1/8-inch-diameter shaft and cannot be subjected to the mid-point deflection and
the axial force conditions. These tests show that the natural frequency of lateral vibra-
tion is reduced as the mid-point deflectionincreases.

Additional tests on the transient torque were conducted along with the testing pro-
gram of shafts on two supports. This consisted of testing a damped 1/4-inch-diameter
shaft 89. 3 inches long with the first support located at 3. 36 per cent of shaft length
from one end and the second support varied from 10 to 50 per cent of shaft length from
the opposite end. The eddy-current brake was energized by interruption of the current
to excite a transient torque. This testing was conducted at the second critical speed of
the longest span, with approximately 3. 6 amperes of current. In all the tests no change

was observed in the critical speed or the amplitude of vibration with application of
transient torques.

A 1/8-inch-diameter shaft 89. 3 inches long with an axial torque of 40. 4 inch-
pounds applied developed a large amount of lateral displacement. Figure 33 shows the
lateral and mid-point deflection curve of a nonrotating shaft with applied torque. All
shafts tested at zero speed which were 89. 3 inches or longer assumed a lateral de-
flected position similar to Figure 33. This deflected shape began to occur when the
applied torque was less than the calculated critical torque. Shafts with smaller amounts

of sag developed smaller amounts of lateral displacement. It was not possible to ob-
serve lateral instability at rotational speeds.

It is thus apparent that steady or transient axial torque applied to a shaft installed
in the shaft test machine does not reduce the critical speed, or the natural frequency
of lateral vibration. Increasing the axial tension reduces the mid-point deflection of
the shaft and increases the natural frequency of lateral vibration.
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Comparison of Experimental and
Theoretical Results

The results of the theoretical work to determine the effect of axial torque on shaft
critical speed were expressed graphically in Figure 25. Figure 34 repeats the inform-
ation; the theoretical-torque versus critical-speed functions, a and [, respectively, for
first, second, and fifth critical speed of a shaft with built-in ends are shown by dashed
lines.

Table 13 surmmarizes the experimental work conducted to determine torque effect
upon critical speed. Values of the frequency and torque functions, 5 and a, were cal-
culated for most of the tests in Table 13. Equations (97) and (98) relate the physical
dimensions of the test shafts to § and a; the frequency function, [, is proportional to
the square of the experimentally observed critical speed and the torque function, a,
proportional to the experimentally applied torque.

Following calculation the a and g functions were entered on Figure 34 to enable a
graphic comparison of theoretical and experimental torque effects on critical speed.
The plotted experimental points were scattered, so they were represented as forming
the double-line envelopes of the figure. Rather than lower with increased torque as
theory predicted, the experimental critical speeds increased m value. Consequently,
the theoretical and experimental correlation of torque effects upon critical speed was
not obtained.

Experimental observation of the lateral buckling of shafts does verify the

theoretical results predicted. The deflected shape of the shaft as shown in Figure 33
was similar to results presented in Ref. (7).

The theoretical effect of increased axial force, as determined by a reduction in

mid-point deflection on the critical speed was verified by the experimental work. Thus
an axial tensile force increased the natural frequency of lateral vibration,

Conclusions Regarding Torque Effects

The major conclusions from this section of the report may be summarized as
follows: ‘

(1) Experimental work indicated that both constant and intermittent axial
torque applied to fixed-end shafts does not reduce the critical speeds
of shafts.

(2) Axial tensile force increases the critical speed of rotating shafts.

(3) Axial torque produces lateral buckling of the stationary shaft as
predicted theoretically.
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TABLE 13, FREQUENCY FUNCTION AND TORQUE FUNCTION FOR SHAFTS TESTED WITH APPUED TORQUE

Shaft Configuration

Point No. Pownt Ne.,

Diameter, Length, Frequency Torque Plotted in Frequency Torgue Plotted 1n

in. in. Function Function Figure 34 Function Funcuon Figure 34

Second Mode Fifth Mode
1 1/4 89.3 215.5 0.204 1 5320, 0.147, 9
2 1/4 89.3 215,5 0 2 5320. 0 10
3 1/8 63.2 332. 0.287 3 6170, 0.225 11
4 1/8 63.2 287. 1.21 4 5920, 1.21 12
5 1/8 51.4 341, L. 232 5 5550. 0.182 13
6 1/8 51.4 335. 0.988 6 5370, 0.988 14
17 1/8 44.6 299. 0.202 17 5320, 0.158 15
8 1/8 4.6 259, . 856 8 5260. 0.856 16
First Node Second Mode

9 1/8 50. 70.7 0 -La) 439, 0 --
10 1/8 50, 68.4 1.84 17 429, 1.675 31
11 1/8 132. 209, 0 o 1172, 0 oo
12 1/8 132, 234, 4,12 18 114, 4,79 32
13 1/8 110, 251. 0 oo -- oo oo
14 1/8 110. 251, 3.43 19 219, 3.42 33
15 1/8 89.3 33.4 0 oo 238, 0 --
16 1/8 89.3 33.0b) 2.5 20 - - =
17 1/8 89.3 38.9b) 3.43 21 oo o o
18 1/8 89.3 42.4(b) 4,36 22 -- - --
19 1/8 89,3 49, o(b) 5.03 23 oo oo
20 1/8 89.3 62.6(P) 5.86 24 =a sc =0
21 1/8 89.3 52.0?  6.06 () o= o ==
22 1/8 89.3 30.4P) 5 g6 25 = o o
23 1/8 89.3 31.5 0 oo 240, 0 oo
24 1/8 89.3 31.5 2.18 26 225, 3.42 34
25 1/8 89.3 163.80) 505 27 -- -- --
26 1/8 89,3 256, 0 o o -- oo
217 1/8 89.3 250 0 -- -- -- --
28 1/8 89.3 233 2.78 28 -- -- --
29 1/8 89.3 183 0 -- 854. 0 om
30 1/8 89.3 202 2.178 29 881. 3.28 35
31 1/8 89.3 ga6 (b) 5.26 30 -- -- --

(a) Torque function values of zero are not plotted in Figure 34.
(b) Frequency function calculated with natural frequency of lateral vibration.
(c) Value not plotted.
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Intermediate Support Characteristics Providing Suitable
High-Speed Shaft Operation

Numerous experimental shaft tests have been conducted to determine damped
intermediate support characteristics necessary for high-speed shaft operation, Earlier
in the research program before the '"High Speed Shafting Design by Electrical Analogy"
had been formulated, suitable damper parameters were sought by trial and error.
Inasmuch as more data per research dollar could be obtained experimentally, rather

than with use of the computer program, laboratory work comprised most of this phase
of research.

Single Damped Support Tests

A single damped intermediate support was used in the first series of tests to
determine suitable support parameters. The damping coefficients and support flexi-

bilities were established for the first three tests by a simple calculation procedure as
follows:

C.=2 WK g (111)
g
where
C. = support critical damping coefficient, lb-sec/in.
W = shaft weight, 1lb
K = support spring constant, lb/in.

A standard steel test shaft size of 0. 25-inch diameter and 89. 3 inches long had been
chosen as one which could be easily manipulated in the shaft test machine. The weight
of the standard shaft was l.260 pounds. The spring rate of the shaft at mid-span with
no intermediate supports equaled 1. 550 pounds per inch. Three support spring cons-
tants were chosen and corresponding damping coefficients were calculated, with the
lowest valued spring constant approximately equal to the shaft mid-span spring rate.

During the test program it was discovered that the actual support damping
coefficients were equal to about twice the calculated values for the damping fluids used
in these tests. The following lists the support spring constants, K; calculated critical

damping coefficients, C.; and the actual damping values, C, used in the first three
tests:

K, 1b/in. C., lb-sec/in. C, lb-sec/in.
1.33 0.180 0. 360
11,6 0.372 0. 744
66 0. 868 1. 736

Figures 35, 36, and 37 show the shaft operating speed range versus intermediate
support location for the support damping and flexibility values listed above. For each
support location in a test series the shaft speed was increased through a rather wide
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range. Generally there was a speed range evident through which vibration ampiitudes
were well controlled, and less then 3/8-inch peak to peak. For some tests the
effectiveness of the damped support was sufficient to limit shaft vibration amplitude to
less than 3/8 inch from zero speed to nearly 8000 rpm, more than 23 times the first
critical speed of 340 rpm.

Examination of Figures 35, 36, and 37 shows the best operating speed range
(shaft vibration amplitude less the 3/8-inch peak to peak) to be obtained with the sup-
port located toward a shaft end. Consequently further test series were made with the
support in the region between 2.24 and 11. 2 per cent of shaft length from the shaft end.
To find a better combination of support flexibility and damping to permit a wide shaft
operating speed range, various combinations of K and C values were chosen for
testing. Figures 38 through 42 show plots of operating speed range versus support
location for various support damping and flexiliality values.

The best support situation is shown in Figure 39. With the support located at
5. 05 per cent of shaft length from one end, damper vibration control allowed satisfac-
tory shaft operation from zero speed to 22,000 rpm. This corresponds approximately
to the twelfth critical speed of an unsupported shaft. Moving the support to 3. 36 per
cent of shaft length from one end increased the satisfactory top speed to 26,000 rpm,
but with diminished low-speed vibration control. Damper characteristics in this test
series were K = 11, 6 1b/in. and C = 1. 736 lb-sec/in.

Thinking that such successful shaft vibration control as achieved with one damper

might yet be improved, a series of tests were scheduled with two damped intermediate
supports.

Tests With Two Damped Supports

Two Damped Supports Symmetrically Located. Since excellent high-speed shaft
operation was obtained with one damper located close to a shaft end, four tests were
made with two dampers located symmetrically near each shaft end. Damper param-
eters were as before in the best single support test series, with K = 11. 6 1b/in. and
C = 1.736 lb-sec/in. As before to limit extreme amplitude, and to signal 3/8-inch
peak-to-peak vibration, 5/8-inch-diameter shaft guards were used.

In two or three preliminary runs with the two symmetrically located supports,
shaft operation seemed extremely violent and noisy. For this reason, in the four

series of tests shaft speed was brought up rather quickly and data were consequently
less complete than with the single support tests.

In Test 1 with dampers located at 2. 24 per cent of the shaft length from each end,
vibration amplitude equal to 3/8-inch peak-to-peak occurred somewhere over 20, 000

rpm. Then at 31,000 rpm vibration was so violent that one of the flexure plates was
broken.

In Test 2 with parts renewed and dampers at 3. 36 per cent from each end,

vibration was mild until 28,000 rpm. At this speed damper parts were loosened by
extreme vibration,
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In Test 3 with all parts retightened and dampers at 5. 05 per cent from each end
a speed of 34,000 rpm was attained. There were two critical speeds below 34,000 rpm
that produced vibration amplitude equal to 3/8-inch peak to peak but the speeds were not
recorded. At 34,000 rpm vibration was sufficient to loosen damper parts and to cause
a permanent set in the shaft.

After replacing the shaft and retightening parts in Test 4, operation to 18,000 rpm
was attained with dampers located at 6. 72 per cent from each end. As the upper limit-

ing speed of the operating speed range was seen to be decreasing another two-support
test was scheduled.

Two Damped Supports = One Fixed and the Other Variably Positioned. Since
previous tests had indicated the 3. 36 per cent support location to be a good compromise
between low- and high-speed vibration control, a series of tests was conducted with one
damper fixed at this position, The other damper was variably positioned, starting
near the other shaft end and moving toward the shaft mid-point as testing progressed.
Support damping and spring rate were as before; C = 1. 736 lb-sec/in. and K = 11, 6
1b/in. Use of the 5/8-inch-diameter shaft guards was continued.

Figure 43 shows the resulting operating speed range obtained as the movable
damper was repositioned in small increments from the shaft end toward mid-span. The
largest operating speed range was obtained with both supports located symmetrically at
3. 36 per cent of shaft length from the shaft ends. At this location there were no
amplitudes as large as 3/8-inch peak to peak until 28,000 rpm was reached. However,
in the varied support location region between zero and 8. 95 per cent, vibration at the
highest operating speeds was sufficient to loosen damper parts three times and to de-
form the test shaft permanently twice. To avoid these difficulties, 1/2-inch bushings
were inserted in the shaft guards to reduce peak-to-peak amplitude from 3/8 to 1/4
inch. Subsequent testing of varied support location in the region from 10 to 50 per cent
of shaft length from the end was conducted with these 1/2-inch-diameter shaft guards,
and the highest-speed shaft vibrations were more effectively limited. Loosening of
parts and permanent deformation of test shafts was eliminated.

It is interesting to note from Figure 43 that location of one support close to a
shaft end with another very close to the shaft mid-point produces an excellent operating
speed range. Although low-speed vibration control is diminished, both the lower and
upper limits defining the operating speed range envelope ar.: rather flat with respect

to the location of the varied support. Speed range is not so sensitive to slight changes
in support location.

Up to this point in the test program, no extensive experimental work had been
accomplished with two supports both varied with each test, A geormetric relationship
describing positions of the two damped supports with a single number was devised,
which enabled still another two-support test to be scheduled.

Two Damped Supports = Both Variably Positioned. Figure 44 shows a curve
which denotes the position of each of two intermediate supports with one number, k.
For any value of k there is but one position of each support along the test shaft length.
For instance at k = 1, two supports were located such that the three spans between shaft
ends and dampers were of equal length. At k = 0.5, the smallest span was one-half tue
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middle~sized span, and the middle-sized span one-half the length of the longest span.
The series of tests shown in Figure 44 was made with supports spaced to position the
longest span in the center, with the shorter spans adjacent to the shaft ends.

Damping in this test series was reduced to 0. 736 lb-sec/in, , but support flexi-
bility remained at 11. 6 1b/in. Use of the 1/2-inch diameter shaft guards was continued.
Figure 45 shows that the greatest operating speed range occurred at k = 0, 2 with the
two supports close to the shaft ends, A maximum speed of 17,500 rpm was reached
before peak-to-peak vibration amplitude reached 1/4 inch.

For comparative purposes damper locations can be calculated easily from Fig~
ure 44, From the figure, at k = 0.2, £1/L = 80.7 per cent of the total shaft length. The
longer end span equals 0,2 times the length of the longest span or 16. 08 per cent of
shaft length from one end. The shortest span at the other shaft and equals 0. 2 squared
times the longest span or 3. 21 per cent of total shaft length,

Referring to the test of Figure 43 we can see a similar distribution of supports
with one located at 3. 36 per cent and the other at 15.7 or 17. 9 per cent of shaft length
from the other end. All shait dimensions, support locations, and parameters of the
test in which k = 0.2 are similar, with the exception of damping, Damping equal to
1. 736 lb-sec/in. controlled shaft speed to approximately 21,750 rpm, while the smaller
damping value of 0. 744 lb-sec/in. used in the test with k = 0. 2 permitted operation to
just 17,500 rpm. Low-speed operation was the same in both cases. The conclusion
may be drawn that with two dampers, each located close to a shaft end, vibration will
be better controlled at higher speeds with the higher support damping value,

Tests With Three Damped Supports

Three Damped Supports — All Variably Positioned. It was also desired to evaluate
use of three variably positioned dampers. A series of tests was conducted with the
same support parameters as used in the variably positioned two-support test series.
Figure 44 shows the relation of span lengths to one another with respect to the value k,
and also the span position along the shaft. Span orientation begins with the shortest

adjacent to one shaft end, then the next to the longest, the longest, and the next to the
shortest at the other shaft end.

Figure 46 shows test results of this series. Contrary to the similar series with
two dampers, all low critical speeds are sufficiently controlled by three dampers to
limit vibration amplitude to less than 1/4 inch peak to peak. However, peak operating
speed reached only 13,600 rpm at k = 0. 5.

Since project emphasis has been toward developing ultrahigh-speed shaft sup-
port data, investigation with three variably positioned dampers was discontinued. Pre-
vious tests have shown two dampers, and even a single damped intermediate support to
provide better shaft vibration control at the higher speeds.
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FIGURE 46. SHAFT SPEED VERSUS SUPPORT LOCATION WITH THREE
VARIABLY POSITIONED DAMPED SUPPORTS FOR 1/4-
INCH-DIAMETER STEEL SHAFT 89. 3 INCHES LONG WITH
FIXED ENDS (SUPPORT CHARACTERISTICS: K = 11, 6
LB/IN. ; C = 0. 744 LB-SEC/IN.)

Three Damped Supports — Stefano's Spacing. Early in the research program a
Fairchild Aircraft Report by N. M, Stefano [Ref. (13)] was brought to our attention.
The report discussed positioning of three damped intermediate supports to provide
adequate vibration control through the first 300-plus critical speeds. *Stefano's posi-

tioning of intermediate supports calls for placement at 1/5, 4/9, and 4/ 70f shaftlength,
all measured from the same shaft end.

The reference however, did not indicate what intermediate support flexibilities
or damping values were required, and so the same values as indicated in Figure 35
were used: K = 1,33 1b/in. and C = 0, 360 lb-sec/in. Shaft guards with 5/8-inch=
diameter holes were used to contain the 1/4=inch-diameter test shaft.

When the test was run, high-speed vibration controlwas adequate onlyto 7250 rpm,
at which point vibration amplitude equalled 3/8 inch peak to peak. This speed is be-
tween the sixth and seventh criticals for the shaft without intermediate supports. Since
better operation was possible with just one damped support (see Figures 35 through 42),
no further tests were made with this three-support orientation,

It is only fair to say that there very well may be a more suitable combination of
support bearing weights in relation to shaft weight, support flexibility, and damping
coefficients which would permit operation to a much higher speed than 7250 rpm. How-
ever, it was considered more in keeping with the research program objectives to strive
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for high- speed shaft operation with a mimimum weight penalty imposed by the number
of dampers required.

Experiment With Shaft Be wvior Predicted
by Electrical Analogy

Late in the research program a method of prediciing shaft behavior was developed
by application of modified electrical transmission line theory. Details of the theory
are explained in the section entitled, High Speed Shafting Design by Electrical Analogy.

A laboratory experiment was set up using shaft and support parameter s calculated
by the analogy. it was predicted that two dampers spaced along a steel shaft of 1/2-inch
diameter and 138 inches in length would successfully control vibration amplitudes
through the first eight critical speeds of the same shaft with no supports. At the ninth
critical speed operation would become unsuitable.

One damper was located 30-15/32 inches from one end, equipped with a spring
constant of 120 1b/in., and a damping coefficient of 1. 7 lb-sec/in. The second damper
was positioned 44-29/32 inches from the other shaft end. Its damping factor was ad-
justed to 1,2 lb-sec/in., and the spring rate used was negligible,

The experiment showed what was predicted. The first eight critical speeds were
well controlled with the seventh and eighth extremely smooth running. At the ninth
critical speed shaft operation became so noisy that there was considerable doubt that
the test machine would remain intact., However, Mr, Bruce Brooks of the Sponsoring
Agency directed that speed be increased, with the final result that a maximum speed of
45,500 rpm was attained. Although there were shaft operating speeds above the ninth
critical which produced a disturbing noise, there were also wide ranges in speed over
which operation was very smooth., We are confident that the methods of damper selec-

tion provided by the electrical analogy produce an important new insight for predicting
high-speed shaft operation.

Conclusions

Numerous experiments have shown that transmission shafts can be operated
dependably at and above their first critical speeds. Although tests were conducted with
a standard steel shaft size of 1/4-inch diameter 89. 3 inches long, the modeling pro-

cedure explained previously permits similar operation to be obtained with any other
shaft size and length.

In the single-damped-support tests best operation was obtained with the damper
located close to one shaft end. Figure 39 shows the best of the single~damped-support
test series, Damper parameters are: K= 11,6 1b/in., and C = 1. 736 lb-sec/in. At
a damper positicn 5. 05 per cent of shaft length from one end, operation to 22,000 rpm
was achieved before the vibration double amplitude reached 3/8 inch.

In the two-support tests highest speed operation was again attained with supports
located toward each shaft end. However, during some tests vibration was so violent that
in two cases shafts were bent. More dependable operation was obtained with one sup-
port close to a shaft end and the other near mid-span as indicated in Figure 43. A
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notcworthy feature of this arrangement is that vibration amplitude control is not partic-
ularly sensitive to location of the center support. With one support located at 3, 36 per
cent of shaft length and the other positioned between 42 and 49 per cent from the other
shaft end, double amplitudes weare limited to less than 1/4 inch frorm approximately
2000 to 25,000 rpm. Damping values and spring rates were the same as used in the
best single-support test: K = 11, 6 1b/in. and C = 1, 736 lb-sec/in.

Another two-support test conducted with the same support flexibility, K, but with
43 per cent as much damping showed the similar trend of best attainable operating speed
range with dampers set close to each end. However, the highest operating speed was

just 17,500 rpm. The conclusion to be reached here is that damping was not sufficiently
high to provide best operation.

All of the three support tests showed decreasing ability to control vibration at
high speeds. All, however, controlled low-speed amplitudes well enough. There
seemed no advantage to continued three-support investigation, since single~support
tests successfully controlled vibration amplitudes at higher speeds.

With the advent of high-speed shafting design by electrical analogy, experimenta-
tion will be called upon during the second-phase research prograrn to corrcborate pre-
dicted high-speed shaft operation, rather than to gererate support parameter data for
high-speed model shafts. A 1/2-inch-diameter, 138-inch-long steel shaft with two
damped supports was predicted by the analogy to perform well through its first eight
critical speeds, but to operate poorly at the ninth. Experiment has shown the predicted
operation to be correct, Using the newly developed design procedure it is expected

that superior damped supports can be designed for any high-speed shaft without scaling
values from previous experiments.

Effect of Continuous Damping on High-Speed Shaft Operation

A method of providing suitable hypercritical-speed shaft operation by using a
continuous damping coating applied to the length of a shaft was suggested in the research
program proposal. This section deals with the investigation of coatings and their
effect upon shaft behavior.

The requirements of a suitable continuous viscous damping coating are that it be
able tc absorb and dissipate a large quantity of vibration energy, and that its bonding
strength to the shaft be great. For viscoelastic materials the measure of area within
the hysteresis loop indicates the energy-dissipation qualities. Due to the tendency of
externally applied coatings to separate from the shaft surface at high speed, a good
bond between shaft and coating either by an adhesive or by ''shrink {it" is essential,
Viscoelastic coatings used on the shaft surface absorb energy by changing shape as the
shaft surface fibers stretch and compress. Viscous damping of shaft vibrations using

viscoelastic coatings forms a major part of the evaluation of continuously damped shaft
behavior.

Coulomb damping provides another means of absorbing the energy of vibrating
shafts. Hollow turbine blades have been damped by bundles of wires placed longitudi-
nally inside the blades [Ref. (14)]. A similar arrangement was investigated for damping

tubular shafts. In a discussion concerning damping materials, use of a woven steel
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mesh fitting the shaft surface closely was suggested [Ref, (15)]. As the outside or in-
side surface fibers of the vibrating shaft change length, the friction of the stecl wires
or inesh sliding on the shaft surface would cause energy dissipation.

A two-part evaluation was made of both coulomb and viscous damping mecthods.
A large number of coatings were {irst tested on nonrotating shafts which were vibrated

laterally, Then the more promising coatings were applied to shafts for rotational tests
in the shaft test machine.

Nonrotational Continuous:-Damping Evaluation

Information concerning suitable damping coatings was obtained from various
sources. Battelle's Rubber and Plastics Division was consulted, as was a coatings
manufacturer, and a technical publication [Ref. (16)]. Quite a few coatings were sug-
gested, and, to reduce the number of rotational tests necessary for actual coating
evaluation, a nonrotating test procedure was devised.

Figure 47 shows a schematic diagram of the nonrotational test apparatus. Coated
shaft samples were clamped at their centers to the moving element of an electrodynamic
shaker. A variable-frequency alternating-current source supplied energy to power
the shaker so that the cantilevered test samples could be vibrated at their natural
frequencies. Table 14 indexes the details of the coatings and how they were applied to
test shafts. Table 15 shows a tabulation of the relative merit of the damping coatings.

The effectiveness of continuous damping on nonrotational lateral vibration was
determined by calculating the amplitude ratio of free-end vibration, y, to shaker vibra-
tion, yg. The ratio is called amplification or amplification factor. For all tests the
vibration amplitudes were noted at the test-shaft natural frequency, which varied some-
what due to the different weights of the coatings. Table 15 shows for the calibration
tests of bare shafts that amplification factors range between 134 and 200. Tests 4
through 20 indicate amplification from 6.4 to 159 for the continuously coated shafts,
The lower the amplification the better the damping characteristics of the shaft coating,
The best coating was produced by winding rubber tape on the shaft surface. However,
near the end of this test the free-end amplitude of vibration began to increase, indica-
ting a reduction in damping aifter absorbing a large amount of energy. This was
probably caused by an increase in temperature of the coating, which started its separa-
tion from the shaft. In the next best test, a tubular shaft filled with wires, the prob-

lems associated with temperature increase did not occur and free-end amplitude did not
change.

The results show that amplitude reduction of continuously damped shaft samples
is quite apparent in some cases. The four most promising continuously damped shaft
configurations were chosen for rotational tests, which will be described now.

Rotational Continuous-Damping Evaluation

The four most promising damping coatings as shown by nonrotational testing
were chosen for evaluation in the shaft test machine. All coatings were applied to 1/4-
inch-diameter by 89. 3-inch-long steel shafts. The fourth test used a tube of these
dimensions with a wall thickness of 0. 035 inch. Details of the coatings are shown in
Table 14 and refer to Tests 10, 6, 5, and 15 of that table.

113




CLameing

BLocw AmeLiTupe OF ViaraTion

OF SHAKER
CoaTED

SHAFT
~_ / 1t —

AmeuLiTuoe OF
VieraTiON QF

MB SHAKER/ FrRee ENno OF SuarT
MopetL C3

FIGURE 47, SCHEMATIC DIAGRAM OF ARRANGEMENT FOR
PRELIMINARY EVALUATION OF THE
EFFECTIVENESS OF SHAFT COATINGS

114




TABLE 14. SHAFT COATINGS TESTED

Test Description of Shaft Preparation
1 No coating — calibration
2 No coating — calibration
3 No coating — calibration
4 Latex gum rubber (1/4-in, ID x 1/16-in. -thick wall) bonded to ¢haft with epoxy
resin (Woodhill Chemical Co.); shaft coated with rubber tube along entire
length
5 Latex gum rubber, etc,, same as Test 4
6 Tygon — plasticized vinyl (1/4-in., ID x 1/16-in, -thick wall) bonded to shaft with
epoxy resin {(Woodhill Chemical Co.)
7 Polyolefin shrinkable tubing — FIT 275-4; shaft clamped with tubing along entire
length
8 Polyolefin shrinkable tubing — FIT 275-4
9 3M Tape Adhesive No., 466 — wrapped around shaft in helix
10 P & R Splicing Compound No, 8 — 3/4 in, wide x 1/16 in, thick wrapped around
shaft in helix, with 1/2-width overlap (electrical tape)
11 Shielding and bonding cable — Belden's No. 8663 — 160 wires x 34 gage (wire
mesh) soldered to shaft at ends
12 Shielding and bonding cable, etc., same as Test 11 Pliobond adhesive allowed
to fill wire interstices
13 No coating — 1/4-in, OD x 0, 035-in, -thick wall, seamless, cold-drawn
mechanical tubing
14 1/4~in. -OD x 0. 035-in, -thick-wall tubing with 1/8-in. ~diameter shaft cemented
in place with Pro-Seal 890-B2
15 1/4-in. -OD x 0, 035-in, -thick-wall tubing filled with 46 steel wires (0, 022-in,. -
diameter)
16 Wire {0.033-in, diameter) wound on outside diameter — closely wound
17 Wire wound — same as Test 16
18 Wire (0. 024-in. diameter) wound on outside diameter — closely wound
19 Wire (0, 033-in, diameter) wound on outside diameter — open wind -~ one wire
diameter between coils
20

Wire (0, 024-in, diameter) wound on outside diamecter —

open wind - one wire
diameter between coils

Note: Al shafts are 1/4-in. diameter x 12 in. long, and coatings cover entire length of shaft only unless otherwise indicated.

Wires were wound separate from the shaft and then assembled.
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TABLE 15, TABULAR RESULTS OF SHAFT COATINGS TESTED TO DETERMINE
EFFECTIVENESS OF DAMPING

Ys y
Amplitude Amplitude of
of Vibration Vibration at Natural Amplification,
of Shaker, Free End, Frequency, y
Test in. in, cpm Vs
1 0.014 1.812 2880 134,
2 0, 005 1,00 2880 200,
3 0.0125 1.75 2760 140,
4 0.016 0.875 2630 54,6
5 0.014 0.938 2720 65,5
6 0. 025 1,625 2580 63.7
7 0.013 0.75 2760 59.
8 0.015 0.938 2700 62.6
9 0.014 1,625 2820 116.
10 0.271 1.75 2520 6.4
11 0,011 1,625 2700 159,
12 0,018 1.625 2720 90,
13 0. 005 0.75 3360 140,
14 0,012 0.875 2700 72.9
15 0,011 0.25 2700 22.8
16 0.0148 0. 3125 2330 21,2
17 0. 0344 1. 625 2330 47,3
18 0.0143 1.500 2400 105,
19 0.0138 1.500 2490 109,
20 0.0136 1.1875 2520 138,
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Some difficulty was encountered in preparing the Number 15 rotational test speci-
men; the tube filled with many small-diameter wires, The wires were cut to shaft
length from a coil, During installation of the wires in the tubing, they attempted to
assume the coiled shape and align themselves in the same direction. This resulted in
a curved tube which was not suitable for rotational test. A 3/16-inch-diameter length
of sash cable was substituted for the individual wires, and the tendency toward tube
curvature was eliminated. A nonrotational test was the made of this substitution for
the Test 15 specimen, resulting in an amplification factor of 46. 8.

Table 16 shows results of the rotational tests, Tests were run to the second or
third critical without intermediate supports. Table 16 shows the speed range fur the
four prepared shafts. The term speed range is used to indicate the difference between
the speeds at which large amplitudes of vibration were first noted as the shaft speed
was increased, and as the shaft speed was decreased through the given vibration mode.

For comparison, the speed range of large amplitudes of vibration for an uncoated shaft
is presented in the same table.

The shafts coated with P & R splicing compound and latex gum rubber showed
the best improvement in the operating speed range. This is indicated by the small
difference in speced at which the large amplitudes of vibration began when increasing
and decreasing speed,

The Tygon-coated shaft showed a lesser degree of vibration improvement than
the two best shafts. The tube filled with sash cable proved to be a disappointment, al-
though its nonrotational rating was better than either the Tygon- or gum-rubber coated
shafts., The rotational behavior of the sash-cable-filled tube was very similar to the
bare calibration shaft listed first in Table 16,

should be given to the change in exciting force as well as damping ability. Filling a
tubular shaft with steel sash cable probably introduces more mass unbalance than
coating a shaft with a thin layer of viscoelastic material. Although the filled tubular
shaft may be just as effective percentagewise, in reducing the vibration amplitudes, the
larger mass unbai..nce causes it to appear to be less cffective.

In comparing damping of filled tubes and viscoelastic coatings, consideration

Consideration must also be given to a basic difference between the preliminary
shaker tests and the rotating tests of continuously damped shafts. In the shakertests
there is a cyclic change in shaft fiber length, which causes energy dissipation by
alternately stretching and compressing the damping materials, In shafts rotating at
their critical speeds, for the most part there is no cyclic change in shaft fiber length.
if the shaft is supported symmetrically at its ends. Consequently, in rotating tests,

the improvement in operation of continuously damped shafts over uncoated shafts was
minor.

Conclusions

Limited experimentaltesting of continuous shaft damping has shown some effective-
ness in reducing the speed range of large amplitudes of vibration for the lower critical
speeds, Operation at the higher critical speeds was, however, totally unsatisfactory.
Damping provided by shaft coatings or fillings cannot, therefore, be recommendecd.




TABLE 16, RESULTS OF COATINGS TESTED ON 1/4-INCH-DIAMETER
SHAFTS 89, 3 INCHES LONG WITH NO INTERMEDIATE SUPPORTS

Speed Range of Large
Amplitude of Vibration, rpm

First Second Third
Shaft Coating Mode Mode Mode
Uncoated shaft 275-400 850-950 1725-1825
Tygon tubing (plasticized vinyl)
bonded to shaft 300-325 850-875 1650-1700
P & R splicing compound
(electrical tape) wound
around shaft 300-300 850-875 1700-1700
Latex gum rubber bonded
to the shaft 300-300 850-860 1700- --
1/4-in. -OD x 0, 035-in. -thick
wall tube with 3/16-in. -diameter
steel sash cable 300-425 900-1025 oo oo
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Equipment and Calculations

Shaft Test Machine

General Description. In crder to obtain useful information concerning
hypercritical-speed power-transmission shaft operation it was necessary to design and
build a shaft test machine, Since testing of full-scale transmission shafts would have
involved excessive cost it was decided at the outset of the program to conduct tests
with reduced-scale shafts and to incorporate a modeling procedure to relate informa-
tion of reduced-scale tests to full-sized shafts.

Figure 48 shows a photcgraph of the entire test machine. Figure 49 is a
schematic diagram of the test machine bed and equipment. Essentially the test machine
consists of a straight bed to hold the spindle assemblies at the ends and the inter-
mediate shaft support bearings, and an electronically governed variable-speed drive to
rotate the shafts, The test bed is capable of accepting commercially available shafts
12 feet in length, and the spindles and intermediate support assemblies, accept shaft
diameters 1/2 inch and smaller. The support assemblies are designed to provide
adjustment of damping and spring rate with the least possible difficulty. Intermediate
supports and the brake-head spindle assembly can be moved and clamped to the test bed
at desired distances from the drive-head spindle assembly. Guards which limit test
shaft amplitude can also be clamped at desired distances along the test bed. The brake-
head assembly is capable of applying torque to the test shaft. The drive-head assembly
rotates the test shaft at various speeds, and is belt driven from the variable-speed
drive mechanism. Also at the drive-head assembly is a stroboscope actuator which

permits observation of the test shaft by stroboscope either once or twice per shaft
revolution.

Figure 50 is a schematic diagram of the test-machine drive mechanism, Two
~7-1/2-horsepower motors power two eddy-current clutches. The clutches transmit
power to a common shaft. Power is transmitted by belt to a speed-change mechanism
consisting of two pulley assemblies, and from there to the drive-head assembly. By
varying clutch output-speed and by changing speed ratio in the two pulley assemblies,
drive-head spindle speed may be varied from zero to nearly 50,000 rpm with consider-
able horsepower available at the drive-head spindle. The highest speed achieved to0
date with an experimental shaft is 45,500 rpm.

Test shaft spindle speed is regulated by controlling eddy=-current clutch excitation.
The control box which mounts a direct reading tachometer and a potentiometer to
change shaft speed may be carried by the operator to any position along the test bed.
Because of the varying power requirements of test shafts as they are brought up
through critical speeds, an electronic speed governor is incorporated in the speed-
control system to maintain selected operating speeds with negligible drift.

Description of Test Bed and Equipment, The test bed consists of a 15-foot-long
welded structural steel base with supports at each end. The supports of the bed are
firmly bolted to an isolation pad in the laboratory. Pads welded to the top of the bed
were machined in-line and four lathe beds were aligned, leveled, and bolted to the pads.
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In effect this forms an extremely rigid 14-foot-long lathe bed with a 12-inch swing.
The precision alignment of the individual lathe beds to each other permits the drive-
and brake-head spindles to remain in-line no matter what position the brake head

occupies, Likewise the intermediate supports are always in alignment with the spindlc
axes.

The drive-head and brake-head-assemblies consist of reworked lathe spindles
mounted to rigid bearing housings. The spindles are mounted in Barden angular-contact
bearings, which are lightly preloaded to insure proper bearing life, Both spindles
have a built-in capacity to move axially, since the ball-bearing cuter races are a slip-
{it in the bearing housings. In the drive head., however, the flat belt which transmits
power to the drive spindle creates a large friction force at the bearing-to-bearing
housing interface. Effectively there is no axial spindle travel at the drive head for this
reason, Travel is allowed at the brake-head spindle, and the axial spring rate is
plotted in a curve and shown in Appendix A,

The brake-head assembly is equipped as an eddy-current brake so that torque
can be applied to the rotating test shafts. A 3-5/8-inch-diameter high-strength steel
rotor is attached to the brake~-head spindle, A fractional-horsepower electric motor
stator is bolted to the brake-head bearing housing so that its axis is concentric with
the rotor. Application of direct current from a storage battery to the stator windings
produces a braking torque in the test shaft. A curve showing torque versus spindle
speed is included in Appendix A,

Both drive- and brake-head spindles are hollow and machined to the same inside
diameters. The method of gripping the tests shafts is similar to that used in lathe
operation, Lathe collets, collet chucks, and draw-in tubes were used for test-shaft
sizes up through 1/4-inch diameter., For 1/2-inch-diameter test shafts specially de-
csigned collets were machined, since the spindle bores were too small to accommodate
standard draw-in tubes and collets,

Attached to the drive-head assembly are the stroboscope actuator and the tacho-
meter generator, Figure 51 is a schematic diagram of the actuator, Fastened to one
end of the spindle is a disk with an interruption at one location on its periphery. Con-
centric with the disk is a ring to which two magnetic pickups are mounted, 180 degrees
from each other. As the slot in the disk passes a pickup, the magnetic field of the
pickup is distrubed sufficiently that, with the aid of an amplifier, the stroboscope is
triggered by the pulse, . Use of both pickups permits observation of the lateral vibra-

tion "envelope'', By rotating the pickup ring the shaft can be inspected at any angular
orientation,

Figure 50 shows the location of the tachometer generator which is driven from the
inboard end of the drive-head spindle, The tachometer drive uses narrow, flat, high-
speed belts and incorporates a speed reduction from the spindle to the tachometer
generator of either 5:1 or 25:1. The output of the generator is fed to a speed-indicating
voltmeter in the control box, and to the electronic speed governor where it serves as
the feedback voltage. Since most of the running has been in the high-speed range, the
higher ratio of speed reduction has been used almost exclusively.

Figure 52 is a photograph and Figure 53 is a schematic diagram of the inter-

mediate support damper, Figure 52 also shows the shaft guards which will be described
later. The intermediate support consists of two heavy square plates, one of which is
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bolted to a lathe steady-rest, The plates are bolted together parallel to each other with
ground spacers between them to provide the necessary oil-film thickness for support
damping. An 0, 018-inch-thick flexure plate, which mounts the support bearing, is
sandwiched between the heavy outer plates. By filling the gap between the outer plates
and flexure plate with a damping fluid such as oil and clamping the test shaft in the
support bearing bore, viscous damping forces are generated when the vibrating shaft
causes the damper assembly to move. The damping factor may be changed by inserting
spacers of different thickness to alter the clearance between the outer plates and
flexure plate. Likewise the damping factor may be changed by using damping fluids of
different viscosities, A curve showing the difference of calculated to actual values of
damping factor is included in the Appendix A.

The flexure plate to which the support bearing is fastened is laterally supported
at its four corners by four springs. Adjusting the lateral flexibility of the support can
be done by either changing to springs of a different spring rate or by changing the

number of active coils of the springs by changing the point at which the springs are
clamped.

Four circumferential slots have been cut in the flexure plate at a slightly larger
diameter than the support bearing fastening. The slots reduce the bending stiffness of
the flexure plate to minimize its effect on shaft behavior, Tests show that the inter-
mediate support does not act strictly as a simple support, but has some moment-
absorbing ability, The initial angular motion of the bearing is practically frec from
moment restraint due to the built-in radial clearance in the Barden support bearings.
After the free motion is taken up in the becaring, moment restraint increcased duc to

bending of the flexure plate. A curve of the intermediate support moment restraint is
given in Appendix A,

The intermediate support assemblics are mounted on lathe stecady-rests, The
bottom of each steady-rest has a tongue which fits closely between the ways of the lathe

beds. The close fit assures that the intermediate support bearing axis be parzallel to
the spindle axis.

Figure 52 is a photograph showing the guards used when testing high-speed shaft-
ing. L-shaped brackets werc made which clamp to the lathe bed ways, Cast-iron
pillow blocks are bolted to the vertical portion of the brackets. The pillow-block bolt-
holes are oversized so the blocks caa be aligned to follow the natural sag of test
shafts. The pillow blocks are split and heid together with screws. This fecature per-
mits installation or removal of guards without withdrawing the test shaft,

Description of Test-Machine Drive Mechanism. Figure 48 shown earlier, and
Figure 54 show two views of the test-machine drive mechanism. A common shaft
carries the combined output of two eddy-current clutches, each of which is driven by
a 7-1/2-hcrsepower 1750-rpm electric motor., Each motor and clutch asscinbly de-
velops approximately one-half of the needed power at any given time. Power is trans-
mitted from the comimon clutch output shaft to the low-speed pulley assembly by mcans
of a fixed-ratio gear belt and pulleys. The low-speed pulley assembly is composed of
a Z-inch-diameter shaft with three flat-belt pulleys pressed on one end and the gear-
belt pulley on the other., Adjacent to the low-speed pulley assembly is the high-speced
pulley assembly. Its cone-pulley assembly is integrally machined with the shaft. The
cone-pulley diameters on both shafts range from 2 to 6 inches, providing a total spced
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ratio change of approximately 9:1. Power is transmitted from the high-speed pulley
assembly to the drive-head spindle at a constant speed ratio by means of a flat belt.
Minimum spindle-to-clutch speed ratio is approximately 4, 36:1 and the maximum ratio
is approximately 39, 2:1. Use of the various speed ratios makes a fairly constant maxi-

mum horsepower available at the spindle regardless of speed, since clutch horsepower
output varies with speed.

Due to the sensitivity of clutch output-speed to load-change it was necessary to
equip the test-machine drive mechanism with an electronic speed governor. Circuit
diagrams of the speed governor may be found in the Appendix B. Basically the speed
governor consists of a tachometer to supply feedback voltage, amplifiers to increase the
gain of the difference between feedback and signal voltage, and magnetic amplifiers to

change the speed correction voltage to an output suitable to power the eddy-current
clutches.

The speed governor is composed of Battelle-owned components and the circuit
diagrams in Appendix B show the necessary wiring between the major assemblies.

Wiring diagrams of the assemblies are-not shown; instead the names and model numbers
are listed.

The motor and eddy-current clutch assembly is also Battelle owned. The detail

drawings of the shaft test machine show the names and model numbers of these
components.

Use of Test Machine. As mentioned previously numerous high-speed shaft tests

have been made. A discussion follows of the technique involved and the problems
encountered.

Early in the experimental program a series of 1/8-, 1/4-, and 1/2-inch-diameter
shafts were tested in the machine to obtain correlation between calculated and observed
critical speeds. Good correlation was achieved with all sizes; however, the 1/8-inch-
diameter-shaft critical speeds proved extremely sensitive to axial shaft-end forces
encountered when installing the shaft in the machine spindles. To minimize the prob-

lem and to permit ease in handling of the many shafts used, the 1/4-inch-diameter size
was chosen.

In the early period of testing manually controlled speed regulation was found to be
a disadvantage. The sensitivity of the potentiometers, which controlled eddy-current
clutch excitation and shaft speed, made [t difficult to increase speed slowly through
critical speeds. There was insufficient time to obtain accurate critical-speed vibration
amplitudes. In addition without employing extra laboratory personnel it was impossible
to record the speed at which maximum vibration amplitudes occurred. To relieve the
problem an electronically controlled speed governor was designed and constructed to
maintain selected operating speeds with negligible drift. The governor speed control
was mounted in a small box which could be carried by the operator tc any observation

point along the test machine. For convenience to the operator a meter showing shaft
speed was also included in the control box.

Methods of vibration-amplitude measurement were also a concern. Originally, a
large-range dial indicator was mounted in a stand clamped to the test-machine bed.
The indicator was equipped with a shoe riding on the test shaft. At shaft speeds above
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the very lowest the inertia of the shoe and indicator mechanism would cause the indica-
tor shoe to float at a position just in contact with the whirling shaft once per revolution.
The amplitude reading of the indicator was zero to peak in inches. Although this scheme
performed as planned, the indicator movement could not withstand such punishing
service, and its use was discontinued.

Another device called a cathetometer was employed for a short time in amplitude
measurement. The cathetometer is an optical telescope mounted to a graduated vertical
vernier column. Use of this instrument consisted of recording the height of the upper-
and lowermost edges of the vibrating shaft from which peak-to-peak amplitude was ob-
tained by subtraction. This method produced precise values of shaft deflection, but
was extremely time consuming in its operation.

Since hundreds of aimnplitude measurements were necessary for experimental
evaluation of suitable high-speed shafting support parameters, a simpler method of
amplitude measurement was chosen., A scale was mounted to the vertical leg of a
combination square, and the square set on the test bed just behind the vibrating shaft.
By noting the dimensional height of the shaded projection of the vibrating shaft on the
scale, amplitude measurements to the nearest sixty=-fourth of an inch were possible.

This device was used in quite a number of tests because of its extreme portability and
ease of operation.

Another amplitude-indicating device used extensively was formed by the pillow
blocks mounted at intervals along the test shaft. Primarily the pillow blocks served
as guards to contain the shaft should it break or become disengaged from the machine
during operation. The blocks normally used were of 5/8-inch bore, providing sub-
stantial clearance with the 1/4-inch-diameter test shafts, It was found that vibration of
the 1/4-inch-diameter shafts did not become severe until peak-to-peak amplitude
reached 1/4 to 3/8 inch. Since 3/8 inch was the diametral clearance of the shafts and

guards, noise of the shaft contacting the guards was used to indicate unsatisfactory
operation.

Figure 55 shows a typical data sheet from one of the experiments. The figure
contains information concerning test shaft length and diameter, and intermediate sup-
port position along the shaft, damping factor, and flexibility, At the bottom of the
figure is recorded the first of the various critical speed vibrations of the shaft and sup-
port system described. For each critical speed the vibration mode of the shaft is
drawn showing the relative position of the vibration loops and intermediate support.

The fractions are in inches and denote peak-to-peak vibration amplitude. To the left

of the diagram is recorded the speed in rpm at which maximum amplitude was observed.
When vibration amplitude reached 3/8 inch peak-to-peak the speed was suffixed "hit",
meaning that the shaft contacted the guards. Generally testing was continued into the
higher operating speeds until, at a certain critical speed, the shaft contacted the guards.
In most tests at the lowest criticals hitting occurred, but this was not considered
serious because shaft bending stresses over the long spans were minor, At high

speeds where shaft length between nodes is short, bending stresses become significant
when shaft deflection is sufficient to contact the guards,

After operating with a certain set of damper parameters to a high speed at which
the test shaft contacted the guards, the machine was shut down momentarily. Support
position was then changed and a new data sheet started for the succeeding test. Follow-
ing a series of tests with the support moved in small increments a plot of satisfactory
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shaft operating speed range versus support location for the particular support damping
coefficient and spring rate was made. Following evaluation a different value of damiping

or spring rate was chosen and the test process repeated with the expectation of finding
still Letter shaft operating behavior.

The effect of torque on the critical speed was determined by roiating the shaft
with the eddy-current brake energized. Shaft action at these critical speeds was ob-
served with a strobcscope. Steel shafts with a torsional yield strength of 36,000 psi,
as well as others with 92,000 psi torsional yield, were used in the torsion experiments.

In initial tests of long slender shafts, the measured critical speeds exceeded the
calculated values for shafts tested without axial torque applied. 1ln order to compare
the experimental and the theoretical torque effects, it was necessary tc install the
shafts with a certain value of mid-point defleciion. On the longer shafts, this amounted
to a significant value. The mid-point deflection is that which corresponds o the sag
of a shaft caused by its own weight. When shafts were installed with the calculated

values of mid-point deflection, measured and calculated critical speeds were in close
agreement. :

Tests to determine the effects of torque on the {irst critical speed were conducted
below the speed range of operation of the stroboscope, and the angle-of-twist could not
be observed when the shaft was rotating. In order to measure the angle of twist and
to determine the critical speed accurately, the effect of torque on the natural frequency
of lateral vibration was observed. The problem of determining the frequencies of
lateral vibration of a uniform beam subjected to an axial torque is identical to the prob-
lem of determining the critical speeds of a rotating shaft subjected to an axial torque.
With torque applied to the nonrotating shaft by means of a wrench and a spring scale,
the first natural frequency of lateral vibration was excited by striking the shaft,

1ln certain tests of long slender shafts the measured critical speeds exceeded the
calculated values. This increase was attributed to tension applied to the shaft ends
when installed in the test machine, A number of torque tests were conducted to deter-
mine the effect of tension induced in the shaft during installation, and the effect of
external axial force caused by the bearing preloading springs. These tests were con-

ducted on 1/8-inch-diameter shafts and 1/4-inch-diameter shafts.

During the second phase of the research program, the effects of axial shaft-end
and torque loads will be studied more fully. To implement this work, certain modifica-

tions will be made to the experimental equipment. One such change involves changing

the eddy-current brake to a device capable of delivering considerably more torque to the
test shaft.

Support Damping Measurement Equipment

In order to determine the actual damping factors developed in the damped inter-
mediate supports, tests of two types were made. Lower viscosity damping fluids
composed of SAE 10, 30, and 50 motor oil were tested by measuring the decay of
damped free vibration at the damper. Higher viscosity damping fluids including SAE 50
motor oil and Viscasil 1000 and 10,000 silicone fluids were tested by measuring the
energy required to sustain damped forced vibration at the damper.
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A schematic diagram of the damped-free-vibration test apparatus is given in
Figure 56. With the proper mass and spring combination the damped bearing and
flexure plate was caused to oscillate with lessening amplitude after first being dis-
placed. A linear-variable-differential-transformer core connected directly to the
oscillating member by means of a dummy shaft interpreted damper polﬁaition as a posi-
tive or negative voltage. The voltage curve was plotted with respect to time by a
Sanborn recorder. From the plots obtained calculations were made to determine the
actual damping factors for the lighter viscosity oils,

A schematic diagram of the damped~-forced vibration test apparatus is given in
Figure 57. A 1/2-inch-diameter bar was inserted rigidly through the brake-head
spindle, A 1/4-inch-diameter tang was turned on a protruding end of the bar to act as
an eccentric or crank with a 1/16-inch throw. A damped intermediate support bearing
was clamped to the crank just as it would fasten to a shaft under test. A 1/8-inch-
diameter long rod connected the drive-head and brake-head spindles. When the test
was run, the torque necessary to operate the damper at a certain speed with the fixed
eccentric motion was determined from the twist of the 1/8-inch-diameter shaft. From
the measured torque and speed values the damping coefficient was calculated.

Method of Free-Vibration Damping Calculation, Figure 58 is typical of the
vibration-amplitude decay curves recorded to determine intermediate support damping
coefficient. The flexure plate was first displaced from its position of rest, and then
released to vibrate at its natural frequency. Since damping was present, vibration
amplitude diminished until the system ceased to oscillate., An LVDT interpreted flexure

plate position as a voltage which, when recorded, furnished a plot similar to that in
the figure,

3
b
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FIGURE 58. TYPICAL VIBRATION~-AMPLITUDE DECAY CURVE

Calculation of flexure-plate damping was made using the following equation:

=—1n
i
eyl

(112)

where
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damping coefficient, lb-sec/in,

m = flexure-plate mass, lb-sec/in,

w, = natural frequency of the flexure plate assembly, rad/sec
yk = amplitude of the kth cycle, in.

yk + 1: amplitude of the kth + 1 cycle, in.

This equation may be found in most vibration textbooks,

Natural frequency, w , was taken directly from the decay curves. The recorder
marked each decay curve in l-second intervals, which enabled direct measurement of
the number of cycles occurring in 1 second., Flexure-plate mass was determined by
weighing all the vibrating parts including the LLVDT core, and by adding one-third the
weight of the flexure-plate support springs.

Method of Forced-Vibration Damping Calculation. Damping measurement tech-
nique described in the free-vibration damping tests was suitable for the lower viscosity
fluids. However, when using the higher viscosities, flexure plate vibration diminished
to zero during the second or third cycle, which prevented accurate determination of
damping factors. To circumvent this problem a laboratory setup was made of a forced-
vibration system, shown in Figure 57.

The flexure plate was made to oscillate in a circular path once per shaft revolu-
tion by clamping its bearing to a crank with a 1/16-inch throw, Springs attached to
the four corners of the flexure plate prevented its rotation. The force required to
drive the flexure plate through the circular path was determined by the angular twist
of the 1/8-inch-diameter shaft driving the crank. The velocity of the flexure plate with
respect to the heavy outer support plates was directly proportional to speed. Dividing
force by velocity produces the coefficient of viscous damping.

Calculation of the force necessary to overcuime damping is as follows:

T =G (113)
57. 3L

where

T = torque transmitted by 1/8&-inch diameter in shaft, in-1b.

6 = angular windup in total shaft length, degrees

L = shaft length, in.

G = shear modulus of shaft material, 1b/in. 2

J = polar moment of inertia of shaft cross section, in. E

The force required to sustain forced vibration in the presence of damping was found by
dividing the torque of Equation (113) by the crank throw:
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SRRCLS ) N 1) (114)

F :l.
R 57.3LR

where

¥

force necessary to sustain vibration of the damped flexure plate, 1lb

R

n

crank throw, in.

The tangential or peripheral velocity of the circular vibration path was determined
easily:

v = 2TR rpm

, 115
50 (115)

where

<
H

tangential velocity of the circular vibration path, in./sec

rpm = rotation speed, rev/sec.

By definition the coefficient of viscous damping equals damping force per unit velocity,
or:

C =

F_ 60 6GJ - (116)
v  57.3 x 2ZTLR“rpm

where

C = damping coefficient, lb-sec/in.

Shaker-Table Equipment

To make a preliminary determination of the ability of shaft coatings to damp
lateral shaft vibrations, a shaker-table test was made. The shaker consists of a mov-
ing coil of wire in a magnetic field, with a table attached to the moving coil. When
alternating current is fed to the coil, it is forced to move vertically up and down to
follow the excitation frequency. The current source is a variable-frequency audio-
oscillator and amplifier, Clamp blocks were machined to fasten the coated shaft speci-
mens rigidly to the shaker table. Details of the tests may be found in the section
discussing shafts with continuously applied damping coatings.

Computer

The digital-computer facility at Battelle consists of Bendix G-20 units. It is an
efficient machine which has satisfactorily performed many shaft-deflection calculations

and has also performed critical-speed determinations. We consider the programs used
to be correct in all respects.

Prior to the installation of the new, more efficient G-20 computer, an IBM Model
650 computer was in use. The computer programs used in this research project are
designed primarily for the IBM 650, but have been successfully adapted to the newer
facility with an approximate doubling of speed resulting.
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CONCLUSIONS

In the past year, research conducted with high-speed power-transmission shafts
has produced significant results. The major conclusions to be drawn are:

(1) Power transmission by shafts operating at speeds above their first
critical is practical, since one or two dampers strategically located
along the shaft have been shown to limit vibration very effectively.

(2) A systematic procedure for the design of shaft dampers using an
electrical analogy has been developed. The initial experimental
verification of the design procedure showed excellent performance.
Using this procedure in a given power-transmission situation it is
believed that a system of dampers can be designed to prohibit
excessive and dangerous vibration amplitudes at the desired operating
speeds. Added experimental verification of this design procedure
is required to prove it fully.

(3) Once a suitable high-speed shaft system has been designed and
demonstrated, similar operation can be achieved with shafts of
other dimensions and materials by applying modeling equations
developed in this program. Use of these equations can provide
dynamically similar operation of dissimilar shafts by adjustment
of damper parameters,

The above conclusions are basic and show that power transmission by high-speed
shafting is not a whimsical notion, but is completely practical.

Many other conclusions can be drawn as a result of the research, and are dis-
cussed in the following paragraphs.

A digital-computer program ias been jormulated which correctly calculates the
deflection shapes of shafts rotating at their critical speeds. A modified program has
been uced to determine the critical speeds, and has excellent ability in this regard.

Many experimental high-speed shafting tests have shown that, with just one
damper, shafts can be operated at more than 60 times their first critical speed. With
two dampers, operation at even higher speeds was observed, in one case reaching
159 times the first critical speed. Generally, best operation occurred with the damper
or dampers positioned close to the ends of the transmission shafts.

The design and analysis of high-speed shafting by electrical analogy adds under-
standing to the experimentzl program. The analogy shows, for instance, that broad
tuning of the shaft system is not only dependent upon the damping coefficient, but is
also quite dependent upon the weight ratio of the damper to the shaft. The smaller the
ratio the wider is the acceptable speed range of shaft operation., Description of the
mechanical shaft in terms applying to high-frequency electrical transmission lines
opens the door to straightforward design of hypercritical-speed shafting, since the
electrical theories are so highly developed.
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Standard formulas for determining shaf’ «:ritical speeds have been shown to be
correct by research work, For a shaft with one damper at any location along the shaft
length, critical speeds are readily predictable. For multiple dampers the critical
speeds are less accurately calculable by the approximate meihods, but are accurately
calculated by the computer program used.

Application of torque to high-speed shafting has been studied both theoretically
and experimentally. Although theory predicts a lowering of shaft critical speed, experi-
ment has not shown this to be so. The application of torque has shown a tendency, how-
ever, to cause a '"corkscrew' shape at torsional shear stresses near the yield point of
the material. But neither the application of steady~state or intermittently applied
torque has caused a change in lateral critical speed or vibration amplitude,

Theory and experiment have shown that critical speed varies with axial shaft-end
loading. Tension on the shaft ends increases critical speed, and compression de-
creases it.

Experimental work has been conducted using shafts coated with damping ma-
terials. An improvement was noted in shaft operation at the lower critical speeds.
Operation was totally unsatisfactory, however, at higher speeds. Therefore, this
does not appear to be a solution to the vibration problem.

Finally, it is concluded that hollow tubing has the ability to transmit the same de-
gree of power but with higher critical speeds and with decreased shaft weight., Examples
in the Technical Work section of this report point out that solid shafts running at high
speeds are capable of tremendous horsepower transmission but that hiollow shafts can
do the same work with less weight, and encounter fewer critical speeds. Hence,
dampers need not be so highly refined. The resulting decrease in weight for both
dampers and shafts would appear highly attractive in applications to aircraft. All of
the research results are equally applicable to the design of solid and tubular shafts.
The only apparent reservation regarding the use of tubing is that tubing with extremely
thin walls may encounter other modes of vibration in which the walls fiex, in addition
to critical speed vibrations. Additional investigation may identify this problem or
eliminate it as a possible concern.

RECOMMENDATIONS FOR FUTURE WORK

The present Phase 1 research program has shown that power transrnission by
shafting operating above its first critical speed is quite practical. Inclusion of dampers
along the transmission shaft can reduce vibration to very small and acceptable values.
To extend the understanding of high-speed power-transmission shafts the following
tasks are recommended for study in the Phase Il research program:

I. Basic High-Spced Shafting Research

(1) A comprehensive program of testing and computation should be conducted to
fully confirm the analogy developed during Phase I, relating high-speed shafting to high-
frequency electrical transmission lines. The analogy should be extended to include
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shaft end terminations such as flexible couplings. A systematic shaft design procedure
based upon the analogy, and using graphical aids where possible, should be perfected.

(2) The effects of initial shaft crookedness should be evaluated to determine the
degree of accuracy required in the production of the high-speed power-transmission
shafting, In conjunction with this work, the practical advantages obtainable using tub-
ing in place of solid shafting should be carefully investigated. Theoretical studies indi-
cate that thin-walled tubing shou.d have substantially higher critical speeds than solid
shafting capable of transmitting the same torque. The accuracy of commercially avail-
able tubing in terms of straightness and concentricity may impose practical limitations
which affect to some extent the theoretical advantages. An experimental study should
be conducted to ascertain the true situation.

{3) The effect of moving the shaft supports from an aligned relationship to cause
the shaft to operate around a gradual curve should be studied. This mode of operation
would correspond to the conditions imposed upon a shaft if it should be mounted in a
flexible structure such as an aircraft wing which might assume various static deflec-
tions. In conjunction with this work, the dynamic behavior of {lexible shaft couplings
should be studied both experimentally and analytically, Operation should be carried
out under both aligned and misaligned conditions, and with shaft ends concentric to,
and eccentric to the main section of shaft,

(4) Intermediate-shaft-support bearings capable of withstanding bending moments
should be compared with intermediate-support bearings without moment-taking ability.
In addition, intermediate-shaft-support bearings capable of introducing damping when

located at the positions of nodes of lateral shaft vibration should be evaluated
experimentally.

(5) The effects of torque upon shaft critical speed and vibration amplitude should
be investigated more thoroughly. Phase ]l research showed that theory predicted shaft
critical-speed change with application of torque, whereas experimental testing indi-
cated neither critical speed nor vibration amplitude change.

(6) The effect upon shaft behavior of external vibrations introduced to the shaft
through the shaft-support-bearing mounts should be investigated.

II. Design Studies of High Speed Aircraft Power Transmission Systems

(1) Specific current or future aircraft power transmission systems should be
analyzed to establish the parameters for which some of the experimental shafts in the
research program would be designed. This work should be augmented by design studies

for specific applications. This would ensure the earliest application and greatest utility
of the research results.

(2) Design studies should be made of damped support bearing configurations con-
sidered realistic and suitable for aircraft installations. Power dissipation to be
expected at the dampers should be determined.

(3) Typical aircraft power transmission systems should be analyzed to determine

the sources and effects of torsional vibrations. These effects in conventional power-

transmission systems should then be compared with the effects which would be developed
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in high-speed shaft installations. If objertionable torsional effects are identified in
high-speed shaft systems, means for damping or otherwise eliminating these effects
should be studied.

1II. Preparation of a Design Manual for High-Speed Power-
Transmission Shafting

The results of all of the research activities carried cut during Phases I and 11
should be incorporated into a design manual. This design manual would relate all of
the important shaft parameters such as over-all length, support spacing, shaft diam-
eter, shaft material, allowable shaft crookedness, required stiffness of bearing sup-
ports, shaft end restraint, and necessary damping provisions, to be used in designing
a shaft for any given horsepower and operating speed. Design data for sha‘ts operating
below the first critical speed would not necessarily be included. The emphasis during
the entire research program and in the design manual would be placed upon shaft
operation above the first critical speed and, in most cases, at very high multiples of
the first critical speed.
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APPENDIX A

TEST-MACHINE CALIBRATION CURVES
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FIGURE 63.



APPENDIX B

-GOVERNOR CIRCUITRY
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APPENDIX C
ECCENTRICITIES OF SOME TYPICAL EXPERIMENTAL SHAFTS
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APPENDIX D

HYSTERESIS WHIRILING

One circumstance of interest in‘the experimental program was observation of
hysteresis whirling. Although this type of shaft vibration occurred just once during
the complete series of experiments, mention is included to complete the record.

Normal shaft vibrations occur at discrete speeds of shaft rotation. At these
critical speeds the vibrating shaft whirls about its undeflected axis at the same rate as

shaft rotation. In other words tibers at the surface of the shaft do not change length
as rotation position changes.

Hysteresis whirling is a self-excited vibration caused by the internal damping of
the shaft material. Whirl can occur during a wide speed range as long as shaft running
speed is above the first critical. The frequency of the hysteresis whirl is the same as
the shaft natural frequency. Since whirl frequency remains constant as shaft running
speed changes, there is stress reversal in the shaft fibers.

The one instance of hysteresis whirl occurred with the shaft clamped at the ends
and set up on three rigid evenly spaced intermediate supports. Whirling occurred
continuously between 2570 rpm and 5000 rpm, the fourth speed of the first group of
natural modes and the first speed of the second group of natural modes, respectively.
Although shaft speced varied whirl frequency remained 2570 rpm.

Although hysteresis whirling produces stress reversals, it is not thought to be
of importance. The phenomenon was observed only once in the numerous experiments
conducted, and efforts to duplicate it at a later date proved futile. Also, it is our
opinion that hysteresis whirling will not take place when damped supports are included
in the system. Consequently the subject appears to be of little more than academic
interest in the design of high-speed power-transmission shafts. Accounts of hystecresis
whirling theory may be found in References {2) and (5).
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