Reproduced From
Best Available Copy
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
FLUID AMPLIFICATION

5. Jet Attachment Distance as a Function of Adjacent Wall Offset and Angle

Sheldon G. Levin
Francis M. Manion

31 December 1962

HARRY DIAMOND LABORATORIES
FORMERLY: DIAMOND ORDNANCE FUZE LABORATORIES
ARMY MATERIEL COMMAND
WASHINGTON 25, D.C.
MISSION

The mission of the Harry Diamond Laboratories is:

(1) To perform research and engineering on systems for detecting, locating, and evaluating targets; for accomplishing safing, arming, and munition control functions; and for providing initiation signals: these systems include, but are not limited to, radio and non-radio proximity fuses, predictor-computer fuses, electronic timers, electrically-initiated fuses, and related items.

(2) To perform research and engineering in fluid amplification and fluid-actuated control systems.

(3) To perform research and engineering in instrumentation and measurement in support of the above.

(4) To perform research and engineering in order to achieve maximum immunity of systems to adverse influences, including counter-measures, nuclear radiation, battlefield conditions, and high-altitude and space environments.

(5) To perform research and engineering on materials, components, and subsystems in support of above.

(6) To conduct basic research in the physical sciences in support of the above.

(7) To provide consultative services to other Government agencies when requested.

(8) To carry out special projects lying within installation competence upon approval by the Director of Research and Development, Army Materiel Command.

(9) To maintain a high degree of competence in the application of the physical sciences to the solution of military problems.

The findings in this report are not to be construed as an official Department of the Army position.
FLUID AMPLIFICATION

5. Jet Attachment Distance as a Function of Adjacent Wall Offset and Angle

Sheldon G. Levin
Francis M. Manion

FOR THE COMMANDER:
Approved by
R. D. Hatcher
Chief, Laboratory 300

Qualified requesters may obtain copies of this report from ASTIA.
CONTENTS

ABSTRACT .. 5

1. INTRODUCTION 5

2. THEORETICAL DEVELOPMENT 5
 2.1 Analytic Base 5
 2.2 Notation 6
 2.3 Derivation of Equations 8
 2.3.1 Parameter t 8
 2.3.2 Attachment Angle 11
 2.3.3 Geometry of Attachment 15
 2.3.4 Entrainment 17
 2.4 Computation 18

3. EXPERIMENTAL PROGRAM 20
 3.1 Air-Jet Test Model 20
 3.2 Water-Jet Test Model 24
 3.3 Comparison of Results 25

4. SUMMARY 25

5. CONCLUSIONS 29

6. REFERENCES 30

Appendix A. Derivation of $R = J/\Delta p$ 31
LIST OF ILLUSTRATIONS

Figure
1 Mathematical model of the attachment of a two-dimensional jet to an offset, inclined adjacent wall
2 Jet stream velocity profiles
3 Comparison of Goertler's equation prediction to assumed flow at nozzle exit
4 Mathematical model for control volume and attachment point theories
5 Schematic of experimental air-jet arrangement
6 Isometric view of experimental air-jet arrangement
7 Errors in measuring attachment distance
8 University of Maryland water table
9 University of Maryland water table with mathematical model superimposed
10 Schematic of experimental water table arrangement
11 Comparison of observed attachment distances with theoretical computations based on control volume model, $\sigma = 1$
12 Comparison of observed attachment distances with theoretical computations based on control volume model, $\sigma = 3$
13 Comparison of observed attachment distances with theoretical computations based on control volume model, $\sigma = 5$
14 Comparison of observed attachment distances with theoretical computations based on control volume model, $\sigma = 7$
15 Comparison of observed attachment distances with theoretical computations based on control volume model, $\sigma = 8$
16 Comparison of observed attachment distances with theoretical computations based on control volume model, $\sigma = 10$
17 Comparison of observed attachment distances with theoretical computations based on control volume model, $\sigma = 15$
18 Comparison of observed attachment distances with theoretical computations based on attachment point model, $\sigma = 15$
19 Comparison of observed attachment distances with theoretical computations based on attachment point model, $\sigma = 20$
20 Comparison of observed attachment distances with theoretical computations based on attachment point model, $\sigma = 25$
21 Comparison of observed attachment distances with theoretical computations based on attachment point model, $\sigma = 30$
Attachment of a submerged, incompressible, two-dimensional, turbulent jet to an adjacent straight wall (Coanda effect) is analyzed. Parametric equations are developed that predict the point at which the jet attaches as a function of wall angle and offset distance. Computer solutions were obtained for several sets of conditions. Experiments were conducted with both air and water jets at Mach 0.5 equivalent, and results agree well with corresponding computer solutions when the jet spread parameter is also treated as a function of offset distance and wall angle. The equations provide an analytic method, independent of the particular fluid, for predicting the attachment distance, and should be helpful in designing elements based on the Coanda effect; e.g., the fluid flip-flops or bistable elements.

1. INTRODUCTION

The steady-state deflection and attachment of a jet to a nearby surface has been referred to as the Coanda effect. The effect with respect to two-dimensional flow is of interest since two-dimensional flow is approximated in many fluid devices where the flow is constrained between two opposing parallel flat plates, and the proper design of many elements using the Coanda effect requires a means for calculating the attachment distance as wall angle and offset distance are varied.

Borque and Newman (ref 1) as well as Sawyer (ref 2) discuss the deflection and reattachment of a two-dimensional, submerged, incompressible, turbulent jet to an adjacent flat plate, and develop equations to predict the attachment distance as a function of the distance that the wall is offset from the nozzle exit, or, alternatively, as a function of the angle between the wall with zero offset and the axis of the nozzle. A study was initiated to develop a more general expression of attachment distance as a function of both parameters. The study included a theoretical analysis and derivation, computer solutions, and tests with air and water jets.

2. THEORETICAL DEVELOPMENT

2.1 Analytic Base

The Coanda effect, as discussed here, arises as follows. A submerged jet (fig. 1) entrains fluid by means of viscous interaction between the moving stream and the quiescent surrounding fluid. If a wall is located such that the replacement flow is impeded, the static pressure in the fluid between the jet and wall decreases, and the pressure differential across the jet deflects the jet towards the wall. The pressure differential is self-reinforcing until the jet is deflected far enough to attach to the wall. A bubble of reduced static pressure is inclosed between the jet stream and wall maintaining the attachment.
A steady-state flow pattern arises where the mass entrained by the jet from the bubble is returned to the bubble near the attachment point.

The analytic development of a general expression describing the steady-state flow pattern requires the following assumptions:

(a) The jet flow is incompressible and two-dimensional.
(b) Jet velocity is uniform at the nozzle exit.
(c) The jet velocity is independent of the reduced pressure in the bubble.
(d) The pressure within the separation bubble is uniform.
(e) Jet momentum flux is conserved, i.e., drag losses due to constraining plates are neglected.
(f) The centerline of the jet is a circular arc of radius R.
(g) The nozzle width is small compared with R; and the attachment-wall length is long compared with the nozzle width.
(h) The jet exhibits turbulent flow after emerging from the nozzle; i.e., the Reynolds number is high.
(i) Changes in the jet structure due to the centripetal force of curvature are negligible.

2.2 Notation

Figure 1 illustrates the jet model. The notation used in figure 1 and in the derivation is as follows:

\(\text{D} \) = distance from attachment wall to the side of the nozzle (ft)

\(\text{J} \) = jet momentum flux per unit depth (lbf/ft)

\(p_0 \) = stagnation pressure of the fluid supplying the jet (lbf/ft²)

\(p_B \) = static pressure of fluid in bubble (lbf/ft²)

\(p_\infty \) = static pressure of fluid surrounding the jet (lbf/ft²)

\(Q \) = volume flow (ft³/sec)

\(Q_e \) = volume flow at nozzle exit (ft³/sec)

\(Q_t \) = total volume flow at a distance \(s \) from the nozzle exit (ft³/sec)

\(R \) = radius of a theoretical circular arc described by the jet centerline (ft)

\(s \) = arbitrary distance along the jet centerline from the nozzle exit (ft)

\(s_0 \) = distance from the hypothetical (apparent) origin of the jet to the nozzle exit.

\(t \) = parameter from Goertler's equation for jet velocity profile (dimensionless)
\(u = \) jet stream velocity (fps)

\(u_e = \) uniform jet stream velocity at the exit (fps)

\(u_0 = \) jet stream velocity at the centerline (fps)

\(w = \) nozzle width (ft)

\(y = \) distance from the jet centerline to an arbitrary point measured on a line normal to the centerline (ft)

\(y' = \) distance from the jet streamline that passes through the attachment point to the jet centerline, measured on a line normal to the centerline

\(x = \) distance from the attachment point to the offset wall measured along the attachment wall (ft)

\(\alpha = \) angle between the attachment wall and a line parallel to the nozzle axis (rad or deg)

\(\theta = \) angle between the jet centerline and the attachment wall (rad or deg)

\(\rho = \) density of the fluid (lbf/\text{ft}^3)

\(\sigma = \) spread parameter for a free turbulent jet (dimensionless)

\(g_c = 32.2 \text{ lbf-ft/sec-lbf} \)

Figure 1. Mathematical model of the attachment of a two-dimensional jet to an offset, inclined adjacent wall.
2.3 Derivation of Equations

2.3.1 Parameter (t)

The parameter t, which is taken from the velocity-profile equation given by Goertler (ref 3), is derived as follows (fig. 1):

Goertler gives the jet stream velocity u as a function of the distance s the jet has traveled, the distance y from the centerline, and the jet centerline velocity u_0 at a distance s from the nozzle exit, thus,

$$u = u_0 \text{sech}^2 \left(\frac{\sigma y}{s + s_0} \right)$$

$$u_0 = \left[\frac{3J0g_c}{4\rho(s + s_0)} \right]^{1/2}$$

where s_0 is the distance from the nozzle exit to the apparent jet origin (the point from which the jet appears to emanate) y is an arbitrary distance from the centerline, σ is the jet spread parameter, and J is the jet momentum flux.

The velocity profile at the nozzle exit is uniform (fig. 2a) by assumption. A representative jet velocity profile at s per Goertler's expression is illustrated in figure 2b.

(a) Jet stream velocity profile assumed at $s = 0$

(b) Jet stream velocity profile at a distance $s > 0$ per Goertler's expression

Figure 2. Jet stream velocity profiles.
In general, volume flow is not conserved, but by assumption, there exists a line of constant volume flow which is called the attachment streamline. The attachment streamline is a distance $w/2$ from the jet centerline at the nozzle exit and a distance y' from the centerline at a distance s from the nozzle. The fluid is incompressible and two dimensional by assumption; hence, one half the jet volume flow is

$$ Q/2 = \int_{0}^{y'} u dy $$

To solve for s, one half the volume flow $Q/2$ at the nozzle exit is first assumed to be equal to one half the volume flow $Q/2$ at $s > 0$ using Goertler's expression, i.e.,

$$ \frac{Q}{2} = \frac{Q}{2} \text{ or } u \frac{w}{2} = \int_{0}^{y'} u dy $$

where w is the nozzle width and u_e is the velocity at the nozzle exit. Substituting (1) into (2)

$$ \int_{0}^{y'} \left[\frac{3 J \sigma g C}{4 \rho (s + s_o)} \right]^{1/2} \text{ sech}^2 \left(\frac{s + s_o}{s + s_o} \right) dy = u_e \frac{w}{2} $$

By integrating and noting that tanh $0 = 0$,

$$ \left[\frac{3}{4} \frac{J {s + s_o} g C}{\rho \sigma} \right]^{1/2} (s + s_o) \tanh \left(\frac{s + s_o}{s + s_o} \right) = u_e \frac{w}{2} $$

which simplifies to

$$ \left[\frac{3}{4} \frac{J (s + s_o) g C}{\rho \sigma} \right]^{1/2} \tan \left(\frac{s + s_o}{s + s_o} \right) = u_e \frac{w}{2} $$

which is an expression for the volume flow for half the stream at the nozzle exit. Since the jet momentum flux at the nozzle exit is

$$ J = \frac{\rho u_e w}{C} $$

the normalized volume flow for half the stream becomes

$$ \left[\frac{3(s + s_o)}{w \sigma} \right]^{1/2} \tan \left(\frac{s + s_o}{s + s_o} \right) = 1 $$
Then the dimensionless parameter t is defined as

$$
t = \tanh \frac{\text{cy}}{s + s_o}
$$

(4)

and

$$
t'^2 = \tanh^2 \left(\frac{\text{cy}'}{s + s_o} \right) = \frac{w_c}{3(s + s_o)}
$$

(5)

which is the equation of the streamline.

Figure 3 shows that Goertler's equation does not adequately represent the volume flow at the nozzle exit. However, the approximation is made: the volume flow at the nozzle exit $u_e(w/2)$ is forced to be equal to the volume flow at the nozzle exit given by Goertler's equation $\int_0^\infty u dy$. This permits an evaluation of s_o.

![Figure 3. Comparison of Goertler's equation prediction with assumed flow at nozzle exit.](image)

\[
\int_0^\infty u dy = u_e \frac{w}{2}
\]

and proceeding as with equation (2)
\[
\left[\frac{3}{4} \frac{J(s + s_0) s_0}{\rho \sigma} \right]^{1/3} \tanh \left(\frac{\sigma y}{s + s_0} \right)_{0}^{\infty} = u_e \frac{w}{2}
\]

At the nozzle exit \(s = 0 \) and \(J = \frac{\rho u_e^2 w}{g_c} \)

then

\[
\left[\frac{3}{4} \frac{\rho u_e^2 w s_0 g_c}{4 \rho \sigma} \right]^{1/3} = u_e \frac{w}{2}
\]

which becomes

\(s_0 = \frac{\sigma w}{3} \) \hspace{1cm} (7)

Substituting (7) into (5) yields

\[
\frac{3s}{\sigma w} = \frac{1}{t^{t/2}} - 1
\]

for the attachment streamline.

2.3.2 Attachment Angle

Two approaches that may be used to express the attachment angle \(\theta \) as a function of \(t \) are illustrated in figure 4. The first

Figure 4. Mathematical model for control-volume and attachment-point theories.
The approach evaluates the forces \((J_1, J_2, \text{ and } J_3) \) acting at the attachment point and assumes that the momentum flux component parallel to the wall is conserved. This representation of the attachment mechanism will be called the attachment-point model. The second approach considers the forces due to \((p_0 - p_w)\) acting on the control volume inclosed by the centerline of the jet, the attachment wall and offset wall, shown as the shaded region in Figure 4. The two models considered are attempts to represent the mechanism of attachment. There seemed no reason to prefer either model, and both were developed.

Attachment-Point Model—An expression for \(\theta \) in terms of \(t \) is obtained as follows: From Figure 4 one can write

\[
J_1 - J_2 = J \cos \theta \tag{9}
\]

The \(J_i \)'s can be written as integrals of the form

\[
\int p u^2 dy
\]

Using the Goertler equation (1), this becomes

\[
\int p u^2 dy = \rho \left(\frac{3J_0}{4\rho (s + s_0)} \right) \left(\frac{s + s_0}{c} \right) \int \text{sech}^4 \left(\frac{cy}{s + s_0} \right) \frac{dy}{s + s_0}
\]

Integrating and substituting the value of \(t \) from (4)

\[
J_2 = \int_{y'}^{y} p u^2 dy = \frac{J_2}{4} (3t - t'^3) \bigg|_{y'}^{\infty}
\]

Since \(t = \tanh \frac{cy}{s + s_0} \), \(\tanh 0 = 0 \), and \(\tanh \infty = 1 \),

\[
J_2 = \frac{J_2}{4} (3-1) = \frac{J_2}{4} (3t' - t'^3) = \frac{J_2}{4} (3t' - t'^3)
\]

Now

\[
J_1 = \int_{-\infty}^{y'} p u^2 dy = \int_{-\infty}^{0} p u^2 dy + \int_{0}^{y'} p u^2 dy
\]

Since

\[
J = \int_{-\infty}^{\infty} p u^2 dy
\]
and since \(u \) is symmetric

\[
\frac{J}{2} = \int_{-\infty}^{0} pu^2 dy = \int_{0}^{\infty} pu^2 dy
\]

Thus

\[
J_1 = \frac{J}{2} + \int_{0}^{\infty} pu^2 dy
\]

Proceeding as with \(J_2 \),

\[
J_1 = \frac{J}{2} + \frac{J}{4} (3t' - t'^3)
\] \hspace{1cm} (11)

Inserting the values of \(J_1 \) and \(J_2 \) from (10) and (11) into (9)

\[
J \cos \Theta = J \left(\frac{1}{2} + \frac{3}{4} t' - \frac{1}{4} t'^3 \right) - J(\frac{1}{2} - \frac{3}{4} t' + \frac{1}{4} t'^3)
\]

and finally

\[
\cos \Theta = \frac{3}{2} t' - \frac{t'^3}{2}
\] \hspace{1cm} (12)

Control-Volume Model—The force equation states that the momentum flux returned to the low-pressure region \(p_B \) balances the pressure difference times the area normal to the wall. This can be expressed as

\[
J \cos \alpha - J_1 = (p_{\infty} - p_B) (D + \frac{W}{2}) \cos \alpha
\] \hspace{1cm} (13)

From figure 4

\[
\cos \alpha = \frac{A}{R - D - \frac{W}{2}} \text{ and } \cos \Theta = \frac{A}{R}
\]

thus

\[
R - \frac{A}{\cos \alpha} = D + \frac{W}{2}
\]

Substituting \(\cos \Theta = \frac{A}{R} \) gives

\[
R(1 - \frac{\cos \Theta}{\cos \alpha}) = D + \frac{W}{2}
\] \hspace{1cm} (14)
Using (14) and the approximation $\Delta p = \frac{J}{R}$ (justified in appendix A) in (13)

$$J \cos \alpha - J_1 = \left(\frac{J}{R}\right) R \left(1 - \frac{\cos \theta}{\cos \alpha}\right) \cos \alpha$$

which simplifies to

$$\cos \alpha - \frac{J_1}{J} = \cos \alpha - \cos \theta$$

Hence

$$\cos \theta = \frac{J_1}{J}$$

which is equivalent to (9) with $J_2 = 0$.

Substituting the value of J_1/J from equation (11) gives

$$\cos \theta = \frac{J}{4} \left(3t' - t''\right) + \frac{J}{2} = \frac{1}{2} + \frac{3}{4} t' - \frac{t''}{4}$$

As in (12), $\cos \theta$ again involves only y, a, and σ, and not α. Equations (12) and (16) are the same as those obtained by Borque and Newman even though the wall angle α has been considered in this derivation.

Comparison of Models—Two different expressions for $\cos \theta$ as a function of t' have been derived. In the process, two expressions relating (J, J_1, J_2) and $\cos \theta$ have occurred.

- **attachment-point model:** $J_1 - J_2 = J \cos \theta$ (16)
- **control-volume model:** $J_1 = J \cos \theta$ (15)

The primary reason for this difference in (9) and (15) is that the difference of pressure $P_{\infty} - P_R = \Delta p$ was neglected in the attachment-point model. The reaction of the stream to J_2 tends to move the attachment point downstream, hence to increase x. The effect of Δp on the jet is to decrease x by shrinking the trapped bubble. Thus the consideration of Δp tends to reduce the magnitude of J_2. If the control volume model were more nearly correct—as measured by the discrepancy between the theory and experimental data—then one might conclude that the effect of Δp tends to cancel J_2. However, if the attachment-point model agreed more closely with experimental data, then this would not be so.
2.3.3 Geometry of Attachment

Substituting (7) into (4)

\[\tanh^{-1} t' = \frac{y'}{s + \frac{cw}{3}} \]

Then solving for \(y' \) and substituting the value of \(3s/cw \) from (8)

\[y' = \frac{3s+cw}{3s} \tanh^{-1} t' = \frac{w}{3} \left[\frac{1}{t'w - 1 + 1} \right] \tanh^{-1} t' \]

Finally

\[y' = \frac{w}{3t'w} \tanh^{-1} t' \quad (17) \]

For the case where \(s \) is the distance from the nozzle exit to the attachment point, (fig. 4)

\[s = R (\theta + \alpha) \quad (18) \]

and combining (8) and (18) yields

\[\frac{1}{t'w} - 1 = \frac{3R(\theta + \alpha)}{cw} \]

Hence

\[\frac{R}{w} = \frac{3(\theta + \alpha)}{(t'w - 1)} \quad (19) \]

Again using figure 4

\[A = (R - D - \frac{w}{2}) \cos \alpha = R \cos \theta \]

or

\[R - D - \frac{w}{2} = \frac{R \cos \theta}{\cos \alpha} \]

solving for \(\frac{D}{w} \)

\[\frac{D}{w} = \frac{R}{w} \left(1 - \frac{\cos \theta}{\cos \alpha} \right) - \frac{1}{2} \quad (20) \]
Now substituting (19) into (20)

\[D = \frac{\sigma}{3(\theta + \alpha)} \left(\frac{1}{t^2 \lambda} - 1 \right) \left(1 - \cos \theta \right) - \frac{1}{2} \]

(21)

This is the first of the required parametric equation. It reduces to the form found by Borque and Newman as shown below.

At \(\alpha = 0 \), (21) becomes

\[\frac{D}{w} = \frac{\sigma}{3 \theta} \left(\frac{1}{t^2 \lambda} - 1 \right) \left(1 - \cos \theta \right) - \frac{1}{2} \]

which is Borque's equation (15); and at \(\alpha = \theta \), it reduces to \(-\frac{1}{2}\).

(The negative sign arises from the convention that positive \(D \) is directed away from the centerline of the jet while positive \(R \) is directed away from the common vertex of \(\alpha \) and \(\theta \).)

Referring to figure 1,

\[x_1 = (R - D - \frac{w}{2}) \sin \alpha \]
\[x_2 = R \sin \theta \]
\[x_3 = y'/\sin \theta \]

and \(x = x_1 + x_2 - x_3 \)

Combining these yields

\[\frac{x}{w} = \frac{(R - D - \frac{w}{2}) \sin \alpha}{w} + \frac{R \sin \theta}{w} - \frac{y'}{w \sin \theta} \]

(22)

Substituting (17) and (19) into (22)

\[\frac{x}{w} = \frac{\sigma}{3(\theta + \alpha)} \left(\frac{1}{t^2 \lambda} - 1 \right) \left(\sin \alpha + \sin \theta \right) - \frac{\tanh^{-1} \left(\frac{D}{(\alpha + 1 \theta) \sin \alpha} \right)}{3t^2 \sin \alpha} \]

(23)

which is the second of the required parametric equation. If the value \(\alpha = 0 \) is used (23) reduces to

\[\frac{x}{w} = \frac{\sigma}{3 \theta} \left(\frac{1}{t^2 \lambda} - 1 \right) \sin \theta - \frac{\tanh^{-1} \left(\frac{y'}{3t^2 \sin \theta} \right)}{3t^2 \sin \theta} \]

which is Borque's equation (17) for the case, \(\alpha = 0 \).
Taking $\alpha = 0$ and $\frac{D}{w} = -\frac{1}{2}$,

$$\frac{x}{w} = \frac{\sigma}{3\alpha} \left(\frac{1}{\tan \alpha} - 1 \right) \sin \alpha - \frac{\tanh^{-1} \frac{t'}{3\lambda} \sin \alpha}{\sin \alpha}$$

which is Boreux's equation (23) for the 0 offset case assuming $\alpha = 0$. Since $\frac{D}{w}$ is measured from the centerline, $-\frac{1}{2}$ corresponds to 0 offset.

This more general theory is expected to give more accurate results for small angles when an offset $\frac{D}{w} > 1$ is used, since the separation bubble will be larger and the assumption that $\alpha = 0$ is not necessary.

2.3.4 Entrainment

The parameter σ is a floating constant that accounts for the geometrical spread of the jet due to entrainment. Previous experimental work by Reichardt (ref 4) estimated the value of σ as 7.67 for a straight jet; however, due to the curvature in this case, the entrainment, hence the value of σ, would be expected to be different. To obtain an expression for the entrained volume flow in terms of s and σ, (3) is required.

If y is taken from 0 to ∞, then $\frac{Q}{2}$ is equal to the total volume flow on one side of the jet centerline, including the entrained flow. Thus

$$\frac{3}{4} \left[\frac{J(s+s_0)}{\rho \sigma} \right]^{\frac{1}{2}} \tanh \left(\frac{Qy}{s+s_0} \right) = \frac{Q}{2}$$

or

$$\frac{3}{4} \left[\frac{J(s+s_0)}{\rho \sigma} \right] = \frac{Q}{2}$$

and since

$$J = \rho u_w^2 w$$

(24) becomes

$$\frac{u_w^2}{2} \left[\frac{3}{4} \left(\frac{s+s_0}{\rho \sigma} \right) \right]^{\frac{1}{2}} = \frac{Q}{2}$$

(25)
Since \[\frac{Q_e}{2} = \frac{\nu w}{2} \] from (2) and defining \[q' = \frac{Q_T}{\nu w} = \frac{Q_T}{Q_e} \] and substituting into (25)

\[q' = \left[3 \left(\frac{s + s_o}{w \sigma} \right) \right]^{1/3} \] (26)

The entrained flow, i.e., the excess over the flow at the nozzle exit is \(Q_T - Q_e \) and is normalized as

\[\frac{Q_T - Q_e}{Q_e} = q' - 1 \]

At the origin \(Q_e = Q_T \), so that the entrained flow is zero. Hence rewriting (26) as

\[q' - 1 = \left[\frac{3(s + s_o)}{w \sigma} \right]^{1/3} - 1 \] (27)

yields an expression for the normalized entrained volume flow in terms of \(s \) and \(\sigma \). The value of \(q' \) varies directly as \(s \), the distance the stream travels, and inversely as \(\sigma \), the spread parameter and \(w \), the nozzle width. It also must be true that the entrained flow varies directly as the separation bubble size, since the bubble size also varies with \(s \) and \(\sigma \). The separation bubble size, hence the entrainment, is determined by \(D/w \) and \(\alpha \). If the entrained flow is determined by \(s/\sigma \), then \(D/w \) and \(\alpha \) must affect the distance \(s \) and the spread parameter \(\sigma \).

2.4 Computation

It was not possible to obtain an explicit expression for \(x/w \) as a function of \(\alpha \) and \(D/w \) in a form that could be used for computation. Instead, parametric equations were derived and the attachment distance was computed indirectly.

First (12) and (16) give two different expressions for \(\cos \theta \) in terms of the parameter \(t' \) and will be referred to as the point and the volume equations, respectively. Second, (21) allows the computation of \(D/w \), the offset distance, in terms of \(t' \), \(\alpha \), and \(\sigma \). Finally (23) permits the computation of \(x/w \) in terms of the same quantities. For each selected value of \(\sigma \) and \(\alpha \), a range of values for \(t' \) were selected, so that \(\theta \) was less than 90 deg. This required preliminary computations to
determine the range for t'', since the range differed for the point and volume equations and for each value of σ and α used. When the ranges were determined, the values of θ, R/w, y/w, D/w, x/w were increased at small intervals on each of the selected σ values and for $\alpha = 0$ to 55 deg. An example of such a page of computations, which was done on an IBM 7090 computer, is included as Table I. For each σ and α condition, the x/w that corresponded to $D/w = 0$, 2, 4, 10 was found by interpolation. The results are shown in Table II. This operation was repeated and the resulting points plotted and connected for each of the D/w values for $\alpha = 0$ to 55 deg. Each page corresponds to a value of σ and α, in addition to the family of four theoretical curves, the computed data points. Figures 11 through 17 present the families of curves σ in the range 1 to 15 for the control-volume model; and figures 18 through 21 present the families for values of $\sigma = 15, 20, 25, 30$ for the attachment-point model.

Table I. Sample Computer Print-out Sheet, $\sigma = 2$

<table>
<thead>
<tr>
<th>t''</th>
<th>θ</th>
<th>R/w</th>
<th>x/w</th>
<th>y/w</th>
<th>D/w</th>
<th>x/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0499998-01</td>
<td>1.0499998-01</td>
<td>1.0499998-01</td>
<td>1.0499998-01</td>
<td>1.0499998-01</td>
<td>1.0499998-01</td>
<td>1.0499998-01</td>
</tr>
</tbody>
</table>

The numbers on this page are to be interpreted as whole numbers followed by a power of ten; thus 4.0999998-01 is read 4.
Table II. Interpolated values of $\frac{x}{w}$ and θ for selected $\frac{D}{w}$

<table>
<thead>
<tr>
<th>$\frac{D}{w}$</th>
<th>$\frac{x}{w}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000000E+00</td>
<td>1.0929889E-01</td>
</tr>
<tr>
<td>2.0000000E+00</td>
<td>2.8548701E-01</td>
</tr>
<tr>
<td>4.0000000E+00</td>
<td>6.2584630E-01</td>
</tr>
<tr>
<td>6.0000000E+00</td>
<td>9.6303045E-01</td>
</tr>
<tr>
<td>8.0000000E+00</td>
<td>1.2998519E-01</td>
</tr>
<tr>
<td>1.0000000E+01</td>
<td>1.6368838E-01</td>
</tr>
</tbody>
</table>

3. EXPERIMENTAL PROGRAM

Experiments were conducted with both air and water to determine the attachment distance as a function of offset distance and wall angle. The test models were designed to obtain essentially two-dimensional incompressible turbulent flow.

The test with a Mach 0.5 air jet was conducted with offset distances of 0, 2, 4, and 10 nozzle widths; the wall angle was moved in 5-deg increments from 0 to 55 deg for each offset. Tests with a water jet (simulated Mach 0.5) were conducted with offset distances of 0, 4, and 8 nozzle widths; and the wall angle was moved in 2-deg increments from 0 to 40 deg or less for each offset. The attachment distances for each model and for computer solutions of the parametric equations for various values of the spread parameter σ are plotted in figures 11 through 21.

3.1 Air-Jet Test Model

The test model used in air-jet tests is shown in figure 5. The nozzle aspect ratio (nozzle height to width) is 8, which is a satisfactory approximation of two-dimensional flow, particularly when measurements are made halfway between the constraining walls.

The nozzle is 1/32-in. wide; the attachment width is 10 nozzle widths long, and can be rotated through 60 deg and offset as 10 nozzle widths.

The attachment point is the location on the wall where the stream divides, so that all fluid on one side of the bubble and all fluid on the opposite side continues along the surface of the wall, the dynamic pressure vector is in the direction of the stream beyond the attachment point, but back toward the inclosed bubble. Therefore, the point on the surface at which the total dynamic pressure goes through a null shall be good.
Figure 5. Schematic of experimental jet arrangement.

Figure 6. Isometric view of experimental air-jet arrangement.
estimate of the attachment point. To determine the location of the null, a single, 0.022-in. o.d., 0.012-in. i.d. pitot tube was placed parallel to the nozzle axis and moved along the attachment wall with the pitot probe bent slightly to follow the wall. The pitot was mounted on a calibrated jeweler's three-slide rest which measured the distance along the wall, with height adjustment maintained halfway between the constraining plates as shown in figure 6. The point at which the dynamic pressure went through zero was recorded as the attachment point. The data obtained are plotted as open symbols on figures 11 and 12. This method was used in preference to static probes, which would have required moving for each test.

The output of the pitot was fed to a pressure-to-voltage transducer, amplified, and readout on an x-y recorder. This proved to be an extremely sensitive arrangement and a few thousandths of an inch of pitot movement was readily detectable on the recorder. When the attachment bubble was very small, as in the case of zero offset and small \(\alpha \), instability due to the probe size was encountered. When \(\alpha \) was less than 25 deg at zero offset, the width of the bubble was less than the probe diameter, and the attachment point could not be located.

An inherent error is associated with this measurement, because the pitot opening is not a true point, and the angle which the attaching jet stream makes with the wall, changes.

The pitot tube has an opening of about 1/3 nozzle width and tends to average the high and low pressures. The smaller the angle \(\alpha \), the greater will be the averaging, which will tend to give an apparent x/w greater than the actual value. This effect will decrease to a minimum as the attachment angle approaches 90 deg, as seen from figure 7.
Figure 8. University of Maryland water table.
3.2 Water-Jet Test Model

Figures 8, 9, and 10 illustrate the water table used in these experiments, which were conducted* at the University of Maryland Wind Tunnel Operations Department (Ref 5). The water table is 22 ft long and 30 in. wide. The water flow was gradually channeled from the 30-in. wide stagnation region to the nozzle throat, which was 0.5 in. wide. An estimate of the simulated Mach number on the water table, provided by the University (Ref 6), is Mach number = \(\left[\frac{2(d_0 - d)}{d} \right]^{1/2} \) where \(d_0 \) = stagnation region depth, \(d \) = depth at nozzle exit. Water depth readings were recorded at the nozzle exit and stagnation region; the simulated Mach number used was 0.5.

The distance along the attachment wall was measured by introducing a dye and noting the point of stagnation on the wall. The dye was introduced via a small probe placed perpendicular to the water table and adjacent to the attachment wall. The water jet data are plotted as solid symbols on Figure 11 through 21. Offsets of 0, 0.5, and 1 nozzle widths were used, and, for each offset, the attachment wall was moved at 2-deg increments as far as the table width would permit. With the geometry chosen, it was impossible to increase the angle \(\alpha \) to greater than 40-deg, and the wall was only 25 nozzle widths as it further to obtain greater \(\alpha \) was not considered.

*Contract DA-49-186-502-ORD-913
3.3 Comparison of Results

The attachment-point equations give satisfactory agreement with the experimental results for offset distances of 0, 2, and 4 nozzle widths at values of \(\alpha \) less than 40 deg using \(\sigma = 15 \) and \(\sigma = 20 \) (fig. 18, 19). Agreement is poor for other values of \(\alpha \) and for an offset distance of 10 nozzle widths and does not appear to improve for other values of \(\sigma \).

The control-volume computations agree with the experimental results, but a single value of \(\sigma \) does not fit for all conditions. If it is assumed that the value of \(\sigma \) for which the data and theory agree is the effective \(\sigma \) for the particular \(D/w \) and \(\alpha \), then the following observations can be made by examining figures 11 through 17: as \(\alpha \) increases, the value of \(\sigma \) decreases, and as \(D/w \) increases, the value of \(\sigma \) decreases. The relations can be very crudely estimated as shown in the chart below.

Approximate values of \(\sigma \) for combinations of \(\alpha \) and \(D/w \)

<table>
<thead>
<tr>
<th>(D/w)</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
</tr>
</tbody>
</table>

These results are consistent with the development given in Sec. 2.3.4; i.e., \(\sigma \) is a function of \(D/w \) and \(\alpha \) hence of bubblesize.

The width of the water table severely limits the wall length and the angle \(\alpha \) through which it may turn. For the data available, it is noted that the theoretical control-volume computations for \(\sigma = 7 \) and 8 (fig. 14, 15) show excellent agreement with the data for \(D/w = 0, 2, \) and 4 nozzle widths over the range of possible values of \(\alpha \). The computations of \(\sigma = 6 \) agree better with the \(D/w = 4 \). The theoretical attachment-point computations agree closely with the data for \(D/w = 0 \) using a \(\sigma = 15 \) and for \(D/w = 2 \) and 4 using a \(\sigma = 20 \).

The water and air jet results show excellent agreement over the entire range. Since two different fluids, two different devices, and two different methods of measuring the attachment were used by two independent sets of experimenters, the excellent agreement is remarkable.

4. SUMMARY

Equations were developed that predict the attachment distance \(x/w \) in terms of offset \(D \) and wall angle \(\alpha \) for a two-dimensional incompressible
Figures 11 through 14. Comparison of observed with theoretical computations based on control.
Figures 15 through 17. Comparison of observed attachments with theoretical computations based on control variables.
Figures 18 through 21. Comparison of observed attachment distances with theoretical computations based on attachment distances.
turbulent jet. The expressions are obtained in terms of r_t which is defined as

$$ t = \tanh \left[\frac{ay}{(S+s_o)} \right] $$

where y is the distance from the centerline, s is the distance the jet has traveled, and σ is a spread parameter. Using two expressions for the attachment angle θ were derived.

attachment-point model: $\cos \theta = \frac{3}{2} - \frac{t^{1/3}}{2}$

countrol-volume model: $\cos \theta = \frac{1}{2} + \frac{3t'}{4} - \frac{t'}{4}$

Introducing the geometry, the parametric expressions for D/w developed are

$$ D = \frac{\sigma}{3(\theta+\alpha)} \left(\frac{1}{t^{1/2}} - 1 \right) \left(1 - \cos \theta \right) - \frac{1}{2} $$

and

$$ x = \frac{\sigma}{3(\theta+\alpha)} \left(\frac{1}{t^{1/2}} - 1 \right) \left(\sin \alpha + \sin \theta \right) \frac{\tanh^{-1} t'}{3t'^{1/2} \sin \theta} $$

Computation were performed using both expressions for several values of α.

Experiments were carried out on an airjet model using a wind tunnel to determine the attachment point for values of $D/w = 0, 2, 4$, and $\alpha = 0, 2, 4$, and $a = 0, 2, 4, \ldots, 40$ deg. In both cases of x/w versus α formed distinct families that located the hyperbolas with the D/w determining the location of the x and the α designating the position on the horizontal axis. The water jet results show excellent agreement with the control-volume model computations for $\alpha = 0$ for $D/w = 0, 2, 4$ and 4 over the range of wall angles. The computed value of x/w for airjets with control-volume model agree with the experimentally determined α allowed to change inversely as D/w and α. This is reversed as the entrainment varies inversely as σ (27), hence entrained flow decreases directly as D/w and α. Computations based on the attachment-point model for values of $\sigma = 15$, and $\alpha = 20$ and for $0, 2$, and 4 nozzle angles agree with test data.

5. CONCLUSIONS

The equations developed in this report show good agreement with the data obtained from water and airjet experimental data.
parameter is allowed to vary. The computations based on the control-volume model showed the effective σ was inversely related to both D/w and α. The variation in σ is consistent with the entrained mass flow is inversely related to σ. Using the point model, the effective σ appears to be directly related to D/w and α. This model neglects the effect of bubble pressure and the control volume model is the preferred analytical representation. The theoretical development requires a number of assumptions, the jet profile equation is used, which assumes that the jet is that of a free jet and is constant. In this report, the effective σ appears to be directly related to D/w and α or of other parameters of known value.

6. REFERENCES

(2) R. A. Sawyer, "The Flow Due to a Two-Dimensional Jet Issuing Parallel to a Flat Plate," Journal of Fluid Mechanics, Part 4, p 543.

APPENDIX A. Derivation of \(R = \frac{J}{\Delta p} \)

This equation can be arrived at using the well-known relations

\[
 R \omega^2 = a_n, \quad \omega = \frac{V}{R}
\]

Writing

\[
 \text{normal acceleration} = \frac{\text{pressure drop} \cdot \text{area}}{\text{density} \cdot \text{volume}}
\]

as

\[
 a_n = \frac{(p_o - p) \cdot A}{\rho \cdot A \cdot w} = \frac{\Delta p}{\rho w}
\]

Substitute into above

\[
 R \frac{V^2}{R^2} = \frac{\Delta p}{\rho w}
\]

Simplify

\[
 \frac{1}{R} = \frac{\Delta p}{\rho w \cdot V^2}
\]

Since

\[
 2 (p_o - p) w = \rho V^2 w = J
\]

\[
 R = \frac{\rho w V^2}{\Delta p} = \frac{J}{\Delta p}
\]

\(a_n \) normal acceleration (ft/sec²)
\(A \) area at the jet centerline (ft²)
\(R \) radius of the jet curvature (ft)
\(V \) linear velocity of the jet (ft/sec)
\(w \) jet width (ft)
\(\rho \) jet density (lbm/ft³)
\(\omega \) jet angular velocity (rad/sec)
DISTRICT
Office of the Director of Defense Research & Engineering
AMC Detachment No. 1, Temporary Bldg I
Attn: Technical Library (2 copies)

Commander
U.S. Army Artillery & Guided Missile School
Fort Sill, Okla
Attn: Combat Development Department

Commander
U.S. Naval Ordnance Laboratory
White Oak, Silver Spring 18, Md.
Attn: Technical Library (2 copies)

Commanding General
White Sands Missile Range
White Sands, New Mexico
Attn: ORDDES-OM, Tech Library

Commanding Officer
Watervliet Arsenal
Watervliet, New York
Attn: Technical Library

Transportation Research Command
Ordnance Liaison Officer
Fort Eustis, Va.

Commanding Officer
Picatinny Arsenal
Dover, New Jersey
Attn: Technical Library (3 copies)

Commanding General
Ordnance Weapons Command
Rock Island, Ill
Attn: Technical Library

Ordnance Technical Intelligence Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: Technical Library

Commanding Officer
Ordnance Special Weapons
Ammunition Command
Dover, New Jersey
Attn: Technical Library

(This document contains)
(blank pages that were)
(not filmed)
DISTRIBUTION (Cont'd)

Commanding Officer
Ordnance Materials Research Office
Watertown Arsenal
Watertown 72, Mass.
 Attn: Director's Office

Director, Special Weapons
Office of the Chief of Research & Development
Department of the Army
Washington 25, D. C.

Commanding General
U.S. Army Electronics Proving Ground
Fort Huachuca, Arizona
 Attn: Technical Library

Director, Army Research Office
Office of the Chief of Research & Development
Department of the Army
Washington 25, D. C.
 Attn: Technical Library

Commanding Officer
Department of the Army
Springfield Armory
Springfield 1, Mass.
 Attn: TIU

Commanding Officer
AMC Detachment No. 1 Temporary Bldg 1
Washington 25, D. C.
 Attn: ORDTU
 Attn: ORDTS
 Attn: ORDTN
 Attn: ORDTB
 Attn: ORDTX
 Attn: ORDTW

Commanding General
Headquarters, U.S. CONARC
Materials Developments Section
Fort Monroe, Virginia
 Attn: MD-1

Commanding Officer
New York Ordnance District
770 Broadway
New York 3, N. Y.
 Attn: William P. Blake
DISTRIBUTION (Cont'd)

Commanding Officer
Army Research Office (DURHAM)
Box CM, Duke Station
Durham, N. C.

Commanding General
U.S. Army Ordnance Missile Command
Redstone Arsenal, Alabama
Attn: Technical Library (3 copies)
Attn: ORDXM-REF, Bldg 7446, Charles Schriener

Commanding General
Aberdeen Proving Ground
Branch 3, Bldg 400
Aberdeen, Maryland
Attn: Tech Library (4 copies)

U.S. Army Artillery Board
Missile Division
Fort Bliss, Texas
Attn: Technical Library

U.S. Naval Underwater Sound Laboratory
Fort Trumbull
New London, Conn.
Attn: Technical Library
Attn: Research Division, Dr. R. Berman

Department of the Navy
Chief, Office of Naval Research
Washington 25, D. C.

Department of the Navy
RRRE-3L
Bureau of Naval Weapons
Washington 25, D. C.
Attn: S. J. German

Commander
Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland
Attn: B. Gilbert

Commander
U.S. Naval Ordnance Laboratory
Corona, California
Attn: Technical Library

Commander
U.S. Naval Ordnance Test Station
China Lake, California
Attn: Technical Library
Distribution (Cont'd)

Commanding Officer
U.S. Army Limited War Laboratory
Aberdeen Proving Ground, Maryland
Attn: Lt Col J. T. Brown

Mr. W. S. Hinman, Jr.
Deputy Assistant Secretary of the Army
Research & Development
Room 3E350, The Pentagon
Washington 25, D. C.

Office of the Director of Defense
Research & Engineering
Asst. Dir of Research Engineering (Defense)
The Pentagon, Washington 25, D. C.

Institute for Defense Analysis
Gordon Rausback
Advanced Research Projects Div
The Pentagon,
Washington 25, D. C.

Jet Propulsion Laboratory
Pasadena, California
Attn: Library

USCONARC
Liaison Group
The Pentagon (Rm 3E366)
Washington 25, D. C.

Office of the Director of Defense Research & Engineering
AMC Detachment No. 1
Temporary Bldg I
Washington 25, D. C.
Attn: Director of Weapons Systems Evaluation (Tel 24812)

Commander
U. S. Naval Ordnance Test Station
China Lake, California
Attn: Technical Director

Commander
Edwards Air Force Base, California
Attn: AFTEC(FTOCT)
DISTRIBUTION (Cont'd)

Commanding Officer
Los Angeles Ordnance District
55 S. Grand Avenue
Pasadena, California
Attn: V. V. Barker

Commanding Officer
Frankford Arsenal
Philadelphia 37, Pennsylvania
Attn: Reference Librarian (3 copies)

Commanding General
Engineering Research & Development Laboratory
Port Belvoir, Virginia
Attn: Technical Library

Department of the Army
Office of the Chief of Research & Development
Washington 25, D.C.
Attn: Chief, Combat Material Div

Department of the Army
Army Research Office
The Pentagon, Washington 25, D.C.
Attn: Dr. R. Watson, Office, Chief of R & D

Commanding General
OTAC
Detroit Arsenal
Centerline, Mich
Attn: Technical Library

Commandant
Command & General Staff College
Archives
Fort Leavenworth, Kansas

Commanding Officer
Chemical Warfare Laboratories
Army Chemical Center, Md.
Attn: Technical Library

Commanding Officer
Army Biological Laboratories
Fort Detrick, Frederick, Md.
Attn: Technical Library

Commanding Officer
U.S. Army Signal Research & Development Laboratory
Fort Monmouth, N.J.
Attn: Technical Library
Attn: Arthur Daniel
DISTRIBUTION (Cont'd)

Commander
Naval Research Laboratory
Washington 25, D. C.
Attn: Technical Library

Commandant
U.S. Marine Corps
Code 404F
Washington 25, D. C.

Department of the Navy
Bureau of Naval Weapons
Washington 25, D. C.
Attn: Code CACF-3

Department of the Navy
Chief of Naval Operations
R & D Planning Group
The Pentagon, Washington 25, D. C.

Commander
Aeronautical Systems Division
Wright-Patterson Air Force Base, Ohio
Attn: Technical Library

Department of the Air Force
Deputy Chief of Staff for Development
Director of R & D
The Pentagon, Washington 25, D. C.

Commander
Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: TIPDR (10 topics)

Commander
Armed Services Technical Intelligence Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: TIPDR-B

Commander
Air Research & Development Command
Andrews Air Force Base
Washington 25, D. C.
Attn: Technical Library - B
DISTRIBUTION (Cont'd)

Commander
Air Proving Ground Center
Eglin Air Force Base, Florida
Attn: Technical Library

Commander
Air Material Command
Wright-Patterson Air Force Base, Ohio
Attn: LMDN

Air Force Systems Command
Space Systems Division
Los Angeles 45, California
Attn: Technical Data Center

Commander
Air Force Ballistic Missile Division
Inglewood, California
P.O. Box 262
Attn: WDSOT

Air Force Special Weapons Center
Kirtland Air Force Base
Albuquerque, New Mexico

Aeronautical Systems Division
Wright-Patterson Air Force Base, Ohio
Attn: WWRMOO (M. Schorr)

Scientific and Technical Information Facility
P.O. Box 5700
Bethesda, Maryland
Attn: NASA Representative (S-AK/DL)
National Aeronautics & Space Administration
Langley Research Center
Langley, Station, Hampton, Va.
Attn: Technical Library

National Aeronautics & Space Agency
Lewis Research Center
2100 Brookpark Road
Cleveland 35, Ohio
Attn: K. Hiller

Marshall Space Flight Center
Advanced Propulsion Section
Huntsville Alabama
Attn: M-S&H-PA
DISTRIBUTION (Cont'd)

Marshall Space Flight Center
Computation Division
Huntsville, Alabama
Attn: Dr. Walter P. Krause

Chief, Defense Atomic Support Agency
Washington 25, D. C.
Attn: DASAG/Library

U.S. Atomic Energy Commission
Washington 25, D. C.
Attn: Technical Reports Library

U.S. Atomic Energy Commission
Division of Military Applications
Germantown, Md.

Advisory Group on Electronics
McCor School Building
200 S. 33rd St.
Philadelphia 4, Pennsylvania
Attn: Allan M. Hubl

Director
Advanced Research Projects Agency
Washington 25, D. C.
Chief, Technical Operations Division

Atomic Energy Commission
Space Nuclear Propulsion Office
Washington 25, D. C.
Attn: F. C. Schwort

University of Maryland
Director, Wind Tunnel
College Park, Maryland
Attn: Donald S. Cern

United Aircraft Corporation
Research Division
East Hartford 8, Connecticut
Attn: Mr. R. Oliph

Los Alamos Scientific Laboratory
Los Alamos, New Mexico
Attn: Library

U.S. Library of Congress
Washington 25, D. C.
Attn: Science and Technology Division

40
Army Engineer Research & Development Laboratories
Fort Belvoir, Virginia
Attn: Chief, Mechanical Dept

University of New Mexico
Albuquerque, New Mexico
Attn: Dr. Richard Moore

University of Michigan
Institute of Science & Technology
2038 E. Engr Bldg
Ann Arbor, Mich
Attn: R. R. White, Director

University of Maryland
College of Aeronautical Engineering
College Park, Maryland
Attn: W. Sherwood

University of Florida
Physics Department
Gainesville, Florida
Attn: Technical Library - Alex G. Smith
Attn: L. H. Roberts

Engineering Library
University of California
405 Hilgard Avenue
Los Angeles 24, California
Attn: Mrs. J. E. Tallman

Engineering Library
University of California
Berkeley, California
Attn: Mrs. Blanche Dalton

University of Arizona
Physics Department
Tucson, Arizona
Attn: Professor Ulrich H. Bents

Sandia Corporation
Sandia Base
Albuquerque, New Mexico
Attn: Technical Library
DISTRIBUTION (Cont'd)

Rensselaer Polytechnic Institute
Dept of Aeronautical Engineering
Troy, New York
Attn: Mr. K. T. Yen

Patent Office
Washington 25, D. C.
Attn: Scientific Library

Ohio State University
576 Melrose Avenue
Columbus 2, Ohio
Attn: Technical Library

New York Naval Shipyard
Bldg 291, Code 912B
Brooklyn 1, New York
Attn: Library

National Physical Laboratory
Teddington, Middlesex, England
Attn: Technical Library
Thru: AMC Detachment No. 1, Washington 25, D. C.
Attn: CIDTN

National Bureau of Standards
Bldg 16 - Rm 310
Washington 25, D. C.
Attn: Chief Sects 1.06

National Bureau of Standards
Boulder, Colorado
Attn: Technical Library

National Bureau of Standards
Washington 25, D. C.
Attn: Library

Minneapolis-Honeywell Regulator Company
2753 Fourth Avenue, S
Minneapolis 8, Minn.
Attn: Mr. H. Sparrow

Massachusetts Institute of Technology
Dept of Mechanical Engineering
Cambridge, Mass.
Attn: L. Shearer

Linda Hall Library
Joseph C. Shipman
5109 Cherry Street
Kansas City 10, Miss 1
DISTRIBUTION (Cont'd)

Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland
Attn: Tech Library (2 copies)

Franklin Institute of the State of Pennsylvania
Philadelphia 3, Pennsylvania
Attn: C. W. Harp, Tech Director

Mr. Charles A. Belsterling
Franklin Institute of the State of Pennsylvania
Philadelphia 3, Pennsylvania

Engineering Societies Library
29 W. 39th Street
New York 18, New York
Attn: Mr. John H. King, Order Librarian

Dayton & Montgomery County Public Library
215 East Third Street
Dayton 2, Ohio
Attn: Circulation Department

Corning Glass Works
Corning, New York
Attn: James K. Daw

Cornell University
Ithaca, New York
Attn: Dr. Ed Resler Jr.

John Crerar Library
86 E. Randolph Street
Chicago 1, Illinois
Attn: H. Henkle

 Battelle Memorial Institute
Chief Systems Engr Div
505 King Avenue
Columbus, Ohio

Armour Research Foundation of Illinois Ins. of Tech
10 W 45th Street
Chicago 19, Ill
Attn: Mr. George J. Jacobi
Rutgers University
College of Engineering
New Brunswick, N. J.
Attn: Technical Library

New York State University
School of Engineering
6 Chemistry Road
Buffalo 14, New York
Attn: Technical Library

Carnegie Institute of Technology
Pittsburgh, Pa.
Attn: Technical Library
Attn: Dr. E. T. Williams
DISTRIBUTION (Cont'd)

Internal

Horton, B.M./McEvoy, R.W., Lt Col
Apstein, M./Gerwin, H.L./Guarino, P.A./Kalmus, H. P.
Spatz, J.X./Schwenk, C.C.
Hardin, C.D., Lab 100
Sennet, H., Lab 200
Hatcher, R.D., Lab 300
Hoff, K.S., Lab 400
Nilson, E., Lab 500
Flyer, J.K., Lab 600
Campagna, J.H./Apolenis, C.J., Div 700
DeMasi, R., Div 800
Landis, P.E./Lab 900
Seaton, J.W., 260
Keller, C., 300
Kirshner, J., 310 (15 copies)
Warren, R., 310
Woodward, K., 310
Barclay, R., 310
Burton, W., 310
Carter, V., 310
Campagna, C.J., 310
Cuneo, M., 310
Deadwyler, R., 310
Dockery, R., 310
Fine, J., 310
Foxwell, J., 310
Gaylord, W., 310
Gay, J., 310
Gottrot, R., 310
Holmes, A., 310
Iseman, J., 310
Joyce, A., 310
Katz, S., 310
Keto, J., 310
Marsh, R., 310
Mon, G., 310
Palmismo, R., 310
Straub, H., 310
Spyropou, C., 310
Ravilla, F., 310
Roffman, G., 310
Toda, R., 310
Talkin, A., 310
Wayne, F., 310
Wright, E., 310
Rotkin, J./Godfrey, T.B./Richberg, R.L.
Bryant, J.T./Distad, M.P./McConey, R.K./Moorhead, J.G.
Technical Reports Unit, 800 (5 copies)
Technical Information Office, 010 (10 copies)
HDL Library (5 copies)

(Two pages of abstract cards follow.)
Attachment of a submerged, incompressible, two-dimensional, turbulent jet to an adjacent straight wall (Koanda effect) is analyzed. The equations provide an analytic method, independent of the particular fluid, for predicting the point at which the jet attaches as a function of offset distance and wall angle. The equations provide an analytic method, independent of the particular fluid, for predicting the attachment distance, and should be helpful in designing elements based on the Koanda effect; e.g., the fluid flip-flops or bistable elements.