UNCLASSIFIED

AD 297 328

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Report No. 8926-110
Material - Atmospheric Dust
Constitution

M. A. McGowan, G. N. Kruse, E. E. Keller

10 June 1959

Published and Distributed
under
Contract AF 33(65)-8926
Abstract

The weight of dust per unit volume of air, the number of particles of dust per unit volume of air, and dust particle size in the atmosphere at Lindberg Field, San Diego, California, during the April 21 - 30, 1959 period was determined with a Staplex Hi-Vol Sampler (The Staplex Co., Brooklyn, N.Y.), a Bausch and Lomb Dust Counter, and a Millipore Aerosol Filter Apparatus (Millipore Filter Corporation, Watertown, Mass.). A dust concentration of 4.12×10^{-3} mg per cu. ft. was found at 3 PM, April 23, 1959, when the temperature was 68°F, the humidity, 64 per cent; and the wind, SW at 9 knots. At 3 PM, April 30, 1959, from 22.2 to 33.4 million particles of dust per cubic foot of air were found when the temperature was 69°F; the humidity, 68 per cent; and the wind WNW at 6 knots. A dust particle analysis made at 1 PM, April 28, 1959, when the temperature was 67°F; the humidity, 61 per cent; and the wind NW at 8 knots showed that the majority of the dust particles (74 per cent) were under one micron in size. A complete analysis of dust particle size is reported.

ACCESS NO.

Title: MATERIAL - ATMOSPHERIC DUST. CONSTITUTION

Authors: McGowan, M. A., Kruse, G. N., Keller, E. E.
Report No: 8926-110 Date: 10 June 1959
Contract: A.R.P.A., Commercial
Contractor: General Dynamics/Convair

ABSTRACT: The weight of dust per unit volume of air, the number of particles of dust per unit volume of air, and dust particle size in the atmosphere at Lindberg Field, San Diego, California, during the April 21 - 30, 1959 period was determined with a Staplex Hi-Vol Sampler (The Staplex Co., Brooklyn, N. Y.), a Bausch and Lomb Dust Counter, and a Millipore Aerosol Filter Apparatus (Millipore Filter Corporation, Watertown, Mass.). A dust concentration of 4.12×10^{-3} mg per cu. ft. was found at 3 PM, April 23, 1959, when the temperature was 68°F, the humidity, 64 per cent; and the wind, SW at 9 knots. At 3 PM, April 30, 1959, from 22.2 to 33.4 million particles of dust per cubic foot of air were found when the temperature was 69°F; the humidity, 68 per cent; and the wind WNW at 6 knots. A dust particle analysis made at 1 PM, April 28, 1959, when the temperature was 67°F; the humidity, 61 per cent; and the wind NW at 8 knots showed that the majority of the dust particles (74 per cent) were under one micron in size. A complete analysis of dust particle size is reported.

4 pages, 1 figure.
ST. RUC-TURZ & MATERIAL-LABORATCRTES

A0l

DVISION

OF GENER AL

ITORPORATI

SAN DIEGO

CONVAIIR

A DIVISION OF GENERAL DYNAMICS CORPORATION

REPORT. MP 59-199
DATE. 10 June 1959
MODEL A.R.P.A.

TITLE

REPORT NO. MP 59-199

ANALYSIS OF ATMOSPHERIC DUST

MODEL: A.R.P.A.

PREPARED BY M. A. McGowan

GROUP Materials & Processes Lab.

CHECKED BY: G. N. Kruse

REFERENCE

CHECKED BY E. E. Keller

APPROVED BY E. F. Strong, Chief

Of Structures & Materials Lab.

NO. OF PAGES 4

NO. OF DIAGRAMS 1

W. M. Sutherland

REVISIONS

<table>
<thead>
<tr>
<th>NO.</th>
<th>DATE</th>
<th>BY</th>
<th>CHANGE</th>
<th>PAGES AFFECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OBJECT:

These tests were run to analyze the atmospheric dust content with respect to concentration and the size of the particles at a location specified as 3 ft. south of Column 4-T 110, Building 51, Convair, San Diego.

The tests were to be run on the dustiest day anticipated between April 6-20, 1959 and the Weather Bureau data for humidity, temperature, wind direction and velocity at the time of the test were to be reported.

The results were to be reported as total number of particles per cubic foot in each of the three ranges: 0-5μ, 5-10μ, and over 10μ size.

APPARATUS:

Test No. 1:

Weight of Dust per Unit Volume of Air

Staplex Hi-Vol Sampler
Type TFIA
Filter TFA Type "S"

Manufacturer: The Staplex Company (Air Sampler Division)
777 5th Avenue
Brooklyn 32, New York

Test No. 2:

Particles of Dust per Unit Volume of Air

Bausch and Lomb Dust Counter
Cat. No. 31-29-50-01

Manufacturer: Bausch and Lomb Optical Company
Rochester 2, New York

Test No. 3:

Dust Particle Size

Millipore Aerosol Open Type
Filter Holder with Vacuum Pump
Sampling Rate: 10 liters/min.
Filter Type AA Millipore 47 mm. diameter.

Manufacturer: Millipore Filter Corporation
36 Pleasant Street
Watertown 72, Mass.
PROCEDURE:

In order to obtain the best description of the dust conditions in the specified area, three types of dust sampling were carried out:

1. **A Determination of Weight of Dust per Unit Volume of Air.** The air was pumped through a pleated Staplex paper filter for a measured period of time at a determined flow rate. The concentration of dust was computed from the increase in the weight of the filter and the volume of air filtered.

2. **A Determination of the Number of Particles per Unit Volume of Air.** This test was carried out with a commercial Bausch and Lomb Dust Counter in which the dust particles from a known volume of air are sprayed upon a slide. The number of particles in the field was estimated by averaging random counts and converting the value to number of particles per cubic foot of air.

3. **A Determination of Dust Particles Size.** The range of the sizes of the dust particles was determined by collecting a dust sample on a millipore filter, mounting the filter on a slide, and measuring the diameters of a large number of the particles under the microscope.

RESULTS:

1. **Dust Concentration:**

 Weight per unit volume of air (April 21 - 27)

 Total Running Time: 17.25 Hours
 Flow Rate: 65 cubic ft/min
 Volume of Air Filtered: \(4.37 \times 10^4\) cu. ft.
 Weight of Dust Collected: 0.2772 grams
 Concentration: \(4.12 \times 10^{-3}\) mg/cu. ft.

 Typical weather conditions during run: (April 23 - 3:30 P.M.)

 Temperature: = 68°F
 Humidity: = 64%
 Wind: = SE at 9 knots

2. **Dust Concentration:**

 Millions of Particles per Unit Volume of Air, Bausch & Lomb Dust Counter
 April 31, 1959

 Average Value:
 - Sample 1: 22.2 million particles / cu. ft.
 - Sample 2: 33.4 million particles / cu. ft.
 - Sample 3: 26.7 million particles / cu. ft.
RESULT: 3: (Cont'd)

2. Dust Concentration: (Cont'd)

Weather Conditions - April 30th = 3:00 P.M.

Temperature = 69°F
Humidity = 58%
Wind = NW 6 knots

3. Dust Particle Size (See Also Figure 1) - April 28 - Total Count: 300 Particles

<table>
<thead>
<tr>
<th>SIZE</th>
<th>NUMBER OF PARTICLES</th>
<th>% OF TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1 Micron</td>
<td>222</td>
<td>74.00</td>
</tr>
<tr>
<td>1 - 2 Micron</td>
<td>36</td>
<td>12.00</td>
</tr>
<tr>
<td>2 - 3 Micron</td>
<td>15</td>
<td>5.00</td>
</tr>
<tr>
<td>3 - 4 Micron</td>
<td>9</td>
<td>3.00</td>
</tr>
<tr>
<td>4 - 5 Micron</td>
<td>6</td>
<td>2.00</td>
</tr>
<tr>
<td>5 - 6 Micron</td>
<td>4</td>
<td>1.33</td>
</tr>
<tr>
<td>6 - 7 Micron</td>
<td>4</td>
<td>1.33</td>
</tr>
<tr>
<td>7 - 8 Micron</td>
<td>3</td>
<td>1.00</td>
</tr>
<tr>
<td>12 Micron</td>
<td>1</td>
<td>.33</td>
</tr>
</tbody>
</table>

Weather Conditions - April 28 = 1:00 P.M.

Temperature = 67°F
Humidity = 61%
Wind = NW 8 knots

NOTE: The results of the above tests should not be related to one another mathematically because each test is a unique and relative measurement of a particular feature of the dust concentration present and may only be compared significantly to another measurement of the same type.

REFERENCE:

NOTE: The data from which this report was prepared are recorded in Materials and Processes Laboratory Data Book Number 3022.
Size-Frequency Distribution for Dust Particles.