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A NEW RADIATION CHART

by
Helgi Niilisk

At present, graphic methods of computing the fluxes of the thermal
radiation of the atmosphere with the aid of radiation charts are well knqwn.
The charts of F, Brooks [1], A. A. Dmitriev [ 2], R. Mugge and F. Mol-
ler {3, 4], G. Robinson |5, 6], F. N. Shekhter {7, 8], W. Elsasser [9],
and G. Yamamoto [10] have been the most widely used. Unfortunately, all
these charts contain certain deficiencies |1l-14], viz., the use of insufficiently
reliable characteristics of the absorption of long-wave radiation by atmospheric
gases and the analysis of the integral function dependent only on the effective
content of water vapor. The effect of carbon dioxide on absorption, moreover,
is considered to be very approximate. 1) The charts mentioned do not at all
consider the absorption of thermal radiation by atmospheric ozone,

It has been established [13, 14] that one of the most important factors
which determines the value of radiation fluxes, calculated from any chart,
is the transmission function. Therefore, to make radiation charts more ac-
curate, it is first of all necessary to study the available quantitative charac=-
teristics of long-wave radiation in the atmosphere, and on that basis to obtain
the most reliable transmission function.

Proceeding from what has been said above, the purpose of our work is
to construct the integral transmission function of the atmos%here by considering
the mutual effect of water vapor, carbon dioxide, and ozone ) on the absorp-
tion of thermal radiation in the atmosphere. On the basis of this new trans-
mission function, it is possible to solve the problem of constructing a radiation
chart which is sufficiently accurate and convenient from a practical point of
view. This work completes a number of studies made by the author [14-18]
which were devoted to the problem of calculating the fluxes of thermal radiation
in the atmosphere.

Quantitative data on the absorption of long-wave radiation, used in the
present work to determine the integral transmission function, are, for the
most part, given for 300°K, and also for the usual room temperatures of the
order of 285-295°K. Since at surface temperatures the integral transmission
function is slightly dependent on temperature |10, 13], we can consider the

transmission function obtained on the basis of the mentioned data to be

1) Consideration of the mutual influence of H;0 and C0; on the absorption
of thermal radiation in the atmosphere is correct in principle only in
G. Yamamoto's chart.

2) As is known |13], the remaining atmospheric gases play an insignificant
role in the absorption of long=wave radiation by the atmosphere.
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sufficiently reliable for the temperature interval 270-310°K. It should be
noted that the integral transmission function was not calculated for the
entire spectrum (0~o p), and for the 2.27-250 p region (in parts of the
spectrum, 0-2.27 and 250-00 p, the amount of energy of thermal radiation
is negligible and, consequently, practically has no effect on the value

of the transmission function at atmospheric temperatures).

The determination of the quantitative characteristics of radiation ab-
sorption by water vapor is the subject of numerous works |1, 12, 13, 20-42],
the results of which were obtained either by theoretical calculations or on
the basis of an experiment (under natural or laboratory conditions). Let us
note that there are important discrepancies in the data of various authors
for almost all the regions of the spectrum. The results of the most recent
and complete works are used when possible to determine the integral trans-

mission function in the present work.

The values of the absorption of radiation by water vapor in the near
infrared region (spectral intervals: 2.27-2.99, 2.59-3.57 and 4.88-8.7 )
are calculated on the basis of the corresponding formulas of D. Howard,

D. Burch, and D, Williams [ 20]. There are no experimental data for the
3.57-4.88 p region. It is only known that in this region of the spectrum, there
are no bands of absorption by water vapor and the absorption is caused by the
overlapping of this interval by the wings of the absorption bands situated in
the neighboring regions of the spectrum. We can assume that the logarith-
mic coefficient of absorption kw here does not exceed 0.5 cmz/g. Calcula-
tions have shown that a change in the absorption coefficient in the limits
0-0.5 cmz/g has almost no effect on the value of the transmission function
2.27-8.7 ., and on the value of the integral transmission function. Using
this as a basis, in the present work the transmission function P for the in=
terval 3.57-4. 88 pn was calculated from the formula

-kww*
P-e , (1)
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using a certain average value kW =0.2 cmz/g. (here w* « the effective

content of water vapor).

To determine the transmission function in the 8. 7-12 p region of the
spectrum, there are no satisfactory reasons to prefer the results of one
or other author (works [12, 13, 21, 22, 26, 28, 35, 37-40]). Therefore,
in the present work the transmission function for the mentioned interval
of the spectrum was calculated from formula (1), using certain average

values for the coefficients of absorption by water vapor (Table 1).

TABLE 1

The Absorption Coefficients of Water Vapor for the
8.7-12 p Region of the Spectrum

Spectrum Region K cmz/g
8.7~ 9.0 0.15
9.0-11.,5 0.10

11.5 - 12.0 0. 20

Let us note that according to the most recent data [ 37-39], kw)about

9.6 and 11.1 p, is approximately 0.1,

In the 9. 0-10. 3 p interval, it is necessary to consider the effect of
a strong absorption band of ozone. We previously found the transmission

function for the 9. 0-10. 3 p region [16].

In the 12-18 pu region, the gases which absorb the thermal radiation

of the atmosphere are water vapor and carbon dioxide, since a strong ab-

)

function for 12-18 p region obtained in works |15, 18] on the basis of data

sorption band of carbon dioxi.de1 is found in this interval. The transmission

[19] and [22] is used in the present work.

1) According to [13] we can disregard the effect of the remaining bands
of absorption by carbon dioxide on the transfer of long-wave radiation
in the atmosphere.
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Data are given in works [13, 21, 22, 27-30, 36, 41, 42] on the ab-
sorption of long-wave radiation by water vapor in the far infrared region of
the spectrum. A comparison of the results of these works shows that the
results of the theoretical calculations of G. Yamamoto [ 22] coincide most
closely with the most recent data of the laboratory measurements of C.
Palmer [36]. Proceeding from this, the transmission function for the
18-250 p interval in the present work is determined on the basis of the usage
of generalized coefficients of absorption by water vapor according to the
data of work | 22].

Let us note that for all the examined intervals of the spectrum, the trans-
mission function for diffuse radiation was determined from the following

known relationship [13]:

Py ‘2./ P eec i) sin b cos & d, (2)

]

where P_ is the transmission function for diffuse radiation, P is the trans=

F
mission function for the directed radiation, & is the zenith angle.

By using the results of the determination of the transmission functions
for various parts of the spectrum, the integral transmission function for dif-
fuse radiation was calculated from the following formula:

> ]
P Vi Zfi P, (3)

Here the index A designates the examined intervals of the spectrum, f
is a fraction of the integral radiation of an absolutely black body arriving
on the 2, 27-250 p part of the spectrum, fA is a fraction of the radiation of

an absolutely black body arriving at the interval of the spectrum A.

Tables 2 and 3 give the calculation results. The tables also give the
values of the functions A Pl (w*, u*)and A P2 (w*, m*¥) with which the sought

integral transmission function can be calculated from the relationship:

Pr{z*, u, m*) - 0,001 i\P, - AP, (4)
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where u* is the effective content of carbon dioxide, m¥* is the effective

content of ozone.

Since during the compilation of Tables 2 and 3 approximate methods
were also used (numerical integration, interpolation}, we can consider the

transmission function obtained reliable to an accuracy of 1/100.

Having the data of an aerological sounding, it is easy to determine the
values of the fluxes of thermal radiation in the atmosphere by using Tables

2 and 3 and the usual graphic method based on the use of relationships (see

[13]):

G'::‘/‘P,(/B, (5)

where G is the flux of thermal radiation of the atmosphere, B = ¢ ’-I‘4 is the

integral flux of radiation of an absolutely black body.

In other words, G is numerically equal to the area in the coordinate

system (PF, B).
Figure 1 gives the chart for the determination of G.

It should be not ed that formula (5) was derived on the assumption of
the independence of the integral transmission function on temperature [13].
But, as is known [ 2, 4, 9, 10, 13], the transmission function actually depends
not only on the content of absorbing matter in the atmosphere, but also on
pressure and temperature. The dependence PF on pressure is usually cal-
culated with the aid of an effective absorbing mass, (see [1-10, 13, 14]). How-
ever, the problem of calculating the temperature dependence has not yet been
finally solved, and, to a considerable degree, this problem may be considered
debatable [13].

1. The values w¥*, u¥, and m* are expressed in "cm" (the thickness of the
layer of the precipitated matter in centimeters under normal pressure
and temperature).



02 00! T
Kan [
EF1emu [

o1

!
t
o
1.
!

-60-50 40 -30 -20 -

Fig. 1. Chart for the determination of fluxes of long-wave radiation
in the atmosphere.

With a radiation chart, the present work attempts to evaluate the effect
of the dependence PF = PF(T) on the determination of the fluxes of the ther=

mal radiation of the atmosphere.

By solving the general equations for the transfer of long-wave radiation
in the atmosphere, we have the following expression for the intensity of the

descending monochromatic radiation which propagates in the direction 6 |13]:

cos /)

o kn(Tp) e fa e
[,_l,(‘. l’) ='/ ’ Q(l])El (T)L’ (‘os:»:-//l, (7.0) +(3) d} [[r] (6)

Here /.| (2, #) = is the intensity of the descending long-wave monochro-
matic radiation at the level z, kx (T, p)is the absorption coefficient for the

wave length \, T = T (n) is the temperature of the absorbing (radiating)
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medium, p * p (n) is the total pressure in the atmosphere, p is the density
of the matter absorbing the radiation, E)\(T) is the intensity of the radiation

of an absolutely black body for wave-length \, 6 is the zenith angle.

Let us express the absorption coefficient in the following form:

k, (T, p) =k, F(T, p), (7)

where F(T, p)is a certain function of temperature and pressure (ko)\ is con=

sidered independent of T and p).

With the calculation of (7), expression (6) will have the following form:

x

I 4 b
k.X —-_‘&' NT.p BY-H
1x¢=‘f % F(T, p)am) Ex(T)e °°’."f"r”""‘ dn. (8)

cos )

z

Let us introduce the effective absorbing mass w¥* which is determined

in the following fashion:

Wt ::.:'/ F(T.p) 0(8) di. (9)
In such a case
X
I;.,L =!/E°i)—;‘ [:‘,_ (T) id ¢ (I:.-'.'*. (10)
0

Integrating (10) according to A with the aid of the Ambartsumian-Lebedin-
skii method [13], we have

U.J ook k'
* N _Ili,\.l ""
1y = Eryaer [ ik e T g, (1)
1) [§]

It was assumed here that in regions of the spectrum, for which the in-
equality ko < ko)\< ko + d.ko, the value of the absorption coefficient may in prac-

tice be considered as constant (ko). The function f(ko, T) determines a
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TABLE 3

_Values of the function A P (w*, m*)
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fraction of the intensity of an absolutely black body arriving on the total
number of regions of the spectrum to which the absorption coefficient ko

corresponds. E(T) in expressmn (11) de s1gnates the 1ntegra1 1ntens1ty of the

radiation of an. absolutely black body

On the other hand, it is easy to show that by using an effective absorb-
ing mass which is determined from formula (9), the integral transmission

function of the atmosphere is expressed as follows:
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by

plar, Ty = [ [tkTe " dho (12)

4}

Here Tl designates the temperature of the source of the radiation; and it is

assumed that this source is an absolutely black body.

In addition, let us introduce a new function P* which is determined by

the relationship

PHw®, T(w*)]- « Plw®, T)==T(w¥*)]. (13)

In other words,

Gl

s LT
Pt T(@)] - [k Tmle” @55 dh. (14)

t

Now let us find the derivatives P and P* with respect to w*:

.
Fy

dP . k, . e
:m--=—./ o [ the Ti)e dko. (15)

"

Here it is assumed that temperature T1 does not change.

dpP- * & —-r~-". wt
dws y CO:—;’ . e dky -
<) N 16
o A
AT j ik, Ty | ot (16)
dok J T ! dka.
1]
. N
We see that the integral Si—- { cosg  Ttha. Te ) Al in

expression (11) is equal to the first term ot expression (16), Therefore,
using dP*/dw* and dP/dw* instead of S|, creates errors. In the first case
we do not consider the second term of expression (16), and in the second case

the '"displacement effect' is not considered.
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Let us try to make an approximate evaluation of the magnitude of
these errors. Under average conditions in the tropospherel, the relation-

ship between T and w* is well described by the formula
T = — 8(w*)® — 10w* + 20, (17)

. . . o
where w¥ is expressed in "em'" and T in C~.

To simplify the calculations, let us use instead of expressions (12)

and (14) the approximate formulas

i —kaw
P(w*,T)) =Y i(Tye |, (18)

J=1

where T1 is considered constant, and
- - 5 . -k
P (¥, T)==/§ll,(7')0 A (19)
where T = T{w¥*).

Formulas (18) and (19) are taken from the monograph of K. Ia, Kon-
drat'ev [13].

This work also gives the absorption coefficients kj and the connection

between fj and the temperature:

fi=a;+ 6T, (20)

Here a.j and bj are certain constants for each region j.

1. It is assumed that the vertical temperature gradient is equal to 6 deg/km,
and the vapor density p_ decreases with height according to exgonential
law. At the earth's surface T = 20° C and Py = 7x107° g/cm”.
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On the basis of the data given above, the following magnitudes were
calculated in the present work: S, S, = dP*/dw*, S, = dP(T, = 260°K)/dw*,

S, = dP(T1 s 300°K)/dw*. Figure 2 shows the results of these calculations.

4
As this figure shows, the use of dP*/dw¥* instead of Sl causes many great

errors, especially in the upper layers of the troposphere. The differences

between Sl and S3, and also between S1 and S4 are rather small. Therefore,

it is necessary to consider as completely substantiated the use of dP(w¥,
in formula (11) (assuming that Tl is a certain average

Tl)/dw* instead of Sl
In other words, we can disrcgard the

temperature in the atmosphere).
influence of the displacement effect in the given case.

'0.5'

1
1

e = e e e

A Bl \v'

-1

7] a2 (474 718 aé

S

-Sl, 2=5 3—S3, 4-S4.

Fig. 2. A comparison of the functions Sn: 1 2

As is known [13], the dependence of the absorption coefficient on tem-

perature and the ''displacement effect' act in opposite directions. There-

fore, it should be considered as proven that the relationship k)\ = k)\(T) is not

considered. In such a case formula (9) has the following form:



¥ = /.[:(/))(_)(z)(/z, (21)

where F(p) is a certain function of pressure.

On the basis of what has been said above, instead of (11) we will get

1

QO
lJ,:/E(T)(Iu.:g P E(T)dP. (22)
oz,

Prus)

Partially integrating (22), we get an expression analogous to formula

(5):

I(——-:¢P(/E. (23)

We can obtain an expression even for I 1 in this way.

We should note that the results given above are justified even for fluxes
of long~-wave radiation in the atmosphere. As is known [13], the radiation
fluxes are calculated by integrating the corresponding intensities according
to the solid angles corresponding to a semispheres In such a case, we will

have formula (5) instead of formula (23).

Summarizing the results given above, we can say that on the basis of
the approximate formula G = /l’r(;:"")dli , we can determine with sufficient
accuracy the long-wave fluxes of the radiation of the atmosphere, but the use

of the formula G E/‘Pr[w*. T(w)]d3 cannot be justified.

As was shown in works [16] and [ 43], atmospheric ozone plays only
an insignificant role in the determination of the values of the integral fluxes
of thermal radiation in the lower troposphere. Therefore, the effect of ozone
on the absorption of long-wave radiation in the atmosphere can be disregarded
when calculating descending fluxes (G | ) in the lower troposphere and ascending
fluxes (G T )to 15-20 km. In such a case, we can use only one table instead
of Tables 2 and 3, in which the values of the integral transmission function

PF(W*, u¥* are given.
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As an example, we calculated the descending flux, the ascending
flux, and the effective radiation (F .-G 1— G }) at the levels 0.3 and 8 km
for certain latitudinal zones of the earth. In addition, stratifications of
temperature, humidity, and pressure, taken from works [10, 44, 45] were
used. Data on the vertical distribution of ozone were taken from work
[46]. The concentration of carbon dioxide in the atmosphere was taken
equal to 0, 03% (by volume) for all the zones, since there were no data on
the latitudinal variation of COZ' When calculating the effective absorbing
masses of water vapor, we applied the correction which is usually used
(p/p ) , and for carbon dioxide and ozone this correction was (p/p )o 8
and (p/p ) -2 respectively (see [15, 16, 18]). Table 4 gives the results

of these calculations,

TABLE 4

Values of the Fluxes of Therma] Radiation in the
Atmosphere (cal/cm® min)

latitu-
dinal . s=1 - :_:.:3 ) |' z2=8 .
o) . . ~ . - ° T ST
zone ("N)|_ G: ! G, Fol G, r
H ' i
0—10 ' 0,574 0,083 | 0,392 0,194 i 0,164 0,296
1020+ 0,545 0,101 © 0,348 0,209 ! 0132 0,317
20—30 j 0,507 0114 ' 0,312 0,220 0117 0,313
30—40 0,429 0,117 . 0,275 0,208 0,097 0,293
4050 ' 0359 0,122 0240 0,198 0,082 0,270
50—60 0,296 0,125 0,201 0,187 0,076 0,246
60—70 ' 0,236 0,129 | 0169 0,172 ) 0,077 0218

Analogous calculations are carried out in works [14, 17] w1th the aid
of the charts of F. Brooks, A. A. Dmitriev, R. Mugge and F. Moller G.
Robinson, F. N. Shekhter, V. Elsasser and G. Yamamoto. Comparing the
results of the determination of G!. G 1 and F which were obtained in the
present work and in works [14, 17], we see that near the earth's surface
and in the lower part of the troposphere, our results agree rather closely
with the data obtained from the charts of F, Shekhter and F. Brooks. However,
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when z = 8 km, there is a closer agreement with the results of the cal-

1h]
culations from the charts of F. Moller and G. Robinson.

Unfortunately, at present there is no satisfactorily complete complex
of experimental data, which makes it impossible to make a direct comparison

of the results with the experiment.

Since the radiation nomogram chart in this work was constructed on the
basis of a most careful analysis of contemporary data on the absorption of

infrared radiation in the atmosphere, it may be considered most reliable.
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