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ABSTRACT

An experimental investigation has been made to determine the
pressure distribution, shock shape, and shock detachment distance
for spheres and the latter two characteristics for flatsfaced bodies
in a heated argon flow where M, = 4 to 14, T, = 1900 to 4100°K, and
Rey = 25 to 225, o

The modified Newtonian approximation for the pressure distribu-
tion, which is strictly an empirical relationship, gives good results
when applied to the first 60 deg of a hemisphere under conditfons where
the body boundary layeg and the shogk layer merge.

The natura? flew visuslizatler produced as a result of the high total
temperaturg and eonseatient excitatlen of ghe argon enabled this study to
be ttade, Pholagraphs aken of the sMocks generated by a series of
spheres and {latsfaced bodles werra analyzed with a photo-densitometer
$o determine she shogk shape and shégk dgtaghment dfstances The blast
analogy predictg a difference In the shape of shee¢ks in argon and air at
high Mach numbers and Reynolds munbesrs. An emfprical gelationship
proposed by Y.ove was used to ealeulate §de shock shapg in ajr for Mach
numbers ecoxresponding to those of the oresent {nvestigagion.

When this shape was campared to tne shape measured in argen at
the game Mach number, it was found that the difference® in sfape was in
agyegment with that predicted by the blasg analogy, i.e., {o§ a ¢onsgant
value of x/D then {yf Dapgoal{y/ D)aiy * 1.16, Also, it appeags even for
the lowest Reynolds munber tested that aondimensionallzed shock shape
is independent of Reynolds number for spheres and flat-faced bod®es when
the effect of Reyaoltds number on detachment distance is taken into account.

A study of the shoek detachment distance fndicates that the boundary
and shoek layers werg either ineiplently or fully merged in these experi-
ments. Furthermore, foy the Reynelds pumber range of the preseng
tgsts, the detaehmeat distance {s a funectlon of wall tempegature, Reynolds
number, Mach numbes, and body shape, As the Reynolds number de-
creases, the shock detachment distance lugreases to values more than
double the "inviscid'' values, AlsoO, for the water-cooled bodies, there is
evidence tg confirm the deerease in detaghment dfstange to less than the
invisefd value, as predicied by Ho and Probstein, Itefore {he increase as
mentioned above for the lowess Reynalds numbers.
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NOMEHCLATURE

Censtants in Eqg. (6

Nose,drag cosfficient

Pressure coefficient =

Body diamgter

Shodkewave thickness

Past anaiegy ®onstant, Eg. (7)

Faatgxoa Eq. {1)

Factor, Eg. (8%

Magh numlger ®mmediate®y behind a nfrma. shogk
Freeestream Mach number

Mass fiecw fate

Iq’ressure

Press®re Immedtate?y downatream of a n®rggal shock
Freeostream pressure

Ingpagt @¥essure

Reservoir pressf@re - @ld {low

Rgservoly pressurg - hot flow

Body radf®s (& nos@ radifs of curvat®re for sphere)

Reyndelds n@meber basgd on body diam®ter and egndit?on
iwmediatgly downstgygam of a normal shockg For
purpgses of sa¥@ulating Res this shogg is assumed to be
#naffegted by the boundary ®ayer.

Molsgular spegd ratio
Re’servair temperat®re g gas

Reservelr Temperaturg of gas - @old fl@w

Reservoir temperature of gas - hot flow

Boc{y wal? temperature

Velocity fmmediately downstream of a normal shogk
Free-stream velc@ily

o
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Ug
X, ¥

Xb_. Y

v

5% @

Velocity gradient at the stagnation point
Ordinates with origin at the apex of the shock
Ordinates with origin at the apex of the body
Specific heat ratio

Free-stream specific heat ratio

Shock detachment distance, distance frein the
body to the shock leading edge measured along
the axis of symmetry

Boundary-layer thi€kness
Beundary-layer displa®ement thickness

Angle between the local normal to the surfage
and the direction of the indisturbed free-stream
velogity

Fres@strgam mean free path

goefflelent of viscosity basad @n wall temperaghre
Densfty ntmgdPately downstream of a normal shoge
Tgee-streamgelensty
Density at the wal)¥ °
FaxPgnegh in ghe vis@ositystempesature reJatlensdip
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1.0 INTRODUCTION

The shock detachment distance in front of blunt bodies at high Reyn-
olds numbers has been studied both theoretically and experimentally.
Van Dyke (Ref. 1) presents a iheoretical analysis for a series of perfect
gases having specific heat ratios of 1, 5/3, and 7/5 and a Mach number
range from 1. 2 to infinity, This analysis for a sphere indicates that the
shock dntachment distance is primarily a function of the density ratio
across the ncrma? shock, the effect of specific heat variation at fixed
density ratio ?s small, and there is no variation with Reynolds number in
essentially inviscid flows. In this analysis it is implied that the shock
and boundary—laé/es thicknesses are small compared wiin the shock de-
tachment d?stancq, At low Reynolds numbers the shogk and boundary-
layer thicknesses are no longer small gpmpared with shock detachment
distance, and at sufficiently%ow Reynolds numbers the shock and bound-
ary layer will merge. This implfes thaf there must be a Reynolds number
below whish the shock detachment distange becomes a function of Reyn-
olds number& as well as density ratic.

Probstain and Wr=-r 2o and Drilsicin, and Levinsk; aud Tusinaaa
(Refsg 2-4) have made theoretical ana®yses of this problem in the incip-
ient merged ?ayer- flow regime. These analyses have one thing in common:
as thg Reynolds number is reduced through this rggime and the fully
merged regime is approached, the shock detaghment distance ultimately
increases. Reference 2 is based on a constant density assumption for the
shock layer, Ref. & exe®s this to consideration of variable density, and
Ref. 4 ass@mes constant density but differs fronf Refg 2 in that a monatomic
gas (argon) is cons¥dered.

The Low-Density, Hypervelocily {lgDH) Wind Tunnel, when operated
with argon as the wor#tg gas, is wel} suited forfow Reynolds number,
shock detachment distange investigations. When th% tfnnel is operated
using argong there is a natural féGw visualizat®on thought to be caused by
radiation from re%ax®hg metastable argon atoms, Th¥s natural giow
enables the shock shapes in front of bodies to be seen and photographed.
Moulic (Ref, 5) has photographgd some shock shapes in a low-density,
supersonic wind tunnel at Berkefeyy, The flow yisua‘ﬁzation in that case
was artifically produced by infroduging some nftric oxide and atomic
oxygen into the airstrcam.

Manuseript reieased by authors January 1963.
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lso of Pnterest is the form of the shock wave in front of bodies in
low-density flows. There is a considerable amount of data for air at
high Reynoids numbers but very littie for other gases and very little
in any case for low Reynclds numbers. The form of the shock wave is
predicted reasonably well by the blast analogy (Ref. 6), and it was be-
lieved to be of interest to determine whether that methcd is still valid
in the low-density regime,

]

For high Reynoids numbers the pressure distribution over a sphere
can be calculated reasonably accurately by using the modified Newtonian
approximation {Ref. 7). It was believed interesting to ascertain whether
this approximation is valid in a flow regime where the shock and
boundary layers are merging. A knowledge of the form of the pressure
distribution is useful because the stagnation point heat transfer and the
growth of s$he lamirar boundary layer are functions of the velocity gra-
dient at the stagnation region which is in turn a function of the pressure
distribution.

2,0 APPARATUS

2.1 WIND TUNNEL DESCRIPTION AND PERFORMANCE

The LDH Wind Tuinnel is a continuous-type, high-enthalpy wind tun-
nel in operation at the von Karman Gas Dynamics Facility (VKF) of the
Arnold Engineering Development Center (AEDC), Air Force Systems
Jommand (AFSC), U. S. Air Force. Briefly, the tunnel consists of a
d-c arc heater, a st?lling chamber, an aerodynamic nozzle, a test cham-
ber with instrumentat®on, a diffuser, and a pumping system. A sche-
matic drawing :’-_dent?fy?ng some# of the components is shown in Fig., 1. A
complete descr.‘.pt?on of the [aDH tunnel is given in Ref. 8.

o O

In the preseni tests a n®@mber of simple, water-cooled, brass, conical
nozzles with a 30-deg wtal angle were used to accelerate the flow to super-
son?® speeds. The brass sections have throat diameters of 0. 200, 0. 397,
and 0. 750 in. whi®h producg Mach numbers at the exit plane in the range
from 4 to 8.5 whegargon is the medfum. They can be used in conjunction
wfth an aluminum ®nedfrusjim extension of 30 deg tutal angle which con-
tinues the expansfon ef the three basic nozzles to the Mach number range
from 7 to 14.

o
With argon as the working gas the are® heater operates at less than
15 kw. Theggas flow rate ranges from 1 to 30 Ib/hr, Ty from 1900 to
4100°K, and the reservoir pressure ranges from ! to 6 psia. At the nozzle
° &
&

[\
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exit and some distance downstream, there is a cieariy visible, light
blue jet surrounded in most cases by a pink region. On investigation
with an impact-pressure probe, the light blue region was found to
correspond approximately to the nigh-speed core of flow. Tne colors

in the flow are thought to be caused by the excitation of argon atoms in

a metastable state since the enthaipy is too low for significant ionization,
Good in-flow characteristics to the aercdynamic nozzies under test were
obtained by using a 3-in. -diam stillinrg chamber upstream of the nuzzle
throat, having a length of 4 in. for the 0.200- and 0. 397-in. -diam
throats and 8 in. for the 0. 750-in. ~diam throat.

A complete description of the gas {low control, pressure measuring
system, reservoir temperature estimate, and rotary probe holder is
given in Refg §. With regard to the reservoir temperature estimate, the
fact that argon is monatomic considerably simplifies this cstimate since
perfect gas 1aws%pp1y. Hence, at constant mass flow,

3
o e [N
I g

N\

-]
2.2 TUNNEL OPERATING CONDITIONS

The usable {low regions existing with the aerodynamic nozzles were
determined by making impact-pressure surveys. These nozzles were
operated in over- and underexpanded states, and for all the flow condi-~
tions there was an axial Mach number gradientg It is not considered that
the existence of an axial Mach number gradient wouid measurably affect
the iow conditions at the front of a model provided that the front faces of
the various models are brought to the same axial station in the fiow.
Berndt (Ref. 10) has made some est®mnates as to the effect of conical flow
on the measured shock detachment distance for high Reynolds number
flows. If it is assumed that there ® a simiiar effect in low Reynoids hum-
ber flows, then Refg 10 s@gows that the present experimental results for
shock detachment distance cag be %h error by as much as 5 percent on
this account.

% PROCEDURE

3.1 OPERATING CONDITIONS °

The desired nezz% flow was established Ly adfusting the gas flow
rate and arc-heaterspower input to bring ihe reservo®r conditions to the
aperating level. When these conditions were achieved, the model urder
test was brought to a nredetermined axial station on the nozzle centerline.

3 o
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3.2 PHOTOGRAPHIC TECHNIQUE

The camera used in this series of tests was a standard 4 x 5 Speed
Graphic with fittings such that a Polaroid back could be atiached to it.
The camera was mounted outside the tunnel, and the model under test
was viewed through one of the windows in the test chamber. A 13-in.
focal length lens which could be stopped down to /5. 6 was used with the
camera,

The relatively low intensity of the glow presented some problems
in defining the film and camera setiings that would give the best pictures.
It was determined by means of a trial and error procedure that good re-
sults could be obtained with Kodalith ASA 2 film. It was found that with
the lens stopped down to f/5. 6 and by varying the exposure from two to
four seconds, dependent on the model position with respect to the nozzle
exit plane, good quality negatives could be obtained. A typical photo-
graph is shown in Fig® 2,

3.3 SPHERE PRESSURE MEASUREMENTS

Becausc of the swnall size of the model (U, bu-in, diam) and the need
to have as large an orifice as possible from pressure lag-time considera-
tions, it was not practical to put more than one orifice on a model of this
size. Therefore. the pressure distribution over the front face of the
sphere was obtained by using a number of models each with one orifice at
a different angle to the horizontal axis of the sphere. In all, eight water-
cooled models were made with 0. 052-in. -diam orifices located at 0, 15,
30, 45, 60, 75, 90, and 100 deg tc the horizontal axis. BEach of the models
was mounted on a sting which could be attached to the tunnel probe carrier,
With this arrangement it was possible to mount the immodels such trat the
pressure sensing orifices were positioned to within 160 deg of the nominal
setting.

For each flow condition the front face of the sphere was brought to the
predetermined axial position and the pressure was measured using a Pace
transducer with an eperating range of +£0, 1 psi.

© 4.0 DISCUSSION OF RESULTS

4.1 SHOCK DETACHMENT DISTANCE

o
4.1.1 Analysis of Photographs

°
Because of the low-density flow conditions existing in the present
tests, it is no longer valid to assume that the shock wave is a discrete
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discontinuity. TFor cxample, Levinsky and Yoshihara's (Ref. 4) anal-
ysis, in the region of the stagnation point, indicates that at the lower
Reynolds numbers the variation in density from the front of the shock
to the body is gradual and continuous. If it is assumed that the density
of the 1ilm negative in this region is proportional to the gas density,
then the front of the shock will be determined by the point at which the
film density starts to increase.

A photo-densitometer was used to determine the position of the
shock leading cdge, the front face of the sphere, and, where possible,
the back face or the sphere. The shock leading edge was determined
for a whole series of off-axis staticns. The advantage of this is that
it provided the shock shape data required in another part of this work,
and also, by drawing a smooth curve through the measured points,
errors introduced by random measuring errors in stand-off distance
were minimized, This type of error is particularly critical in the
determination of the shock detachment distance with the smallest spheres.
The position of the photo-densitometer carriage can be determined to
0. 001 crn; however, the random measuring error can be as much as
+0.005 cm, which, for the smailest spheres, implies 2 maximum error
of approzimately £10 pereent in the shock detachment distance, This
is the greater crror, and in general the error should be less than this
for a negative of good quality.

4.,1.2 Sphere Results

Two sets of spheres were studied in this experiment: one set con-
sisted of uncooled, stainless steel, ball bearings with diameters ranging
from 0,250 to 0,688 in. and the other sei consisted of water-coolea
brass spheres with diameters ranging from 0.240 to 0. 749 in.

A preliminary study of the effect of wall temperature on the shock
detachment distance indicated lhat the detachment distance was quite
sepsitive to relatively ssnall changes in wall temperature. Because of
this temperature sensitivity, the uncooled models were allowed to reach
their equilibrium temperature before a photograph was taken. The time
to reach thi® equilibrium temperature was determined by measuring the
sphere temperature with a chromel-alumel thermocouple attached to the
rear face of the sphere, at a series of Llime increments after the sphere
was brought into the hot stream. It was found from this investigation that
the equilibrium condition was attained in a relatively short time ( 3 min.)
and that the wall temperature was approximately 1000°K. Previous ex-
perience with water-cooled probes in the LDH Wind Tunnel has shown that
the water-cooled spheres should quickly reach an equiljbrium state and
tha* the wall temperature for these cases is approximately 300°K.

- ]
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In Figs. 3 and 4 the results of the determination of the shock de-
tachment distance for the cooled and uncooled spheres are plotted in the
form A/Rp vs Reg. A study of these curves shows the dependence of
shock detachment distance on Mach number, Reynolds number, and wall
temperaiure. For the range of Reynolds numbers of the present tests,
the shock detachment distance increases with decrease of Reynolds num-
ber. This is in qualitative agreemenl with the theoretical predictions of
Refs. 2-4 for the variation of shock detachment distance with Reynoids
number in the incipient merged layer regime. Furthermore, it is
shown that, for a particular Mach number and Reynolds number, as the
wall temperature increases the shock detachment distance increases.
This is in qualitative agreement with results of Ref. 4.

It is of interest to consider the relative magnitu-es of the shock-
layer and laminar boundary-layer thicknesses at the flow condition of
the present tests. Ziering, Ek, and Koch (Ref. 11), using the Boltz-
mann equation, present a solution to thc problem of determining the
shock-wave thickness. A comparison of experimental data obtained on
shock thickness in argon with this theory indicates that it gives a good
estimate of the shock-wave thickness. Reference 11 shows that the
shock-wave thickness is a function of the free-stream Mach number and
mean free path, The form of this relationship for argon is shown in
Fig. 5. Since there is no reason to doubt the validity of this relation-
ship at low Reynolds numbers, the shock-wave thickness has been de-
rived from Fig., 5 for the range of flow conditions of the present tests.
Some typical values are shown plotted in terms of body radius in
Figs. 3 and 4. It can be seen that the calculated shock-wave thickness
is always an appreciable percentage of the measurea shock detachment
distaiicc at these low Roynolds numbers, aiad fn ouine cases il is shuwn
to be larger than the measured shock detachment distance. This may be
attributable to the close proximity of the cooled body and consequent heat
transfer through the viscous shock layer. This possibility is not con-
sidered in the theory which considers isolated shocks.

The laminar boundary-layer thickness at the stagnation point can be
calculated for the "thin' boundary-layer case using data contained in
Ref. 12, where it is shown that the laminar boundary-layer dispiacement
thickness at the stagnation point car bgwritten in the following form:

S () -

where K is a factor solely dependent on the ratio of wall to stagnation
enthalpy and is given in Ref. 12. 1If it is assumedl that the pressure dis-
tribution in the region of the stagnation point is adequately defined by the

-
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modified Newtonian approximation, then the velocity gradient at ths
stagnation point for a hemisphere can be written in the form:

r-
T T ) (2)
wy Jp P

when M_ > 6.0, then pg > D, and Eq. (2) may be rewritten as

[2]

] 2 u,
uy = ,/7 (4) (3)

Ry,

Subslituling this value for ug in Eq. (i), and writing p,, and pw in terms
of pg, My, T2, and Ty, Eq. (1) becomes, for the hemisphere,

LA (L) () () (n) e
Ry Re, Py T \ T

1. ~F
For a constant value of ¥

Mo, and pp/pg is very nearly constant for a wide range of free-siream
Mach fumbers (5 < M, < 20). The factor K is a function of the ratio of
the wall to stagnation temperature, and K changes from negative to
positive as T/ T increases from zero to unity. This means that for
highly cooled bodies the displacement thickness in the stagnation region
is negative, °The magnitude of the dlsplacemené thickness is a function

1 —w

(]

)2

the pI"Od‘uLL of the terms con uuug .Lol 12

of the parameter ( I'a/T “-) :

In the present context it is censidered that the boundary-layer thick-
ness, 6, is a more meaningful parameter than é%. Referenc® 12 shows
that there is a relationship between 6 and §%* which is a function of wall to
stagnation temperature ratio only. Substituting this relationship into
Eq. (4) gives

o g

1 1 —w LIAC
y N, [P T O IR B O T
5Ry -k (2 f ( i ;‘) ('1_'“,) (T: ) o (5)

where in this case k always has a positive value. Typical values of the
boundary-layer thickness have been calculated from Eq. (5) and are
plotted in Figs. 3 and 4,

For the same Mach number and Reynolds number, Eq. (5) predicts
that as the wall to stagnation temperature ratio increases, the boundary-
layer thickness decreases. Equation (4) predicts that for the same con-
ditions as above, the displacement thickness increases with an increase

]
-
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in wall to stagnation temperature ratio. In considering the case where
the shock and boundary iayers are merged, it is apparent that the dis-
placement thickness does not lose its significance; but the total thick-
ness probably is more important because it indicates the degree of
viscous effect in the shock layer, i.e., the nearness to merging. Nat-
urally, both the calculated shock-wave and boundary-layer thicknesses
presented here are not exact under the very low Reynolds number condi-
tions being studied. They are presented only for qualitative comparisons.

If the boundary-~layer thickness, as computed by a theory applicable
to the case 6 << Rp, is considered to be a reasonable approximation,
then Fig. 3 shows that all of the results of this test are in the fully
merged regime, It is of interest to note that the form of the measured
shock detachment distance variation with Reynolds number is qualitatively
similar to the variation of shock-wave and boundary-layer thickness with
Reynolds number,

In the merged- layer cooled model case, the temperature immedi—

temperature, In Ref 11, for example, shock-wave thlckness is com-
puted and preqemed in terms of a ratio of shock thickness to free-stream
mean free path, Instead of referencing shock-wave thickness to the free-
stream mean free path, one may consider a vaiue of mean free path which
is the average of the free stream and that just downstream of the shock
wave. If the temperature just downstream of the shock is reduced be-
cauce of wall cooling, then the average value of the mean free path will
be reduced, and hence the shock thickness will also be reduced. This,
plus the influence of cooling on density in the shock layer, would have the
effect of reducing the rate of increase of shock-layer thickness with de-
crease of Reynolds number., Some confirmation of this is contained in
Figs. 3 and 4 when the data for M 6 are compared. Theregit will be
noted that shock-layer thickness at higher Reynolds numbers is greater
for the unccoied body which theoretically has the thinner boundary layer
and less cooling of the shock layer.

The fact that, for the highest Reynolds numbers tcsted here, the
uncooled sphere shock detachment distance is greater than that for the
cooled spheres may be explained by the fact that in the first case the
displacement thickness is small but positive; whereas in the latter case,
it is small but negative--the sum of these two values accounting for “the
difference in measured detachment distance.

A method of correlating the present results with those obtained for
other flow conditions is suggested in Ref. 13 where (A/Rp)/(A/Rp)inviscid
is plotted against Rez- Schwartz and Eckerman (Ref. 14) and Vas, et.al.

{Ref. 15), made some tests to determine the shock detachmen® distance
o
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in argon and helium, respectively, at high Reynolds numbers, the
resulis of which are shown in Fig. 6. The inviscid values for (A/Rp)
for the present tests were taken from this curve.

Tzing the above-mentioned parameter, the present resulits and the
theoretical analyses of Refs. 2-4 are compared in Fig. 7. The quali-
tative effect of wall cooling on the shock detachment distance as pre-
dicted by Levinsky and Yoshihara is confirmed. The decrease of shock
detachment distance to a value less than the '"inviscid’ value, as pre-
dicted by Ho and Probstein, is qualitatively confirmed in that some
measured values of (A/Rp)/(&/Rblinviscid 2re less than unity. The
constant-density solution of Probstein and Kemp should approximate
more closely to the uncooled model condition than to the cold wall case;
Fig. 6 shows this to be true. It is important to remember that the re-
sults obtained by Ho and Probstein and Probstein and Kemp apply to air,
whereas the present data and the results of Levinsky and Yoshihara

apply to argon,

It is considered pertinent here to emphasize that the value A quoted
herein is the distance from the face of the body to the leading edge of the
shock. For high Reynolds numbers the flow in front of a body is divided
into three regions: the shock layer, the boundary layer, and the distance
from the body to the rear face of the shock (A). When the boundary and
shock layers merge, these three divisions no longer have any significance
as segarate entities. TFor this reason, the shock detachment distance, A,
is taken to be the distance from the face of the body to the shock leading
edge,

4,1.3 Flat-Faced Body Results

Some limited tests were made with two water-cooled, flat-faced
probes at the same flow conditions as for the water-cooled spheres. The
results of the tests are shown in Fig, 3. No attempt has been made to
draw a single curve through these results since the sphere data imply
that there will be a variation with Mach number, which the limited nature
of these tests of flat-faced bodies cannot fully specify. °

The results of this test are interesting when they are considered in
conjunction with the sphere data, First of all, the shock detachment
distance is more than twice the value obtained for a sphere at the same
Mach number and Reynolds nuimber.® This Linplies that, provided the
boundary layer increases in the same manner as for a sphere, the boundary
and shock layers will not merge until 2 lower Reynolds number than that
at which merging occurs for a sphere is reached, Thus, incipient and
merged-layer phenomena would not be expected to occur with fiat-face
bodies untii a lower Reynolds number than that at which they occur for
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spheres is reached. In connection with this, Sherman's (Ref. 16) work
o impact-pressure probes shows that the rapid increase in impact pres-
sure of Reynolds number occurs at higher Reynolds number for source-
shaped probes than for flat-faced probes. This is consistent with the
idea that merged-layer characteristics occur at higher Reynolds number
for source-shaped than for flat-faced probes. ®

It has been shown that shock detachment distance is a function of
wall temperature, among other things. In Ref. 17, a study was made
of flat-faced, impact-pressure probes where the wall to stagnation
temperature ratio was approximately 0,3, It was found that these results
did not compare very well with some data obtained for a wall to stagnation
temperature ratio of unity. The present investigation would seem to indi-
cate that this difference could be at least partly accounted for by the dif-
ference in shock detachment distance for the two cases. Van Dyke (Ref. 1)
has shown that shock d®achment distance is primarily a function of the
density ratic across a normal shock wave. For a sphere, the effect of
different specific heat ratios is small. For the density ratios of the pres-
ent tests, the error involvedin the shock detachment distance by taking
¥ = 1.4 instead of 1,667 is on the order of 3 percent. Assuming that the
same is true for flat-faced bodies, then a good approximation to the
inviscid value of A/Ry, for the flat-faced bodies can be obtained from ex-
perimental data for flat-faced bodies, and this is shown in Fig, 8, The
inviscid values of A/Rp for the density ratios of the present tests are
shown in Fig, 3. As for the spheres, there is an indication that for the
Reynolds numbers of the present tests the measured value of 2/Rp is less
than the inviscid value through an intermediate range of Reynolds numbers.

4,2 SHOCK SHAPE
4.2,1 Sphere Results

The results of the analysis to determine the shock shape are shown
in Wigs. 9 and 10. For the range of Mach number and Reynolds number
of these tests, the nondimensionalized shock shape is a function of Mach
number only, after the effect of Reynolds number on A is accounted for.
In order to account for the Reynolds number effect on the shock detach-
ment distance, &, the origin of the ordinates is taken to be al the apex
of the shock-wave profile.

In Ref. 18, an analysis of experimentally determined shock shapes
has shown that these shapes could be represented by an equation of hyper-
bolic form:

w6l ) o
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withthe apex at the origin and with A being the slope of the asymptotic
shock angle far from the body. When n = 1/2, this equation is exactly
hyperbolic. From the above-mentioned shock-shape analysis, values
were assigned to A, n, and a and were shown to be functions of free-
stream Mach number and the nose wave drag coefficient, calculated by
using the modified Newtonian approximation and the specific heat ratio
of the gas, On comparing the shock shapes predicted by this method
with those caiculated by an empirical relationship by Love (Ref. 19),

it was found that Love's method gave a better prediction for Mach num-
bers less than four. The empirical relationships derived in Refs. 18
and 19 are for air only, and neither of them can be simply modified to
account for a gas with a specific heat ratio other than 1. 4. It has been
shown in Ref. 6 that the blast analogy is a useful means for predicting
some of the features of hypersonic flow over blunt bodies, In fact, it
is possible with this method to predict the relative effects of, say, a
change in specific heat ratio very well, while being unable to predict

a precise value of the quantity under investigation. In terms of the
blast analogy, the shock shape in front of a body can be written as:

/ % %
(y/D) = (Y=ln) (2 (1)
YA o 173, n

o

This is a useful form when a comparison of the effects of different
specific heat ratios on shocl: shape is to be made. When the relevant
vaiues of the specific heat ratio for air and argon are substituted in this
equation at constant value of xp/D, the ratio (y/D)aprgon/{(y/D)yjpr = 1. 16.
Some experimental results for helium (Refs. 20 and %1) which has the
same specific heat ratio as argon over a Mach number range from 15 to
40, show that this ratio is 1.17.

>

For the present Mach number range of 4. 22 to 9. 21, the method
given in Ref. 1S has been used to determine the shock shape for spherical
bodies in air. The data for Mach numbers of 8.61 and 9, 21 were ob-
tained by extrapolating the results contained in Ref. 19, It was considered
that this was preferable to using another method, say Ref. 18, to calculate
the shock shape at these high Mach numbers. The resulting shock shapes
are shown plotted in Figs. 9 and 10. The ratioc (y/D)argon/(y/D)air derived
from the experimental argon data and the calculated ai: data is shown
plotted against Mach number in #ig. 11. At the high Mach number end of
this curve, this ratio agrees very well with the blast analog:. Intuitively,
it would seem that the ratio must decrease with decreasing Mach number.,
No reason can be found for the abrupt change in slope of the curve at a
Mach number of approximately six.

11
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4.2.2 Flot-Faced Results ®

The measured shock shapes for the flat-faced bodies are shown in
Fig. 12. The shock shapes shown for air were derived from some ex-
perimental data for flat-faced bodies contained in Refs. 19 and 22.
Equation (7) indicates that the ratio (y/D)a,rgon/(y/ D)air should be the
same for spheres and for flat-faced bodies. The dashed lines in Fig. 12
were obtained by using the experimentally determinad curves for air and
multiplying them by the experimentally determined ratio in Fig. 11. It
will be seen that the dashed curves fit the experimentally measured
shock shapes for flat-faced bodies, which provides additional confirma-
tion of the form of the curve shown in Fig, 11.

4,2,3 Correlation of Shock Shapes

In terms of the blast analogy the parameter governing the form of
the shock-wave shape at high Mach numbers is given by Eq. (7) as
(xb/D)CDl/2 for a constant value of y. For Mach numbers greater than
4.0 the inviscid drag coefficient of both flat-faced bodies and spheres
is approximately constant. Therefore, to correlate the experimental
shock shape data for spheres and flat-faced bodies, it should be suffi-
cient to plot x/D versus §r/D on log-log paper. Figure 13 shows the
result of plotting data obtained from the faired curves of Figs. 9, 10,
and 12, for both argon and air. The fact that a series of parallel straight
lines can be drawn through the sphere data indicates that a constant value
can be given to the exponent of (xp/D) in Eq. (7). However, (v, Cp/ 4JO)
will be a function of Mach number for M, « 6, a fact owhich is not pre-
dicted by the blast analogy which applies to hypersonic flows. A straight
line cannot be drawn through the flat-faced body data for values of
x/D < 1.0, which means that a constant value cannot be assigned to the
exponent in Eq. (7). There are insufficient data to say definitely whether
there is a linear relationship between x/D and y/D for values of y/D >1.0,
though ther% are indications to suggest that this is so.

©

4,3 SHOCK-WAVE THICKNESS

L] o °

In Section 4. 1.2, a theory derived by Ziering, et al.(Ref.11), for
monatomic gases was used to estimate the thickness of the shock wave
for the present tests, This estimate was chosen because it appeared to
be in reasonable agreement with the experimental data for Mach numbers
up to 5. A comparison of some of the theoretical estimates of shock-wave
thickness for monatomic gases is shown in Fig. 14 together with the ex-
perimental data published by other investigators.

In the calci'ation of the shock-wave thickness, two approaches have
been used. In one, the Navier-Stokes equations have been used to calculate

12
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shock~-wave profiles, and curve 6 in Fig. 14 shows a solution by
Schwartz, as reported by Hornig in Ref. 23, The other solutions are
developments of a method suggested by Mott-Smith (Ref. 24) for the
solution of the Boltzmann equation. Curves 1-5 in Fig. 14 (Refs. 11,
23, 25-27) give the results of calculations of this form. For Mach
numbers less than approximately two, all of the calculations are in
reasonable agreement with the available experimental data. However,
for higher Mach numbers, the degree of agreement is poor. At a Mach
number of six, the solution proposed by Koga gives a value of the shock
thickness five times larger than that predicted by the Navier-~Stokes
equations, with the other solutions lying within this range.

By far the most consistent and extensive sgt of experimental data
to date is that by Linzer, reported by Hornig in Ref, 23. These values
of shock~wave thickness have been derived from measurements of the
optical reflectivity of the shock wave, Although most of the other test
data reported in Ref. 28 are in good agreement with the above data at
low Mach numbers, there is some scatter in the data at the higher
Mach numbers. In spite of this scatter, it seems fair to conclude from
the experimental data that the shock-wave thickness has a minimum
value at M = 3,5 and thereafter increases with increase in Mach number.
This form of variation is the saine as that predicted by Ziering, et al.
(Ref. 11), although the actual values of the shock thickness are not the
same.

°

t is important to remember that the shock-wave thickness con-
sidered here is the thickness of the density profile. Furthermore, the
thicknesses quoted are the maximum slope thicknesses of this profile,
as illustrated in Fig. 15. Sherman (Ref, 29) has shown that there is
considerable difference between the total shock-wave thickness and the
maximum slope thickness in the low-density flow regime, In fact, when
consideration is being given to the merging of shock and boundary layers
in front of a blunt body, it would seem that the total thickness is more
significant than the maximum slope thickness.

]

Consider the structure of the shock wave at locations removed from
the spheres and flat-faced bodies of the present tests. If it is assumed
that the film density of the photographic negatives is proportional to the
density in the gas flow, then the measurement of the film density withghe
photo-densitometer should give the form of the density variation through-
out the flow regime under investigation. As stated earlier for all the
flow conditions investigated herein, there is an axial Mach number gra-
dient, which in turn implies a density gradient. Measurement of the film
density upstream of the body shock indicates that the film density decreases
as the shock is approached, i.,e., in passing downstream. Furthermore,

e e 13
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the rate of decrease of film density decreases as the region of ‘low
under investigation moves farther and farther downstream from the
nozzle exit. This implies a decrease of axial Mach number gradient
as the distance from the nozzle exit plane increases. This is consist-
ent with the results of the nozzle calibration studies which show just
such a decreasing gradient.

The film density of a large number of the negatives was recorded
on the strip chart recorder attached to the photo-densitometer for a
series of stations along the bow shock, but sufficiently far from the
bodies to avoid boundary-layer influences, As the shock was approached
from upstream, the density decreased, then underwent a gradual increase
at the front of the shock, then a rapid rise, then a more gradual rise,
then became almost constant, and finally the density started to decrease.
An example is shown in Fig. 16. Consider the density variation along
section AA through the three-dimensional shock shown in Fig. 17. From
a-b, the density decreases because of tne axial Mach number gradient;
from b-c¢-d, an increase occurs in density through the shock to a maxi-
mum value at d at the rear face of the shock; and from d-e, a decrease in
density occurs because of the flow expansion behind the shock. The form
of this density variation is the same as that recorded by the photo-
densitometer in Fig. 16. Now, if the radiation of light from the shock
wave is considered, it will be seen that the maximum section length
through the shock wave occurs at section d. This indicates that the points
of maximum film density and flow density can occur at the same points,
By adjusting the rate at which the carriage carrying the negative is passed
by the viewing slit of the densitometer, the shock thickness recorded on
the strip chart recorder can extend over several inches. Both the maxi-
mum slope and total thickness of the shock waves were measured from
this recorded data. These thicknesses were measured normal to the
tangent to the shock wave. Then, taking the free-stream mean free path
and Mach number resolved in a direction normal to the shock wave, the
ratio ¢f the maximum slope shock-wave thickness to the free-stream
mean free path was calculated and is shown plotted in Fig. 18. The scatter
in the dhita is on the order of 10 percent. This shows that as the Mach
number increases above roughly three, the shock-wave thickness increases,
which is in agreement with the form predicted in Ref. 11, An attempt has
been made tu estimate the total thickness even though it was difficult to
define exactly where the edges of the shock wave were, FIigure 18 shows
that the total thickness is approximately 50 percent greater than the maxi-
mum slope thickness. Sherman {Ref. 29) has made a study of the shock-
wave thickness using a fine wire probe (which was essentially a frec-
molecule flow probe) in helium and air. The results of this study in the .
Mach number range from 1. 72 to 3, 91 show that the total thickness is °
alwaYs approximately double the maximum sla)e thickness. Also of interest

e 14
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is the fact that in this study the wire temperature profile is nct sym-
metrical about the mean temperature value. Some of the film density
profiles obtained in the present tests were also of this form. Hornig
(Ref. 23) indicates that theory predicts that this asymmetry is a prop-
erty of strong shocks. It would seem from the present results and
those of Sherman that this property of strong shock waves is confirmed,
As mentioned by Hornig, such a property of shock waves poses a prob-
lem in the opiical reflectivity method of shock-wave thickness mcasure-
ments, since the basis for the method is the assumption that the density
profile through the shock is symmetricai.

e

4.4 SPHERE PRESSURE DISTRIBUTIONS

Surface pressure di%tributions in the Mach number rangg from 4. 4
to 13.5 are shown in Fig. 19 and Tablie i. A comparison is made with
the modified Newtonian approximatici:

Cp = Cppay o8 P (8)

This equation can be rewritten in terms of surface pressure and the
pressure at the stagnation point:
p

B cos’ s -2 Siﬂ2 Z (9)

’

Po Py

For the complete Mach and Reynolds number range of these tests,
the modified Newtonian approximation gives a good prediction of the
surface pressure distribution up to an angle of 60 deg. Above 60 deg,
there is a tendency for the modified Newtonian approximation to under-
estimate the surface pressure distribution. However, it musi be
emphasized that the degree of disagreement between theory and experi-
ment is small even at surface angles greater than 60 deg.

Talbot, et al. (Ref. 3§), have shown for hemispherically blunted
cones in an unheated, low-~density flow that the modified Newtonian
approximation gives good results over the hemispherical part of the
body. Hayes and Probstein {Ref. 31), in a comparison of the merits of
the various methods of predicting the surface pressure distribution over
spheres, emphasize that the modified Newtonian approximation is strictly
an empirical formula. A more rational estimate is the Newton-Busemann
law which takes into account centrifugal effects:

p 4 .2
I (10)

This law, though more rational in nature than the modified Newtonian
approximation, gives poor agreement with experiment. Hayes and
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Probstein {Ref. 31) consider that the good results obtained with the
madified Newtonian approximation are fortuitous and that the centrif-
ugal pressure difference across the shock layer is in many instances
offset by the effect of the difference in the shock and body angles.

Perhaps one of the more interesting results from this experiment
is that the modified Newtonian theory is valid in a region where the
shock and boundary layers merge. The only other known data in the
low-density regime where the shock and boundary layers had not
merged are contained in Ref. 30.

It is of interest to consider the form of the surface pressure dis-
tribution in the free-molecule flow regime in order to determine how
the form of the distribution changes in going from the continuum to
free-molecule regimes. The surface pressure distribution of a sphere
in the free-molecule flow regime, given in Ref. 32, is

b [T e_52c0526 +Vm Scos 8 (1 + erf S cos 6) (11)
Poo T .

If the pressure at the stagnation point is written as p,’, then the pres-
sure at any point on the sphere can be written as

P. _ I.e~sz cos 0 4 V/;_S cos 0 (1 4 er! S cos 9)] (12)
P —g? — Y
Py [c + \f.‘.‘ S(l+erf5)]
for S cos € > 2.0
then etf S cos 0 - 1.0

then Eq. (18) becomes

Fa

.
(~p ); cos & when S cos 0 > 2 (13)

o

For the present series of tests, this would imply that if any free-
molecule flow effects were present, the measured pressures would be
larger than those predicted by the modified Newtonian approximation.
Since the measured pressures are not larger than those predicted by
the modified Newtonian approximation, then the spheres are not being
affected by any free-molecule flow effects. This is not a surprising
result when it is considered that the largest Knudsen number, based on
sphere radius, of the present tests is approximately 0. 07 for a billiard-
ball molecular model,

16
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5.0 CONCLUSIONS

Based on an experimental investigation to determine the pressure
distribution, shock shape, and shock detacliment distance for spheres
and the latter two characteristics for flat-faced bodies in heated argon
flow, the following conclusions are made:

The shock detachment distance in front of a body in low-density,
hypervelocity flow is a function of Mach number, wall-to-stagnation
temperature ratio, and Reynolds number and body shape. Evidence
from the results of the present series of experiments suggests that the
shock wave and boundary layers in front of the bodies were merged.

For complete range of Magh and Reynolds numbers encounteredp
in this experiiment, the nondimensionalized shock shape was a function
of Mach number and body shape only. Furthermore, the difference be-

etween the shock shapes in air and argon at high Mach numbers was in
very good agreement with that predicted by the blast analogy.
&

Even in the flow regime where the shock and boundary layers
were merged, the modified Newtonian approximation gave good results
for the surface pressure distribution over spheres for 6 - 60 deg.

Measurements of shock-wave thickness in the low-density regime
were in reasonable agreement with results at higher densitics when
ratioed to mean free path, Also, the form of the variation of shock-
wave thickness with Mach number agreed with that predicted by Ziering,
et al. (Ref. 11).
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Fig. 2 Flow over Spheres and Flat-Faced Bodies
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